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HOW TO INCORPORATE THE SPRING-MASS CONDITIONS

IN FINITE-DIFFERENCE SCHEMES.

BRUNO LOMBARD∗ AND JOËL PIRAUX†

Abstract. The spring-mass conditions are an efficient way to model imperfect contacts between
elastic media. These conditions link together the limit values of the elastic stress and of the elastic
displacement on both sides of interfaces. To insert these spring-mass conditions in classical finite-
difference schemes, we use an interface method, the Explicit Simplified Interface Method (ESIM).
This insertion is automatic for a wide class of schemes. The interfaces do not need to coincide with
the uniform cartesian grid. The local truncation error analysis and numerical experiments show that
the ESIM maintains, with interfaces, properties of the schemes in homogeneous medium.

Key words. elastic waves, interface methods, jump conditions, discontinuous coefficients, im-
perfect contact, hyperbolic conservation laws.

AMS subject classifications. 35L40, 65M06

1. Introduction. Let us consider a one-dimensional elastic medium with one
interface at x = α, as shown in Fig. 1.1. To study the wave propagation in this
medium, we must define the conditions that are satisfied by the elastic stress and
by the elastic displacement on both sides of the interface. Classically, the perfect
conditions are used at x = α: they impose respectively the continuity of the elastic
stress and of the elastic displacement across the interface [4]. The perfect conditions
idealize bonded contacts between solids; then, the interface is called a perfect interface.

Because of defects, like air or cracks, the contacts between solids are often not
perfect, and a jump of the elastic stress and of the elastic displacement can occur across
α. Authors from various disciplines, like the non-destructive evaluation of materials
or the geophysics, have modeled such situations by the spring-mass conditions. These
conditions satisfied by wave fields across α are analogous to mechanical laws of springs
[1], [21], [22], [26] or springs and masses [2], [25]. Stiffness and mass values are expected
to be connected, although not necessarily in a trivial way, to the contact quality [7],
[28]. Then, the interface is called an imperfect interface.

Even if the spring-mass conditions are extensively used in physics to model re-
alistic situations, they are rarely investigated for numerical simulations in the time
domain. To our knowledge, the first attempt is done by Punjani and Bond [24].
Coates and Schoenberg incorporate these conditions in a staggered-grid scheme using
an equivalent medium theory [5]. Gu, Nihei and Myer follow a boundary integral
approach [11], [12]. Delsanto and Scalerandi investigate the spring-mass conditions in
the framewok of the local interaction simulation approach (LISA) [7]. Despite their
qualities, all these approaches have three classes of limitations. Firstly, they are ded-
icated to one given scheme. Secondly, the inertial effects are not taken into account,
although they can be preponderant [25]. Thirdly, no attempt is made to control the
numerical accuracy near the interfaces. The purpose of this article is to overcome
these drawbacks: we propose a procedure to incorporate the spring-mass conditions
in a wide class of classical finite-difference schemes. Moreover, the numerical proper-
ties of the resulting schemes, like the local truncation error, are maintained near the

∗Laboratoire de Mécanique et d’Acoustique, 31 chemin Joseph Aiguier, 13402 Marseille,
France(lombard@lma.cnrs-mrs.fr).
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interfaces.
To do so, we use the Explicit Simplified Interface Method (ESIM) [23] previously

developed in the simple case of fluid/fluid perfect interfaces; the goal in [23] was
only to maintain the order of accuracy with discontinuous coefficients. This method
is an extension of the Immersed Interface Method (IIM) [17], [18], [30], [32], [33]
developed by LeVeque and his collaborators, and of the Explicit Jump Immersed
Interface Method (EJIIM) [29], [31] developed by Wiegmann and Bube. The ESIM
is preferred for two reasons: firstly, it is coupled with any scheme automatically, and
secondly, it maintains properties that have the schemes in homogeneous medium.

The technique proposed in this paper is very simple. The interfaces are “im-
merged” in the regular cartesian grid: we do not need to raffine the meshing to
make grid points coincide with interfaces. This greatly simplifies 2D-3D computations
with arbitrary-shaped interfaces. At grid points near interfaces, the chosen scheme is
modified implicitly through an explicit modification of the numerical values used for
time-stepping. This modification is based on the spring-mass conditions satisfied at
α by the exact solution. The additional computational cost induced by the ESIM is
negligible.

The paper is organized as follows. In 2, we recall the one-dimensional elastody-
namics equations and some explicit numerical schemes. The spring-mass conditions
are proposed in 3. The interface method is explained in 4. Numerical experiments in
5 show comparisons with analytical solutions and some measures of convergence on
realistic configurations. This paper is devoted to one-dimensional algorithms: how-
ever, we conclude our presentation with a two-dimensional simulation, showing the
efficiency of the method.

xJ+1 J+2J−1 J

α ρρ c c
00 1 1

Fig. 1.1. 1D elastic medium with one imperfect interface

2. Wave propagation and numerical schemes.

2.1. Conservation laws. For the sake of simplicity, the physical parameters
are supposed piecewise constant around the interface at x = α, as shown in Fig. 1.1,
with

(ρ, c) =







(ρ0, c0) if x ≤ α

(ρ1, c1) if x > α,
(2.1)

where ρ and c are respectively the density and the celerity of elastic waves. Outside
α, the one-dimensional elastodynamics equations can be written as a first-order linear
hyperbolic system

ρ
∂ v

∂ t
=

∂ σ

∂ x

ρ c2 ∂ v

∂ x
=

∂ σ

∂ t
,

(2.2)
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where v(x, t) and σ(x, t) are respectively the elastic velocity and the elastic stress. We
set

U =





v

σ



 , A =







0 −
1

ρ

−ρ c2 0






. (2.3)

So, we consider the initial value problem

∂

∂ t
U + A

∂

∂ x
U = 0 for x ∈ R, x 6= α, t ≥ t0,

U(x, t0) = U0(x) for x ∈ R,

(2.4)

where U0 is a sufficiently smooth Cm function. We easily deduce from (2.3) and from
(2.4) higher order relations between spatial and time derivatives, sumed up as follows.

Result 1. Time derivatives and spatial derivatives of U(x, t) satisfy

∂2 k

∂ t2 k
U = c2 k ∂2 k

∂ x2 k
U

∂2 k+1

∂ t2 k+1
U = −c2 k

A
∂2 k+1

∂ x2 k+1
U .

(2.5)

Throughout this paper, we designate the matrix A by A0 if x ≤ α, or by A1 if x > α.

