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THE EXPLICIT SIMPLIFIED INTERFACE METHOD
FOR COMPRESSIBLE MULTICOMPONENT FLOWS.

BRUNO LOMBARD∗ AND ROSA DONAT†

Abstract. This paper concerns the numerical approximation of the Euler equations for mul-
ticomponent flows. A numerical method is proposed to reduce spurious oscillations that classically
occur around material interfaces. It is based on the ”Explicit Simplified Interface Method” (ESIM),
previously developed in the linear case of acoustics with stationary interfaces (2001, J. Comput.
Phys. 168, pp. 227-248). This technique amounts to a higher order extension of the ”Ghost Fluid
Method” introduced in Euler multicomponent flows (1999, J. Comput. Phys. 152, pp. 457-492).
The ESIM is coupled to sophisticated shock-capturing schemes for time-marching, and to level-sets
for tracking material interfaces. Jump conditions satisfied by the exact solution and by its spatial
derivative are incorporated in numerical schemes, ensuring a subcell resolution of material interfaces
inside the meshing. Numerical experiments show the efficiency of the method for rich-structured
flows.

Key words. Euler equations, multicomponent flows, jump conditions, interface methods, Ghost
Fluid Method, ENO-WENO, level-set.

AMS subject classifications. 65M06, 65M99, 76T05

1. Introduction. Let us consider multicomponent flows composed of pure invis-
cid fluids separated by material interfaces. These flows arise in a wide range of physical
situations, from water-steam to bubbly flows, liquid suspensions or even high-speed
impacts on solids. They may be modeled by the Euler equations, augmented by ad-
ditional equations describing the fluid composition. The numerical simulation of such
configurations leads to major difficulties.

Indeed, even state-of-the-art numerical schemes for single-component flows cannot
be applied directly in multicomponent flow simulations. These schemes give rise
to oscillations and other computational inaccuracies near material interfaces. For
example, any Godunov-type shock-capturing scheme which conserves the mass of
individual species fails to maintain pressure equilibrium at a material interface [1]. The
unphysical pressure oscillations stem from the fact that in a shock-capturing scheme,
the transition across a material interface is governed by the numerical viscosity of the
scheme. When two fluids are involved, intermediate states generated in the numerical
transition layer (corresponding to the material interface) are not physically consistent
with any component of the mixture: updating the pressure field via one particular
equation of state generates erroneous pressure fluctuations. Since material interfaces
lack the compressive mechanisms associated to shocks, errors generated within the
diffused interface escape and contaminate all flow variables.

Many numerical methods have been proposed to avoid these unphysical oscil-
lations. See e.g. [2] for a concise survey of up-to-date multicomponent methods.
Remaining within the front-capturing (as opposed to front-tracking) computational
framework, we distinguish two main approaches:

Miscible models. Material interfaces are approximated by diffused fronts. An
artificial equation of state (or mixture model) is defined, based on thermodynamical
arguments [3, 17, 23], which is considered valid for the entire fluid mixture and is used
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2 B. LOMBARD AND R. DONAT

to update the pressure from conserved variables. These models have been analyzed
in [1, 2, 15, 16, 31]. The elimination of unphysical oscillations generally involves
sacrificing strict conservation to some degree, except in [23] where a conservative
algorithm maintains oscillations under a computationally acceptable level.

Purely inmiscible models, as in the present paper. A level-set function is used to
track material interfaces in an Eulerian manner, i.e. without explicitely computing
their location. Depending on the sign of the level-set, one applies the corresponding
equation of state. Thermodynamic properties of the fluid change discontinuously
across material interfaces, which are preserved as sharp discontinuities. A simple
approach was first used in [24], but it suffers from severe computational inaccuracies
in multicomponent flow computations [16].

The Ghost Fluid Method (GFM) [8] is the best-known method belonging to this
second group. On each side of a material interface, two fluids are considered: the
”real fluid” (i.e. the fluid that really exists on this side) and a ”ghost fluid” (i.e.
the fluid with the same pressure and velocity than the real fluid on that side, but
the entropy of the real fluid on the other side). Near a material interface, classical
single-component schemes are then simply applied both on ”real-fluid” values and on
”ghost-fluid” values. Extensions to multidimensional problems and to other physical
situations have been tackled by the GFM [7, 9]. However, the GFM suffers from some
inaccuracies which are not appreciated when material interfaces separate uniform
states. These numerical artifacts are mainly due to the zeroth-order extrapolations
used to define the ghost fluid. Simple minded first-order extrapolations do not work
[8].

The goal of the present paper is to remove these drawbacks of the GFM by cor-
rectly increasing the precision of the computation across a material interface. We pro-
pose to implement a carefully designed first-order extrapolation procedure to obtain
the ”ghost fluid” values. To do so, we adapt the Explicit Simplified Interface Method
(ESIM), previously developed for the linear hyperbolic systems of acoustics with sta-
tionary interfaces [21, 22, 27]. Note that another linear extrapolation in the context
of the GFM has been proposed in [4] in order to couple Eulerian and Lagrangian
computations. In the present paper, however, the goal is to enforce first-order jump
conditions at material interfaces.

Interface methods have been widely used in the numerical treatment of bound-
aries and interfaces in PDE’s: see e.g. the Immersed Interface Method (IIM), applied
to elliptic equations [18] and linear hyperbolic systems [34]. See [20, 27] for a concise
survey of up-to-date interface methods. To our knowledge, the present paper is the
first attempt to apply interface methods to the nonlinear hyperbolic system of the
Euler equations. The computational complexity of the resulting algorithm is essen-
tially the same as that of the GFM, and it can easily be coupled to a wide class of
high-order shock-capturing schemes.

