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Numerical treatment of two-dimensional

interfaces for acoustic and elastic waves.

Bruno Lombard, Joël Piraux

Laboratoire de Mécanique et d’Acoustique, 31 chemin Joseph Aiguier, 13402

Marseille, France

Abstract

We present a numerical method to take into account 2D arbitrary-shaped inter-
faces in classical finite-difference schemes, on a uniform Cartesian grid. This work
extends the “Explicit Simplified Interface Method” (ESIM), previously proposed
in 1D (2001, J. Comput. Phys. 168, pp. 227-248). The physical problem under
study concerns the linear hyperbolic systems of acoustics and elastodynamics, with
stationary interfaces. Our method maintains, near the interfaces, properties of the
schemes in homogeneous medium, such as the order of accuracy and the stability
limit. Moreover, it enforces the numerical solution to satisfy the exact interface
conditions. Lastly, it provides subcell geometrical features of the interface inside
the meshing. The ESIM can be coupled automatically with a wide class of nu-
merical schemes (Lax-Wendroff, flux-limiter schemes,...) for a negligible additional
computational cost. Throughout the paper, we focus on the challenging case of an
interface between a fluid and an elastic solid. In numerical experiments, we provide
comparisons between numerical solutions and original analytic solutions, showing
the efficiency of the method.

Key words: Acoustics and Elastodynamics, Discontinuous Coefficients, Jump
Conditions, Interface Methods, Wave Propagation Algorithm, Singular Value
Decomposition, Hyperbolic Systems.
1991 MSC: 35L40, 65M06

1 Introduction

Consider two-dimensional perfect fluids and elastic solids, with discontinuous
physical properties across arbitrary-shaped interfaces. We want to simulate

Email addresses: lombard@lma.cnrs-mrs.fr (Bruno Lombard),
piraux@lma.cnrs-mrs.fr (Joël Piraux).
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the propagation of acoustic waves and elastic waves in such media. To do
so, we use classical finite-difference or finite-volume schemes on a uniform
Cartesian grid. Without an efficient numerical treatment of the interface, we
can neither expect high-quality simulations nor have any confidence in the
results. It follows from three reasons. First, the stair-step representation of
arbitrary-shaped interfaces introduces spurious diffractions [4]. Second, the
non-smoothness of the solution across the interfaces reduces the order of con-
vergence [28], and numerical instabilities can occur even for low contrasts of
physical parameters. Third, the jump conditions and the boundary conditions
are not incorporated in the schemes, so that the conversion, refraction, and
diffraction wave phenomenons are not correctly described [18].
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Fig. 1. Plane wave on a circular interface, without an interface treatment (green-red:
P-waves, magenta-yellow: SV-waves; exact solution: points, numerical solution: solid
line).

To see what happens when the interfaces are not taken into account prop-
erly, we show in figure 1 a simulation of a plane wave in a fluid, interacting
with a circular elastic medium. The parameters and the results are detailed
in section 4.3. As often done in practice, the fluid is considered as a solid with
an almost-zero celerity of transverse waves. A classical scheme is used every-
where, without any special care near the interfaces. The analytical solution is
denoted by points; the numerical solution (computed by the Wave Propagation
Algorithm of LeVeque [14]) is denoted by a solid line. The agreement between
analytical and numerical values is very bad, and one can observe unphysical
waves.

The goal of our paper is to propose a numerical method to avoid these prob-
lems induced by the interfaces. Our method can be coupled with a wide class
of numerical schemes, maintaining some properties of those schemes in homo-
geneous medium. It is instructive to compare the figure 1 with the figure 6
(i = 5), where our method is applied.

Our strategy belongs to the family of the interface methods, whose basic prin-
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ciple is the following. Consider an interface immerged in a regular Cartesian
grid. One uses a classical scheme far from the interfaces, like in homogeneous
medium. Another scheme is used near the interfaces (more precisely, at the
grid points where the stencil crosses an interface). This new scheme is built
from the jump conditions to ensure the same order of accuracy as the first
scheme.

To our knowledge, the common ancestor of the interface methods is the ”Im-
mersed Boundary Method” (IBM), developed by Peskin in 1977 [21]. Its pur-
pose was to describe an elastic membrane and discrete forces in a Stokes flow.
The IBM is first-order accurate: to improve the accuracy near the interfaces,
LeVeque and his collaborators proposed the ”Immersed Interface Method”
(IIM). Let us mention some works based on the IIM: Li in 1994 for elliptic
equations [16] and in 1997 for Stokes flow [17], Zhang in 1996 for hyperbolic
systems of acoustics and elastodynamics [27,28], Wiegmann in 1998 for non-
linear parabolic equations [25], Calhoun in 2000 for advection-diffusion with
obstacles [3], Lee in 2002 for Navier-Stokes equations with interfaces [11,12].
An alternative of the IIM was proposed for elliptic equations by Wiegmann
and Bube in 1998: the ”Explicit Jump Immersed Interface Method” (EJIIM)
[26].

Despite its qualities, the IIM suffers from some drawbacks for an efficient appli-
cation to acoustics and elastodynamics. Even if we use sophisticated schemes
far from the interfaces (such as the Wave Propagation Algorithm) to avoid the
numerical dispersion, the IIM introduces some unphysical dispersion near the
interfaces. The coupling of the IIM with high-order and sophisticated schemes
is non-trivial. Lastly, numerical instabilities are observed, even for moderate
contrasts of the physical parameters [18].

Those drawbacks has lead us to propose a new interface method in 1D, the
”Explicit Simplified Interface Method” (ESIM) [22]. The coupling of the ESIM
with any scheme is so intimate that the numerical properties are the same at
any point, far or near the interfaces. Moreover, this coupling is automatic and
independant of the scheme. The key idea of the ESIM is simple: instead of
modifying explicitly a scheme near the interfaces, we modify some numerical
values used for time-stepping near the interfaces. These modified values are
deduced from smooth extensions of the solution on both sides of the interface.
These smooth extensions are based on the jump conditions satisfied by the
exact solution at the interface.

The underlying philosophy of the ESIM is quite similar to the ”Ghost Fluid
Method” (GFM) proposed by Fedkiw and al. [5] for multicomponent Euler
flows. However, we believe that our method is more accurate than the GFM
in the context of linear equations and stationary interfaces. Indeed, we take
into account precisely the geometrical features of the interface, and we can
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reach arbitrary-high orders of precision.

The present paper extends the ESIM to two-dimensional configurations. Even
if the key idea is the same as in the one-dimensional case, many new ideas
are introduced. First, we take into account complicated geometries, and dif-
ferent media on both sides of the interfaces (e.g. fluid and solid). Second, we
consider various interface conditions: jump conditions, boundary conditions,
and compatibility conditions. Third, in many cases, the number of interface
conditions is lower than the number of components of the solution: this un-
derdetermination complicates the procedure.

