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Department of Mathematics, University of Craiova, 200585 Craiova, Romania

Correspondence address:
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Abstract

We establish several results related to existence, nonexistence or bifurcation of positive solutions
for the boundary value problem −∆u + K(x)g(u) + |∇u|a = λf(x, u) in Ω, u = 0 on ∂Ω, where
Ω ⊂ R

N (N ≥ 2) is a smooth bounded domain, 0 < a ≤ 2, λ is a positive parameter, and f is
smooth and has a sublinear growth. The main feature of this paper consists in the presence of the
singular nonlinearity g combined with the convection term |∇u|a. Our approach takes into account
both the sign of the potential K and the decay rate around the origin of the singular nonlinearity g.
The proofs are based on various techniques related to the maximum principle for elliptic equations.
Key words: singular elliptic equation, sublinear boundary value problem, maximum principle,
convection term, bifurcation.
2000 Mathematics Subject Classification: 35B50, 35J65, 58J55.

1 Introduction and the main results

Stationary problems involving singular nonlinearities, as well as the associated evolution equations,

describe naturally several physical phenomena. At our best knowledge, the first study in this direction

is due to Fulks and Maybee [13], who proved existence and uniqueness results by using a fixed point

argument; moreover, they showed that solutions of the parabolic problem tend to the unique solution of

the corresponding elliptic equation. A different approach (see [9, 10, 24]) consists in approximating the

singular equation with a regular problem, where the standard techniques (e.g., monotonicity methods)

can be applied and then passing to the limit to obtain the solution of the original equation. Nonlinear

singular boundary value problems arise in the context of chemical heterogeneous catalysts and chemical

catalyst kinetics, in the theory of heat conduction in electrically conducting materials, singular minimal

surfaces, as well as in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids

(we refer for more details to [3, 5, 6, 7, 11, 12] and the more recent papers [18, 19, 20, 21, 22, 23, 25]).

We also point out that, due to the meaning of the unknowns (concentrations, populations, etc.), only

the positive solutions are relevant in most cases.

Let Ω be a smooth bounded domain in R
N (N ≥ 2). We are concerned in this paper with the

following boundary value problem























−∆u + K(x)g(u) + |∇u|a = λf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1)λ

where λ > 0, 0 < a ≤ 2 and K ∈ C0,γ(Ω), 0 < γ < 1. Here f : Ω × [0,∞) → [0,∞) is a Hölder

continuous function which is positive on Ω × (0,∞). We assume that f is nondecreasing with respect

to the second variable and is sublinear, that is,

(f1) the mapping (0,∞) ∋ s 7−→
f(x, s)

s
is nonincreasing for all x ∈ Ω;

(f2) lim
s→0+

f(x, s)

s
= +∞ and lim

s→∞

f(x, s)

s
= 0, uniformly for x ∈ Ω.
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We assume that g ∈ C0,γ(0,∞) is a nonnegative and nonincreasing function satisfying

(g1) lim
s→0+

g(s) = +∞.

Problem (1)λ has been considered in [14] in the absence of the gradient term |∇u|a and assuming

that the singular term g(t) behaves like t−α around the origin, with t ∈ (0, 1). In this case it has

been shown that the sign of the extremal values of K plays a crucial role. In this sense, we have

proved in [14] that if K < 0 in Ω, then problem (1)λ (with a = 0) has a unique solution in the class

E = {u ∈ C2(Ω) ∩ C(Ω); g(u) ∈ L1(Ω)}, for all λ > 0. On the other hand, if K > 0 in Ω, then there

exists λ∗ such that problem (1)λ has solutions in E if λ > λ∗ and no solution exists if λ < λ∗. The case

where f is asymptotically linear, K ≤ 0, and a = 0 has been discussed in [8]. In this case, a major

role is played by lims→∞ f(s)/s = m > 0. More precisely, there exists a solution (which is unique)

uλ ∈ C2(Ω) ∩ C1(Ω) if and only if λ < λ∗ := λ1/m. An additional result asserts that the mapping

(0, λ∗) 7−→ uλ is increasing and limλրλ∗ uλ = +∞ uniformly on compact subsets of Ω.

Due to the singular character of our problem (1)λ, we cannot expect to have solutions in C2(Ω).