The paper is organized as follows. Section 2 recalls the level-set framework to
model compressible multicomponent flows. Section 3 describes the numerical schemes.
The interface method is detailed in section 4. Numerical tests are proposed in section
5. Conclusions and future works are drawn in section 6.

2. The level-set framework for multicomponent flows.

2.1. The Euler equations. We focus on multicomponent flows consisting of
pure fluids separated by material interfaces. Assuming that all components can be
described by a single velocity and pressure function, the flow can be modeled by the
compressible Euler equations expressing conservation of mass, momentum, and energy
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of the fluid mixture. Let ρ be the density of the fluid mixture, u the velocity, p the
pressure and e = ε + 1

2u2 the specific total energy, with ε the specific internal energy.
Then, we have

∂

∂ t
U +

∂

∂ x
f(U) = 0, (2.1)

where the vector of conserved quantities U and the flux function f are

U =







ρ

ρ u

ρ e






, f(U) =







ρ u

ρ u2 + p

u (ρ e + p)






. (2.2)

To close the system (2.1), we need to specify the equation of state (EOS). In this
paper, we consider the stiffened gas EOS

p = (γ − 1) ρ ε − γ p∞, (2.3)

where p∞ is the stiffness parameter. The basic polytropic gas case is recoverred for
p∞ = 0: in this case, γ represents the ratio of specific heats. The EOS (2.3) is
a reasonable approximation for gases, liquids, and even solids under huge pressure
conditions [29]. The sound speed c is given by

c2 =
γ (p + p∞)

ρ
. (2.4)

αγ
0

p γ
11

p

Ω0 Ω1

x

0

Fig. 2.1. Two components Ω0 and Ω1 separated by a material interface.

2.2. The level-set equation. The flow description is completed by an addi-
tional equation describing the fluid composition. In level-set framework, a scalar
function φ is used to track material interfaces. For the sake of simplicity, we consider
only two components Ω0 and Ω1, separated by a material interface at α(t) (figure
2.1). We suppose that each fluid satisfies (2.3), and that physical parameters of (2.3)
may be discontinuous at α

(γ, p∞) =







(γ0, p∞ 0) if x ≤ α

(γ1, p∞ 1) if x > α.
(2.5)

The marker variable φ is initialized as the signed distance function to α(0), which is
known initially. Hence its zero level-set defines the material interface at t = 0, while
its sign determines the region occupied by each fluid.

Since material interfaces propagate with the fluid velocity, the zero level-set of φ
identifies the material interface for all t > 0 if φ(x, t) satisfies the advection initial-
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value problem











∂ φ

∂ t
+ u

∂ φ

∂ x
= 0,

φ(x, 0) = x − α(0).

(2.6)

The evolution equation in (2.6) can be recast in conservation form, by combining it
with the conservation of mass,

∂ ρ φ

∂ t
+

∂ u ρ φ

∂ x
= 0. (2.7)

Equations (2.1), (2.3), and (2.6) (or (2.7)) form an ”inmiscible” model in which the
fluid ”mixture” consists of either fluid Ω0 or Ω1, and where thermodynamic properties
change discontinuously across the material interface.

3. Numerical schemes. To integrate the Euler equations and the level-set
equation for multicomponent flows, two strategies are available. The first one is
to discretize the conservative system composed by the Euler equations (2.1) together
with the level-set equation in conservation form (2.7). This discretization can be per-
formed by applying the classical methodology of shock-capturing schemes for systems
of conservation laws. It has been used in other papers (see e.g. [24]), but the addition
of the level-set equation enlarges the Jacobian matrix, which increases the complexity
of characteristic decompositions. This feature may become specially cumbersome in
multidimensional calculations.

The second strategy - simpler, and followed here - is considered in [8], where
the Euler equations (2.1) are discretized independently from the level-set equation
in non-conservative form (2.6). Following [11], the Euler system is identified as the
minimal system, hence it can be discretized with any standard conservative scheme,
while the level-set equation is independently discretized following its advection form
(2.6). The numerical flux function involved in the Euler equations will therefore not
depend directly on φ, like in a single-component flow. The Lax-Wendroff theorem
can still be applied [11], hence the obtained numerical solution converges to a weak
solution of the full conservative system.

The discrete set-up to solve the system (2.1)-(2.6) is as follows: we consider a
lattice of points in the x plane xi = i ∆ x, where ∆ x is a uniform spacing parameter.
Numerical values Un

i and φn
i are respectively considered as approximations to U and

φ at xi and time tn [30]. To decouple the spatial and time integrations, we follow a
method of lines approach [19] for both the Euler system and the level-set equation.
The semi-discrete approximation of the nonlinear hyperbolic system (2.1) is written

d

d t
U i = LΩ(U , i), (3.1)

whereas the semi-discrete approximation of the advection equation (2.6) is

d

d t
φi = G(φ, i). (3.2)

The discrete operator LΩ in (3.1) is specified in subsection 3.1. We say that a grid
point is regular if LΩ uses numerical values belonging only to one fluid component.
Otherwise, a grid point is called irregular, and the expression of LΩ is modified by the
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interface method detailed in section 4. The discrete operator G in (3.2) is specified
in subsection 3.2.

We emphasize the fact that the numerical schemes proposed in the next two
subsections are by no means fundamental for the interface method. The reader’s
favorite single-component solvers can be adapted easily to the forthcoming discussion.

