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One-Dimensional Acoustic Example.
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Abstract: A new numerical method, called the Explicit Simplified Interface Method
(ESIM), is developed in the context of acoustic wave propagation in heterogeneous media.
Equations of acoustics are written as a first-order linear hyperbolic system. Away from
interfaces, a standard scheme (Lax-Wendroff, TVD, WENO...) is used in a classical way.
Near interfaces, the same scheme is used, but it is applied on a set of modified values
deduced from numerical values and from jump conditions at interfaces. It amounts to mod-
ify the scheme so that its order of accuracy is maintained at irregular points, despite the
non-smoothness of the solution. This easy to implement interface method requires few ad-
ditional computational resources and it can be applied to other partial differential equations.

Keywords: Acoustics; heterogeneous media; Lax-Wendroff, TVD and WENO schemes;
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1 Introduction

The propagation of acoustic waves in a one space dimension heterogeneous perfect fluid
medium is considered. The density and the sound velocity are piecewise constant. The
acoustic velocity u and the acoustic pressure p are computed on a uniform grid, even if
interfaces do not coincide with grid points. The goal of this presentation is to develop an
accurate method for the computation of u and p near interfaces, where they are not smooth.

Even if the one-dimensional problem is academic, it has some interesting applications. It
is often used as a simple model in seismology or ocean acoustics, in which the ocean bottom
is described as a multilayered fluid medium [1]. Discontinuities between sediment layers can
be considered to depend only on the depth below the sea floor. Furthermore, the description
of a multilayered medium possibly involving hundreds of interfaces is useful for modelling
sound propagation in a fluid medium with many inclusions or bubbles.

Equations of acoustics are usually written as a second-order scalar wave-equation for u
or p. It is however useful to compute u and p simultaneously by considering the first-order
hyperbolic system:

Ut + A(x)Ux = 0, (1)

where components of U(x, t) are u and p, and A(x) is a matrix involving physical parameters.
Many schemes can be used for the resolution of (1). A general introduction can be

found in LeVeque’s book [10]. Three schemes of increasing precision are used in this paper:
Lax-Wendroff, TVD and WENO. They use values of the density and of the sound speed on
discrete points or averaged values of these coefficients on grid cells: as a consequence, they

1



do not describe accurately the position and the shape (in two or three space dimensions)
of interfaces cutting grid cells. Furthermore, u and p are not smooth across interfaces: it
results in a loss of precision, increasing with the number of interfaces and with contrasts.

It is then interesting to use an interface method, like the Immersed Interface Method
(IIM) [2, 12, 16], or the Explicit Jump Immersed Interface Method (EJIIM) [15]. These
numerical methods ensure a given accuracy at grid points near interfaces but they are
difficult to implement with high order schemes, and they introduce some numerical artefacts
in various cases.

A new approach called the Explicit Simplified Interface Method (ESIM) is proposed. The
same scheme is used everywhere, but some values involved in time-marching near interfaces
are modified. These modified values are deduced from numerical values of U at grid points
near the interface and from jump conditions, so that the loss of accuracy due to the presence
of interfaces is avoided.

The main goal of this one-dimensional study is to illustrate clearly ideas underlying the
ESIM. Similar ideas can be used for other partial differential equations, such as electromag-
netic or fluid mechanic ones. The paper is divided as follows. In Section 2, conservation
laws, jump conditions and some numerical schemes are shortly recalled. In the same Section,
advantages and drawbacks of interface methods like the IIM and the EJIIM are developed.
The ESIM is presented in Section 3. The Section 4 consists in numerical experiments includ-
ing too a 2D example. The Section 5 concludes the paper by recalling the three key-stages
of the method.

2 Numerical schemes and interface methods

2.1 One-dimensional acoustic equations

Conservation laws:

The linearization of mechanic equations in an ideal fluid leads to:

ρ ut + px = 0

pt + ρ c2 ux = 0,
(2)

where u(x, t) is the acoustic velocity and p(x, t) is the acoustic pressure. The density is ρ(x),
the sound speed is c(x). Setting:

U(x, t) =

(
u
p

)

, A(x) =

(

0 1
ρ

ρ c2 0

)

, (3)

a first-order linear hyperbolic system is obtained:

Ut + A(x)Ux = 0. (4)

Jump conditions:

The location of abrupt changes in ρ and/or c is called an interface. Unlike gas dynamics
problems, interfaces do not move. In one, two and three space dimensions, an interface is
respectively a point, a curve and a surface. This definition can be extended to boundary-
value problems or singular sources [12], [15]. To keep it simple, only one interface at x = α
is considered in Section 2 and Section 3. Physical parameters are piecewise constant:

(ρ, c) =







(ρ−, c−) if x ≤ α

(ρ+, c+) if x > α.
(5)
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It leads to constant matrices A− if x ≤ α and A+ otherwise:

A− =

(

0 1
ρ−

ρ−(c−)2 0

)

, A+ =

(

0 1
ρ+

ρ+(c+)2 0

)

. (6)

Writing for any function f(x, t):

[f ] = lim
x→α+

f(x, t) − lim
x→α−

f(x, t), (7)

acoustic jump conditions are: [u] = 0, [p] = 0. It follows:

[U ] = 0. (8)

Jump conditions of spatial derivatives of U are deduced from (4) and (8). By induction, we
can easily verify that, on both sides of α, we get for all k ≥ 0:

∂2k

∂t2k U = c2k ∂2k

∂x2k U

∂2k+1

∂t2k+1 U = −c2k A ∂2k+1

∂x2k+1 U.

(9)

The relation (8) is true for all t. Differentiating (8) with respect to t, exchanging the order
of spatial jumps and time derivatives, and using (9), lead to jump condition of any order.
Setting:

D2k =

(
c−

c+

)2k

I2, D2k+1 = diag

(

ρ−

ρ+

(
c−

c+

)2k+2

,
ρ+

ρ−

(
c−

c+

)2k
)

, (10)

where I2 is the 2-by-2 matrix identity, jump conditions are for all k ≥ 0:

lim
x→α+

∂2k

∂x2k U(x, t) = D2k lim
x→α−

∂2k

∂x2k U(x, t),

lim
x→α+

∂2k+1

∂x2k+1 U(x, t) = D2k+1 lim
x→α−

∂2k+1

∂x2k+1 U(x, t).