We are seeking in this paper classical solutions of (1)λ, that is, solutions u ∈ C2(Ω) ∩C(Ω) that verify

(1)λ. Closely related to our problem is the following one, which has been considered in [16]:























−∆u = g(u) + |∇u|a + λf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where f and g verifies the above assumptions (f1), (f2) and (g1). We have proved in [16] that if

0 < a < 1 then problem (1.1) has at least one classical solution for all λ ≥ 0. In turn, if 1 < a ≤ 2, then

(1.1) has no solutions for large values of λ > 0.

The existence results for our problem (1)λ are quite different to those of (1.1) presented in [16].

More exactly we prove in the present paper that problem (1)λ has at least one solution only when

λ > 0 is large enough and g satisfies a naturally growth condition around the origin. We extend the

results in [1, Theorem 1], corresponding to K ≡ 0, f ≡ f(x) and a ∈ [0, 1).

The main difficulty in the treatment of (1)λ is the lack of the usual maximal principle between super

and sub-solutions, due to the singular character of the equation. To overcome it, we state an improved

comparison principle that fit to our problem (1)λ (see Lemma 2.1 below).

Throughout this paper we assume that f satisfies assumptions (f1) − (f2) and g verifies condition

(g1).

In our first result we assume that K < 0 in Ω. Note that K may vanish on ∂Ω which leads us to

a competition on the boundary between the potential K(x) and the singular term g(u). We prove the

following result.

Theorem 1.1. Assume that K < 0 in Ω. Then, for all λ > 0, problem (1)λ has at least one classical

solution.

3



Next, we assume that K > 0 in Ω. In this case, the existence of a solution to (1)λ is closely related

to the decay rate around its singularity. In this sense, we prove that problem (1)λ has no solution,

provided that g has a “strong” singularity at the origin. More precisely, we have

Theorem 1.2. Assume that K > 0 in Ω and
∫ 1
0 g(s)ds = +∞. Then problem (1)λ has no classical

solutions.

In the following result, assuming that
∫ 1
0 g(s)ds < +∞, we show that problem (1)λ has at least one

solution, provided that λ > 0 is large enough. Obviously, the hypothesis
∫ 1
0 g(s)ds < +∞ implies the

following Keller-Osserman type condition around the origin

(g3)

∫ 1

0

(
∫ t

0
g(s)ds

)−1/2

dt < ∞.

As proved by Bénilan, Brezis and Crandall [2], condition (g3) is equivalent to the property of compact

support, that is, for every h ∈ L1(RN ) with compact support, there exists a unique u ∈ W 1,1(RN ) with

compact support such that ∆u ∈ L1(RN ) and

−∆u + g(u) = h a.e. in R
N .

Theorem 1.3. Assume that K > 0 in Ω and
∫ 1
0 g(s)ds < +∞. Then there exists λ∗ > 0 such that

problem (1)λ has at least one classical solution if λ > λ∗ and no solution exists if λ < λ∗.

In the next section we establish a general comparison result between sub and super-solutions.

Sections 3, 4 and 5 are devoted to the proofs of the above theorems.

2 A comparison principle

A very useful auxiliary result is the following comparison principle that improves Lemma 3 in [22].

The proof uses some ideas from Shi and Yao [22], that goes back to the pioneering work by Brezis and

Kamin [4].

Lemma 2.1. Let Ψ : Ω × (0,∞) → R be a continuous function such that the mapping (0,∞) ∋ s 7−→
Ψ(x, s)

s
is strictly decreasing at each x ∈ Ω. Assume that there exists v, w ∈ C2(Ω) ∩ C(Ω) such that

(a) ∆w + Ψ(x,w) ≤ 0 ≤ ∆v + Ψ(x, v) in Ω;

(b) v,w > 0 in Ω and v ≤ w on ∂Ω;

(c) ∆v ∈ L1(Ω) or ∆w ∈ L1(Ω).

Then v ≤ w in Ω.

Proof. We argue by contradiction and assume that v ≥ w is not true in Ω. Then, we can find ε0, δ0 > 0

and a ball B ⊂⊂ Ω such that v − w ≥ ε0 in B and

∫

B
vw

(

Ψ(x,w)

w
−

Ψ(x, v)

v

)

dx ≥ δ0. (2.1)
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The case ∆v ∈ L1(Ω) was presented in [22, Lemma 3]. Let us assume now that ∆w ∈ L1(Ω) and set

M = max{1, ‖∆w‖L1(Ω)}, ε = min
{

1, ε0, 2
−2δ0/M

}

. Consider a nondecreasing function θ ∈ C1(R)

such that θ(t) = 0, if t ≤ 1/2, θ(t) = 1, if t ≥ 1, and θ(t) ∈ (0, 1) if t ∈ (1/2, 1). Define

θε(t) = θ

(

t

ε

)

, t ∈ R.