3.1. Discretization of the Euler equations. When xi is a regular point, all
the values involved in the flux computations belong to one of the fluid components, say
Ωl. Then, the spatial discrete operator LΩ = LΩl

in (3.1) is written in the customary
conservation form

LΩl
(U , i) = −

1

∆ x
(F Ωl

(U i−s+1, ..., U i+s) − F Ωl
(U i−s, ..., U i+s−1)) . (3.3)

The numerical flux function F Ω in (3.3) is the trademark of the scheme; it is defined
by a reconstruction procedure, and by a solver. In numerical experiments, we use
ENO or WENO reconstructions [30, 13]. The width of the stencil s in (3.3) is related
with the theoretical order of accuracy of the spatial reconstruction (s = 3 for ENO-3
or WENO-5).

As a solver, we consider a flux-splitting construction [6, 10]. This choice has
been considered in [23] within the mass fraction model for two-ideal gas flows. This
flux-splitting requires two spectral decompositions of the Jacobian at each cell inter-
face, which serve to perform upwind reconstructions of characteristic variables and
fluxes. The additional cost is counterbalanced by the robust behavior of the scheme in
pathology-prone situations. In addition, and as opposed to a Roe-type numerical flux
function, no average-state needs to be computed at a cell interface, which is particu-
larly useful for real-gas simulations. We only need to know the spectral decomposition
of the Jacobian matrix: for the EOS (2.3), this is given e.g. in [32].

The time integration of (3.1) is performed by the standard third-order TVD
Runge-Kutta [30], even when the fifth-order WENO-5 reconstruction is used. ∆ t
follows from ∆x and from the classical CFL condition of stability

CFL = max
i=0,..., Nx

(|un
i | + cn

i )
∆ t

∆ x
≤ 1, (3.4)

where Nx + 1 is the number of grid points.

3.2. Discretization of the level-set equation. We follow the same method
of lines as for the Euler system. The spatial discretization is carried out using the
Hamilton-Jacobi framework for the numerical approximation of the derivative terms
[14, 26]. The upwind direction at xi is determined by the sign of ui. Full details are
in Appendix A.1 of [8].

Theoretically, solving (2.6) is sufficient to track the material interface. However,
some extra-care must be taken for numerical purposes. Since u is nonuniform along
the flow, the numerical representation of φ(x, t) may become distorted [28], leading to
a poor estimation of the position of α. To keep φ approximately equal to the distance
function near the material interface, we follow a classical procedure proposed in [33],
and called reinitialization of the level-set. This procedure can be carried out in a
number of different ways, here we follow [8] and solve to steady state the Hamilton-
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Jacobi equation



















∂ φ̃

∂ t
+ S(φ̃)

(∣

∣

∣

∣

∣

∂ φ̃

∂ x

∣

∣

∣

∣

∣

− 1

)

= 0,

φ̃(x, 0) = φ(x, tn),

(3.5)

where S is a smeared sign function given by

S(φ̃) =
φ̃

√

φ̃2 + ∆ x2

.

The reinitialization equation is solved in fictitious time after each fully complete time
step for the Euler equations, with a method of lines approach. For the spatial inte-
gration of (3.5), we use a modification of Godunov’s method detailed in Appendix
A.3 of [8]. For the time integration, we use the same TVD Runge-Kutta scheme as
for the Euler equations. As a time step, we take ∆ τ = ∆ x. After five integrations,
we obtain a steady distance function, φ̃, which is then exchanged with φ.

4. The ESIM for the Euler equations.

4.1. The numerical interface treatment. The ESIM is a numerical treatment
to be applied at irregular points, i.e. at points for which the flux computations in
the right-hand side of (3.1) involve more that one fluid component. This treatment
is carried out at each time integration (such as a Runge-Kutta substep). Let us fix
an instant in time (to simplify the notations, the time variable is omitted from now).
Then, the basic strategy of the ESIM can be schematically described as follows.

α

U

U

J

J+1

... J J+1 J+s+1J-s

U

U

U

U J-s

J

J+1

J+s+1

*

*

*

*

- +

...

Fig. 4.1. Numerical values Ui and modified values U
∗
i
.

Consider the material interface at x = α separating the two media Ω0 and Ω1

(figure 2.1). We define smooth extensions U∗(x) of the exact solution U(x): here, we
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consider two-terms Taylor-like expansions past the interface, written

for x > α, U∗(x) = U(α−) + (x − α)
∂

∂ x
U(α−),

for x ≤ α, U∗(x) = U(α+) + (x − α)
∂

∂ x
U(α+).

(4.1)

Then, the interface treatment is divided in two parts.
First, numerical estimations U∗

i of U∗(xi) in (4.1), called modified values (or ghost
values, in the GFM framework), are sought at grid points surrounding α (figure 4.1).
To do so, one must estimate U(α±) and ∂

∂ x
U(α±). These last estimations, based on

jump conditions presented in subsection 4.2, are detailed in subsection 4.3.
Second, at each irregular point xi belonging to a particular fluid component,

say Ωl, the spatial operator LΩ(U , i) is constructed by considering only thermody-
namically similar state values, that is: numerical values for grid locations in Ωl and
modified values at grid points on the other fluid component. This subject is detailed
in subsection 4.4.

4.2. Jump conditions at material interfaces. Across α, the primitive vari-
ables satisfy the classical zeroth-order jump conditions

[u] = 0, [p] = 0, (4.2)

where, for any function f(x, t),

[f ] = lim
x→α+

f(x, t) − lim
x→α−

f(x, t).

Since u and p do not jump across the interface, then their material - or Lagrangian -
derivatives do not either. This fact immediately leads to the less-classical first-order
jump conditions

[

1

ρ

∂ p

∂ x

]

= 0,

[

ρ c2 ∂ u

∂ x

]

= 0. (4.3)

One can also find second-order (and higher) jump conditions. However and unlike the
acoustics case [27, 20], these jump conditions (not presented here) involve nonlinear
combinations of p, u and their successive spatial derivatives, making the computations
much more intricate.