(11)

2.2 Numerical schemes

Given a uniform grid with time step ∆t and spatial mesh size ∆x, we look to an approx-
imation Un

j of U(xj , tn) at the point (xj = j ∆x, tn = n ∆t), called afterwards numerical

value. Two-level explicit finite-difference schemes are used here. They are (2k + 1)-point
spatially centered schemes, where k is called the width of the scheme, and time-marching is
performed in two or more stages. They follow the CFL condition of stability:

CFL = max c

(
∆t

∆x

)

≤ 1. (12)

To keep it simple, a given scheme is referred to as S. Time-marching of a two-stage scheme
S is written abstractly at xj :

Un+1
j = Un

j + H
(
Un

j−k, ..., Un
j+k

)
, (13)

where the discrete operator H : R2×(2k+1) → R2 is continuous [7]. Among two-stages
schemes, we distinguish the 3-point Lax-Wendroff scheme (k = 1) and 5-point TVD schemes
(k = 2). The Lax-Wendroff scheme is easy to implement and requires few computational
resources but it suffers from numerical dispersion (see Figure 3-b). High order TVD schemes,
based on the use of nonlinear flux limiters, allow to reduce the spurious oscillations [10] but
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flatten the crests of waves (see Figure 3-c). The MC-limiter is used in Section 4 [9]. Both
schemes are second-order accurate in smooth regions.

A better quality is obtained with multi-stage schemes as Essentialy Non Oscillatory
(ENO) schemes and WENO (Weighted ENO) schemes [4, 10]. They are based on distinct
discretizations of spatial and time derivatives of (4). We have implemented a spatial inter-
polation on three points, called WENO 5 (k = 3), which is fifth-order accurate in smooth
regions [8]. It involves some regularity parameters ε = 10−6 and p = 2 (p has obviously
nothing to do with the pressure). The time discretization is implemented by a fourth-order
Runge-Kutta method.

J+1 J+2J-1 J

+
α ρρ

-
c

- c
+

Figure 1: Interface 1-D

The interface lies between two grid points: xJ ≤ α < xJ+1, as shown in Figure 1.
A point xi is called irregular if time-marching at xi uses one or more numerical value on
the other side of the interface. Otherwise, a point is called regular. For spatially centered
(2k + 1)-point schemes used here, the set of irregular points is {xJ−k+1, ..., xJ+k}.

2.3 Interface methods

Presentation:

In one space dimension, u and p are in C0 across interfaces (11). In two space dimen-
sions, the acoustic velocity component tangential to the interface is discontinuous across the
interface; the acoustic pressure and the normal acoustic velocity component are in C0. Thus
the numerical resolution of (4) with interfaces requires schemes specially designed for the
computation of non-smooth solutions. Schemes based on naive finite-difference approxima-
tions may give poor results. For example, the Lax-Wendroff scheme results from replacing
spatial derivatives Ux and Uxx by centered finite-difference evaluations. This is valid only if
U(x, t) is smooth in the interval [x − ∆x, x + ∆x]. This is not the case at irregular points
xJ and xJ+1, leading to a loss of accuracy.

Even with schemes especially designed for the computation of discontinuous solutions, as
TVD or WENO schemes [5], [6], [11], the numerical solution suffers from a loss of accuracy
when interfaces cut through grid cells [16]. This loss of accuracy is due to two reasons.
Firstly, schemes do not describe accurately the position (and the shape, in two or three
spaces dimensions) of interfaces. Secondly, the spatial order of accuracy is always reduced
at irregular points, because of the non-smoothness of the solution.

Moreover, schemes do not take into account jump conditions at interfaces. Therefore,
the study of original jump conditions problems (like the propagation of elastic waves across
imperfect bonded media [14], or advection problems like those defined in chapter 2 of [16]) is
difficult. Lastly, numerical instabilities can appear for high contrasts in material properties.

Schemes must be modified at irregular points in order to eliminate those problems. The
resulting scheme is called an interface method, because it is based on jump conditions of U
at the interface. Two interface methods are now shortly recalled.

The Immersed Interface Method (IIM):

One way is to write explicitly a new scheme at irregular points: it is the aim of the
Immersed Interface Method (IIM). It was developed by Li and LeVeque [12], extended to
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acoustics and elasticity by Zhang [16], [17], and to Navier-Stokes by Calhoun [2]. In [16],
the Lax-Wendroff scheme is used at regular points. A new 3-point finite-difference scheme
is written at irregular points:

Un+1
J = Un

J + ∆t
∆x (ΓJ,1 Un

J−1 + ΓJ,2 Un
J + ΓJ,3 Un

J+1)

Un
J+1 = Un

J+1 + ∆t
∆x (ΓJ+1,1 Un

J+2 + ΓJ+1,2 Un
J+1 + ΓJ+1,3 Un

J ).

(14)

Γ’s are 2-by-2 matrices, defined so that (14) is a second-order accurate approximation of (4)
at xJ and xJ+1. The analysis of local truncation error at xJ and xJ+1 leads to a system of
matrix equations whose solutions are Γ’s, computed only one time during a preprocessing
stage. At each time step, only some matrix-vector multiplications (14) need to be done at
irregular points, what is very low-cost. The IIM can be coupled with other schemes: Zhang
has demonstrated that numerical solutions are improved when a TVD scheme is used in
conjunction with the second-order IIM (14). Using limiter functions reduces the order of
accuracy but helps to dampen oscillations and to reduce phase errors. The IIM can be
developed too to higher orders for coupling with high-orders schemes (like WENO 5).

However, the use of the IIM has some drawbacks. For identical material properties on
both sides of α, special formula (14) recover the original Lax-Wendroff scheme; even in the
general case of distinct material properties, the second-order IIM is dispersive. So, if formula
(14) are used at irregular points and coupled with a TVD scheme (that is not dispersive), nu-
merical dispersion is introduced at two points per interface: for a high number of interfaces,
it introduces a large amount of numerical artefacts. In a general manner, building an IIM
that mimics the properties of the scheme S - for example ensuring TVD properties in the
case of a TVD scheme, or minimizing oscillations in the case of the WENO 5 scheme - can
become very complicated. Moreover, in the case of TVD scheme (k = 2), limiters introduce
two additional irregular points, xJ−1 and xJ+2, where no interface method is used.