2.2. Numerical schemes. To integrate (2.4) in homogeneous medium, we in-
troduce a uniform grid of points (xi, tn) = (i ∆ x, n ∆ t), where ∆ x is the mesh size
and ∆ t is the time step. Then, we seek an approximation U

n
i of U(xi, tn). To

do so, we use two-step, explicit, and (2 s+1)-point spatially-centered finite-difference
schemes, where s is the width of the stencil of the scheme. Time-stepping of two-stage
schemes can be written symbolically

U
n+1
i = U

n
i + H

(

U
n
i−s, ..., U

n
i+s

)

, (2.6)

where the discrete operator H : R
2×(2s+1) → R

2 is continuous [10]. For numerical
experiments performed in 5, we use three schemes of increasing complexity and
quality: the Lax-Wendroff scheme, a finite volume scheme with flux limiter, and a
WENO 5 scheme. These three schemes satisfy the Courant-Friedrichs-Lewy (CFL)
condition of stability in homogeneous medium, that is

CFL = max(c0, c1)
∆t

∆x
≤ 1. (2.7)

These schemes, issued from computational fluid mechanics, are classical: so, we do
not detail their implementation. We only refer to surveys articles, and we sketch their
main properties. The Lax-Wendroff scheme (s = 1) is written

U
n+1
i = U

n
i −

∆t

2 ∆ x
A(Un

i+1 − U
n
i−1) +

1

2

(

c ∆ t

∆ x

)2

(Un
i+1 − 2 U

n
i + U

n
i−1). (2.8)

The Lax-Wendroff scheme is second-order accurate both in space and time; it is easy
to implement, and its computational cost is very low [15]. However, it introduces
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numerical dispersion that damages the numerical solution. To avoid the spurious
oscillations induced by the numerical dispersion, one can use second-order finite vol-
ume schemes described in [14]. These schemes (s = 2) introduce locally numerical
diffusion via nonlinear flux limiters. This diffusion leads to a very precise spatial lo-
calization of waves, but it flattens their crests and damages their amplitude. Lastly,
WENO schemes control the numerical dispersion without damaging the amplitudes
of waves, but they are more expensive on a computational point of view. Here, we
use a WENO 5 scheme described in [13], which is fifth-order accurate in space and
fourth-order accurate in time. To be rigorous, its time-marching is not (2.6), since
the WENO schemes lie on Runge-Kutta integrations between tn and tn+1.

To conclude this section, we make two remarks. Firstly, the choice of the scheme
is not essential for the method proposed further: one could also choose to integrate
the scalar elastic wave equation with classical, multistep, and explicit finite-difference
schemes [27]: the further discussion remains the same with only minor changes. Sec-
ondly, as shown in Fig. 1.1, we define an integer J by

xJ ≤ α < xJ+1. (2.9)

If a grid point coincides with the interface, the convention (2.9) about J avoids any
ambiguity. A grid point is irregular if its time-stepping crosses the interface; otherwise,
a grid point is regular. According to the width s of the chosen scheme (2.6), irregular
points are

xJ−s+1, ... , xJ+s.

The time-stepping (2.6) is only applied at the regular points. The time-stepping at
irregular points is detailed and analysed in section 4.

3. The spring-mass conditions. Classically, only perfect conditions are con-
sidered at interfaces. Writing for any function f(x, t)

[f(α, t] = lim
x→α+

f(x, t) − lim
x→α−

f(x, t),

these perfect conditions are

[u(α, t)] = 0, [σ(α, t)] = 0, (3.1)

where u(x, t) is the elastic displacement and σ(x, t) is the elastic stress. The perfect
conditions (3.1) idealize a perfect contact at α between solids.

To describe an imperfect contact at α, one can generalize (3.1) via the spring-
mass conditions. Given two constants K > 0, M ≥ 0, respectively called the stiffness
and the mass of the interface, the spring-mass conditions are

[u(α, t] =
1

K
σ(α−, t),

[σ(α, t)] = M
∂2

∂ t2
u(α−, t).

(3.2)

The conditions (3.2) are called the spring-mass conditions because of analogies with
the equations governing a spring-mass system. Authors have found that they are a
good model for imperfect contacts like fractures [26].
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The derivation of (3.2) in the case of a thin intermediate layer between media 0
and 1 is proposed in Appendix A; then, K and M are deduced from the parameters
of the intermediate layer (A.4). This academic case is of interest for modeling wave
propagation across a glue layer. Some authors have also derived the spring-mass
conditions from an asymptotic analysis of diffraction of elastic waves on cracks [1].

The spring-mass conditions are an easy way to take into account all degrees of
contact between solids, from the perfect contact to free extremities. Indeed, the
perfect conditions (3.1) are recovered if K = +∞ and M = 0. If K → 0 and M = 0,
the spring-mass conditions (3.2) induce σ(α−, t) = σ(α+, t) = 0, hence both sides of
α are stress-free extremities.

In the next two paragraphs, we calculate the conditions that are satisfied by
U(x, t) and by its spatial derivatives across the imperfect interface. These conditions
are required by the numerical method exposed in 4. In the general case M 6= 0
or K 6= +∞, the spring-mass conditions (3.2) are not the same if α+ and α− are
exchanged. The limit values of U(x, t) and of its spatial derivatives therefore will be
examined successively on both sides of α.

3.1. Jump of the solution. We differentiate the first equation of (3.2) with
respect to t; since v = ∂u

∂t , we obtain

v(α+, t) = v(α−, t) +
1

K

∂

∂ t
σ(α−, t)

σ(α+, t) = σ(α−, t) + M
∂

∂ t
v(α−, t).

(3.3)

The time derivatives in (3.3) are replaced by spatial derivatives via the conservation
laws (2.2), hence

v(α+, t) = v(α−, t) +
ρ0 c2

0

K

∂

∂ x
v(α−, t)

σ(α+, t) = σ(α−, t) +
M

ρ0

∂

∂ x
σ(α−, t).

(3.4)

Setting

S0 = diag

(

ρ0 c2
0

K
,

M

ρ0

)

,

we get

[U(α, t)] = S0
∂

∂ x
U(α−, t). (3.5)

The next two results express U(x, t) and its spatial derivatives on one side of α in
terms of U(x, t) and its spatial derivatives on the other side of α.

Result 2. Limit values of ∂k

∂ xk U(x, t) on the right of α are given for all k ≥ 0

and for all time t by

∂k

∂ xk
U(α+, t) = D2k+1

∂k

∂ xk
U(α−, t) + D2k+2

∂k+1

∂ xk+1
U(α−, t), (3.6)
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with matrices D2k+1 and D2k+2 depending on whether k is odd or even

D4i+1 = diag

(

(

c0

c1

)2i

,

(

c0

c1

)2i
)

,

D4i+2 = diag

(

ρ0

K

(c0)
2i+2

(c1)
2i ,

M

ρ0

(

c0

c1

)2i
)

,

D4i+3 = diag

(

ρ0

ρ1

(

c0

c1

)2i+2

,
ρ1

ρ0

(

c0

c1

)2i
)

,

D4i+4 = diag

(

M

ρ1

(

c0

c1

)2i+2

,
ρ1

K

(c0)
2i+2

(c1)
2i

)

.

Proof. Since (3.5) is true for all time t, we differentiate (3.5) 2i-times with respect
to t and we substitute the first equation of (2.5) to obtain

[

c2i ∂2i

∂ x2i U

]

= c2i
0 S

∂2i+1

∂ x2i+1 U(α−, t). (3.7)

We also differentiate (3.5) 2i+1-times with respect to t and we substitute the second
equation of (2.5) to get

[

−c2i A
∂2i+1

∂ x2i+1 U

]

= −c2i
0 S A0

∂2i+2

∂ x2i+2 U(α−, t). (3.8)

Simple algebric manipulations on (3.7) and (3.8) give (3.6).

Result 3. Limit values of ∂k

∂ xk U(x, t) on the left of α are given for all k ≥ 0,

l ≥ 1, and for all time t by

∂k

∂ xk
U(α−, t) =

l−1
∑

m=0

E(m, k, l)
∂k+m

∂ xk+m
U(α+, t) + E(l, k, l)

∂k+l

∂ xk+l
U(α−, t), (3.9)

with

m < l⇒ E(m, k, l) = (−1)m (D2k+1)
−1

m
∏

j=1

D2(k+j)

(

D2(k+j)+1

)−1

m = l⇒ E(l, k, l) = (−1)l (D2k+1)
−1





l−1
∏

j=1

D2(k+j)

(

D2(k+j)+1

)−1



D2(k+l),

and with the convention

0
∏

j=1

D2(k+j)

(

D2(k+j)+1

)−1
= I2 (3.10)

where I2 is the identity matrix.
Proof. The proof is performed by induction on l. From (3.6), we write for all

integer j ≥ 0

∂j

∂ xj U(α−, t) = (D2j+1)
−1 ∂j

∂ xj U(α+, t) − (D2j+1)
−1

D2j+2
∂j+1

∂ xj+1 U(α−, t).