For polytropic gases, ρ c2 = γ p; since [p] = 0, the last equation of (4.3) can be
simplified in [γ ∂ u

∂ x
] = 0. Note also that nothing is said about [ρ] and [ ∂ ρ

∂ x
].

4.3. Numerical estimation of one-sided quantities. In a level-set model,
the location of the material interface is given by a sign change in the marker variable
φ. Suppose that

φJ × φJ+1 < 0. (4.4)

As a consequence, the interface lies somewhere between xJ and xJ+1. The subcell
location of α is specified by the parameter

θ̃ =
α − xJ

∆ x
∈ [0, 1[, (4.5)
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which is readily estimated to second-order by a simple linear interpolation involving
the smooth level-set function φ. Indeed, defining

θ =
|φJ |

|φJ | + |φJ+1|
, (4.6)

we have θ = θ̃ + O(∆x2). Since the jump conditions (4.2) and (4.3) concern the
primitive variables W = T (ρ, u, p), it is easier to first look for estimations of W (α±)
and ∂

∂ x
W (α±), and then to go back to the conserved variables U(α±) and ∂

∂ x
U(α±).

In the following discussion and for any function f , the numerical estimation of f(α±)
or ∂

∂ x
f(α±) is denoted by f± or f±

x .
Density. The density is not subject to any constraint at a material interface,

therefore numerical estimations ρ± and ρ±x are performed via one-sided interpolations.
On the left of α, elementary interpolations lead to

ρ− = −θ ρJ−1 + (1 + θ) ρJ ,

ρ−x =
1

∆ x
(ρJ − ρJ−1) ,

(4.7)

while on the right of α, we get

ρ+ = (2 − θ) ρJ+1 − (1 − θ) ρJ+2,

ρ+
x =

1

∆ x
(ρJ+2 − ρJ+1) .

(4.8)

If ρ(x) is a piecewise C1 function, we obviously have

ρ(α±) = ρ± + O(∆ x2),
∂ ρ

∂ x
(α±) = ρ±x + O(∆ x).

Remark 1. The density estimations obtained above must remain within the
physical range, i.e. ρ± > 0. In some cases, negative values can be numerically
obtained (e.g. in regions close to vacuum). Then, a different approximation procedure
with constraints would be necessary (which is not considered here).

Pressure. The pressure and its spatial derivative satisfy (4.2) and (4.3)

p(α+) = p(α−),

1

ρ(α+)

∂ p

∂ x
(α+) =

1

ρ(α−)

∂ p

∂ x
(α−).

(4.9)

From the definition of p± and p±x , we have

pJ = p− + (xJ − α) p−x ,

pJ+1 = p+ + (xJ+1 − α) p+
x .

(4.10)

We impose that numerical estimations satisfy exactly the same jump conditions as
exact values. Combining (4.10) with (4.9) leads to the 2 × 2 system





pJ

pJ+1



 =







1 −θ ∆ x

1 (1 − θ)
ρ+

ρ−
∆ x











p−

p−x



 . (4.11)
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The above matrix is always invertible, provided that ρ± > 0. Inverting the above
system gives the numerical values at α−

p− =
1

(1 − θ)
ρ+

ρ−
+ θ

(

(1 − θ)
ρ+

ρ−
pJ + θ pJ+1

)

,

p−x =
1

(

(1 − θ)
ρ+

ρ−
+ θ

)

∆ x

(pJ+1 − pJ) .

(4.12)

To get estimations at α+, one uses (4.12) and jump conditions (4.9). Note that p+ (or
p−) is a convex combination with positive coefficents of pJ and pJ+1, hence p± > 0.
As in the previous case, standard results allow to conclude that if both p(x) and ρ(x)
are C1 away from the material interface, then

p(α±) = p± + O(∆ x2),
∂p

∂x
(α±) = p±x + O(∆ x).

Velocity. Zeroth-order and first-order jump conditions for the velocity are

u(α+) = u(α−),

ρ(α+) c2(α+)
∂ u

∂ x
(α+) = ρ(α−) c2(α−)

∂ u

∂ x
(α−).

(4.13)

Applying the same procedure as for the pressure, we obtain a system which is invertible
as long as (1− θ)γ0 (p− + p∞ 0) /γ1 (p+ + p∞ 1) + θ > 0. This is always the case since
p± > 0. For stiffened gas EOS (2.3), defining

ξ =
γ0 (p− + p∞ 0)

γ1 (p− + p∞ 1)
, (4.14)

(for the ideal polytropic case ξ = γ0/γ1) with p− given by (4.12), we obtain

u− =
1

(1 − θ) ξ + θ
((1 − θ) ξ uJ + θ uJ+1) ,

u−

x =
1

((1 − θ) ξ + θ) ∆ x
(uJ+1 − uJ) .

(4.15)

To get estimations at α+, one uses (4.15) and the jump conditions (4.13). As before,
under the appropriate smoothness assumptions, one has

u(α±) = u± + O(∆ x2),
∂u

∂x
(α±) = u±

x + O(∆ x). (4.16)

Conserved variables. Once sided estimations W± and W±

x are computed, we
deduce U± and U±

x from (2.3). These values are second-order approximations to the
exact values under appropriate smoothness assumptions, hence

Û(x) =







U+ + (x − α)U+
x for x ≤ α

U− + (x − α)U−

x for x > α
(4.17)

satisfies U∗(x) = Û(x) + O(∆x2) near the interface.
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4.4. Spatial integration at irregular points. From (3.3) and (4.4), one de-
duces that the irregular points are

xJ−s+1, ..., xJ+s. (4.18)

Modified values must also be computed at xJ−s and xJ+s+1 because the material
interface can move between tn and tn+1, crossing one grid point (but no more, be-
cause of the CFL condition): as a consequence, these two regular points can become
irregular points during one Runge-Kutta substep. The modified values are computed
by substituting the appropriate grid point in the expresion (4.17). Using (4.6) as a
second-order approximation to (4.5), we obtain

i = J + 1, ..., J + s + 1, U∗

i = U− + (i − J − θ) ∆ xU−

x ,

i = J − s, ..., J, U∗

i = U+ + (i − J − θ) ∆ xU+
x .