The ESIM has been tested in many two-dimensional cases: fluid-fluid, solid-
solid in perfect or imperfect contact, fluid-solid [18]. The numerical treatment
proposed further can be applied for all these cases. However, we will mainly
focus on the fluid-solid case, especially in numerical experiments. This con-
figuration is particularly challenging because of its difficulties and the appli-
cations, to cite a few: the wave propagation in water and solid sediments in
underwater acoustics, and in the human bone in biomechanics. To our knowl-
edge, the fluid-solid interface has not been treated by other interface methods,
because of the underdetermination of the interface conditions. Up to now, the
fictitious domain method [4] do not treat this configuration. The spectral el-
ement method applied in [10] treats the fluid-solid interface, but it requires
that the grid points coincide with the interface. Lastly, alternative methods
based on the averaging of the coefficients near the interfaces [6,24] are, at best,
first-order accurate.

The paper is organized as follows. The section 2 contains the basic tools for
the study. The first-order hyperbolic systems of conservation laws for acous-
tics and elastodynamics are recalled. We write the interface conditions, and we
shortly recall the numerical schemes used far from the interfaces. The section
3 describes the algorithm of the ESIM. In section 4, we propose numerical ex-
periments for fluid-solid interfaces, and comparisons with analytical solutions
in three configurations: a plane interface, a circular interface, a circular elastic
shell immerged in a fluid. Finally, some conclusions are drawn in section 5.
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2 General framework

2.1 Conservation laws

We are concerned with the propagation of small perturbations in initially mo-
tionless fluids and isotropic elastic solids. The physical properties are supposed
piecewise constant, and they are discontinuous across stationary interfaces. To
fix the ideas, consider two media Ωi (i = 1, 2) separated by an interface Γ (fig-
ure 2). We use a parametric representation of Γ: (x(τ), y(τ)). The tangential
vector t and the normal vector n are given by

t =















x
′

y
′















, n =















−y
′

x
′















, (1)

where we use the notation x
′

= d x
d τ

and y
′

= d y

d τ
. The interface Γ is supposed

sufficiently smooth: x(τ), y(τ) and their spatial derivatives (up to a given
order) are continuous all along Γ.

Ω Ω1 2

+

n

t

Γ

P

−

Fig. 2. Two media Ω1 and Ω2 separated by an interface Γ.

If Ωi is a fluid, the physical parameters are the density ρ and the sound speed
c. The unknowns are the two components of the acoustic velocity v(v1, v2),
and the acoustic pressure p. Then, the acoustic solution is denoted by

U = T (v1, v2, p). (2)

If Ωi is a solid, the physical parameters are the density ρ and the elastic speeds
of P-waves and S-waves cp and cs, linked to the Lamé coefficients λ, µ by

cp =

√

λ + 2 µ

ρ
, cs =

√

µ

ρ
. (3)
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The unknowns are the two components of the elastic velocity v(v1, v2), and
the three independant components of the elastic stress tensor σ(σ11, σ12, σ22).
Then, the elastic solution is denoted by

U = T (v1, v2, σ11, σ12, σ22). (4)

In both cases, the linearization of the mechanic equations on medium Ωi and
outside Γ leads to a first-order linear hyperbolic system

∂

∂ t
U + Ai

∂

∂ x
U + Bi

∂

∂ y
U = 0, (5)

where the matrices Ai and Bi depend on the physical parameters (for the
sake of clarity, we omit the indices i in these parameters). In the fluid case,
the 3 × 3 matrices Ai and Bi are

Ai =































0 0
1

ρ

0 0 0

ρ c2 0 0































, Bi =































0 0 0

0 0
1

ρ

0 ρ c2 0































. (6)

In the solid case, the 5 × 5 matrices Ai and Bi are

Ai = −





























































0 0
1

ρ
0 0

0 0 0
1

ρ
0

ρ c2
p 0 0 0 0

0 ρ c2
s 0 0 0

ρ
(

c2
p − 2 c2

s

)

0 0 0 0





























































,
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Bi = −





























































0 0 0
1

ρ
0

0 0 0 0
1

ρ

0 ρ
(

c2
p − 2 c2

s

)

0 0 0

ρ c2
s 0 0 0 0

0 ρ c2
p 0 0 0





























































. (7)

2.2 The interface conditions

Consider a point P of Γ (figure 2). On both sides of P , the limit values of
the solution U (x, y, t) and of its spatial derivatives up to the k-th order are
denoted by

U k
i = lim

M→P,M∈Ωi

(

U ,
∂

∂ x
U ,

∂

∂ y
U , ...,

∂α

∂ xα−β ∂ yβ
U , ...,

∂k

∂ yk
U

)

, (8)

with α = 0, ..., k and β = 0, ..., α. The vector U k
i has 3 (k + 1)(k + 2)/2

components if Ωi is fluid, and 5 (k + 1)(k + 2)/2 components if Ωi is solid.

To well-define the wave propagation problem, one must give the jump condi-
tions and the boundary conditions satisfied by the solution U along Γ. The
classical interface conditions are written abstractly

C0
1 U 0

1 = C0
2 U 0

2,

L0
1 U 0

1 = 0,

L0
2 U 0

2 = 0.

(9)

The first expression in (9) is a jump condition, the other are boundary con-
ditions. The matrices C0

i and L0
i (i = 1, 2) depend on the parameter τ , but

they are independant of t. More sophisticated interface conditions could also
be investigated, but they are beyond the scope of the present paper; see e.g.
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[19] for conditions describing imperfect contacts between solids. Unlike other
authors who work in a local system of coordinates (see e.g. [28]), we work
directly in the (x, y) coordinates.

As an example, consider the fluid-solid case, where Ω1 is the fluid and Ω2 is
the solid. Since the fluid is perfect, the normal velocity and the normal stresses
are continuous, hence

[v.n] = 0, −p n = σ n, (10)

where [ ] denotes the jump across Γ, from Ω1 to Ω2. From (1) and (10), we
recover (9) by setting

C0
1 =















−y
′

x
′

0

0 0 x
′2 + y

′2















,

C0
2 =















−y
′

x
′

0 0 0

0 0 y
′2 −2 x

′

y
′

x
′2















,

L0
1 =

(

0 0 0

)

,

L0
2 =

(

0 0 x
′

y
′

y
′2 − x

′2 −x
′

y
′

)

.

(11)

From the equation (10), we can seek to express the solution on the fluid
side (2) in terms of the solution on the solid side (4), or inversely. In both
cases, there are not enough equations, as shown now. In the first case, three
unknowns must be determined; to do so, we deduce from (10) one equation for
p and only one equation for v1 and v2. In the second case, five unknowns must
be determined; to do so, we have only one equation for v1 and v2, and two
equations (one boundary condition and one jump condition) for σ11, σ12, and
σ22. This simple remark about the underdetermination of interface conditions
leads to a rather complicated procedure explained in section 3.3.
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2.3 Numerical schemes far from interfaces

We define a time step ∆ t and a uniform Cartesian grid with spatial meshes
∆ x = ∆ y. The approximation of U(xi = i ∆ x, yj = j ∆ y, tn = n ∆ t) is
denoted by Un

i,j. To integrate (5), one can use two-step finite-difference or
finite-volume schemes, written symbolically

Un+1
i,j = H

(

Un
i+α,j+β

)

, (12)

where H is a discrete operator, and α, β depend on the chosen scheme. See
[9,13] for a survey of the huge literature dedicated to this subject.