The Explicit Jump Immersed Interface Method (EJIIM):

A modification and extension of the IIM has been developed by Wiegmann and Bube
[15] in the context of elliptic equations, called the Explicit Jump Immersed Interface Method
(EJIIM). Corrections are added to the chosen scheme at irregular points, so that the local
truncation error is maintained. In the limit case of identical material properties, corrections
are equal to zero, recovering the original scheme. However, it is again difficult to calculate
corrections in the case of a complicated scheme S. Moreover, corrections are deduced from
one-sided interpolations of U . When coupling the EJIIM and the Lax-Wendroff scheme, we
have observed instabilities even for moderate contrasts. We suppose that they come from
these non-symmetrical interpolations.

3 The Explicit Simplified Interface Method (ESIM)

3.1 Introduction

In the previous Section, we have stressed some properties, constraints and remarks about
interface methods, summed up as follows:

• The order of accuracy of the scheme S must be maintained at all irregular points,
whatever the position of the interface;

• We do not want to write explicitly a new scheme (like the IIM) or corrections depending
on S (like the EJIIM);

• The scheme S must be recovered in the limit case of identical material properties on
both sides of α (like the EJIIM);
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• Interpolations used by the interface method must be two-sided and symmetrical in
relation to α, in order to avoid instabilities.

So, we propose a new method called the Explicit Simplified Interface Method (ESIM). Its
design wants to achieve the four previous remarks. For the rest of the Section, we will mainly
consider a two-stage scheme S.

Modified solutions and modified values:

The first part of the method consists in building, on each side of α and at time t =
tn, a smooth extension U∗(x, tn) of the exact solution U(x, tn) on the other side. These
extensions are called modified solutions. This is schematized in Figure 2 in the case of a

U(x,t )

U(x,t )

U(x,t )

αx x

n

J+1J
x

J-k+1 x
... ...

J+k

U(x,t )* *

n

n

n

Figure 2: Exact solution U(x, tn) (-) and modified solutions U∗(x, tn) (...).

scalar discontinuous fonction U(x, tn) (solid line): this is not the acoustic case (u and p are
continuous), but it is more clear. Modified solutions U∗(x, tn) are drawn in dotted lines and
are defined so that functions:

Ũ1(x, tn) =







U(x, tn) if xJ−2k+1 ≤ x < α

U∗(x, tn) if α ≤ x ≤ xJ+k

, Ũ2(x, tn) =







U∗(x, tn) if xJ−k+1 ≤ x ≤ α

U(x, tn) if α < x ≤ xJ+2k

(15)
are smooth up to an arbitrary order. Recall that k is the width of the scheme S: so, Ũ1(x, tn)
and Ũ2(x, tn) are defined on the range of values used for time-marching respectively at left-
sided and at right-sided irregular points. Let us examine the first function Ũ1(x, tn) and the
modified solution U∗(x, tn) on the right (15). We impose the following conditions:

m = 0, ..., 2p − 1,
∂m

∂xm U∗(α, tn) =
∂m

∂xm U(α−, tn), (16)

so that Ũ1 is in C2p−1 on [xJ−2k+1, xJ+k]. The integer p is discussed further (p has obviously
nothing to do here with the acoustic pressure). The condition (16) is valid only for a
sufficiently smooth initial value U0(x) = U(x, 0): for U0(x) in Cs, the exact solution U(x, t)

is in Cs on the left side (x < α) and on the right side (x > α). Limit values ∂m

∂xm U(α−, tn)

can be defined up to m = s, and (16) is well-defined under the condition 2p − 1 ≤ s. One
way to ensure (16) is to write the modified solution on the right U∗(x, tn) as a polynomial:

U∗(x, tn) =

2p−1
∑

m=0

(x − α)m

m!

∂m

∂xm U(α−, tn). (17)
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In fact, we can only obtain estimations of limit values ∂m

∂xm U(α−, tn). Therefore, only es-

timations of U∗(x, tn) and Ũ1(x, tn), based on numerical values, can be found. Actually,
these estimations will be avoided: modified values (i.e. values at right-sided irregular points
of the estimation of U∗(x, tn)) are determined directly and explicitly from numerical values.
A similar discussion holds for U∗(x, tn) and modified values on the left, with limit values
∂m

∂xm U(α+, tn).

Using modified values:

The second part of the method consists in using the scheme S everywhere, but some
modified values are used for time-marching at irregular points. Suppose that xi is an irreg-
ular point. The key idea is to apply at xi the scheme S on values of the smooth function
Ũ1(x, tn) if xi ≤ α (resp. Ũ2(x, tn) if xi > α). Thus the scheme S uses at xi numerical

values at points on the same side of the interface as xi (as usually), and modified values at
points on the other side of the interface. Remarks of the beginning of the Section have been
taken into account in the following way:

• From a minimal number of numerical values Un
l ’s used for the determination of mod-

ified values U∗
j ’s, the order of the couplage “scheme S + ESIM” at irregular points is

the same as the order of the scheme S at regular points. See the Section 3-4 for the
demonstration.

• Unlike the IIM or the EJIIM, the scheme S is modified implicitly. All the difficulty
of the method is transferred on the determination of modified values (see Section 3-
2), which is explicit and very easy (see (25) and (29)). Coupling WENO 5 with the
ESIM is not harder than coupling Lax-Wendroff with the ESIM. It justifies the name
“simplified”.

• In the borderline case where material properties are the same on both sides of α,
Un

i = U∗
i at all irregular points (see Section 3-3). Then, the scheme S in homogeneous

medium is completely recovered.

• Determinations of modified values are symmetrical in relation to α. The stability is
discussed qualitatively in Section 3-6.

3.2 Construction of modified values

Construction of modified values on the right:

Limit values ∂m

∂xm U(α−, tn) required for U∗(x, tn) (17) are now estimated. Taylor series
expansions of 2p-th order are written around α:

i = J − p + 1, ... , J + p, U(xi, tn) =

2p−1
∑

m=0

(xi − α)m

m!