(4.19)

At each irregular point xi, LΩ is now applied on numerical values on the same side
than xi, and on modified values on the other side than xi, hence

i = J − s + 1, ..., J,

LΩ(U , i) = −
1

∆ x

(

F Ω 0

(

U i−s+1, ..., UJ , U∗

J+1, ..., U
∗

i+s

)

−F Ω 0

(

U i−s, ..., UJ , U∗

J+1, ..., U
∗

i+s−1

))

,

i = J, ..., J + s,

LΩ(U , i) = −
1

∆ x

(

F Ω 1

(

U∗

i−s+1, ..., U
∗

J , UJ+1, ..., U i+s

)

−F Ω 1

(

U∗

i−s, ..., U
∗

J , UJ+1, ..., U i+s−1

))

.

(4.20)

4.5. Summary of the implementation. Suppose that Runge-Kutta integra-
tions (denoted by RK) have been performed up to the (m− 1)-th substep. Then, the
time-marching for both the Euler equations and the level-set equation can be summed
up in 8 steps.

Step 1: location of the interface. Compute J (4.4) and θ (4.5).
Step 2: construction of modified values. Compute (4.19).
Step 3: construction of temporary values. Build two sets Ai and Bi

A
(m−1)
i =







U
(m−1)
i , i = 0, ..., J,

U∗

i , i = J + 1, ..., J + s + 1,

B
(m−1)
i =







U∗

i , i = J − s, ..., J,

U
(m−1)
i , i = J + 1, ..., Nx.

(4.21)
Step 4: update Ai and Bi. Compute one Runge-Kutta substep of (3.1)

i = s, ..., J + 1, A
(m)
i = RK

(

A
(k)
i , LΩ0

)

, k ≤ m

i = J, ..., Nx − s, B
(m)
i = RK

(

B
(k)
i , LΩ1

)

, k ≤ m.

(4.22)

Step 5: update φ. Compute one Runge-Kutta substep of (2.6) via u(m−1).
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Step 6: location of the interface. Compute J (4.4) from φ(m).
Step 7: update U . From (4.22) and J , select

U
(m)
i =











A
(m)
i for i = 0, ..., J,

B
(m)
i for i = J + 1, ..., Nx.

(4.23)

Step 8: reinitialization of φ. If m = 3 (i.e. t = tn+1), integrate (3.5).

4.6. Some remarks. Complexity. The algorithm presented in section 4.5 is
simple. The computation of modified values U∗

i does not depend on the discrete
spatial operator. No analytical results - such as the solution of a Riemann problem -
are required. As deduced from (4.22), one does not need to write a new solver: the
adaptation of known single-component solvers to the multicomponent case is direct.
The only difficulty is to switch precisely modified values in the appropriate solver,
depending on the sign of the level-set function, which is in fact an easy task.

Computational cost. In comparison with single-component simulations, our ap-
proach leads to a +25 % additional cost, both on a memory and computational time
point of view. This cost is almost completely due to the level-set function φ. Such a
cost is inherent to level-set formulations, in order to know the composition of the fluid
at each grid point. Eulerian methods that do not use level-sets require in counterpart
to modify the Euler eigenstructure, leading to a similar additional cost.

Consistency. As for the GFM [2], the ESIM works because values used for time-
stepping in (4.22) are thermodynamically similar: A∗

i (respectively B∗

i ) in (4.21)
satisfy the same equation of state. The algorithm amounts to consider separately two
single-component flows, where no oscillations exist.

Single-component flow. In the limit case γ0 = γ1, p∞ 0 = p∞ 1, the flow is single-
component, and material interfaces amount to classical contact-discontinuities. The
ESIM behaves equally well, sharpening contact discontinuities.

Conservativity. The ESIM is formally non-conservative locally, since

F Ω0

(

UJ−s+1, ..., UJ , U∗

J+1, ..., U
∗

J+s

)

6= F Ω1

(

U∗

J−s+1, ..., U
∗

J , UJ+1, ..., UJ+s

)

,
(4.24)

like in [15] or [8]. However, the lack of conservation is only introduced at one cell
boundary on the entire domain. In practice, this feature does not seem to spoil
convergence to the correct solution.

Note that a fully-conservative version of the GFM has been developed [25]. Such
an approach could probably be adapted to the ESIM, but we do not look further in the
present paper: unlike in [25] where inert shocks and detonation waves are adressed,
we only focus on the material interfaces (where conservation errors are not crucial).

5. Numerical experiments.

5.1. Configurations. Four numerical experiments are proposed. Tests 1 and 2
illustrate the interaction of shock waves with one and two material interfaces. Test
3 is a pure advection problem, with smooth structures. Test 4 concerns nonlinear
acoustics. Analytical values and numerical values are respectively shown in solid lines
and dotted lines, and we take CFL=0.66.

All tests have initially-isolated material interfaces. Riemann problems are not our
concern, since jump conditions (4.2) - which are a building-block of the ESIM - are
then generally not satisfied. Note that the GFM has the same limitation. In practice,
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the GFM often works for Riemann problems, but some failures (see e.g. data of Test
4 in [2]) can be explained by the fact that basic assumptions are not satisfied.
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Fig. 5.1. Test 1-a: Mach 1.95 shock wave interacting with a material interface. WENO-5
coupled with the ESIM (exact values: solid line; numerical values: points).