For numerical experiments performed in section 4, we use second-order sche-
mes: the Lax-Wendroff scheme (for its simplicity) and the Wave Propagation
Algorithm (WPALG) of LeVeque [14]. This last 21-point truly multidimen-
sional finite-volume scheme reduces the numerical anisotropy induced by the
Cartesian grid. Moreover, the numerical dispersion is avoided via flux limiters.
Lastly, it is stable up to CFL=1.

The time-stepping (12) is applied at the regular points, that is at the grid
points where the stencil belongs only to one medium. The aim of the present
paper is to detail the time-stepping at the irregular points (not regular points),
that is at the grid points where the stencil crosses the interface. Unlike 1D
cases, no theoretical expression of the irregular points is available, because of
the arbitrary shapes of the interfaces.

3 The Explicit Simplified Interface Method

The technical aspects of the algorithm are now detailed, followed by some
remarks.

3.1 Derivation of the interface conditions

For further use, we need the jump conditions and the boundary conditions to
be satisfied by U k

i (i = 1, 2, k ≥ 1). To do so, we differentiate (9) in terms of
t and τ , and we use the conservation law (5).

To illustrate the procedure, consider the second equation of (9): L0
1 U 0

1 = 0.
First, we differentiate it in terms of t. Since L0

1 does not depend on t (Γ is a
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stationary interface), we get

L0
1

∂

∂ t
U 0

1 = 0. (13)

Then, the time derivative in (13) is replaced by spatial derivatives via the
conservation law (5)

−L0
1 A1

∂

∂ x
U 0

1 − L0
1 B1

∂

∂ y
U 0

1 = 0. (14)

Second, we differentiate L0
1 U 0

1 = 0 in terms of τ , leading to

(

d

d τ
L0

1

)

U 0
1 + L0

1

∂

∂ τ
U 0

1 = 0. (15)

Since U 0
1 depends on x(τ), y(τ), the chain-rule gives

(

d

d τ
L0

1

)

U 0
1 + L0

1

(

x
′ ∂

∂ x
U 0

1 + y
′ ∂

∂ y
U 0

1

)

. (16)

We define the matrix-block

L1
1 =















0 −L0
1 A1 −L0

1 B1

d

d τ
L0

1 x
′

L0
1 y

′

L0
1















. (17)

Then, from (8), (14), and (16), we deduce

L1
1 U 1

1 = 0. (18)

By iterating a similar procedure k times, one can find matrices Ck
i and Lk

i

(i = 1, 2, k ≥ 1) such that

Ck
1 U k

1 = Ck
2 U k

2,

Lk
1 U k

1 = 0,

Lk
2 U k

2 = 0.

(19)

This leads to tedious calculations for high values of k; note that this task can
be done automatically with formal calculus, as done in our own programs.
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3.2 The compatibility conditions

Some components of the spatial derivatives of U are not independant. They
are linked together by compatibility conditions, useful to reduce the number
of components in (19).

If Ωi is a fluid, the vorticity is null outside Γ, hence

∂ v1

∂ y
−

∂ v2

∂ x
= 0. (20)

Differentiating (20) (k − 1)-times in terms of x and y leads to

∂k v1

∂ xk−j−1 ∂ yj+1 −
∂k v2

∂ xk−j ∂ yj
= 0, k ≥ 1, j = 0, ..., k − 1. (21)

If Ωi is a solid, we set

α1 =
c2
p

4
(

c2
p − c2

s

) , α2 =
2 c2

s − c2
p

4
(

c2
p − c2

s

) . (22)

A necessary and sufficient condition for the strain tensor σ to be symetrical
is given by [8]

α2
∂2 σ11

∂ x2 + α1
∂2 σ22

∂ x2 −
∂2 σ12

∂ x ∂ y
+ α1

∂2 σ11

∂ y2 + α2
∂2 σ22

∂ y2 = 0. (23)

Differentiating (23) (k − 2)-times in terms of x and y leads to

α2
∂k σ11

∂ xk−j ∂ yj
+ α1

∂k σ22

∂ xk−j ∂ yj
−

∂k σ12

∂ xk−j−1 ∂ yj+1

+α1
∂k σ11

∂ xk−j−2 ∂ yj+2 + α2
∂k σ22

∂ xk−j−2 ∂ yj+2 = 0, k ≥ 2, j = 0, ..., k − 2.

(24)

The conditions (21) and (24) are satisfied at each point of Ωi (i = 1, 2),
especially at P+ and P− (see figure 2). Hence, we can use the compatibility
conditions (21) and (24) to reduce the number of independant components of
U k

i . So, we write

U k
i = Gk

i V k
i , i = 1, 2. (25)

The vector V k
i of independant variables has (k + 1)(k + 3) components if Ωi

is fluid, or 2 k2 + 8 k + 5 components if Ωi is solid. The rectangular matrix Gk
i

is detailed in Appendix A, both in the fluid case and in the solid case.
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3.3 Some work on the interface conditions

For further use in the ESIM, we need to express U k
2 in terms of U k

1 (and
vice-versa). To do so, we use the interface conditions (19) and the relation
(25) deduced from the compatibility conditions. Since the systems deduced
from all these conditions are underdetermined, the solution is not unique.
To find the full span of solutions, our strategy is based on Singular Value
Decompositions (SVD). Technical details can be found in Appendix A.

Inserting (25) in the boundary conditions of (19) leads to a minimal set of
independant components W k

i

Lk
i Gk

i V k
i = 0 ⇒ V k

i = Kk
i W k

i , i = 1, 2. (26)

The matrices Kk
i are deduced from a Singular Value Decomposition of Lk

i Gk
i .

Inserting (25) in the jump condition of (19) gives

Ck
1 Gk

1 V k
1 = Ck

2 Gk
2 V k

2. (27)

Inserting (26) in this last equation gives

Ck
1 Gk

1 Kk
1 W k

1 = Ck
2 Gk

2 Kk
2 W k

2. (28)

Setting
Sk

i = Ck
i Gk

i Kk
i i = 1, 2, (29)

leads to
Sk

1 W k
1 = Sk

2 W k
2. (30)

Then, the SVD resolution of the underdetermined system (30) gives

W k
2 =

(

(

Sk
2

)−1
Sk

1 |R
k
S2

)















W k
1

Λk















, (31)

where Rk
S2

is the kernel of Sk
2, and Λk is a set of reals. Note that the same

procedure can be applied to express W k
1 in terms of W k

2.

3.4 General overview of the ESIM in 2D

The basic idea of the ESIM can be summed up in three steps. Consider a time
step tn. Then

(1) on both sides of the interface Γ, we build smooth extensions U ∗(x, y, tn)
of the exact solution U(x, y, tn);
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(2) we estimate numerical values of U ∗ at the irregular points (xi, yj), de-
noted by U ∗

i,j and called modified values;
(3) we inject the U ∗

i,j for time-marching at the irregular points on the other
side of the interface.

More precisely, consider an irregular point M(xI , yJ) in Ω2, and its orthogonal
projection P on Γ (figure 3). The coefficients of the two-dimensional k-th order
Taylor expansions around P are denoted by

Πk
i,j =

(

1, (xi − xP ), (yj − yP ), ...,
(yj − yP )k

k !