(3.11)
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Taking j = k in (3.11) induces the relation (3.9) for l = 1. Then, suppose that (3.9)
holds for l ≥ 1. We write (3.11) for j = k + l and we insert the result in (3.9). The
definitions of matrices E lead to the relation (3.9) for l + 1.

Remark 1. Note that spatial derivatives of U on the left side cannot be expressed
only in terms of spatial derivatives of U on the right side.

Some values of M and K lead to classical cases of contact.

1. If M = 0 and K → +∞, we get D2k+2 = 0. Then conditions (3.6) and (3.9)
recover conditions for perfect interfaces examined in [23].

2. If M 6= 0 or K < +∞, we get D2k+2 6= 0 even if ρ0 = ρ1 and c0 = c1, hence

there is still a jump of ∂k

∂xk U(x, t) across α. This is obviously not the case for perfect
interfaces. Physically, this situation corresponds to the idealised case of a glue layer
between identical materials. It is investigated numerically in 5.

3. The case of a homogeneous medium, i.e. where the interface actually disap-
pears, is obtained only for ρ0 = ρ1, c0 = c1, M = 0, and K → +∞.

4. Insertion of the spring-mass conditions in numerical schemes.

U(x,t )

U(x,t )

U(x,t )

αx xJ−s+1 J+1J x
... ...

J+s

U(x,t )* *

n

n

n

n

x

Fig. 4.1. Exact solution U(x, tn) (solid line) and the modified solutions U
∗(x, tn) (dotted line).

4.1. The interface method. We recall the key points of the Explicit Simplified
Interface Method (ESIM) [23, 19]. Firstly, we define smooth extensions U

∗(x, tn) of
the exact solution U(x, tn) on both sides of α at each time step tn (Fig. 4.1). The
extension U

∗(x, tn) satisfies exactly the same conditions than U(x, tn) at α. Secondly,
numerical approximations of these extensions are computed at the irregular points xi

(i = J − s+1, ..., J + s); they are called modified values and they are written U
∗
i (see

4.1.1 and 4.1.2). Thirdly, at an irregular point on one side of α, the time-stepping of
the chosen scheme classically uses numerical values on this side, and modified values
on the other side (see 4.1.3).

We write the smooth extensions as polynomials in x of degree 2 k − 1

for x > α, U
∗(x, tn) =

2 k−1
∑

m=0

(x − α)m

m !

∂m

∂ xm U(α−, tn), (4.1)

for x ≤ α, U
∗(x, tn) =

2 k−1
∑

m=0

(x − α)m

m !

∂m

∂ xm U(α+, tn). (4.2)
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The required value of the integer k depends on the order of the chosen scheme. We
show in 4.4. that k = 2 is required e.g. for the Lax-Wendroff scheme. The initial data
U0(x) is supposed to be sufficiently smooth so that U(x, tn) and its spatial derivatives
up to the (2 k − 1)-th order are well-defined outside α, and at α− and α+.

The goal of the next two sections is to calculate estimations of U
∗(x, tn) at the

irregular points on the right (i = J + 1, ...., J + s) in terms of ∂m

∂ xm U(α−, tn), and

on the left (i = J − s + 1, ..., J) in terms of ∂k

∂ xm U(α+, tn). For that purpose, Taylor
expansions of the exact solution U(x, tn) at the 2 k grid points xi surrounding the
interface are written around α±.

i = J −k+1, ..., J, U(xi, tn) =

2 k−1
∑

m=0

(xi − α)m

m !

∂m

∂ xm U(α−, tn)+O(∆ x2 k), (4.3)

i = J +1, ..., J +k, U(xi, tn) =

2 k−1
∑

m=0

(xi − α)m

m !

∂m

∂xm U(α+, tn)+O(∆ x2 m). (4.4)

Throughout this paper and depending on the context, the notation O(∆ xλ), generally
used for a scalar, refers also to a vector with two components, or to a 2-by-2 diagonal
matrix, of which the entries are O(∆ xλ) scalars.

4.1.1. Modified values on the right. We substitute the conditions (3.6) in
(4.4). Then we get at grid points on the right (i = J + 1, ..., J + k)

U(xi, tn) =

2 k−1
∑

m=0

(xi − α)m

m !
D2m+1

∂m

∂ xm U(α−, tn)

+

2 k−1
∑

m=0

(xi − α)m

m !
D2m+2

∂m+1

∂ xm+1 U(α−, tn) + O(∆ x2 k),

(4.5)

or, after grouping together the sums in (4.5),

U(xi, tn) = D1 U(α−, tn)

+
2 k−1
∑

m=1

(

(xi − α)m

m !
D2m+1 +

(xi − α)m−1

(m − 1) !
D2m

)

∂m

∂ xm U(α−, tn)

+
(xi − α)2 k−1

(2 k − 1) !
D4k

∂2 k

∂ x2 k
U(α−, tn) + O(∆ x2 k).

(4.6)
The relations (4.3) and (4.6) are summed up as follows







U(xJ−k+1, tn)
...

U(xJ+k, tn)






= M











U(α−, tn)
...

∂2 k−1

∂ x2 k−1
U(α−, tn)











+ ∆1 +







O(∆ x2 k)
...

O(∆ x2 k)






, (4.7)
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where M is a 2 k-by-2 k block matrix with 2-by-2 blocks, and with entries (j =
1, ...., 2 k)

M [i, j] =























































(xJ−k+i − α)j−1

(j − 1)!
I2 if 1 ≤ i ≤ k,

D1 if k + 1 ≤ i ≤ 2 k and if j = 1,

(xJ−k+i − α)j−1

(j − 1) !
D2j−1 +

(xJ−k+i − α)j−2

(j − 2) !
D2j−2

if k + 1 ≤ i ≤ 2 k and if j 6= 1.

(4.8)

∆1 is a 2 k block vector with entries

∆1[i] =















0 if 1 ≤ i ≤ k,

(xJ−k+i − α)2 k−1

(2 k − 1) !
D4k

∂2k

∂ x2 k
U(α−, tn) if k + 1 ≤ i ≤ 2 k.

(4.9)

To obtain estimations of ∂m

∂xm U(α−, tn) (m = 0, ..., 2 k − 1), we replace the exact
values U(xi, tn) in (4.7) by the numerical values U

n
i , we eliminate both ∆1 and the

vector of truncation errors, and we invert the resulting system. Then, estimations of
U

∗(xi, tn) at irregular points on the right of α are deduced from (4.1) and (4.7)

i = J +1, ..., J + s, U
∗
i =

(

I2, ...,
(xi − α)2 k−1

(2 k − 1) !
I2

)

M
−1







U
n
J−k+1

...
U

n
J+k






. (4.10)

4.1.2. Modified values on the left. We follow a similar procedure to compute
the modified values on the left side. We substitute the conditions (3.9) calculated up
to l = 2 k − m (m = 0, ..., 2 k − 1) in (4.3) and we get, at grid points on the left
(i = J − k + 1, ..., J),

U(xi, tn) =

2 k−1
∑

m=0

2 k−m−1
∑

λ=0

(xi − α)m

m !
E(λ, k, 2 k − m)

∂λ+m

∂ xλ+m
U(α+, tn)

+
2 k−1
∑

m=0

(xi − α)m

m !
E(2 k − m, m, 2 k − m)

∂2 k

∂ x2 k
U(α−, tn) + O(∆ x2 k),

(4.11)
or, after a rearrangement of the double sum,

U(xi, tn) =

2 k−1
∑

m=0

(

m
∑

λ=0

(xi − α)m−λ

(m − λ) !
E(λ, m − λ, 2 k − m + λ)

)

∂m

∂ xm U(α+, tn)

+

(

2 k−1
∑

m=0

(xi − α)m

m !
E(2 k − m, m, 2 k − m)

)

∂2 k

∂ x2 k
U(α−, tn) + O(∆ x2 k).