Since w ≥ v on ∂Ω, we can find a smooth subdomain Ω∗ ⊂⊂ Ω such that

B ⊂ Ω∗ and v − w <
ε

2
in Ω \ Ω∗.

Using the hypotheses (a) and (b) we deduce
∫

Ω∗

(w∆v − v∆w)θε(v − w)dx ≥

∫

Ω∗

vw

(

Ψ(x,w)

w
−

Ψ(x, v)

v

)

θε(v − w)dx. (2.2)

By (2.1) we have
∫

Ω∗

vw

(

Ψ(x,w)

w
−

Ψ(x, v)

v

)

θε(v − w)dx ≥

∫

B
vw

(

Ψ(x,w)

w
−

Ψ(x, v)

v

)

θε(v − w)dx

=

∫

B
vw

(

Ψ(x,w)

w
−

Ψ(x, v)

v

)

dx

≥ δ0.

To raise a contradiction we need only to prove that the left-hand side in (2.2) is smaller than δ0. For

this purpose, we define

Θε(t) =

∫ t

0
sθ′ε(s)ds, t ∈ R.

It is easy to see that

Θε(t) = 0, if t <
ε

2
and 0 ≤ Θε(t) ≤ 2ε, for all t ∈ R. (2.3)

Now, using the Green theorem, we evaluate the left-hand side of (2.2):
∫

Ω∗

(w∆v − v∆w)θε(v − w)dx

=

∫

∂Ω∗

wθε(v − w)
∂v

∂n
dσ −

∫

Ω∗

(∇w · ∇v)θε(v − w)dx

−

∫

Ω∗

wθ′ε(v − w)∇v · ∇(v − w)dx −

∫

∂Ω∗

vθε(v − w)
∂w

∂n
dσ

+

∫

Ω∗

(∇w · ∇v)θε(v − w)dx +

∫

Ω∗

vθ′ε(v − w)∇w · ∇(v − w)dx

=

∫

Ω∗

θ′ε(v − w)(v∇w − w∇v) · ∇(v − w)dx.

The above relation can also be rewritten as
∫

Ω∗

(w∆v − v∆w)θε(v − w)dx =

∫

Ω∗

wθ′ε(v − w)∇(w − v) · ∇(v − w)dx

+

∫

Ω∗

(v − w)θ′ε(v − w)∇w · ∇(v − w)dx.
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Since

∫

Ω∗

wθ′ε(v − w)∇(w − v) · ∇(v − w)dx ≤ 0, the last equality yields

∫

Ω∗

(w∆v − v∆w)θε(v − w)dx ≤

∫

Ω∗

(v − w)θ′ε(v − w)∇w · ∇(v − w)dx,

that is,
∫

Ω∗

(w∆v − v∆w)θε(v − w)dx ≤

∫

Ω∗

∇w · ∇(Θε(v − w))dx.

Again by Green’s first formula and by (2.3) we have

∫

Ω∗

(w∆v − v∆w)θε(v − w)dx ≤

∫

∂Ω∗

Θε(v − w)
∂v

∂n
dσ −

∫

Ω∗

Θε(v − w)∆wdx

≤ −

∫

Ω∗

Θε(v − w)∆wdx ≤ 2ε

∫

Ω∗

|∆w|dx

≤ 2εM <
δ0

2
.

Thus, we have obtained a contradiction. Hence v ≤ w in Ω and the proof of Lemma 2.1 is now

complete.

3 Proof of Theorem 1.1

We need the following auxiliary result, which is proved in [23].

Lemma 3.1. Let Ψ : Ω × (0,∞) → R be a Hölder continuous function which satisfies

(A1) lim sup
s→+∞

(

s−1 max
x∈Ω

Ψ(x, s)

)

< λ1;

(A2) for each t > 0, there exists a constant D(t) > 0 such that

Ψ(x, r) − Ψ(x, s) ≥ −D(t)(r − s), for x ∈ Ω and r ≥ s ≥ t;

(A3) there exist η0 > 0 and an open subset Ω0 ⊂ Ω such that

min
x∈Ω

Ψ(x, s) ≥ 0 for x ∈ (0, η0),

and

lim
s↓0

Ψ(x, s)

s
= +∞ uniformly for x ∈ Ω0.