∂m

∂xm U(α±, tn) + O(∆x2p), (18)

where α± refers to α− if x < α and to α+ otherwise. The notation O(∆xλ), generally used
for a scalar, refers here to a vector of an arbitrary size (depending on the context) whose
entries are O(∆xλ) scalars. From jump conditions (11), we get:

m = 0, ... , 2p− 1,
∂m

∂xm
U(α+, tn) = Dm

∂m

∂xm
U(α−, tn). (19)

According to the position of xi, equations (18) are:

i = J − p + 1, ... , J, U(xi, tn) =
2p−1∑

m=0

(xi − α)m

m!
∂m

∂xm U(α−, tn) + O(∆x2p)

i = J + 1, ... , J + p, U(xi, tn) =
2p−1∑

m=0

(xi − α)m

m!
Dm

∂m

∂xm U(α−, tn) + O(∆x2p).

(20)
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Equations (20) are written using a matrix formulation:






U(xJ−p+1, tn)
...

U(xJ+p, tn)




 = Mp,p







U(α−, tn)
...

∂2p−1

∂x2p−1 U(α−, tn)







+ O(∆x2p), (21)

where Mp,q is defined as a (2p)-by-(2q) block matrix with 2-by-2 blocks (n = 1, ..., 2q):

Mp,q[m, n] =







(xJ−p+m − α)n−1

(n − 1)!
I2 if m ∈ [1, p]

(xJ−p+m − α)n−1

(n − 1)!
Dn−1 if m ∈ [p + 1, 2p].

(22)

Even if q = p in (21), the general definition of Mp,q (22) is useful in Section 3-6. Limit

values ∂m

∂xm U(α−, tn) could be obtained by inverting (21), leading to U∗(x, tn) and Ũ1(x, tn).

However, exact values and truncation errors are unknown. Exact values U(xi, tn) are then
replaced in (21) by numerical values Un

i and the vector of truncation errors is eliminated.

Limit values ∂m

∂xm U(α−, tn) are replaced by numerical estimations: for the sake of simplicity,

these estimations are written ∂m

∂xm U−

1 . The superscript 1 indicates that they are used for

the construction of Ũ1, the operator ∂m

∂xm is only symbolical, and the superscript - refers to

α−. Then we write:





Un
J−p+1

...
Un

J+p




 = Mp,p







U−

1
...

∂2p−1

∂x2p−1 U−

1







. (23)

Estimations of the limit values are obtained by inverting (23). It leads to an estimation of
the modified solution (17) and to modified values:

i = J + 1, ..., J + k, U∗

i =

2p−1
∑

m=0

(xi − α)m

m!

∂m

∂xm U−

1 . (24)

Using (23), we obtain explicitly U∗
i ’s on the right:

i = J + 1, ..., J + k, U∗

i =

(

1, ...,
(xi − α)2p−1

(2p − 1)!

)

M−1
p,p






Un
J−p+1

...
Un

J+p




 . (25)

Construction of modified values on the left:

The same method is used to define Ũ2(x, tn) and to compute modified values on the left.
∂m

∂xm U+
2 refers to a numerical estimation of ∂m

∂xm U(α+, tn). We write:






Un
J−p+1

...
Un

J+p




 = Np,p







U+
2
...

∂2p−1

∂x2p−1 U+
2







, (26)

where Np,q is a (2p)-by-(2q) block matrix with 2-by-2 blocks (n = 1, ..., 2q):

Np,q[m, n] =







(xJ−p+m − α)n−1

(n − 1)!
D−1

n−1 if m ∈ [1, p]

(xJ−p+m − α)n−1

(n − 1)!
I2 if m ∈ [p + 1, 2p].

(27)
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Modified values on the left are:

i = J − k + 1, ... , J, U∗

i =

2p−1
∑

m=0

(xi − α)m

m!

∂m

∂xm U+
2 . (28)

Using (26), U∗
i ’s on the left are obtained explicitly:

i = J − k + 1, ... , J, U∗

i =

(

1, ...,
(xi − α)2p−1

(2p − 1)!

)

N−1
p,p






Un
J−p+1

...
Un

J+p




 . (29)

3.3 Using modified values: ESIM p-p

At an irregular point xj , time-marching of a two-stage scheme S uses modified values at
points on the other side of α as xj . It is written abstractly (cf (13)):

J − k + 1 ≤ j ≤ J, Un+1
j = Un

j + H
(

Un
j−k, ..., Un

J , U∗
J+1, ..., U∗

j+k

)

J + 1 ≤ j ≤ J + k, Un+1
j = Un

j + H
(

U∗

j−k, ..., U∗
J , Un

J+1, ..., Un
j+k

)

.

(30)

This method is referred to as ESIMp-p. The application of ESIM to multi-stage schemes like
WENO 5 is obvious. The construction of modified values at one stage uses numerical values
at the previous stage. For the couplage “WENO 5 + ESIM p-p”, the procedure is repeated
four times during a time step (i.e. at each Runge-Kutta integration).

Matrices M−1
p,p and N−1

p,p (25), (29) are computed explicitly only one time, during a
preprocessing step. At each time step, only matrix-vector multiplications (25) and (29)
need to be done. The computational cost is very low and is comparable to the cost of the
IIM. We can show that Mp,p and Np,p can be inverted - whatever the position of the interface
and the values of physical parameters - by calculating their determinant. For example, let
us see the case of M1,1. Setting:

ε =
α − J∆x

∆x
, (31)

we get:

det M1,1 =

[

(1 − ε)
ρ−

ρ+

(
c−

c+

)2

+ ε

][

(1 − ε)
ρ+

ρ−
+ ε

]

∆x2 (32)

which is always different from zero for positive values of ρ± and c±, and for 0 ≤ ε < 1. It
has been verified too for Mp,p and Np,p up to p = 3.

For identical properties on both sides of α, Dm = I2 (10). For a right-sided irregular
point xi, we deduce from (22), (23) and (24):

i = J + 1, ..., J + k, U∗

i = Un
i , (33)

if k ≤ p. A similar property holds for left-sided irregular points. Therefore, the scheme S
in homogeneous medium is completely recovered under the condition k ≤ p.