(4.12)
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Then, the relations (4.4) and (4.12) are summed up as follows







U(xJ−k+1, tn)
...

U(xJ+k, tn)






= N











U(α−, tn)
...

∂2 k−1

∂ x2 k−1
U(α−, tn)











+ ∆2 +







O(∆ x2 k)
...

O(∆ x2 k)






,

(4.13)
where N is a 2 k-by-2 k block matrix with 2-by-2 blocks, and with entries (j =
1, ..., 2 k)

N [i, j] =



























j−1
∑

m=0

(xJ−k+i − α)j−1−m

(j − 1 − m) !
E(m, j − 1 − m, 2 k − j + 1 + m) if 1 ≤ i ≤ k,

(xJ−k+i − α)j−1

(j − 1) !
I2 if k + 1 ≤ i ≤ 2 k.

(4.14)
∆2 is a 2 k block vector with entries

∆2[i] =



















(

2 k−1
∑

m=0

(xJ−k+i − α)m

m !
E(2 k − m, m, 2 k − m)

)

∂2 k

∂ x2 k
U(α−, tn) if 1 ≤ i ≤ k,

0 if k + 1 ≤ i ≤ 2 k.
(4.15)

Estimations of U
∗(xi, tn) at the irregular points on the left of α are deduced from

(4.2) and (4.13) after eliminating both ∆2 and the vector of truncation errors

i = J − s + 1, ..., J, U
∗
i =

(

I2, ...,
(xi − α)2 k−1

(2 k − 1) !
I2

)

N
−1







U
n
J−k+1

...
U

n
J+k






. (4.16)

4.2. Time-stepping at the irregular points. Instead of (2.6), the time-
stepping of a two-stage scheme at the irregular points xi (i = J − s + 1, ..., J + s)
uses modified values on the side other than that for xi

J − s + 1 ≤ i ≤ J, U
n+1
i = U

n
i + H

(

U
n
i−s, ..., U

n
J , U

∗
J+1, ..., U

∗
i+s

)

J + 1 ≤ i ≤ J + s, U
n+1
i = U

n
i + H

(

U
∗
i−s, ..., U

∗
J , U

n
J+1, ..., U

n
i+s

)

.
(4.17)

Then, the finite-difference scheme is said to be coupled with the ESIM k.The coupling
of the ESIM with four-stage schemes like WENO 5 is obvious: we apply (4.17) at each
step of Runge-Kutta integrations between tn and tn+1. A similar procedure is easy
to adapt also to classical, multistep, and explicit finite-difference schemes used to
integrate the second-order scalar elastic wave equation.

The following result guarantees that the modified values are well-defined for the
schemes used throughout this study.

Result 4. Matrices M and N are always invertible if k = 1, 2, 3, whatever ∆ x
and the position of α in the interval [xJ , xJ+1[.

Proof. The proof is proposed only for k = 2, and it has been verified for k = 1
and k = 3. Let us consider the case of M . We write θ = (α − xJ )/∆x, so θ ∈ [0, 1[.
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The blocks of M (4.8) are diagonal: by permuting lines and rows, we obtain

detM = detA detB, (4.18)

where A[i, j] = M [i, j][1, 1] and B[i, j] = M [i, j][2, 2] (i = 1, ..., 4, j = 1, ..., 4).
Computations with MAPLE show that

detA =
1

12 ρ2
1 c2

1 K2

((

5
∑

i=1

ηi pi(θ)

)

∆x6 +

(

9
∑

i=6

ηi pi(θ)

)

∆x5 +

(

12
∑

i=10

ηi pi(θ)

)

∆x4

)

(4.19)

detB =
1

12 ρ2
0 c4

1 K

((

5
∑

i=1

ξi pi(θ)

)

∆x6 +

(

9
∑

i=6

ξi pi(θ)

)

∆x5 +

(

12
∑

i=10

ξi pi(θ)

)

∆x4

)

with the polynomials pi(θ)

p1(θ) = −4 θ4 + 16 θ3 − 17 θ2 − θ + 6, p7(θ) = −12 θ3 + 6 θ2 + 16 θ + 3,

p2(θ) = θ4 − 6 θ3 + 13 θ2 − 12 θ + 4, p8(θ) = 4 θ3 + 6 θ2 + 2 θ,

p3(θ) = 6 θ4 − 12 θ3 − 4 θ2 + 10 θ + 2, p9(θ) = −4 θ3 + 18 θ2 − 26 θ + 12,

p4(θ) = θ4 + 2 θ3 + θ2, p10(θ) = 6 θ2 + 6 θ + 2,

p5(θ) = −4 θ4 + 7 θ2 + 3 θ, p11(θ) = 6 θ2 − 18 θ + 12,

p6(θ) = 12 θ3 − 30 θ2 + 8 θ + 13, p12(θ) = −12 θ2 + 12 θ + 9,

and the coefficients ηi et ξi

η1 = ρ2
0 c6

0 K2, η2 = ρ0 c6
0 ρ1 K2, η3 = ρ0 c4

0 ρ1 c2
1 K2,

η4 = ρ0 c2
0 ρ1 c4

1 K2 η5 = c2
0 ρ2

1 c4
1 K2, η6 = ρ2

0 c6
0 ρ1 c2

1 K,

η7 = ρ0 c4
0 ρ2

1 c4
1 K η8 = ρ1 c6

1 K2 M, η9 = ρ0 c4
0 c2

1 K2 M,

η10 = ρ0 c2
0 ρ1 c6

1 K M, η11 = ρ0 c4
0 ρ1 c4

1 K M, η12 = ρ2
0 c6

0 ρ2
1 c4

1,

ξ1 = ρ0 c4
0 ρ1 K, ξ2 = ρ0 c2

0 ρ1 c2
1 K, ξ3 = ρ2

1 c2
0 c2

1 K,

ξ4 = ρ0 ρ1 c4
1 K, ξ5 = ρ2

0 c2
0 c2

1 K, ξ9 = ρ0 c4
0 ρ2

1 c2
1,

ξ7 = ρ0 c2
0 c2

1 K M, ξ8 = ρ2
0 c2

0 ρ1 c4
1, ξ6 = c2

0 ρ1 c2
1 K M,

ξ10 = ρ0 c2
0 ρ1 c4

1 M, ξ11 = ρ0 c4
0 ρ1 c2

1 M, ξ12 = c2
0 c2

1 K M2.

We observe that

12
∑

i=1

pi(θ) = 63.
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The polynomials pi and qi satisfy pi(θ) ≥ 0 and qi(θ) ≥ 0 on [0, 1], and they are not
all equal to zero simultaneously. Since ηi > 0, ξi > 0 (i = 1, ..., 12), we find that
detA > 0 and detB > 0. Furthermore, even for K → +∞, the 1/K2 and 1/K
factors in (4.19) are simplified by coefficients ηi in K2 and ξi in K, hence det A and
detB are still different from zero. In all cases, it implies detM > 0. The same work
has been done for N , giving also detN > 0.