)

. (32)

Then, from the notations (8) and (32), and for a given integer k, the modified
value at M(xI , yJ) is

U ∗(xI , yJ , tn) = Πk
I,J U k

1. (33)

Now, the key point is how to estimate U k
1 in (33). This is the goal of the next

section. Note that, in accordance with (25) and (26), it amounts to estimate
W k

1.

3.5 Numerical estimation of the solution and of its spatial derivatives at the

interface

P

Γ

Ω 2

Ω 1

+ + +

+

−

+ +

+ +

+

+

+

+

+

+

B

B

B

+
−

+

I

J M(I,J)

2

1

q

Fig. 3. Irregular point M(xI , yJ), orthogonal projection P of M on Γ, and the set
of grid points B (+).

To estimate W k
1, we consider a set of grid points surrounding P . This set B

is enclosed in the circle centered on P with a radius q (q is discussed further).
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B is divided into two subsets Bi, according to the medium Ωi (i = 1, 2).

Consider U(xi, yj, tn) at the points of B. We write their k-th order Taylor
expansions at P±. If (i, j) belongs to B1, we deduce from (25) and (26)

(i, j) ∈ B1, U(xi, yj, tn) = Πk
i,j U k

1 + O(∆ xk+1)

= Πk
i,j Gk

1 V k
1 + O(∆ xk+1)

= Πk
i,j Gk

1 Kk
1 W k

1 + O(∆ xk+1).

(34)

Denoting by 1 and 0 respectively the identity matrix and the null matrix
(whose dimensions depend of the configuration and are not detailed here), we
deduce that

(i, j) ∈ B1, U(xi, yj, tn) = Πk
i,j Gk

1 Kk
1 (1 | 0)















W k
1

Λk















+ O(∆ xk+1). (35)

If (i, j) belongs to B2, we deduce from (25) and (26) that

(i, j) ∈ B2, U(xi, yj, tn) = Πk
i,j U k

2 + O(∆ xk+1)

= Πk
i,j Gk

2 V k
2 + O(∆ xk+1)

= Πk
i,j Gk

2 Kk
2 W k

2 + O(∆ xk+1).

(36)

From this last equation and from (31), we deduce that

(i, j) ∈ B2, U(xi, yj, tn) =Πk
i,j Gk

2 Kk
2

(

(

Sk
2

)−1
Sk

1 |R
k
S2

)















W k
1

Λk















+O(∆ xk+1). (37)
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The relations (35) and (37) are summed up via a matrix M

(Un)
B

= M















W k
1

Λk















+















O(∆ xk+1)
...

O(∆ xk+1)















, (38)

where (Un)
B

refers to the set of exact values U(xi, yj, tn) at the points (i, j)
of B. The radius q of B is chosen so that (38) is overdetermined.

Then, we compute the least-squares inverse M−1 of M by classical techniques
(normal equations, SVD, ...). For the sake of clarity, we will now confuse the
exact values W k

1 and (Un)
B

with their numerical estimations. We eliminate
the Taylor rests in (38). Then, we get















W k
1

Λk















= M−1 (Un)
B

. (39)

Since only W k
1 is of interest for us, a convenient restriction M−1 of M−1 leads

to
W k

1 = M−1 (Un)
B

. (40)

3.6 Computation of the modified values

From (25), (26), and (33), we can write U ∗

I,J

(I, J) ∈ Ω2, U ∗

I,J = Πk
I,J U k

1

= Πk
I,J Gk

1 Kk
1 W k

1.

(41)

Then the modified value is deduced from (40)

U ∗

I,J = Πk
I,J Gk

1 Kk
1 M−1 (Un)

B
. (42)

The same procedure is applied at each irregular point along Γ. For an irregular
point on the Ω1 side, the matrices Gk

1 and Kk
1 are replaced by Gk

2 and Kk
2 in

(42). Lastly, note that if Ω1 and Ω2 are respectively a fluid and a solid, the
computation (42) involves both numerical values of the solution on the fluid
side (with three components) and on the solid side (with five components).
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Then, the modified value U ∗

I,J has three components (as an extension of the
fluid solution), whereas Un

I,J has five components (like the solution on the
solid side).

3.7 Time-stepping near interfaces

Once all modified values have been computed at tn, we can investigate the
time-stepping at the irregular points. We use the same discrete operator H as
at the regular points (12), but we modify some values that it uses. Consider
an irregular point (i, j) on one side of Γ. The discrete operator H now uses
modified values at the grid points on the other side of Γ than (i, j), and
numerical values at the grid points on the same side of Γ than (i, j).

To detail this time-stepping, we denote by Ω(i, j) the medium to which the
point (i, j) belongs. Then, we define the quantities Ũ at the points of the
stencil by

Ω(i + α, j + β) = Ω(i, j) ⇒ Ũ i+α,j+β = Un
i+α,j+β,

Ω(i + α, j + β) 6= Ω(i, j) ⇒ Ũ i+α,j+β = U ∗

i+α,j+β.

(43)

Then, instead of (12), the time-stepping at an irregular point (i, j) is now

Un+1
i,j = H

(

Ũ i+α,j+β

)

. (44)

Doing so is what we call the ”Explicit Simplified Interface Method” (ESIM).
Coupling the ESIM with a wide class of scheme is automatic: no modification
of the scheme is required, and the computation of U ∗

i,j’s does not depend on
the discrete operator H .

The ESIM incorporates into the scheme some insight about the geometry of
Γ. Indeed, the derivation of the interface conditions (19) involves x

′

, y
′

and
their successive derivatives up to the k-th order at P . Moreover, the Taylor
expansions (35) and (37) introduce a subcell resolution concerning the position
of P inside the meshing.

3.8 Some implementation details

Overview of the algorithm. For the sake of clarity, we sum up the interface
method (in the following, i = 1, 2, j = 2 if i = 1, and j = 1 if i = 2). The
algorithm can be divided into three parts:
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(1) Part 1: pre-processing step

- compute Gk
i (25), Kk

i (26);

- find and store each irregular points along Γ;

- at each irregular point M(I, J),

- find its orthogonal projection P on Γ, find and store the points of Bi;

- compute Ck
i , Lk

i (19),
(

(

Sk
j

)−1
Sk

i |R
k
Sj

)

(31);

- fill M (38) from (35), (37), compute M−1 (39);

- compute and store Πk
I,J Gk

j Kk
j M−1;

(2) Part 2: before each time step

- read each irregular point M(I, J);

- at each irregular point (I, J),

- read B and Πk
I,J Gk

j Kk
j M−1;

- compute U ∗

I,J (42);

(3) Part 3: at each time step

- at each point (i, j), apply (12) if (i, j) is regular, or (44) if (i, j) is
irregular.