Then the problem






















−∆u = Ψ(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(3.1)

has at least one classical solution u ∈ C2(Ω) ∩ C(Ω).
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Fix λ > 0. Obviously, Ψ(x, s) = λf(x, s) − K(x)g(s) satisfies the hypotheses in Lemma 3.1 since

K < 0 in Ω. Hence, there exists a solution uλ of the problem























−∆u = λf(x, u) − K(x)g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

We observe that uλ is a super-solution of problem (1)λ. To find a sub-solution, let us denote

p(x) = min{λf(x, 1);−K(x)g(1)}, x ∈ Ω.

Using the monotonicity of f and g, we observe that p(x) ≤ λf(x, s)−K(x)g(s) for all (x, s) ∈ Ω×(0,∞).

We now consider the problem











−∆v + |∇v|a = p(x) in Ω,

v = 0 on ∂Ω.
(3.2)

First, we observe that v = 0 is a sub-solution of (3.2) while w defined by











−∆w = p(x) in Ω,

w = 0 on ∂Ω,

is a super-solution. Since p > 0 in Ω we deduce that w ≥ 0 in Ω. Thus, the problem (3.2) has at least

one classical solution v. We claim that v is positive in Ω. Indeed, if v has a minimum in Ω, say at x0,

then ∇v(x0) = 0 and ∆v(x0) ≥ 0. Therefore

0 ≥ −∆v(x0) + |∇v|a(x0) = p(x0) > 0,

which is a contradiction. Hence minx∈Ω v = minx∈∂Ω v = 0, that is, v > 0 in Ω. Now uλ = v is a

sub-solution of (1)λ and we have

−∆uλ = p(x) ≤ λf(x, uλ) − K(x)g(uλ) = −∆uλ in Ω.

Since uλ = uλ = 0 on ∂Ω, from the above relation we may conclude that uλ ≤ uλ in Ω and so, there

exists at least one classical solution for (1)λ. The proof of Theorem 1.1 is now complete.

4 Proof of Theorem 1.2

We give a direct proof, without using any change of variable, as in [25]. Let us assume that there exists

λ > 0 such that the problem (1)λ has a classical solution uλ. Since f satisfies (f1) and (f2), we deduce
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by Lemma 3.1 that for all λ > 0 there exists Uλ ∈ C2(Ω) such that






















−∆Uλ = λf(x,Uλ) in Ω,

Uλ > 0 in Ω,

Uλ = 0 on ∂Ω.

(4.1)

Moreover, there exist c1, c2 > 0 such that

c1 dist (x, ∂Ω) ≤ Uλ(x) ≤ c2 dist (x, ∂Ω) for all x ∈ Ω. (4.2)

Consider the perturbed problem






















−∆u + K∗g(u + ε) = λf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(4.3)

where K∗ = minx∈Ω K(x) > 0. It is clear that uλ and Uλ are respectively sub and super-solution of

(4.3). Furthermore, we have

∆Uλ + f(x,Uλ) ≤ 0 ≤ ∆uλ + f(x, uλ) in Ω,

Uλ, uλ > 0 in Ω,

Uλ = uλ = 0 on ∂Ω,

∆Uλ ∈ L1(Ω) ( since Uλ ∈ C2(Ω)).

In view of Lemma 2.1 we get uλ ≤ Uλ in Ω. Thus, a standard bootstrap argument (see [17]) implies

that there exists a solution uε ∈ C2(Ω) of (4.3) such that

uλ ≤ uε ≤ Uλ in Ω.

Integrating in (4.3) we obtain

−

∫

Ω
∆uεdx + K∗

∫

Ω
g(uε + ε)dx = λ

∫

Ω
f(x, uε)dx.

Hence

−

∫

∂Ω

∂uε

∂n
ds + K∗

∫

Ω
g(uε + ε)dx ≤ M, (4.4)

where M > 0 is a positive constant. Taking into account the fact that
∂uε

∂n
≤ 0 on ∂Ω, relation (4.4)

yields K∗

∫

Ω
g(uε + ε)dx ≤ M. Since uε ≤ Uλ in Ω, from the last inequality we can conclude that

∫

Ω
g(Uλ + ε)dx ≤ C, for some C > 0. Thus, for any compact subset ω ⊂⊂ Ω we have

∫

ω
g(Uλ + ε)dx ≤ C.
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Letting ε → 0+, the above relation produces

∫

ω
g(Uλ)dx ≤ C. Therefore

∫

Ω
g(Uλ)dx ≤ C. (4.5)

On the other hand, using (4.2) and the hypothese
∫ 1
0 g(s)ds = +∞, it follows

∫

Ω
g(Uλ)dx ≥

∫

Ω
g(c2dist (x, ∂Ω))dx = +∞,

which contradicts (4.5). Hence, (1)λ has no classical solutions and the proof of Theorem 1.2 is now

complete.