3.4 Local truncation error analysis

Let xj be a left-sided irregular point (xj ≤ α). For a given two-stage scheme S, we seek
the local truncation error L1(xj , tn) of the couplage “scheme S + ESIM p-p” at xj . Firstly,
L1(xj , tn) is developed. Secondly, an auxiliary problem is defined, whose solution and local
truncation error L2(xj , tn) are known. Comparing L2(xj , tn) and L1(xj , tn) leads to an
explicit value of L1(xj , tn).
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Couplage “scheme S + ESIM p-p”:

Time-marching at xj is based on modified values (30), leading to:

1

∆t

(
Un+1

j − Un
j

)

︸ ︷︷ ︸

L1
1

−
1

∆t
H
(
Un

j−k, ..., Un
J , U∗

J+1, ..., U∗

j+k

)

︸ ︷︷ ︸

L2
1

= 0. (34)

The local truncation error L1(xj , tn) is obtained by replacing by its exact value each nu-
merical value that appears explicitly or implicitly in (34). The structure of (34) leads to
write L1(xj , tn) as the difference of two quantities L1

1(xj , tn) and L2
1(xj , tn). The first part

L1
1(xj , tn) is obtained from Taylor series expansions of U(xj , tn+1) at tn:

L1
1(xj , tn) = 1

∆t [U(xj , tn+1) − U(xj , tn)]

=
2p−1∑

m=1

∆tm−1

m!
∂m

∂tm
U(xj , tn) + O(∆x2p−1).

(35)

Recall that ∆t and ∆x are linked by the CFL number (12): O(∆tλ) = O(∆xλ) for all λ.
For the second part L2

1(xj , tn) of L1(xj , tn), Taylor series are written at α− on the left side
(i = j − k + 1, ..., J):

U(xi, tn) =

2p−1
∑

m=0

(xi − α)m

m!

∂m

∂xm U(α−, tn) + O(∆x2p). (36)

On the right side (i = J +1, ..., J +k), modified values U∗
i ’s are replaced by U∗(xi, tn) (25):

U∗(xi, tn) =

(

1, ...,
(xi − α)2p−1

(2p − 1)!

)

M−1
p,p






U(xJ−p+1, tn)
...

U(xJ+p, tn)




 . (37)

From (21), we get:

U∗(xi, tn) =

(

1, ...,
(xi − α)2p−1

(2p − 1)!

)

M−1
p,p






Mp,p







U(α−, tn)
...

∂2p−1

∂x2p−1 U(α−, tn)







+ O(∆x2p)







=
2p−1∑

m=0

(xi − α)m

m!
∂m

∂xm U(α−, tn) + O(∆x2p).

(38)
The estimation of the error in (38) is based on two results. Firstly, we can determine the
order of magnitude for the entries in the block vector:

τ = M−1
p,p O(∆x2p) = t

(
O(∆x2p), ..., O(∆x)

)
. (39)

A similar result is shown in [2]. Secondly, we have obviously:
(

1, ...,
(xi − α)2p−1

(2p − 1)!

)

τ = O(∆x2p). (40)

Transferring values (36) and (38) into L2
1(xj , tn) leads to:

L2
1(xj , tn) = 1

∆t H(
2p−1∑

m=0

(xj−k − α)m

m!
∂m

∂xm U(α−, tn) + O(∆x2p), ...,

, ...,
2p−1∑

m=0

(xj+k − α)m

m!
∂m

∂xm U(α−, tn) + O(∆x2p)).

(41)
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The discrete operator H is continuous [7], hence:

L2
1(xj , tn) = 1

∆t H(
2p−1∑

m=0

(xj−k − α)m

m!
∂m

∂xm U(α−, tn), ...,

, ...,
2p−1∑

m=0

(xj+k − α)m

m!
∂m

∂xm U(α−, tn)) + O(∆x2p−1).

(42)

We recall:
L1(xj , tn) = L1

1(xj , tn) − L2
1(xj , tn). (43)

Auxiliary problem:

Let us consider the function:

V (x, t) =

2p−1
∑

λ=0

(x − α)λ

λ!

∂λ

∂xλ
U(α−, t), (44)

where U(x, t) is the solution of Ut + A− Ux = 0. We can easily verify that V (x, t) is smooth
across α and is the solution of the following Cauchy problem:







Vt + A− Vx =
(x − α)2p−1

(2p − 1)!
∂2p

∂x2p U(α−, t)

V0(x) = V (x, 0) =
2p−1∑

λ=0

(x − α)λ

λ!
∂λ

∂xλ U(α−, 0).

(45)

A condition on U0(x), slightly more strict than 2p − 1 ≥ s, is then required: limit values
∂2p

∂x2p U(α±, t) must be defined for all t. The scheme S is used for the resolution of (45), so

that a local truncation error L2(xj , tn) is defined. For the exact solution (44) of (45), we
can develop L2(xj , tn):

L2(xj , tn) =
V (xj , tn+1) − V (xj , tn)

∆t
︸ ︷︷ ︸

L1
2(xj , tn)

−
1

∆t
H (V (xj−k , tn), ..., V (xj+k, tn))

︸ ︷︷ ︸

L2
2(xj , tn)

. (46)

A Taylor expansion of V (xj , tn+1) is written around tn:

L1
2(xj , tn) =

2p−1
∑

m=1

∆tm−1

m!

∂m

∂tm
V (xj , tn) + O(∆x2p−1). (47)

For m = 1, ..., 2p − 1, (44) leads to:

∂m

∂tm
V (xj , tn) = ∂m

∂tm
(
2p−1−m∑

λ=0

(xj − α)λ

λ!
∂λ

∂xλ U(α−, tn)

+(xj − α)2p−m
2p−1∑

λ=2p−m

(xj − α)λ−(2p−m)

λ!
∂λ

∂xλ U(α−, tn))

= ∂m

∂tm

(
2p−1−m∑

λ=0

(xj − α)λ

λ!
∂λ

∂xλ U(α−, tn) + O(∆x2p−m)

)

.

(48)

Hence, we have:

L1
2(xj , tn) =

2p−1
∑

m=1

∆tm−1

m!

∂m

∂tm

(
2p−1−m
∑

λ=0

(xj − α)λ

λ!

∂λ

∂xλ
U(α−, tn)

)

+ O(∆x2p−1). (49)
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For each m, Taylor series expansions of U(xj , tn) are written around α−:

2p−1−m
∑

λ=0

(xj − α)λ

λ!