Choice of the radius q. As mentioned in section 3.5, the radius q of B is
chosen such that (38) is overdetermined. Let nd be the number of available
data, i.e. the number of components of (Un)

B
. Let too nu be the number of

unknowns, i.e. the number of components of T
(

W k
1,Λ

k
)

. Then, one must have

nd = K nu, K > 1. (45)

Note that nd depends on q and on the local geometry of Γ around P . Practi-
cally, K = 1.2 seems to be the minimal value to use. To ensure (45) for each
projection point P , two strategies are possible:

• use a constant K and adapt q to ensure (45), which may be cumbersome;
• use a constant q, and let vary K Then, q must ensure that K ≥ 1.2 for

all geometrical configurations around P . In some cases, one can obtain a
number of data nd twice bigger as the required minimal value.
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For the sake of simplicity, we have chosen the second strategy, with

q = 3.5 ∆ x (46)

when k = 2 (see the section 3.10).

3.9 Computational cost of the ESIM

As an example, consider a numerical experiment with a plane vertical interface
between two fluids. The computation is performed on a Personal Computer
(Pentium III 800 MHz), with the Wave Propagation Algorithm (WPALG)
coupled to the ESIM. The table 1 shows the number of irregular points for
various values of Nx and Ny (the grid points in the x and y directions). It shows
too the CPU time for the pre-processing step and for 100 time steps. Logically,
the CPU time for Part 1 and for 100 Parts 2 grows linearly with Nx, whereas
the CPU time for Part 3 grows quadratically. For 100 × 100 grid points, the
CPU time for Part 2 amounts to 4 % of the CPU time for Part 3; this ratio
falls to 1 % for 400 × 400 grid points. In conclusion, the computational cost
induced by the ESIM is negligible compared with the cost of the scheme itself.

Nx × Ny Irregular points Part 1 Part 2 Part 3

100 × 100 384 3.7 s 0.37 s 9 s

200 × 200 784 7.4 s 0.75 s 36 s

400 × 400 1584 15.3 s 1.48 s 144 s

Table 1
CPU times (in seconds) for the preprocessing step (Part 1) and for 100 computations
of modified values (Part 2) and time-steppings (Part 3).

Note that the ESIM is a local treatment. It means two things about the compu-
tation of each modified value U ∗

I,J . First, it only involves the numerical values
near the irregular point (I, J). Second, it does not depend on the computa-
tion of the other modified values along Γ. As a consequence, the parallelization
of the ESIM should be easy and efficient (providing that the scheme can be
parallelized, of course).
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3.10 Remarks about the numerical analysis

We do not provide any theoretical result about the ESIM in 2D. The conver-
gence analysis of a given scheme coupled with the ESIM is an interesting open
question. However, we propose three remarks, deduced from many numerical
experiments, and concerning successively the accuracy, the stability, and the
case of non-smooth interfaces.

Accuracy. In 1D [22], we have analysed the local truncation error of the cou-
pling between the ESIM and numerical schemes. In 2D and when the geometry
of the interface is sufficiently smooth, we conjecture a similar result. We think
that the coupling of a r-th order accurate scheme with the ESIM is still r-th
order accurate at the irregular points if

k ≥ r. (47)

As a consequence, we use k = 2 for numerical experiments with second-order
schemes such as Lax-Wendroff or WPALG (we recall that k is the maximal
order of the spatial derivations in the jump conditions).

Stability. The coupling of the ESIM with various schemes (Lax-Wendroff,
Wave Propagation Algorithm, ...) has usually the same CFL limit of stabil-
ity as the scheme in homogeneous medium, even for important contrasts of
the physical parameters. As an example, we do not observe instabilities for
the interface between water (ρ0= 1000 kg/m3, c0=1500 m/s) and an elastic
medium with higher density and sound speeds (ρ1=8500 kg/m3, cp1=6500
m/s, cs1=3250 m/s). The previous physical parameters correspond to realistic
values for existing solids (steel, aluminium, copper).

However, numerical instabilities occur for very high contrasts of the physical
parameters such as the water-air interface (air: ρ1= 1.3 kg/m3, c1=340 m/s).
In this case, the stability limit is around ρ1= 100 kg/m3 (with all the other
parameters unchanged); below this limit, instabilities occur, with a minor
influence of the CFL number and of K (45).

Non-smooth interfaces. In subsection 2-1, it is precised that only suffi-
ciently smooth interfaces are considered. In view of the section 2, it is clear
that Γ needs to be, at least, a Ck+1 curve. The case of less smooth interfaces
is beyond the scope of the present paper.

However, our softwares can be adapted to non-sufficiently smooth interfaces,
and then it is interesting to see what happens numerically. Sharp corners,
where x

′

and y
′

are discontinuous, cannot be treated. On the contrary, the
computations with C1 and C2 interfaces are apparently stable. The C1 case
corresponds e.g. to straight lines linked by arcs of circle; the C2 case corre-
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sponds typically to cubic splines. Limitations concerning the contrasts of phys-
ical parameters, for stability purpose, are the same as for sufficiently smooth
interfaces. The only restriction is that x(τ) and y(τ) must not vary too much
on the scale of one mesh ∆ x.

Lastly and as an echo to the conjecture concerning the local truncation error,
we let open the following question: what is the precision of one scheme coupled
to the ESIM when the interface is not sufficiently smooth ?

4 Numerical experiments

4.1 The configurations

To show the efficiency of the interface method, we focus on the fluid-solid case,
because it presents many challenging difficulties. First, the number of interface
conditions is smaller than the number of unknowns, which prevented the IIM
from studying this case. Second, the number of unknowns differs on both sides
of the interface Γ, which complicates the coupling between the two media.
Moreover, the fluid-solid case offers a wide panel of interface conditions: two
different compatibility conditions (21), (24), and boundary conditions only on
the solid side. Numerical experiments with fluid-fluid or solid-solid interfaces
can be found in [18].

In the examples, the fluid is Ω1, the solid is Ω2, and physical parameters are

ρ1 = 1000 kg/m3, c1 = 1500 m/s if (x, y) ∈ Ω1,

ρ2 = 2600 kg/m3, cp2 = 4000 m/s, cs2 = 2000 m/s if (x, y) ∈ Ω2.

(48)
The computations are initialized in the fluid Ω1 by a plane wave

U(x, y, t) = − T

(

cos θ1

c1
,
sin θ1

c1
, ρ1

)

f

(

t −
x cos θ1 + y sin θ1

c1

)

, (49)

where θ1 is the angle between the direction of propagation and the horizontal
axis. The function f is a C2 spatially-bounded sinusoid

f(ξ) =



























sin(ωc ξ) −
1

2
sin(2 ωc ξ) if 0 < ξ <

1

fc

,

0 else.

(50)
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Fig. 4. Plane wave on a plane interface. Exact solution at initial instant (a-b),
Lax-Wendroff + ESIM (c-d), WPALG + ESIM (e-f). Numerical solutions: points
(d-f), exact solutions: solid line (b, d, f).
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We investigate three configurations: a plane interface, a circular interface, a
circular shell. In each case, the numerical solutions are compared with analyt-
ical solutions. The analytical solution with a plane interface is not detailed,
because it is straightforward [18]. The analytical solution with a circular inter-
face is much more complicated and original; it is detailed in Appendix B. The
analytical solution with a shell is not detailed, but one can deduce it easily
from the approach shown in Appendix B.

In the circular case and the shell case, the exact solutions are in fact ”semi-
analytical” solutions. There are indeed two approximations: the truncation of
infinite Bessel series; the numerical approximations of inverse Fourier trans-
forms. So, these exact solutions are used as a qualitative proof of convergence
but not for convergence measures.