Note that the matrices M
−1 and N

−1 need to be computed only once, during a
preprocessing step. At each time step, only the matrix-vector multiplications (4.10)
and (4.16) need to be done. The computational cost therefore remains much lower
than that for time-stepping.

We do not propose an analysis of the stability of (4.17). Numerous experiments
have shown no influence of K and M on the stability of the coupling of numerical
schemes with the ESIM k, whatever the position of α in the interval [xJ , xJ+1[.

Result 5. Consider the limit case of a homogeneous medium, i.e. ρ0 = ρ1, c0 =
c1, K = +∞ and M = 0. Then the coupling of a numerical scheme with the ESIM k is
consistent with the numerical scheme in homogeneous medium, i.e. the time-stepping
(4.17) recovers the time-stepping (2.6), if

k ≥ s. (4.20)

Proof. In the limit case of a homogeneous medium, matrices D and E used in
(3.6) and (3.9) are simplified, and we get for all i ≥ 0, k ≥ 0, and l ≥ 1























D4i+1 = D4i+3 = I2

D4i+2 = D4i+4 = 0

E(0, k, l) = I2 and E(m, k, l) = 0 if m 6= 0.

As a consequence, M and N are now equal. Therefore, (4.10) and (4.16) can be
written both for right-sided and left-sided irregular points

J−s+1 ≤ i ≤ J +s, U
∗
i =

(

1, ...,
(xi − α)2 k−1

(2 k − 1) !

)

M
−1







U
n
J−k+1

...
U

n
J+k






. (4.21)

Moreover, M is simplified and we get







U
n
J−k+1

...
U

n
J+k






= M M

−1







U
n
J−k+1

...
U

n
J+k







=















I2 . . .
(xJ−k+1 − α)2 k−1

(2 k − 1) !
I2

...
...

I2 . . .
(xJ+k − α)2 k−1

(2 k − 1) !
I2















M
−1







U
n
J−k+1

...
U

n
J+k






,

(4.22)



SPRING-MASS CONDITIONS IN NUMERICAL SCHEMES 13

which yields

J − k + 1 ≤ i ≤ J + k, U
n
i =

(

I2, ...,
(xi − α)2 k−1

(2 k − 1) !
I2

)

M
−1







U
n
J−k+1

...
U

n
J+k






.

(4.23)
Comparing (4.21) and (4.23) leads to

k ≥ s ⇒ J − s + 1 ≤ i ≤ J + s, U
∗
i = U

n
i . (4.24)

In this case, we deduce from (4.17) that the time-stepping in homogeneous medium
(2.6) is completely recovered.

4.3. Local truncation analysis. In [23], we analysed the local truncation error
of the coupling (4.17) for the perfect conditions (3.1) and for k ≤ 3. To apply the
same analysis for the spring-mass conditions (3.2) and for k ≤ 3, we need to take
into account the new structure of block vectors and block matrices (4.7) and (4.13).
For the perfect conditions (3.1) indeed, we have ∆1 = ∆2 = 0, and since for all i,
|xi − α| = O(∆ x), we have

M [i, j] = O(∆ xj−1), N [i, j] = O(∆ xj−1), (4.25)

for i = 1, ..., 2 k and j = 1, ..., 2 k. For the spring-mass conditions (3.2), ∆1 and ∆2

are non-zero vectors, and we have

M [i, j] =























O(∆ xj−1) if 1 ≤ i ≤ k and 1 ≤ j ≤ 2 k,

O(1) if k + 1 ≤ i ≤ 2 k and j = 1,

O(∆ xj−2) if k + 1 ≤ i ≤ 2 k and 2 ≤ j ≤ 2 k,

N [i, j] =







O(1) if 1 ≤ i ≤ k and 1 ≤ j ≤ 2 k,

O(∆ xj−1) if k + 1 ≤ i ≤ 2 k and 1 ≤ j ≤ 2 k.

(4.26)

To estimate error bounds induced by these new structures, we need the following
Lemma.
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Lemma 4.1. Let Ψ be a 2 k block vector of which the entries are O(∆ x2 k). Then,
for k = 1, 2, 3, and for the spring-mass conditions (3.2), we have

M
−1Ψ =























O(∆ x2 k−1)

O(∆ x2 k−2)
...

O(∆ x)

O(1)























, M
−1∆1 =























O(∆ x2 k−1)

O(∆ x2 k−2)
...

O(∆ x)

O(1)























,

N
−1Ψ =























O(∆ x2 k−1)

O(∆ x2 k−2)
...

O(∆ x)

O(1)























, N
−1∆2 =























O(∆ x2 k−1)

O(∆ x2 k−2)
...

O(∆ x)

O(1)























.

(4.27)

Proof. From the expressions of M (4.8), N (4.14), ∆1 (4.9), and ∆2 (4.15), we
explicitly verify (4.27) with MAPLE.

Theorem 4.2 (Local truncation error). The coupling (4.17) of an r-th order two-
stage scheme and of the ESIM k maintains an r-th order local error at the irregular
points (J − s + 1, ..., J + s) if

2 k − 1 ≥ r. (4.28)

Result 6. To recover the time-stepping (2.6) in the limit case of an homogeneous
medium, and to maintain the order of accuracy at the irregular points (J−s+1, ..., J+
s), relations (4.20) and (4.28) imply, for an r-th order two-stage scheme with a width
s, this choice for k

k = max

(

s, r + 1 − trunc

(

r + 1

2

))

, (4.29)

where trunc(x) refers to the truncated value of x. Consequently to (4.29), Lax-
Wendroff and finite volume with flux limiter schemes require k ≥ 2, and WENO 5
requires k ≥ 3.

We do not demonstrate the Theorem 4.2, because the proof is very close to the
one given in [23]. To see the key point, i.e. where the Lemma 4.1 arises, we propose
the local truncation analysis in the case of the Lax-Wendroff scheme and for k = 2. In
this case, the irregular points are xJ and xJ+1. As a consequence of (2.8) and (4.17),
the time-stepping at xJ is

U
n+1
J − U

n
J

∆ t
+

1

2 ∆ x
A0

(

U
∗
J+1 − U

n
J−1

)

−
1

2

( c0

∆ x

)2

∆ t
(

U
∗
J+1 − 2 U

n
J + U

n
J−1

)

= 0.

(4.30)
To compute the local truncation error L(xJ , tn), each numerical value U

n
i that appears

explicitly or implicitly in (4.30) is replaced by the exact value U(xi, tn). Consequently

L(xJ , tn) = L1(xJ , tn) + L2(xJ , tn) + L3(xJ , tn), (4.31)
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with

L1(xJ , tn) =
U(xJ , tn+1) − U(xJ , tn)

∆ t

L2(xJ , tn) =
1

2 ∆ x
A0 (U∗(xJ+1, tn) − U(xJ−1, tn))

L3(xJ , tn) = −
1

2

( c0

∆ x

)2

∆ t (U∗(xJ+1, tn) − 2 U(xJ , tn) + U(xJ−1, tn)) .

The exact value U
∗(xJ+1, tn) corresponding to the modified value U

∗
J+1 is deduced

from (4.10)

U
∗(xJ+1, tn) =

(

I2, ...,
(xJ+1 − α)3

3 !
I2

)

M
−1







U(xJ−1, tn)
...

U(xJ+2, tn)






. (4.32)

Using (4.7) and the Lemma 4.1 for k = 2 gives

U
∗(xJ+1, tn) =

(

I2, ...,
(xJ+1 − α)3 I2

3 !