∂λ

∂xλ
U(α−, tn) = U(xj , tn) + O(∆x2p−m), (50)

hence, we have:

L1
2(xj , tn) =

2p−1
∑

m=1

∆tm−1

m!

∂m

∂tm
U(xj , tn) + O(∆x2p−1). (51)

For the computation of L2
2(xj , tn), V (xj , tn) is replaced by its exact value (44):

L2
2(xj , tn) =

1

∆t
H

(
2p−1
∑

m=0

(xj−k − α)m

m!

∂m

∂xm U(α−, tn), ...,

2p−1
∑

m=0

(xj+k − α)m

m!

∂m

∂xm U(α−, tn)

)

.

(52)
We recall:

L2(xj , tn) = L1
2(xj , tn) − L2

2(xj , tn). (53)

Conclusion:

From (35), (42), (51) and (52), L1(x, j, tn) and L2(x, j, tn) are compared:

L1
1(xj , tn) = L1

2(xj , tn) + O(∆x2p−1)

L2
1(xj , tn) = L2

2(xj , tn) + O(∆x2p−1)






⇒ L1(xj , tn) = L2(xj , tn) + O(∆x2p−1). (54)

V (x, t) is smooth on [xj−k, xj+k] at each time t. Moreover, we have supposed that the
scheme S is r-th order accurate. So, we get L2(xj , tn) = O(∆xr) [10]. Thus, the couplage
“scheme S + ESIM p-p” is r-th order accurate under the following condition:

2p − 1 ≥ r. (55)

A similar result can be obtained for multistage schemes like WENO 5.

3.5 Choice of p

We seek the smallest values of p that optimize the couplage “scheme S + ESIM p-p”. The
main constraints and results previously found are summed up as follows:

• s ≥ 2p − 1 (required for the definition of U∗(x, tn));

• 2p − 1 ≥ r ⇒ L1 = r;

• p ≥ k ⇒ U∗
i = Un

i if ρ− = ρ+ and c− = c+;

Recall that r and k are respectively the order and the width of the scheme, L1 is the local
truncation order of the couplage “scheme S + ESIM p-p” at irregular points and s is the
smoothness of the initial value U0(x) = U(x, 0). It leads to:

p = max
[

k, r + 1 − E
(

r + 1
2

)]

s = 2p − 1,

(56)

where E(x) is the greatest integer less than or equal to x. For greater values of p, the
precision does not increase, whereas the computational cost grows. As a consequence, Lax-
Wendroff and TVD schemes are associated with ESIM 2-2, and WENO 5 is associated

with ESIM 3-3. We recall that left values and right values of ∂2p

∂x2p U0(x) must be defined

everywhere.
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3.6 Stability

Introduction:

We do not propose a theory of stability for the couplage “scheme S + ESIM p-p”.
Nevertheless, we have considered this problem in detail through computations, for various
positions of the interface, physical parameters and CFL numbers.

We have never observed instabilities in the case “WENO 5+ ESIM 3-3” up to CFL=1,
even for very high contrasts (like water/air) and for an interface very close to a grid point, or
on a grid point (ε = 0). In each case, measures of errors have shown a fifth-order convergence
of the couplage (see Section 4).

The couplages “Lax-Wendroff + ESIM 2-2” and “TVD + ESIM 2-2” are stable too
except in two limit cases:

ρ− � ρ+, c− � c+ and ε → 1−

ρ− � ρ+, c− � c+ and ε → 0+.
(57)

We have not obtained theoretical limit values of ε, ρ± and c±, and it remains an interesting
open question. However, we can express some remarks. Firstly, this problem of stability
does exist too in the case of the IIM, with the same limit values of ε, ρ± and c±. Secondly,
the behaviour of Lax-Wendroff and TVD schemes coupled with ESIM 2-2 are the same:
instabilities appear exactly from the same limit values of ε, ρ± and c±. Thirdly, the value of
p has an influence on the stability. For example, coupling Lax-Wendroff scheme with ESIM
p-p (p = 1, 2, 3) in the case water/air leads to instabilities for the following limit values of ε:

p = 1 : ε ≥ 0.99
p = 2 : ε ≥ 0.999
p = 3 : ε ≥ 0.9999.

(58)

However, increasing p is not a satisfactory solution: it is not well-matched to second-order
schemes like Lax-Wendroff and TVD.

Least-square resolution:

To solve the previous problematic cases, we propose another determination of modified
values that does not produce instabilities. The process of ESIM 2-2 - described in Section
3-2 - is shortly recalled: use of four numerical values on both sides of α, estimation of spatial
derivatives of U up to the third-order. We propose now to estimate those four limit values
with six numerical values of U on both sides of α. So, for the construction of modified values
on the right, we write:






Un
J−2
...

Un
J+3




 = M3,2







U−

1
...

∂3

∂x3 U−

1







. (59)

where M3,2 is the rectangular matrix (22) with p = 3 and q = 2. The equation (59) is solved
by least-square, so that modified values on the right are:

i = 1, 2, U∗

i =

(

1, ...,
(xi − α)3

3!

)
(
tM3,2 M3,2

)−1 tM3,2






Un
J−2
...

Un
J+3




 . (60)

The same procedure is applied for modified values on the left; this is logically called ESIM
3-2. Doing so, we have never observed instabilities, whatever the physical parameters and
the position of the interface. A similar least-square procedure: ”Lax-Wendroff + ESIM 2-1”
has been used for ε ≥ 0.99 without producing instabilities (cf (58)).
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The analysis of truncation error exposed in Section 3-4 is always valid. Coupling “Lax-
Wendroff + ESIM 3-2” and “TVD + ESIM 3-2” is second-order accurate as it is confirmed
by measures of errors. Explaining the stability of ESIM 3-2 remains another interesting
question. Furthermore, this least-squares resolution will be systematically used in 2D and
3D application of the ESIM, as it will be exposed in a future paper.

4 Numerical results

Three numerical tests are proposed. The first one concerns the propagation of an acous-
tic wave across a single interface with moderate contrasts. The analysis of Section 3-4
is confirmed by measures of errors. The second test extends the previous study to very
large contrasts. The last example introduces a future study of the ESIM in 2D and 3D. A
study of the computational cost is not provided here, because it is almost negligible in the
one-dimensional case

4.1 A single interface

The simple acoustic problem of a single interface (α = 96.3 m) is considered, with a 300 m
long fluid medium and physical parameters:

(ρ(x), c(x)) =







ρ0 = 1000 kg/m
3
, c0 = 1500 m/s if x ≤ α

ρ1 = 1200 kg/m
3
, c1 = 2800 m/s if x > α.