5 Proof of Theorem 1.3

Fix λ > 0. We first note that Uλ defined in (4.1) is a super-solution of (1)λ. We foccuss now on finding

a sub-solution uλ such that uλ ≤ Uλ in Ω.

Let h : [0,∞) → [0,∞) be such that























h′′(t) = g(h(t)), for all t > 0,

h > 0, in (0,∞),

h(0) = 0.

(5.1)

Multiplying by h′ in (5.1) and then integrating over [s, t] we have

(h′)2(t) − (h′)2(s) = 2

∫ h(t)

h(s)
g(τ)dτ, for all t > s > 0.

Since
∫ 1
0 g(τ)dτ < ∞, from the above equality we deduce that we can extend h′ in origin by taking

h′(0) = 0 and so h ∈ C2(0,∞) ∩ C1[0,∞). Taking into account the fact that h′ is increasing and h′′ is

decreasing on (0,∞), the mean value theorem implies that

h′(t)

t
=

h′(t) − h′(0)

t − 0
≥ h′′(t), for all t > 0.

Hence h′(t) ≥ th′′(t), for all t > 0. Integrating in the last inequality we get

th′(t) ≤ 2h(t), for all t > 0. (5.2)

Let ϕ1 be the normalized positive eigenfunction corresponding to the first eigenvalue λ1 of the

problem










−∆u = λu in Ω,

u = 0 on ∂Ω .
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It is well known that ϕ1 ∈ C2(Ω). Furthermore, by Hopf’s maximum principle there exist δ > 0 and

Ω0 ⊂⊂ Ω such that |∇ϕ1| ≥ δ in Ω \ Ω0. Let M = max{1, 2K∗δ−2}, where K∗ = maxx∈Ω K(x). Since

lim
dist (x,∂Ω)→0+

{

− K∗g(h(ϕ1)) + Ma(h′)a(ϕ1)|∇ϕ1|
a
}

= −∞,

by letting Ω0 close enough to the boundary of Ω we can assume that

−K∗g(h(ϕ1)) + Ma(h′)a(ϕ1)|∇ϕ1|
a < 0 in Ω \ Ω0. (5.3)

We now are able to show that uλ = Mh(ϕ1) is a sub-solution of (1)λ provided λ > 0 is sufficiently

large. Using the monotonicity of g and (5.2) we have

−∆uλ + K(x)g(uλ) + |∇uλ|
a =

≤ −Mg(h(ϕ1))|∇ϕ1|
2 + λ1Mh′(ϕ1)ϕ1 + K∗g(Mh(ϕ1)) + Ma(h′)a(ϕ1)|∇ϕ1|

a

≤ g(h(ϕ1))(K
∗ − M |∇ϕ1|

2) + λ1Mh′(ϕ1)ϕ1 + Ma(h′)a(ϕ1)|∇ϕ1|
a

≤ g(h(ϕ1))(K
∗ − M |∇ϕ1|

2) + 2λ1Mh(ϕ1) + Ma(h′)a(ϕ1)|∇ϕ1|
a.

(5.4)

The definition of M and (5.3) yield

−∆uλ + K(x)g(uλ) + |∇uλ|
a ≤ 2λ1Mh(ϕ1) = 2λ1uλ in Ω \ Ω0. (5.5)

Let us choose λ > 0 such that

λ
minx∈Ω0

f(x,Mh(‖ϕ1‖∞))

M‖ϕ1‖∞
≥ 2λ1. (5.6)

Then, by virtue of the assumption (f1) and (5.6) we have

λ
f(x, uλ)

uλ

≥ λ
f(x,Mh(‖ϕ1‖∞))

M‖ϕ1‖∞
≥ 2λ1 in Ω \ Ω0.