)

M
−1























































M









U(α−, tn)
...

∂3

∂ x3 U(α−, tn)









+∆1 +







O(∆ x4)
...

O(∆ x4)





























































=

3
∑

m=0

(xJ+1 − α)m

m !

∂k

∂ xm U(α−, tn) + O(∆ x3).

(4.33)
L1 is deduced from Taylor expansions around (α−, tn) and from (2.5)

L1(xJ , tn) =
∂

∂ t
U(xJ , tn) +

∆ t

2

∂2

∂ t2
U(xJ , tn) + O(∆ t2)

= −A0
∂

∂ x
U(xJ , tn) + c2

0

∆ t

2

∂2

∂ x2 U(xJ , tn) + O(∆ t2)

= −A0
∂

∂ x
U(α−, tn) +

(

c2
0

∆ t

2
− (xJ − α)A0

)

∂2

∂ x2 U(α−, tn) + O(∆ x2).

(4.34)
In the last line of (4.34), we use the fact that an O(∆ t2) function is also an O(∆ x2)
function because the CFL number is kept constant. L2 and L3 are deduced from
second-order Taylor expansions of U(xJ−1, tn) and U(xJ , tn) at α−, and from (4.33)

L2(xJ , tn) = A0
∂

∂ x
U(α−, tn) + (xJ − α)A0

∂2

∂ x2 U(α−, tn) + O(∆ x2)

L3(xJ , tn) = −c2
0

∆ t

2

∂2

∂ x2 U(α−, tn) + O(∆ x2).

(4.35)
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Summing L1, L2, and L3 allows one to conclude

L(xJ , tn) = O(∆ x2), (4.36)

which is the local truncation error of the Lax-Wendroff scheme at regular points. A
similar analysis can be done at xJ+1.

5. Numerical experiments.
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Fig. 5.1. Initial values of the elastic stress σ at t = t0 = 1.6 10−4 s.

5.1. One interface between identical media. Consider a L =1 m elastic
domain with an imperfect interface at α = 0.533 m. The parameters are







































ρ0 = ρ1 = 1200 kg/m
3
,

c0 = c1 = 2800 m/s,

K = 2.25.1011 kg/s
2
,

M = 10 kg/m2.

(5.1)

Since there are no impedance contrasts, the reflected wave is only due to the spring-
mass conditions. The values of K and M correspond e.g. to the case of a glue layer
with the physical properties of water ρ2 = 1000 kg/m3, c2 = 1500 m/s, and with a
thickness h = 0.01 m (A.4). The initial data is given by a right-going wave in medium
0

U0(x) = f

(

t0 −
x

c0

)







−
1

c0

ρ0






. (5.2)

The function f is a C5 spatially-bounded sinusoid

f(ξ) =



















q
∑

k=1

ak sin(βk ωc ξ) if 0 < ξ <
1

fc
,

0 else,

(5.3)
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Fig. 5.2. Exact values (solid line) and numerical values (dotted line) of σ for identical properties
on both sides of an imperfect interface. Lax-Wendroff + ESIM 2 (a-b), finite volume with flux
limiter + ESIM 2 (c-d), WENO 5 + ESIM 3 (e-f). Snapshots at t1 = 2.6 10−4 s (left row) and at
t2 = 2.9 10−4 s (right row).
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with βk = 2k−1, ωc = 2π fc; the coefficients ak are: a1 = 1, a2 = −21/32, a3 = 63/768,
a4 = −1/512. The central frequency is fc = 2 104 Hz.

The numerical experiments shown in Fig 5.2 are performed with N = 150 grid
points, which is approximately 20 points in the wavelength λc = c0/fc, and with
CFL= 0.9 (2.7). The initial time is t0 = 1.6 10−4 s. Initial values of the elastic stress
σ are shown in Fig. 5.1.

Method N L∞ error L∞ order L1 error L1 order

Lax-Wendroff 100 1.12e01 - 1.43e00 -
+ 200 4.03e00 1.47 4.60e-1 1.61

ESIM 2 400 9.75e-1 2.04 1.19e-1 1.96
800 2.45e-1 1.99 3.04e-2 1.97
1600 5.95e-2 2.04 7.57e-3 2.00
3200 1.48e-2 2.01 1.89e-3 2.00

Finite volume 100 6.05e00 - 5.05e-1 -
+ 200 2.00e00 1.59 1.31e-1 1.94

ESIM 2 400 6.77e-1 1.56 3.45e-2 1.92
800 2.35e-2 1.52 9.76e-3 1.82
1600 7.92e-3 1.56 2.59e-3 1.91
3200 2.63e-2 1.59 6.39e-4 2.02

WENO 5 100 6.05e00 - 3.20e00 -
+ 200 2.08e-1 4.85 1.09e-1 4.86

ESIM 3 400 6.60e-3 4.98 3.71e-3 4.88
800 2.21e-4 4.89 1.19e-4 4.95
1600 7.39e-6 4.90 4.06e-6 4.88
3200 2.45e-7 4.91 1.34e-7 4.92

Table 5.1
Errors and orders of accuracy.

Figure 5.2 shows the exact values and the numerical values of the elastic stress σ
at t1 = 2.6 10−4 s (left row) and at t2 = 2.9 10−4 s (right row). The analytic solution
is detailed in Appendix B. There is an excellent agreement between the theoretical
values and the numerical values, and we can observe the features of each scheme,
that is the numerical dispersion of the Lax-Wendroff scheme (a-b) and the numerical
diffusion of the finite volume scheme with flux limiter (c-d); at this scale, we can not
observe differences between the theoretical values and the numerical values computed
with WENO 5 (e-f).

Table 5.1 shows the errors in norms L∞ and L1 at t2 = 2.9 10−4 s. For WENO 5,
the time step has been adjusted to ∆ t ∼ (∆ x)5/4 so that the fourth-order integration
in time is effectively fifth-order. All computing is done in double precision on a
Pentium PC. As expected, the order of accuracy of all schemes is maintained with
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one imperfect interface.
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Fig. 5.3. Waves transmitted through a medium containing equally spaced imperfect interfaces,
with (a) h = h0, and (b) h = h1. The vertical dotted line denotes the position of the source.

5.2. Periodic medium. As a second test, we consider the wave propagation
across a bounded set of imperfect interfaces equally spaced of h, with the physical
properties of the previous example. The wave propagation in such a medium has been
extensively studied for the spring conditions (i.e. M = 0) and using Floquet’s theory
[20]. The derivation of the dispersion relation for Floquet waves with the spring-mass
conditions is beyond the scope of the present paper. A theoretical analysis shows that
for h = h0 = 1.76 10−2 m, the Floquet wave number is real, hence waves propagate
without any loss. On the contrary, for h = h1 = 5.17 10−2 m, the Floquet wave
number is complex. This results in evanescent waves that decrease exponentially
away from sources. This stop-pass behavior is well-known in electromagnetics and
geophysics. It can be applied to construct an acoustic filter of which properties can
be altered by changing the spacing between interfaces.
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Fig. 5.4. Theoretical values (solid line) and numerical values (*) of the attenuation in the
periodic medium.

The numerical simulations are performed with 250 grid points, with the Lax-
Wendroff scheme coupled to the ESIM 2. A sinusoidal source is imposed on the left of
the set of interfaces (dotted vertical line in Fig. 5.3), until a steady-state is reached.
The stop-pass behavior is clearly observed in Fig. 5.3. Figure 5.4 shows the theoretical
attenuation (solid line) and the measured attenuation (*) of the waves. Once again,
the agreement between exact and numerical values is excellent.