(61)

Numerical experiments are performed on 400 grid points, with CFL= 0.8 in medium 1.
They are initialized by a spatially-bounded right-going wave:

U0(x) = −f0(ξ)





1
c0

ρ0



 . (62)

The maximal smoothness is required for the couplage “WENO 5 + ESIM 3-3”: in this case,
s = 5 (56). So, we use a C5 spatially-bounded sinusoidal function f0(ξ):

f0(ξ) =







sin(ωc ξ) − 21
32 sin(2 ωc ξ) + 63

768 sin(4 ωc ξ) − 1
512 sin(8 ωc ξ) if 0 < ξ < 1

fc
,

0 else, with ξ = t0 −
x
c .

(63)
Left and right values of sixth-order’s derivatives of U0(x) are defined everywhere (as

needed in Section 3-4). The central frequency is fc = 50 Hz, and t0 = 51 ms. The initial
value of the acoustic pressure, called afterwards the solution, is shown in Figure 3-a. After
reaching the interface, the acoustic wave is transmitted and reflected. Figures 3-b, 3-c and
3-d show numerical (...) and exact values (solid line) of the solution at t = 90 ms.

The Figure 3-b shows the solution computed with the couplage “Lax-Wendroff + ESIM
2-2”. The dispersive behavior of the Lax-Wendroff scheme is clearly seen in spurious oscil-
lations. The Figure 3-c shows the solution “TVD + ESIM 2-2”. The use of a flux-limiter
reduces oscillations but flattens the crests of the wave. The Figure 3-d shows the solution
“WENO 5 + ESIM 3-3”. The acoustic wave is very well resolved.

The Table 4.1 shows the errors in both L∞ and L1 norms obtained at t = 90 ms with
these schemes, with and without the ESIM. Computations are performed in double precision.

In the case of WENO 5 scheme, the time-step has been adjusted to ∆t ∼ (∆x)5/4 so that
the fourth-order Runge-Kutta in time is effectively fifth-order. When no interface method is
used, homogeneized values ρi and ci of ρ and c are used at grid points xi: ρi is the arithmetic
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Method N L∞ error L∞ order L1 error L1 order

Lax-Wendroff 200 2.38e00 - 8.78e+1 -
400 8.81e-1 1.43 2.71e+1 1.70
800 2.15e-1 2.03 7.22e00 1.90
1600 5.99e-2 1.84 2.06e00 1.81
3200 3.13e-2 0.93 9.90e-1 1.06
6400 1.77e-2 0.82 5.73e-1 0.79

Lax-Wendroff 200 2.82e00 - 9.80e+1 -
+ 400 1.14e00 1.31 3.20e+1 1.61

ESIM 2-2 800 3.30e-1 1.78 8.49e00 1.91
1600 7.80e-2 2.08 2.13e00 1.99
3200 1.93e-2 2.01 5.33e-1 2.00
6400 4.82e-3 2.00 1.33e-1 2.00

TVD 200 1.55e00 - 3.86e+1 -
400 6.03e-1 1.36 1.41e+1 1.45
800 2.91e-1 1.05 9.47e00 0.57
1600 1.14e-1 1.34 3.28e00 1.53
3200 3.48e-2 1.72 1.26e00 1.37
6400 2.10e-2 0.72 6.94e-1 0.86

TVD 200 1.61e00 - 3.42e+1 -
+ 400 6.32e-1 1.35 9.94e00 1.78

ESIM 2-2 800 2.18e-1 1.53 2.47e00 2.01
1600 7.35e-2 1.57 6.38e-1 1.95
3200 2.44e-2 1.59 1.59e-1 2.00
6400 8.19e-3 1.57 4.05e-2 1.97

WENO 5 200 1.15e00 - 3.29e+1 -
400 2.20e-1 2.39 6.12e00 2.42
800 1.30e-1 0.76 4.35e00 0.49
1600 3.36e-2 1.95 1.05e00 2.04
3200 4.10e-2 -0.28 9.59e-1 0.14
6400 1.15e-2 1.83 1.89e-1 2.34

WENO 5 200 7.74e-1 - 2.02e+1 -
+ 400 6.13e-2 3.65 1.44e00 3.80

ESIM 3-3 800 2.96e-3 4.37 8.12e-2 4.15
1600 1.23e-4 4.58 2.99e-3 4.76
3200 4.50e-6 4.77 1.03e-4 4.85
6400 1.55e-7 4.86 3.43e-6 4.90

Table 1: Errors and orders of accuracy in Example 4-1.
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Figure 3: The exact solution at t = 51 ms (a); exact (solid line) and numerical solution
(...) at t = 90 ms: Lax-Wendroff + ESIM 2-2 (b), TVD + ESIM 2-2 (c), WENO 5 +
ESIM 3-3 (d).

average of ρ(x) over Ci =
[

xi− 1
2
, xi+ 1

2

]

, and the bulk modulus Ki is the harmonic average

of K(x) over Ci; ci is deduced by ci =
√

Ki/ρi [6].
When the ESIM is not used, the order of accuracy is smaller than the theoretical order

in homogeneous medium, and it changes a lot with the number of grid points. Using the
ESIM (56) gives the order of accuracy in homogeneous medium:

• for Lax-Wendroff, 2 (in both norms),

• for TVD, 1.6 in L∞ norm and 2 in L1 norm,

• for WENO 5, the orders tend to 5 (in both norms),

starting at about 400 grid points. Let us notice that the smoothness of U0(x) is fundamental
to obtain the fifth-order accuracy of the couplage “WENO 5 + ESIM 3-3”: only a 3.4 (in
L∞ norm) and 2.4 (in L1 norm) order is measured for a C2 function f0(ξ).

4.2 Large contrast problem: interface water-air

The previous study is extended to large contrast media. Material properties are:

ρ0 = 1000 kg/m
3
, c0 = 1450 m/s (water),

ρ1 = 1.3 kg/m
3
, c1 = 340 m/s (air).