5.2. Test 1: shock-interface interaction. Firstly, we consider a shock-interface
interaction problem, previously studied in [31]. On a 1 m long domain, the initial con-
figuration consists of a stationary material interface at α0 = 0.5 m, separating two
fluids with different EOS: a polytropic gas on the left, a stiffened gas on the right. A
left-going Mach 1.95 shock wave is initially set at α1 = 0.7 m. Physical parameters
are






















ρ0 = 1.000 kg/m
3
, p0 = 1 Pa , u0 = 0 m/s , γ0 = 1.4, p∞ 0 = 0 Pa,

ρ1 = 5.000 kg/m
3
, p1 = 1 Pa , u1 = 0 m/s , γ1 = 4, p∞ 1 = 1 Pa,

ρ2 = 7.093 kg/m3, p2 = 10 Pa , u2 = −0.7288 m/s , γ2 = 4.0, p∞ 2 = 1 Pa.
(5.1)

At t = 4.69 10−2 s, the shock wave collides with the material interface, leading to a
left-going shock, a left-going material interface, and a right-going rarefaction fan (see
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figure 4 in [31]).
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Fig. 5.2. Test 1-b: Mach 5 shock wave interacting with a material interface. WENO-5 coupled
with the ESIM (exact values: solid line; numerical values: points).

Figure 5.1 shows exact values and numerical values of ρ, u, p, and entropy S at
t = 0.202 s (after 200 time steps). The computations are performed on Nx = 200 grid
points with WENO-5 coupled with the ESIM. The agreement between analytical and
numerical values is good. The main interest of this example is to show that the ESIM
is robust and behaves well, even when a shock wave is in the vicinity of the material
interface. No spurious oscillations induced by Taylor expansions are seen in u and p
around the material interface (near x = 0.32 m).

Secondly, we consider the case of a stronger shock wave. The physical parameters
around the material interface are the same than in (5.1); only the parameters in the
post-shock fluid are modified

ρ2 = 8.116 kg/m
3
, p2 = 77.80 Pa , u2 = −2.428 m/s , γ2 = 1.4, p∞ 2 = 1 Pa,

what amounts to a Mach 5 left-going shock wave. The wave phenomena (after the
collision between the shock wave and the material interface) are the same than in the
previous example. The computations are performed with WENO-5 coupled with the
ESIM.
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Figure 5.2 shows exact values and numerical values of ρ, u, p, and entropy S at
t = 0.112 s (after 300 time steps). The agreement between numerical and analytical
values is good, even for this strong shock test. No oscillations are visible in u and p
around the material interface (near x = 0.26 m).
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Fig. 5.3. Test 2: shock-bubble interaction. WENO-5 coupled with the ESIM (fine grid solution:
solid line; numerical values: points).

5.3. Test 2: shock-bubble interaction. We consider the 1D version of the
classical shock-bubble interaction problem, numerically addressed e.g. in [23] with
a conservative algorithm. On a 0.445 m long domain, a helium domain, initially
delimitated by α0 = 0.2 m and α1 = 0.25 m, is at rest in air. A left-going Mach 1.22
shock wave is initially set at α2 = 0.275 m. Physical parameters are






































ρ0 = 1225 kg/m
3
, p0 = 1.01325 105 Pa , u0 = 0.0 m/s , γ0 = 1.4, p∞ 0 = 0 Pa,

ρ1 = 0.2228 kg/m
3
, p1 = 1.01325 105 Pa , u1 = 0.0 m/s , γ1 = 1.648, p∞ 1 = 0 Pa,

ρ2 = 1225 kg/m
3
, p2 = 1.01325 105 Pa , u2 = 0.0 m/s , γ2 = 1.4, p∞ 2 = 0 Pa,

ρ3 = 1686 kg/m
3
, p3 = 1.59059 105 Pa , u3 = −3.59 m/s , γ3 = 1.4, p∞ 3 = 0 Pa.
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See [23] for a description of wave phenomena. Since no analytic solution is available,
we compute the solution with WENO-5 coupled with ESIM on a fine grid with 3200
mesh points; we refer to this approximation as the ”exact solution” for comparison
purposes.

Figure 5.3 shows ”exact values” and numerical values of ρ, u, p, and S at t =
2.86 10−3 s (after 400 time steps). The computations are performed on Nx = 400 grid
points with WENO-5 coupled to the ESIM. The agreement between ”exact values”
and numerical values is very good. The resolution is better than in [23]: compare the
density inside the helium in figure 5.3 with the density in figure 2 of [23].

To conclude the tests 1 and 2, let us notice that similar results could be obtained
with the GFM treatment (not shown here). Indeed, when only flat profiles are in-
volved, the GFM and the ESIM have a similar behavior. When a shock wave collides
with a material interface, both treatments produce a ”sloping” behavior in density
and entropy very close to the ”overheating” phenomenon found in shock reflection
problems [6]. Increasing the Mach number seems to accentuate this ”overheating”,
producing in addition slightly perturbed post-shock values: small acoustic perturba-
tions can be observed downstream in figure 5.2. More testing (not shown) has been
performed with Mach numbers up to 9, which confirm these observations. No crash
due to negative pressure values has been observed on these tests.

The goal of the next two tests is to show the advantage of using the ESIM (com-
pared to the GFM) for rich-structured flows.

Method Nx L1 error L1 order Method Nx L1 error L1 order

100 6.44e-3 - 100 3.76e-3 -
ENO-3 200 1.62e-3 1.99 ENO-3 200 4.74e-4 2.98

+ 400 6.86e-4 1.24 + 400 6.42e-5 2.88
GFM 800 2.40e-4 1.51 ESIM 800 8.62e-6 2.89

1600 6.44e-5 1.89 1600 9.50e-7 3.18
3200 2.05e-5 1.65 3200 1.21e-7 2.98

Table 5.1

Measures of convergence in Test 3.