On this example, the additional computational cost required by the interface
method is lower than 1%, hence it is negligible compared with the time-stepping of the
scheme. Note also that no instabilities are observed, despite the multiple reflections
in the periodic medium (unlike interface problems studied by [9]).

5.3. One interface between different media. As a third example, we con-
sider one imperfect interface between different media, with discontinuous coefficients

(ρ, c) =







ρ0 = 1200 kg/m
3
, c0 = 2800 m/s,

ρ1 = 2700 kg/m
3
, c1 = 6500 m/s.

(5.4)

These physical parameters correspond respectively to Plexiglass and to aluminium.
We propose a parametric study for various values of the stiffness: K = 1013 kg/s

2
,

K = 7 1011 kg/s
2
, K = 2.25 1011 kg/s

2
, K = 7 1010 kg/s

2
. The inertial effects are

not considered: M = 0. The computations are performed with the finite volume
scheme coupled with the ESIM 2. The values of α, N, fc and t0 are the same than in
section 5.1.

Figure 5.5 shows the exact values (solid line) and the numerical values (dotted
line) of σ at t1 = 2.4 10−4 s (left row) and at t2 = 2.5 10−4 s (right row), after
respectively 140 and 180 time steps. Measures of convergence have been performed
(not shown here) confirm the second-order accuracy. Note that we can not distinguish
the simulation (a-b) from simulations with a perfect contact (K → +∞).

Besides its numerical interest, this test is enlightening from a practical point of
view. We observe a clear difference between the fields for a perfect contact (a-b) and
for thin glue layers (c-h). Many other simulations have been investigated, especially
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Fig. 5.5. Discontinuous coefficients at t1 = 2.6 10−4 s (left row), t2 = 2.9 10−4 s (right row):
K = 1013 kg/s2 (a-b), K = 71011 kg/s2 (c-d), K = 2.25 1011 kg/s2 (e-f), K = 71010 kg/s2 (g-h).
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for very small values of K (like K = 10−3 kg/s
2
). It results in stable schemes, despite

the huge 1/K factor in the matrices D (3.6), leading to totally reflected wave.

y

x

Ω

Ω

n

t−

Γ

P

0

1

+ + +
− −

Fig. 5.6. Interface Γ between Ω0 and Ω1.

5.4. Two-dimensional example. Lastly, we propose a 2D application of the
spring-mass conditions. The goal of this example is only to show that those conditions
can be treated by the ESIM. Technical details therefore are systematically omitted,
and they will be treated in future works.

Consider a sufficiently smooth interface Γ dividing R
2 into two subdomains Ω0 and

Ω1 (Fig. 5.6). At any point P of Γ, we define a normal unit vector n and a tangential
unit vector t. Denoting by u, v and σ respectively the elastic displacement, the elastic
velocity and the elastic stress tensor, we write

∣

∣

∣

∣

∣

∣

uN = u.n,

uT = u.t

∣

∣

∣

∣

∣

∣

vN = v.n,

vT = v.t

∣

∣

∣

∣

∣

∣

σN = (σ.n).n,

σT = (σ.n).t.
(5.5)

The limit values of a function f(x, y, t) at P on both sides of Γ are written

f(P+, t) = lim
M→P,M∈Ω1

f(M, t), f(P−, t) = lim
M→P,M∈Ω0

f(M, t). (5.6)

We denote by

[f(P, t)] = f(P+, t) − f(P−, t) (5.7)

the jump of f across Γ in P , from Ω0 to Ω1. Given four constants KN > 0, KT > 0,
MN ≥ 0, MT ≥ 0, respectively called the normal stiffness, the tangential stiffness, the
normal mass and the tangential mass of the interface, the two-dimensional spring-mass
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conditions are

[uN (P, t)] =
1

KN
σN (P−, t),

[uT (P, t)] =
1

KT
σT (P−, t),

[σN (P, t)] = MN
∂2

∂ t2
uN (P−, t),

[σT (P, t)] = MT
∂2

∂ t2
uT (P−, t).

(5.8)

These conditions generalize the 1D conditions (3.2).
As an example, we consider a Lx ×Ly = 0.4× 0.4 m2 elastic domain with an im-

perfect contact along a horizontal interface at y = 0.113 m. The physical parameters
are







































































ρ0 = ρ1 = 1200 kg/m
3
,

cP0 = cP1 = 2800 m/s,

cS0 = cS1 = 1300 m/s,

KN = 9 1011 kg/s
2
,

KT = 1011 kg/s2,

MN = MT = 0 kg/m
2
.

(5.9)

cPi and cSi (i = 0, 1) denote respectively the celerities of P-waves and S-waves. See
[4] for properties of those waves. Like in the first 1D example, we choose identical
densities and celerities on both sides of the interface in order to visualize clearly
the effect of spring conditions: since there are no impedance contrasts, reflections
and conversions of waves are only induced by the stiffnesses. The interface considered
here is plane and horizontal for esthetic purpose; however, the ESIM can treat without
difficulty arbitrary-shaped smooth interfaces that cut the uniform cartesian grid. The
parameters (5.9) describe the following realistic configuration: two blocks of Plexiglass
linked together by a glue layer.

Numerical experiments are performed with Nx×Ny = 400×400 grid points, with
CFL=0.69. The computation is initialized by a cylindrical wave centered at (0.2 m,
0.2 m). For time-stepping, we use a finite-volume scheme with flux limiter, the Wave
Propagation Algorithm developed by LeVeque [14, 16]. This scheme is coupled with
the ESIM to take into account the conditions at the interface. Concerning the palettes
of colours, we use a green-red palette for P-waves, and a magenta-yellow palette for
S-waves. The distinction between those waves lies on numerical estimations of ∇∧ v

and of ∇.v.
Figure 5.7 shows snapshots of v1 (left column) and v2 (right column), respec-

tively the horizontal component of the elastic velocity and the vertical component
of the elastic velocity, at various instants: at the initialization (a-b), after 100 time



24 B. LOMBARD AND J. PIRAUX

(a) (b)

(c) (d)

(e) (f)

Fig. 5.7. Snapshots of v1 (a-c-e) and v2 (b-d-f). Green-red: P-waves, yellow-magenta: S-waves
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steps (c-d), after 200 time steps (e-f). Interesting wave phenomenons are observed.
The incident P-wave is reflected and transmitted at the interface. The reflected and
transmitted P-waves are followed by slower S-waves. Since there are no impedance
contrasts, the S-waves are only induced by KN and KT . Lastly, we observe that a
wake follows P and S reflected and transmitted waves: like in the 1D case, those waves
are not spatially bounded, because of the frequential dependance induced by KN and
KT .

6. Conclusion. In this paper, we have described a procedure to incorporate
the spring-mass conditions in explicit two-step finite-difference schemes issued from
computational fluid dynamics. For that purpose, we couple the schemes with the Ex-
plicit Simplified Interface Method (ESIM) [23]. The same procedure can be applied to
other schemes with minor changes. A local truncation analysis and numerical experi-
ments have shown that properties of schemes are maintained with imperfect interfaces.
Lastly, the additional computational cost induced by the ESIM is negligible.

In the future, we want to investigate deeper 2D and 3D cases of wave propagation
across imperfect contacts, like the propagation of interface waves along fractures [11].
Since the properties of those waves depend on the nature of the interface, they give
insight on degrees of contact between solids, leading to applications in non-destructive
evaluations of materials and in geophysics.

The extension of the ESIM to more complicated jump conditions is another chal-
lenging project. We think to nonlinear jump conditions, depending on t and on the
solution itself, that describe realistic contacts in solid mechanics.