We use a green-red palette for P-waves (in fluids and solids) and a magenta-
yellow palette for SV-waves (in solids). The distinction between these waves
is based on a numerical estimation of div v and curl v. Note that the figures
show −p in the fluid and σ11 in the solid.

4.2 A plane interface

Consider a Lx × Ly = 0.3 × 0.3 m2 domain. The interface Γ is inclined (θ =
80 degrees with the horizontal axis), and the fluid Ω1 lies on the left of Γ. The
incident P-wave is defined by θ1 = 21 degrees (49), hence the incident plane
wave crosses Γ below the critical angle. Numerical experiments are performed
with Nx ×Ny = 300× 300 grid points and fc = ωc/(2 π) = 5 104 Hz, hence 30
grid points by central wavelength in Ω1, and CFL = 0.5 in Ω2.

The figure 4 shows the exact solution at the initial instant t0 = 1.1 10−4 s (a-b),
and the numerical solution at t1 = 1.25 10−4 s (after 125 time steps) with Lax-
Wendroff (c-d) or WPALG (e-f), both coupled with the ESIM. The agreement
between numerical values (points) and exact values (solid line) is excellent;
the only differences are due to the scheme itself: numerical dispersion for Lax-
Wendroff, numerical diffusion induced by limiters for WPALG. No spurious
diffractions induced by the inclined interface Γ are observed.

The table 2 shows measures of convergence obtained by refining the mesh.
The schemes coupled with the ESIM are still second-order accurate, despite
the non-smoothness of the solution across the interface Γ.
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Fig. 5. Plane wave on a circular interface, with WPALG + ESIM (green-red:
P-waves, magenta-yellow: SV-waves; exact solution: points, numerical solution: solid
line).
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Fig. 6. Plane wave on a circular interface, with WPALG + ESIM ((green-red:
P-waves, magenta-yellow: SV-waves; exact solution: points, numerical solution: solid
line).
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Scheme Nx L∞ error L∞ order L1 error L1 order

Lax-Wendroff 100 2.51e+1 - 8.33e-1 -

200 8.73e00 1.52 2.48e-1 1.74

+ 400 2.61e00 1.74 6.01e-2 2.04

800 6.31e-1 2.04 1.50e-2 2.00

ESIM 1600 1.54e-1 2.03 3.76e-3 1.99

3200 3.89e-2 1.98 9.46e-4 1.97

WPALG 100 1.05e+1 - 3.15e-1 -

200 4.08e00 1.36 8.56e-2 1.88

+ 400 1.33e00 1.61 2.02e-2 2.08

800 4.42e-1 1.59 5.30e-3 1.93

ESIM 1600 1.45e-1 1.61 1.32e-3 2.00

3200 4.83e-2 1.58 3.41e-4 1.95

Table 2
Measures of convergence for a plane wave on a plane interface.

4.3 A circular interface

We consider a Lx ×Ly = 600×600 m2 domain and a circular interface (radius
a = 119 m, centered at x0=330 m, y0=299 m). The fluid Ω1 is outside the
circle. The incident P-wave propagates horizontally (θ1 = 0 degree (49)). The
numerical experiments are performed with Nx × Ny = 600 × 600 grid points
and CFL = 0.96 in Ω2, with WPALG coupled with the ESIM. The central
frequency is fc = 40 Hz.

The figures 5 and 6 show the numerical solutions at the initial instant t0 =
0.138 s and at ti = t0+130 i ∆ t (i = 1, ..., 5), on a restricted domain [100, 500]×
[100, 500] m2 centered on the middle of the computational domain. No special
treatment is done to simulate the wave propagation in infinite medium (such
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as ABC’s or PML’s), but the times of integrations are sufficiently short to
avoid that spurious waves reflected by the edges of the computational region
are visible on the restricted domain (the same remark holds for the figures 1,
7, 8, and 9). The horizontal line on each snapshot refers to the y-coordinate
of the corresponding slice, where exact and numerical solutions are compared.
These y-coordinates are respectively: y = 300 m (i = 0), y = 300 m (i = 1),
y = 393 m (i = 2), y = 300 m (i = 3), y = 401 m (i = 4), y = 344 m (i = 5).
The analytic solutions are computed with NFourier = 216 and NBessel = 120.

Classical wave phenomenons can be observed. The transmitted P-wave (green-
red, i = 1) is followed by the slower transmitted S-wave (yellow-magenta,
i = 2). The SV-wave is minimal along the horizontal axis centered on Ω2: this
axis corresponds to a normal incidence of the incident plane wave, which is not
converted in P-wave. Headwaves (that is, waves that propagate faster in the
fluid than the incident wave does [1]) are observed (i = 2, 3). Then, refraction
and conversion phenomenons are observed (i = 4, 5).

The agreement between the numerical values and the exact values is excellent.
The only differences are observed in the crests of the waves, where numerical
values are slightly smaller than the exact ones (see e.g. figure 6, i = 5, near
x = 425 m). These differences are not caused by the interface treatment,
but they are due to the numerical diffusion introduced by the flux-limiters of
WPALG. To give evidence of this assertion, we note that the same drawback
is observed when a wave has propagated in homogeneous medium (i.e. without
any interface treatment) over a similar distance and with the same numerical
parameters (such as the number of grid points for one wavelength). In the
same order of idea, consider also the left part of the figure 4 f. At the instant
of this snapshot, the reflected wave has not been subject to the influence of
the interface treatment, and however one observes numerical diffusion (near
x = 0.08 m).

4.4 A circular shell

We consider an elastic shell immerged in water. Compared with the previous
circular example, the only new parameter is the internal radius a2 = 89 m.
The main interest of this example is to discuss the stability of our method. As
known, the multiple reflections inside the shell could lead to instable modes,
see e.g. [7] in a slightly different context.

The numerical experiments are computed by WPALG coupled to the ESIM.
The figures 7 and 8 show the numerical solutions at the initial instant t0 =
0.138 s and ti = t0 + 130 i ∆ t (i = 1, ..., 5). The y-coordinates of the slices
are respectively: y = 300 m (i = 0), y = 300 m (i = 1), y = 375 m (i = 2),
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Fig. 7. Plane wave on a shell, with WPALG + ESIM (green-red: P-waves, ma-
genta-yellow: SV-waves; exact solution: points, numerical solution: solid line).
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Fig. 8. Plane wave on a shell, with WPALG + ESIM (green-red: P-waves, ma-
genta-yellow: SV-waves; exact solution: points, numerical solution: solid line).
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y = 300 m (i = 3), y = 381 m (i = 4), y = 328 m (i = 5). The agreement
between numerical and exact values is excellent. No instabilities are observed,
even for these long time simulations.
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Fig. 9. Plane wave on a shell, without an interface treatment (green-red: P-waves,
magenta-yellow: SV-waves; exact solution: points, numerical solution: solid line).

As a last example, we show in figure 9 what happens without an interface
treatment, at the same instant than in figure 8 (i = 5). Spurious waves and
instabilities are observed. The agreement between exact and numerical values
is bad. For longer time of integration, instabilities destroy the computation.