5.4. Test 3: pure advection. We consider a 1 m long domain with two material
interfaces initially at α0 = 0.160 m and α1 = 0.526 m. The pressure and the velocity
are initially constant: u(x, 0) = 300 m/s, p(x, 0) = 105 Pa. The density is initially

ρ(x, 0) =







1 + 0.3 sin(50 (x − α0)) kg/m
3

if α0 ≤ x < α1,

1 kg/m
3

else.
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Fig. 5.4. Test 3-a: 200 grid points. ENO-3 coupled with the GFM (left column) and with the
ESIM (right column). Exact values: solid line; numerical values: points (note that the scales for p

and u are magnified).
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Fig. 5.5. Test 3-b: 800 grid points. ENO-3 coupled with the GFM (left column) and with the
ESIM (right column). Exact values: solid line; numerical values: points (note that the scales for p

and u are magnified).
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Method Nx ∆(ρ) Order ∆(ρ u) Order ∆(ρ e) Order

100 7.25e-1 - 2.21e+2 - 3.22e+4 -
ENO-3 200 3.82e-1 0.92 1.14e+2 0.95 1.72e+4 0.90

+ 400 2.21e-1 0.79 6.65e+1 0.77 9.97e+3 0.78
GFM 800 1.27e-1 0.80 3.83e+1 0.79 5.74e+3 0.79

1600 7.10e-2 0.84 2.13e+1 0.84 3.19e+3 0.84
3200 3.61e-2 0.97 1.08e+1 0.98 1.62e+3 0.97

100 1.98e-1 - 5.96e+1 - 8.94e+3 -
ENO-3 200 4.69e-2 2.08 1.40e+1 2.09 2.11e+3 2.08

+ 400 1.07e-2 2.13 3.23e+0 2.11 4.85e+2 2.12
ESIM 800 2.75e-3 1.96 8.27e-1 1.96 1.24e+2 1.96

1600 6.82e-4 2.01 2.37e-1 1.80 3.41e+1 1.86
3200 1.54e-4 2.14 6.72e-2 1.81 9.36e+0 1.86

Table 5.2

Conservation errors in Test 3.

Physical parameters are

(γ, p∞) =























γ0 = 1.40, p∞ 0 = 104 Pa if x ≤ α0,

γ1 = 1.67, p∞ 1 = 105 Pa if α0 < x ≤ α1,

γ2 = 1.40, p∞ 2 = 104 Pa if x > α1.

This configuration amounts to an advection equation for ρ; material interfaces are
advected at the velocity u; p and u remain theoretically constant. Because of the
discontinuous physical parameters, the entropy S is discontinuous at α0 and at α1.
Numerical experiments are performed with ENO-3, coupled with the GFM or with
the ESIM.

Figures 5.4 and 5.5 show exact values and numerical values of ρ, S, p, and u
at t = 6.62 10−4 s, respectively for Nx = 200 grid points (hence 25 grid points by
wavelength) and Nx = 800 grid points (hence 100 grid points by wavelength). Notice
that the zeroth-order extrapolation of S used by the GFM result in jumps of ρ at
material interfaces, that are advected with the flow; these glitches are also transferred
to u, and p, near x = 0.35 m and x = 0.75 m, and act as sources of acoustic noise.
These glitches still exist with 800 grid points (figure 5.5) with the GFM. On the other
hand, no entropy or density glitches are observed when the ESIM is used instead.

We must mention that ENO reconstructions of a sinusoidal profile might produce
oscillations on the level of the truncation error. These small spurious oscillations are
seen in p and u, which should have flat profiles, and can be observed even without
material interfaces. When these oscillations interact with the GFM-produced glitches
at material interfaces, they are amplified and lead also to spurious acoustic waves.
These oscillations are entirely reconstruction dependent and, since they are of the
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order of the truncation error (see also our convergence measures), they are essentially
not visible on 800 grid points when the ESIM is used (figure 5.5).

Measures of convergence are provided in table 5.1. Coupled with the ESIM,
the ENO-3 scheme maintains third-order convergence. Coupled with the GFM, the
ENO-3 scheme looses accuracy and shows a 1.6 order of convergence. Table 5.2 shows
measures of conservation errors induced by the GFM and by the ESIM, for various
values of Nx (see subsection 4.6). To do so, we compute

∆ U(T, Nx) = max
n=0,...,Nt

∣

∣

∣

∣

∣

i1
∑

i=i0

(

Un
i − U0

i

)

+ n
∆ t

∆ x

(

f
(

Un
i1

)

− f
(

Un
i0

))

∣

∣

∣

∣

∣

(5.2)

at T = 1.05 10−3 s, where f is the flux function (2.2) , and Nt = Trunc (T/∆ t).
The domain of measure is bounded by i0 = 10 and i1 = Nx − 10. Getting fiable and
meaningfull measures requires some care. Indeed, errors of conservativity vary a lot
with the position of α inside the meshing, hence with t. The ”max” in (5.2) ensures
almost-steady values of ∆ U(T, Nx) and reliable measures.

A fully conservative scheme would satisfy ∆U(T, Nx) = 0 for all values of T and
Nx (see e.g. (12.33) in [19]). Here, errors are non-null, but they decrease with ∆ x.
Conservation errors induced by the ESIM are much smaller than that induced by
the GFM. The table 5.2 indicates first-order conservation errors for the GFM, and
second-order conservation errors for the ESIM.