Appendix A. Derivation of the spring-mass conditions. In this appendix,

h

ρ c
1 1

ρ cρ c
0 0 2 2

α
0 α

1

Fig. A.1. 1D elastic medium with two perfect interfaces.

we deduce the spring-mass conditions from the propagation of elastic waves in a three-
layered medium with two perfect interface at α0 and α1 (as shown in Fig. A.1). We
set h = α1 − α0; the density and the celerity of elastic waves in medium Ω2 are
respectively ρ2 and c2. Since the contact is perfect at α1, we get

U(α+
1 , t) = U(α−

1 , t). (A.1)

A Taylor expansion of U(α−
1 , t) at α+

0 leads to

U(α−

1 , t) = U(α+
0 , t) + h

∂

∂ x
U(α+

0 , t) + O(h2). (A.2)
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Lastly, the perfect conditions at α0 imply

U(α+
0 , t) = U(α−

0 , t),

∂

∂ x
U(α+

0 , t) = diag

(

ρ0 c2
0

ρ2 c2
2

,
ρ2

ρ0

)

∂

∂ x
U(α−

0 , t).
(A.3)

Setting

K =
ρ2 c2

2

h
, M = ρ2 h, (A.4)

we deduce from (A.1), (A.2) and (A.3)

v(α+
1 , t) = v(α−

0 , t) +
ρ0 c2

0

K

∂

∂ x
v(α−

0 , t) + O(h2)

σ(α+
1 , t) = σ(α−

0 , t) +
M

ρ0

∂

∂ x
σ(α−

0 , t) + O(h2).

(A.5)

For h → 0, we recover the conditions (3.4) at α ∈ [α0, α1].

Appendix B. Time-domain solution with spring-mass conditions. We
seek v(x, t) and σ(x, t) for one imperfect interface with the spring-mass conditions
(3.2) (see Fig. 1.1). The computation is based on

1. a Fourier transform in time of the incident wave (5.3),
2. the determination of reflected and transmitted harmonic waves,
3. an inverse Fourier transform to obtain wave fields in the time domain.

First, we determine reflection and transmission coefficients (point 2). To do so, we
consider incident, reflected, and transmitted harmonic waves, with amplitudes AI ,
AR, and AT . Fourier transforms in time of the elastic potential Φ(x, t), of u(x, t), and
of σ(x, t) are written in medium 0

Φ̂(x, ω) = AI e−ik0x + AR eik0x

û(x, ω) = −i k0 AI e−ik0x + i k0 AR eik0x

σ̂(x, ω) = −ρ0 ω2 AI e−ik0x − ρ0 ω2 AR eik0x

(B.1)

and in medium 1

Φ̂(x, ω) = AT e−i k1x

û(x, ω) = −i k1 AT e−ik1x

σ̂(x, ω) = −ρ1 ω2 AT e−ik1x,

(B.2)

where kj is the wavenumber in medium j, and ω is the angular frequency. The time
dependance eiωt has been removed. Substituting (B.1) and (B.2) in the spring-mass
conditions (3.2) leads to a system of equation of which solutions are AR and AT . We
deduce the reflection coefficient R and the transmission coefficient T

R(ω) =
Z1 − Z0 − i Y0 ω

Z0 + Z1 + i Y1 ω
e
−i ω 2 α

c0 ,

T (ω) =
2 Z2

Z0 + Z1 + i Y1 ω
e

i ω
(

1
c1

− 1
c0

)

α
,

(B.3)
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with

Z0 = ρ0 c0, Z1 = ρ1 c1, Z2 = ρ0 c1,

Y0 =
Z0 Z1

K
− M, Y1 =

Z0 Z1

K
+ M, Y2 =

M

K
.

(B.4)

Note the frequential dependance of R and T , induced by K and M . If M = 0 and
K → +∞, the classical values of R and T are recovered [4]

R =
ρ1 c1 − ρ0 c0

ρ0 c0 + ρ1 c1
, T = 2

ρ0 c1

ρ0 c0 + ρ1 c1
. (B.5)

Points 1 and 3 are proposed for one component sin(βk ωc ξ) of the initial data (5.3),
denoted by fk(x, t). Its Fourier transform in time is

f̂k(ω) =
βk ωc

2 π

(

1

ω2 − β2
k ω2

c

)(

e
−i 2π

ωc
ω
− 1

)

. (B.6)

Reflected and transmitted components are respectively

ĝk(ω) = R(ω) f̂k(ω), ĥk(ω) = T (ω) f̂k(ω). (B.7)

The inverse Fourier transform of (B.7) are deduced from classical methods of complex
analysis (calculus of residuals). We do not details the steps, and we only give the final
results. Setting

ξR = t +
x

c0
−

2 α

c0
, ξT = t −

x

c1
+

(

1

c1
−

1

c0

)

α, (B.8)

we obtain the reflected component

• ξR ≤ 0 : gk

(

t +
x

c0

)

= 0,

• 0 < ξR ≤ 1
fc

:

gk

(

t +
x

c0

)

=
Z2

1 − Z2
0 − Y0 Y1 (βk ωc)

2

(Z0 + Z1)
2 + (Y1 βk ωc)

2 sin(βk ωc ξR)

−
2 Z0

(

Z2
1/K − M

)

(Z0 + Z1)
2 + (Y1 βk ωc)

2 βk ωc cos(βk ωc ξR)

+
2 Z0

(

Z2
1/K − M

)

(Z0 + Z1)
2 + (Y1 βk ωc)

2 βk ωc e
−Z0+Z1

Y1
ξR ,

• ξR > 1
fc

:

gk

(

t +
x

c0

)

=
2 Z0

(

Z2
1/K − M

)

(Z0 + Z1)
2 + (Y1 βk ωc)

2 βk ωc

(

e
−Z0+Z1

Y1
ξR − e

−Z0+Z1

Y1

(

ξR − 2 π
ωc

)

)

,

(B.9)



28 B. LOMBARD AND J. PIRAUX

and the transmitted component is

• ξT ≤ 0 : hk

(

t −
x

c1

)

= 0,

• 0 < ξT ≤ 1
fc

:

hk

(

t −
x

c1

)

=
2 Z2 (Z0 + Z1)

(Z0 + Z1)
2 + (Y1 βk ωc)

2 sin(βk ωc ξT )

−
2 Z2 Y1

(Z0 + Z1)
2 + (Y1 βk ωc)

2 βk ωc cos(βk ωc ξT )

+
2 Z2 Y1

(Z0 + Z1)
2 + (Y1 βk ωc)

2 βk ωc e
−Z0+Z1

Y1
ξT ,

• ξT > 1
fc

:

hk

(

t −
x

c1

)

=
2 Z2 Y1

(Z0 + Z1)
2 + (Y1 βk ωc)

2 βk ωc

(

e
−Z0+Z1

Y1
ξT − e

−Z0+Z1

Y1

(

ξT − 2 π
ωc

)

)

.

(B.10)
We observe an exponential decay for ξR > 1/fc in (B.9) and for ξT > 1/fc in (B.10):
unlike the incident wave, reflected and transmitted waves are not spatially bounded.
Because the Fourier transform is linear, the components of the total reflected and
transmitted field are obtained by summing each component

g(x, t) =

q
∑

k=1

ak gk(x, t)

h(x, t) =

q
∑

k=1

ak hk(x, t).

Then, the reflected wave UR(x, t) and the transmitted wave UT (x, t) are

UR(x, t) = g(x, t)







1

c0

ρ0






, UT (x, t) = h(x, t)







−
1

c1

ρ1






. (B.11)
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