5 Conclusion

We have presented a numerical method to treat two-dimensional interface
problems in acoustics and elastodynamics. This method, called the ”Explicit
Simplified Interface Method” (ESIM), has three goals. First, the ESIM main-
tains properties of the schemes in homogeneous medium. Second, the ESIM
takes into account complex geometries on a uniform Cartesian grid. Third,
the ESIM incorporates in numerical schemes the jump conditions and the
boundary conditions satisfied by the exact solution. The algorithm is easy
to couple with a wide class of schemes, such as the Wave Propagation Algo-
rithm (WPALG) [14], for a negligible computational cost. The coupling has
been tested successfully on a challenging case: the fluid-solid interface, in three
configurations.

This interface method is a priori not restricted to the two-dimensional config-
urations considered during this paper. Its extension to three-dimensional cases
should be straightforward. The ESIM should be also of great interest for other
linear interface problems, such as the advection or the Maxwell equations [4]
with interfaces.
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The extension of the ESIM to nonlinear problems is a challenging project. We
think to CFD problems, such as the Navier-Stokes equations [15] or the Euler
equations with moving interfaces. We have especially in mind the numerical
treatment of material interfaces in multicomponent flows. The ”Ghost Fluid
Method” of Fedkiw and al. [5] is efficient and robust in that context, but it
is only first-order accurate. Moreover, it does not take into account precisely
the geometrical features of the interface. The ESIM approach could bring
noticeable improvements.

A Details about the interface conditions

First, we detail the matrices Gk
i deduced from (21), (24), and used in (25). If

Ωi is a fluid, the non-null components of Gk
i are
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α = 0, β = 0,

for γ = 0, .., k

for ε = 1, ..., 3

α = α + 1, β = β + 1, Gk
i [α, β] = 1

for δ = 1, ..., γ

α = α + 1, β = β − 1, Gk
i [α, β] = 1

α = α + 1, β = β + 2, Gk
i [α, β] = 1

α = α + 1, β = β + 1, Gk
i [α, β] = 1.

(A.1)

30



If Ωi is a solid, the non-null components of Gk
i are
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α = 0, β = 0,

for γ = 0, ..., k, for δ = 0, ..., γ

if δ = 0 then for ε = 1, ..., 5

α = α + 1, β = β + 1, Gk
i [α, β] = 1

if γ 6= 0 and δ 6= 0 and γ 6= δ then

if γ = 2 then ν = 0, η = 0,

else if δ = 1 then ν = 0, η = 1,

else if δ = γ − 1 then ν = 1, η = 0,

else ν = 1, η = 1,

α = α + 1, β = β + 1, Gk
l [α, β] = 1

α = α + 1, β = β + 1, Gk
l [α, β] = 1

α = α + 1, β = β + 1, Gk
l [α, β] = 1

α = α + 1, β = β − 5 + ν, Gk
l [α, β] = α2

β = β + 2 − ν, Gk
l [α, β] = α1

β = β + 7, Gk
l [α, β] = α1

β = β + 2 − η, Gk
l [α, β] = α2

α = α + 1, β = β − 5 + η, Gk
l [α, β] = 1

if γ 6= 0 and γ = δ then for ε = 1, ..., 5

α = α + 1, β = β + 1, Gk
l [α, β] = 1.

(A.2)

Second, we shortly recall how to solve an underdetermined system

Ax = y (A.3)

by Singular Value Decomposition (SVD), where A is a m×n matrix (m < n).
A is splitted in [23]

A = XA Y A
T ZA (A.4)
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where

- XA is a m × n orthogonal matrix,
- Y A is a n × n diagonal matrix of singular values with n − m zeroes,
- ZA is a n × n orthonormal matrix.

This case is encountered in section 3.3. The least-squares inverse A−1 of A is

A−1 = ZA Y −1
A

T XA, (A.5)

with Y −1
A [i, i] = 1/Y A[i, i] if Y A[i, i] 6= 0, 0 else (i = 1, ..., n). The full span of

solutions of (A.3) is given by

x = A−1 y + x0, (A.6)

where x0 is a linear combination of the column vectors z of ZA whose same-
numbered singular values are equal to zero. Suppose that the null singular
values are numbered from n − m + 1 to n. Then,

x0 = λn−m+1 zn−m+1 + ... + λn zn

= RA Λ,

(A.7)

where RA is the restriction of ZA filled with the vectors zn−m+1,...,zn, and
Λ = T (λn−m+1, ..., λn) ∈ R

n−m.

B Exact solution for a plane wave on a fluid-solid circular interface

This analytical solution is obtained in 6 steps:

(1) Fourier transform of the incident wave (50);
(2) writing the acoustic and elastic potentials on a basis of circular functions;
(3) expression of the acoustic and elastic fields from their potentials;
(4) computation of the reflection and transmission coefficients from (10);
(5) come-back in cartesian coordinates;
(6) inverse Fourier transform of the acoustic and elastic fields.

Step 1. The notations are the same than in section 4.3. The circular inter-
face with a radius a is centered at (x0, y0). The angular frequency is ω, the
wavenumbers are

k1 =
ω

c1
, kp2 =

ω

cp2
, ks2 =

ω

cs2
. (B.1)
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The Fourier transform A(ω) of f (50) is

A(ω) =
ωc

2 π

(

1

ω2 − ω2
c

+
1

ω2 − 4 ω2
c

)

(

e
−i 2 π

ωc
ω
− 1

)

. (B.2)

Step 2. Consider a point M ∈ Ω1, with coordinates M(x = x0 + r cos φ, y =
y0 + r sin φ). The potential of the acoustic harmonic incident plane wave at
M is

Φinc(x, y, ω) = A ei(ω t−k1(x cos θ1+y sin θ1))

= A ei ω t e−i k1(x0 cos θ1+y0 sin θ1) e−i k1 r cos(φ−θ1).

(B.3)

For the sake of clarity, the time dependance ei ω t is removed. We denote

S = e−i k1(xΩ cos θ1+yΩ sin θ1), θ = φ − θ1. (B.4)

Then, the classical property of first-kind Bessel functions Jn [20]

ei r cos θ =
+∞
∑

n=0

εn in cos n θ Jn(r) (B.5)

(with εn = 1 if n = 0, 2 else) leads to

Φinc(x, y, ω) = A S
+∞
∑

n=0

εn in cos n θ Jn(−k1 r). (B.6)

To satisfy the Sommerfeld condition, the acoustic potential Φref of the re-
flected wave is written on a basis of first-kind Hankel functions. Lastly and to
avoid any singularity at r = 0, the elastic potentials Φp

tra of the transmitted P
waves and the elastic pseudo-potential Ψs

tra = (0, 0, Ψs
tra) of the transmitted

SV waves are written on a basis of first-kind Bessel functions. Hence, we write

Φref =
+∞
∑

n=0

Rn cos n θ Hn(−k1 r),

Φp
tra =

+∞
∑

n=0

T p
n cos n θ Jn(−kp2 r),

Ψs
tra =

+∞
∑

n=0

T s
n sin n θ Jn(−ks2 r),

(B.7)

where Rn, T p
n and T s

n are the unknown coefficients of reflection and transmis-
sion, to be determined.
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Step 3. In a fluid, the acoustic velocity v = T (vr, vθ) and the acoustic pressure
are deduced from the potential Φ by

v = gradΦ, p = −ρ
∂ Φ

∂ t
. (B.8)

In a solid, the elastic displacement u = T (ur, uθ) is deduced from Φ (for
P-waves) or from Ψ = (0, 0, Ψ) (for SV-waves) by

u = grad Φ for P-waves, u = curlΨ for SV-waves. (B.9)

The elastic velocity v = ∂ u

∂ t
and the three independant components of the

stress tensor in cylindrical coordinates are deduced from u [20]

σrr = (λ + 2 µ)
∂ ur

∂ r
+ λ

(

ur

r
+

1

r

∂ uθ

∂ θ

)

,

σrθ = µ

(

∂ uθ

∂ r
−

uθ

r
+

1

r

∂ ur

∂ θ

)

,

σθθ = (λ + 2 µ)

(

1

r

∂ uθ

∂ θ
+

ur

r

)

+ λ
∂ ur

∂ r
.