Measures of convergence and conservativity have been done also with the WENO-
5 scheme coupled with the GFM or with the ESIM. The results are essentially the
same than in tables 5.1 and 5.2. To get a fifth-order accurate scheme (as in [27]) and
a higher order of conservation would require to develop a higher order ESIM, which
is not investigated in the present study.
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Fig. 5.6. Initial values of the pressure p at t0 = 5.1 10−2 s in Test 4.

5.5. Test 4: nonlinear acoustics. As a last example, we consider a rich-
structured wave interacting with a stationary material interface. This example is
a generalization of the Test 1 studied in [27]: for small amplitude initial data, the
simple linear equations of acoustics used in [27] are valid, and the wave remains
smooth. Higher amplitudes of initial data lead to a nonlinear problem, where shocks
can develop.
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Fig. 5.7. Test 4. ε = 10−3 (left column), ε = 1 (right column) at t1 = 8.61 10−2 s. Snapshots
of fine grid solution (solid line) and numerical values (dotted line) of p with the ESIM: (a), (b).
Errors with the ESIM: (c), (d). Errors with the GFM: (e), (f).
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To illustrate both cases, we use exactly the same physical parameters than in
[27]. On a 300 m long domain, a material interface separates piecewise constant
values, initially motionless







ρ0 = 1000 kg/m
3
, p0 = 105 Pa , u0 = 0.0 m/s , γ0 = 3, p∞ 0 = 7.50 108 Pa,

ρ1 = 1200 kg/m
3
, p1 = 105 Pa , u1 = 0.0 m/s , γ1 = 4, p∞ 1 = 2.35 109 Pa.

From (2.4), one deduces sound speeds: c0 = 1500 m/s, and c1 = 2800 m/s. These phys-
ical parameters correspond respectively to water and Plexiglass under atmospheric
pressure. A perturbation ∆W 0(x) is added to initial data on medium Ω0, which is
an exact solution of acoustics and leads to a right-going wave

∆ W 0(x) = ε f

(

t0 −
x

c0

)

T

(

−
p0

c2
0

,−
p0

ρ0 c0
,−p0

)

. (5.3)

The function f is a C5 spatially-bounded sinusoid

f(ξ) =



















q
∑

k=1

ak sin(βk ωc ξ) if 0 < ξ <
1

fc

,

0 else,

(5.4)

with βk = 2k−1, ωc = 2π fc; the coefficients ak are: a1 = 1, a2 = −21/32, a3 = 63/768,
a4 = −1/512. The central frequency is fc = 50 Hz. Elementary calculations show
that

∆ ρ0

ρ0
∼

∆ u0

c0
∼

∆ p0

p0
∼ ε. (5.5)

For ε = 0, the solution remains a stationary material interface. For small values
of ε (typically ε = 10−3), the acoustics limit is valid and one obtains a pure right-
going wave. For higher values of ε (typically ε = 0.1), the perturbation (5.3) does
not satisfy exactly the nonlinear Euler equations: the wave separates into a weak left-
going wave and a right-going wave. In both cases, the right-going wave is reflected and
transmitted by the material interface. The analytical solution is not detailed in the
linear case [20]. No analytical solution is available in the nonlinear case: one computes
an ”exact solution” on a fine grid of 3200 grid points. Numerical experiments are
performed with Nx = 400 grid points, which is 40 points in the wavelength λc = c0/fc,
and t0 = 5.1 10−2 s. Initial values of the p at t0 are shown in figure 5.6, for ε = 10−3.

Figure 5.7 shows results at t1 = 8.61 10−2 s, after 200 time steps. Left and right
columns concern respectively ε = 10−3 and ε = 0.1. Figures 5.7 (a) and (b) show
numerical values and exact values of p computed by WENO-5 coupled to the ESIM.
Logically, (a) is similar to figure 3-(d) of [27]. In the nonlinear case (b), the reflected
and transmitted waves have developed a shock. In both cases, the agreement between
exact values and numerical values is excellent.

To see clearly differences between the ESIM and GFM treatments, we display
errors for both methods: with the ESIM in (c) and (d), with the GFM in (e) and (f).
In the nonlinear cases (d) and (f), errors are displayed from x = 85 m to x = 120
m, to avoid the shock area. In both cases, the graphs confirm that the ESIM is more
accurate than the GFM.
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Unlike in [27], the material interface is allowed to move with the flow. For
ε = 10−3, the measured movement is lower than 10−7 m: so, the approximation
of stationary material interfaces is justified. For ε = 0.1, the material interface moves
from 96.3 m to 96.114 m, and then it comes back to the initial position 96.3 m: it is
logical, since the velocity is symetric with respect to zero.

6. Conclusion. We have proposed an extension of the ”Explicit Simplified Inter-
face Method” (ESIM), previously developed in acoustics [21, 22, 27], to treat material
interfaces in 1D multicomponent Euler flows.

The method enforces the numerical solution to satisfy zero-order and first-order
jump conditions at the material interface and can be coupled with the user’s favourite
high-order shock-capturing scheme for single component flows. It behaves as robustly
as the GFM [8] in numerical simulations involving flat states, while it displays a
superior performance in flows with rich structures.

Our numerical simulations show that the interface treatment we propose guaran-
tees a numerical solution with no unphysical numerical artifacts due to the material
interface. The behavior observed for the numerical errors is similar to that observed
for the same underlying method when applied to a flow without material interfaces.

This paper was focused on 1D flows: applying the ESIM to 2D cases is a challeng-
ing project, subject of future works. Some key tools for the 2D implementation have
been validated already in the simple case of 2D linear acoustics with stationary inter-
faces [22]. Other ingredients (such as multidimensional level-set-based extrapolations)
may be found in [5, 12].
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