(64)
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Figure 4: Differences between numerical and exact values of the solution at t = 90 ms (water-
air): TVD scheme without an interface method (a), +IIM (b), +ESIM 2-2 (c), WENO 5 +
ESIM 3-3, from 20 up to 120 m. The vertical line represents the position of the interface.
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Figure 5: Differences between numerical and exact values of the solution at t = 90 ms
(homogeneous water): TVD (a), WENO 5 (b), from 40 up to 140 m. The dotted line recalls
the position of the interface water-air in the example of Figure 4.

Differences between exact and numerical values of the solution computed by TVD and
WENO 5 schemes with and without interface methods are plotted on Figure 4. Results are
displayed from 20 up to 120 m, at t = 90 ms. The scale of the Y-axis has been almost

17



amplified by a factor 3 (see Y-axis of Figure 3). Because of the impedance contrast, the
wave is almost completely reflected: at this scale, the transmitted wave is not visible. Three
subfigures show errors computed with a TVD scheme: without an interface method (a),
with the IIM (b), with the ESIM 2-2 (c). Decreasing errors are observed and “WENO 5 +
ESIM 3-3” is very accurate (Figure 4-d).

The Figure 5 shows errors computed with TVD and WENO 5 schemes in homogeneous
water (ρ0, c0) at t = 90 ms (obviously, no interface method is used). At this time, acoustic
waves have traveled in water the same distance as reflected acoustic waves of Figure 4.
Dotted lines in Figure 5 recall the position of the interface in Figure 4.

It is instructive to compare Figures 4-c, 4-d respectively with Figures 5-a, 5-b, after
performing symmetries of these last ones in relation to the X-axis and to the dotted vertical
line (these symmetries are due to the impedance contrast: ρ1c1 > ρ0c0 and to the change
in direction). Shapes and levels of errors are then very close, as it is theoretically. The
presence of the interface does not introduce noticeable artefacts when the ESIM is used.

Measures of errors and orders of accuracy have been performed too for various positions
of α and values of ε (31), confirming the analysis of Section 3-4. If Lax-Wendroff or TVD
scheme is used, and for an interface very close to a grid point (ε > 0.999), ESIM 3-2 is used
to avoid instabilities (see Section 3-6).

4.3 2D plane wave

As a last example, we provide a two-dimensional result. The key idea of the ESIM - deter-
mination and use of modified values at irregular points - remains obviously the same as in
the one-dimensional case. The derivation of jump conditions, the construction of modified
values by a least-square resolution and the analysis of the resulting scheme will be omitted
here; the comparaison with other interface methods and the investigation of various cases
(interface waves, elastic waves...) will be developed too in a future publication. Our goal
here is only to show the improvement of the computation when the ESIM is used.

We use an unsplit high-resolution scheme with flux-limiters, called wave-propagation
algorithm, developed by Langseth and LeVeque [9, 11]. The acoustic case in a 2D heteroge-
neous fluid medium is studied in [9].

Exact pressure at time t = 60 ms

(a)
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Figure 6: Plane wave hitting a plane interface that is not aligned with the grid. Exact values
of the acoustic pressure at t= 60 ms (a) and computed values of the acoustic pressure at t
= 90 ms (b).
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Figure 7: Plane wave hitting a plane interface that is not aligned with the grid. Values
of the acoustic pressure computed by a Wave Propagation Algorithm without an interface
method (a) and with the ESIM (b) at t = 90 ms, along y = 60 m. Exact (solid line) and
numerical solution (...).

We consider the case of a plane wave stricking a plane interface that is not aligned with
the grid. Exact values of the acoustic pressure (called again the solution) of reflected and
transmitted waves are easy to determine [1]. The interface is described by:

Γ = {M(x, y) / y = f(x) = (x − x0) tan θ0} (65)

with θ0 = 68 degrees and x0 = 60.4 m. Physical parameters are:

(ρ(x, y), c(x, y)) =







ρ0 = 1000 kg/m
3
, c0 = 1500 m/s if y > f(x)

ρ1 = 800 kg/m
3
, c1 = 1000 m/s if y ≤ f(x).

(66)

The incident wave is based again on f0(ξ), with

ξ = t0 −
1

c0
(x cos θi + y sin θi) (67)

t0 = 60 ms, θi = 30 degrees and fc = 50 Hz. Computations are performed on 136 × 136 grid
points for a 135 m × 135 m domain, with CFL = 0.8 in medium 0 (the wave propagation
algorithm is stable up to CFL = 1 in 2D). Because of the stencil, two “ghost cells” lines
are defined on each boundary of the domain. Exact values of the acoustic pressure and of
acoustic velocities are assigned at ghostcells at each time step. See [9] for additional remarks.

Figure 6 shows initial values of the solution at t = 60 ms, and the computed solution at
t = 90 ms. Figure 7 shows slices of the exact (solid line) and computed (...) reflected and
transmitted waves along y = 60 m at t = 90 ms, without the ESIM (a) and using the ESIM
(b). In the first case, we take into account the interface by averaging the physical parameters
to obtain values in each grid cell. Then, the solution is smeared across the interface. One
can find a discussion about this problem in the case of Maxwell equations in [3]. Using an
interface method like the ESIM avoids these numerical artefacts (Figure 7-b).
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5 Conclusion

A new interface method has been developed and presented in the 1D case, the Explicit Sim-
plified Interface Method (ESIM). Modifying explicitly numerical values used by a numerical
scheme at irregular points amounts to modify implicitly the scheme, so that its order is
maintained at irregular points. The implementation of the ESIM can be divided into three
independant parts:

• Writing of jump conditions. These ones only depend on the physical problem under
study and on geometrical features of the interface;

• Construction of modified values during a preprocessing step. This algorithm depends
on the scheme’s width and order but not on its expression;

• Computation and use of modified values at each time step.

Qualities of the method have been verified through various numerical examples. The last
example (Section 4-4) introduces a future discussion about 2D and 3D applications that we
have developed. Interface methods on uniform cartesian grids like the ESIM are of general
interest, not only for computational acoustics, but also for a wide class of problems like
computational electromagnetics and fluid mechanics.

Acknowledgments: We thank Jean-Pierre Sessarego (LMA, Marseille) for his confi-
dence and Paul Cristini for introducing us to interface methods. We are grateful to Philippe
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