(B.10)

In cylindrical coordinates, the grad and curl operators are

gradΦ =

















∂ Φ

∂ r

1

r

∂ Φ

∂ θ

















, curlΨ(0, 0, Ψ) =

















1

r

∂ Ψ

∂ θ

−
∂ Ψ

∂ r

















. (B.11)

From (B.6), (B.7), (B.8), and (B.10), we easily deduce the harmonic fields on
the whole domain. The components of the incident P wave are

vinc
r =

1

c1

i ω A S
+∞
∑

n=0

εn in+1 cos n θ J
′

n(−k1 r),

vinc
θ = i ω A S

+∞
∑

n=0

εn in+1 n sin n θ

r ω
Jn(−k1 r), (B.12)

pinc =−ρ1 i ω A S
+∞
∑

n=0

εn in cos n θ Jn(−k1 r).

The components of the reflected P wave are
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vref
r =

1

c1

i ω
+∞
∑

n=0

i Rn cos n θ H
′

n(−k1 r),

vref
θ = i ω

+∞
∑

n=0

i Rn

n sin n θ

r ω
Hn(−k1 r), (B.13)

pref =−ρ1 i ω
+∞
∑

n=0

Rn cos n θ Hn(−k1 r).

The components of the transmitted P wave are

vp
r =

1

cp2
i ω

+∞
∑

n=0

i T p
n cos n θ J

′

n(−kp2r),

vp
θ = i ω

+∞
∑

n=0

i T p
n

n sin n θ

r ω
Jn(−kp2r),

σp
rr =−i ω

+∞
∑

n=0

T p
n

cos n θ

ω2

(

(λ + 2 µ) k2
p2 J

′′

n(−kp2r)

−λ
kp2

r
J

′

n(−kp2r) − λ
(

n

r

)2

Jn(−kp2r)

)

, (B.14)

σp
rθ =−2 µ i ω

+∞
∑

n=0

T p
n

sin n θ

ω2

(

n

r2Jn(−kp2r) + n
kp2

r
J

′

n(−kp2r)

)

,

σp
θθ =−i ω

+∞
∑

n=0

T p
n

cos n θ

ω2

(

λ k2
p2 J

′′

n(−kp2r) − (λ + 2 µ)
kp2

r
J

′

n(−kp2r)

− (λ + 2 µ)
(

n

r

)2

Jn(−kp2r)

)

.

Lastly, the components of the transmitted S wave are

vs
r = −i ω

+∞
∑

n=0

i T s
n

n cos n θ

r ω
Jn(−ks2r),

vs
θ = −

1

cs2
i ω

+∞
∑

n=0

i T s
n sin n θ J

′

n(−ks2r),

σs
rr = 2 µ i ω

+∞
∑

n=0

T s
n

cos n θ

ω2

(

n

r2 Jn(−ks2r) + n
ks2

r
J

′

n(−ks2r)

)

,

σs
rθ = µ i ω

+∞
∑

n=0

T s
n

sin n θ

ω2

(

k2
s2 J

′′

n(−ks2r) +
ks2

r
J

′

n(−ks2r) +
(

n

r

)2

Jn(−ks2r)

)

,

σs
θθ = −2 µ i ω

+∞
∑

n=0

T s
n

n cos n θ

ω2

(

ks2

r
J

′

n(−ks2r) +
1

r2 Jn(−ks2r)

)

.

(B.15)
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Step 4. We compute the coefficients Rn, T p
n and T s

n. To do so, we deduce from
the interface conditions (10) that

(

vinc
r + vref

r

)

(a+, θ) = (vp
r + vs

r) (a−, θ),

−
(

pinc + pref
)

(a+, θ) = (σp
rr + σs

rr) (a−, θ),

0 = (σp
rθ + σs

rθ) (a−, θ),

(B.16)

for all θ. From (B.16) and from the fields (B.13), (B.14), (B.15) and (B.15),
we get an infinity of linear systems. For computational purpose, these systems
are computed up to NBessel terms, hence

Mn Xn = Y n, n = 0, 1, ..., NBessel (B.17)

with

Xn =


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
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n
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, Y n =
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
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
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















−
1

c1

εn in J
′

n(−k1 a) A S

−ρ1 εn in Jn(−k1 a) A S

0
























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

. (B.18)
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The coefficients of the matrices Mn are

Mn[1, 1] =
1

c1

H
′

n(−k1 a), Mn[1, 2] = −
1

cp2

J
′

n(−kp2 a),

Mn[1, 3] =
n

a ω
Jn(−ks2 a), Mn[2, 1] = ρ1 Hn(−k1, a),

Mn[2, 2] =
1

ω2

(

(λ + 2 µ) k2
p2J

′′

n(−kp2a) − λ
kp2

a
J

′

n(−kp2a) − λ
(

n

a

)2

Jn(−kp2a)

)

,

Mn[2, 3] = −
2 µ

ω2

(

n

a2 Jn(−ks2a) +
n ks2

a
J

′

n(−ks2a)

)

, Mn[3, 1] = 0,

Mn[3, 2] =
2

ω2

(

n

a2 Jn(−kp2a) +
n kp2

a
J

′

n(−kp2a)

)

,

Mn[3, 3] = −
1

ω2

(

k2
s2 J

′′

n(−ks2a) +
ks2

a
J

′

n(−ks2a) +
(

n

a

)2

Jn(−ks2a)

)

.

(B.19)

Step 5. We express the acoustic and elastic fields in cartesian coordinates. To
do so, we use the well-known rotation formulas [8]

























































v1

v2

σ11

σ12

σ22

























































=

























































cos φ − sin φ 0 0 0

sin φ cos φ 0 0 0

0 0 cos2 φ −2 sin φ cos φ sin2 φ

0 0 sin φ cosφ cos2 φ − sin2 φ − sin φ cos φ

0 0 sin2 φ 2 sin φ cos φ cos2 φ

















































































































vr

vθ

σrr

σrθ

σθθ

























































.

(B.20)
Note that the scalar pressure p is the same in cylindrical and in cartesian
coordinates.
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Step 6. The last step, concerning the inverse discrete Fourier transform, is
classical and is not detailed here.
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