The last inequality combined with (5.5) yield

−∆uλ + K(x)g(uλ) + |∇uλ|
a ≤ 2λ1uλ ≤ λf(x, uλ) in Ω \ Ω0. (5.7)

On the other hand, from (5.4) we obtain

−∆uλ + K(x)g(uλ) + |∇uλ|
a ≤ K∗g(h(ϕ1)) + 2λ1Mh(ϕ1) + Ma(h′)a(ϕ1)|∇ϕ1|

a in Ω0. (5.8)

Since ϕ1 > 0 in Ω0 and f is positive on Ω0 × (0,∞), we may choose λ > 0 such that

λ min
x∈Ω0

f(x,Mh(ϕ1)) ≥ max
x∈Ω0

{

K∗g(h(ϕ1)) + 2λ1Mh(ϕ1) + Ma(h′)a(ϕ1)|∇ϕ1|
a
}

. (5.9)

From (5.8) and (5.9) we deduce

−∆uλ + K(x)g(uλ) + |∇uλ|
a ≤ λf(x, uλ) in Ω0. (5.10)
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Now, (5.7) together with (5.10) shows that uλ = Mh(ϕ1) is a sub-solution of (1)λ provided λ > 0

satisfy (5.6) and (5.9). With the same arguments as in the proof of Theorem 1.2 and using Lemma 2.1,

one can prove that uλ ≤ Uλ in Ω. By a standard bootstrap argument (see [17]) we obtain a classical

solution uλ such that uλ ≤ uλ ≤ Uλ in Ω.

We have proved that (1)λ has at least one classical solution when λ > 0 is large. Set

A = { λ > 0; problem (1)λ has at least one classical solution}.

From the above arguments we deduce that A is nonempty. Let λ∗ = inf A. We claim that if λ ∈ A,

then (λ,+∞) ⊆ A. To this aim, let λ1 ∈ A and λ2 > λ1. If uλ1
is a solution of (1)λ1

, then uλ1
is a

sub-solution for (1)λ2
while Uλ2

defined in (4.1) for λ = λ2 is a super-solution. Moreover, we have

∆Uλ2
+ λ2f(x,Uλ2

) ≤ 0 ≤ ∆uλ1
+ λ2f(x, uλ1

) in Ω,

Uλ2
, uλ1

> 0 in Ω,

Uλ2
= uλ1

= 0 on ∂Ω

∆Uλ2
∈ L1(Ω).

Again by Lemma 2.1 we get uλ1
≤ Uλ2

in Ω. Therefore, the problem (1)λ2
has at least one classical

solution. This proves the claim. Since λ ∈ A was arbitrary chosen, we conclude that (λ∗,+∞) ⊂ A.

To end the proof, it suffices to show that λ∗ > 0. In that sense, we will prove that there exists λ > 0

small enough such that (1)λ has no classical solutions. We first remark that

lim
s→0+

(f(x, s) − K(x)g(s)) = −∞ uniformly for x ∈ Ω.

Hence, there exists c > 0 such that

f(x, s) − K(x)g(s) < 0, for all (x, s) ∈ Ω × (0, c). (5.11)

On the other hand, the assumption (f1) yields

f(x, s) − K(x)g(s)

s
≤

f(x, s)

s
≤

f(x, c)

c
for all (x, s) ∈ Ω × [c,+∞). (5.12)

Let m = maxx∈Ω
f(x,c)

c . Combinind (5.11) with (5.12) we find

f(x, s) − K(x)g(s) < ms, for all (x, s) ∈ Ω × (0,+∞). (5.13)

Set λ0 = min {1, λ1/2m} . We show that problem (1)λ0
has no classical solution. Indeed, if u0 would

be a classical solution of (1)λ0
, then, according to (5.13), u0 is a sub-solution of























−∆u =
λ1

2
u in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(5.14)
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Obvously, ϕ1 is a super-solution of (5.14) and by Lemma 2.1 we get u0 ≤ ϕ1 in Ω. Thus, by standard

elliptic arguments, problem (5.14) has a solution u ∈ C2(Ω). Multiplying by ϕ1 in (5.14) and then

integrating over Ω we have

−

∫

Ω
ϕ1∆udx =

λ1

2

∫

Ω
uϕ1dx,

that is,

−

∫

Ω
u∆ϕ1dx =

λ1

2

∫

Ω
uϕ1dx.

The above equality yields
∫

Ω uϕ1dx = 0, which is clearly a contradiction, since u and ϕ1 are positive

on Ω. If follows that problem (1)λ0
has no classical solutions which means that λ∗ > 0. This completes

the proof of Theorem 1.3.
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