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k-core decomposition: a tool for the visualization of large scale networks
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Abstract

We use the k-core decomposition to visualize large scale com-
plex networks. This decomposition, based on a recursive
pruning of the least connected vertices, allows to disentan-
gle the hierarchical structure of networks by progressively
focusing on their central cores. By using this strategy we
develop a general visualization algorithm that can be used
to compare the structure of various networks and highlight
their hierarchical structure. The low computational com-
plexity of the algorithm O(n), where n is the size of the
network, makes it suitable for the visualization of very large
networks. We apply the proposed visualization tool to sev-
eral real and synthetic graphs, showing its utility in finding
specific structural fingerprints of computer generated and
real world networks.
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1 Introduction

In recent times, the possibility of accessing, handling and
mining large-scale networks datasets has revamped the in-
terest in their investigation and theoretical characteriza-
tion along with the definition of new modeling frameworks.
In particular, mapping projects of the World Wide Web
(WWW) and the physical Internet offered the first chance
to study topology and traffic of large-scale networks. Grad-
ually other studies followed describing population networks
of practical interest in social science, critical infrastructures
and epidemiology [1, 4, 14, 25]. The study of large scale net-
works, however, face us with an array of new challenges. The
definition of centrality, hierarchies and structural organiza-
tions are hindered by the large size of these networks and the
complex interplay of connectivity patterns, traffic flows and
geographical, social and economical attributes characteriz-
ing their basic elements. In this context, a large research
effort is devoted to provide effective visualization and anal-
ysis tools able to cope with graphs whose size may easily
reach millions of vertices.
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In this paper, we propose a visualization algorithm based
on the k-core decomposition able to uncover in a two-
dimensional layout several topological and hierarchical prop-
erties of large scale networks. The k-core decomposition [9]
consists in identifying particular subsets of the graph, called
k-cores, each one obtained by recursively removing all the
vertices of degree smaller than k, until the degree of all re-
maining vertices is larger than or equal to k. Larger values
of coreness clearly correspond to vertices with larger degree
and more central position in the network’s structure.

When applied to the graphical analysis of real and
computer-generated networks, this visualization tool allows
the identification of networks’ fingerprints, according to
properties such as hierarchical arrangement, degree correla-
tions and centrality, etc. The distinction between networks
with seemingly similar properties is achieved by inspecting
the different layout generated by the visualization algorithm.
In addition, the running time of the algorithm grows only
linearly with the size of the network, granting the scalabil-
ity needed for the visualization of very large scale networks.
The proposed visualization algorithm appears therefore as
a convenient method for the general analysis of large scale
complex networks and the study of their architecture. The
presented visualization algorithm is publicly available [20].

The paper is organized as follows: after a brief survey
on k-core studies (section 2), the basic definitions are intro-
duced in section 3; the graphical algorithms are exposed in
section 4, while section 5 is devoted to the application of the
algorithm to the visualization of various real and computer-
generated networks.

2 Related work

The notion of k-cores has been recently used in biologically
related contexts, where it was applied to the analysis of pro-
tein interaction networks [5] or in the prediction of protein
functions [2, 26]. An interesting application in the area of
networking has been provided by Gaertler et al. [17], where
the k-core decomposition is used for filtering out peripheral
Autonomous Systems (ASes) in the case of Internet maps.

While a large number of algorithms aimed at the visu-
alization of large scale networks have been developed (e.g.,
see [21]), only a few consider explicitly the k-core decompo-
sition. Vladimir Batagelj et al. [8] studied the k-cores de-
composition applied to visualization problems, introducing
some graphical tools to analyse the cores, mainly based on
the visualization of the adjacency matrix of certain k-cores.
To the best of our knowledge, the algorithm presented by
Baur et al. in the paper “Drawing the AS Graph in 2.5 Di-
mensions” [10], is the only one completely based on a k-core
analysis and directly targeted at the study of large infor-
mation networks. This algorithm uses a spectral layout to
place vertices having the largest coreness. A combination



of barycentric and iteratively directed-forces allows to place
the vertices of each coreness set, in decreasing order. Fi-
nally, the network is drawn in three dimensions, using the z
axis to place each coreness set in a distinct horizontal layer.
It is important to stress that the spectral layout is not able
to distinguish two or more disconnected components. The
algorithm by Baur et al. is also tuned for representing AS
graphs and its total complexity depends on the size of the
highest k-core (see [11] for more details on spectral layout),
making the computation time of this proposal largely vari-
able. In this respect, the algorithm presented here is consid-
erably different in that it can represent networks in which
k-cores are composed by several connected components. Fi-
nally, the algorithm parameters can be universally defined
(see section 5), yielding a fast and general tool for analyzing
all types of networks.

3 k-core decomposition: main definitions

Let us consider a graph G = (V, E) of |V | = n vertices and
|E| = e edges; a k-core is defined as follows [9]:

Definition 1 A subgraph H = (C, E|C) induced by the set
C ⊆ V is a k-core or a core of order k iff ∀v ∈ C :
degreeH(v) ≥ k, and H is the maximum subgraph with this
property.

A k-core of G can therefore be obtained by recursively re-
moving all the vertices of degree less than k, until all vertices
in the remaining graph have at least degree k.

Furthermore, we will use the following definitions:

Definition 2 A vertex i has coreness c if it belongs to the
c-core but not to (c + 1)-core. We denote by ci the coreness
of vertex i.

Definition 3 A coreness set Cc is composed by all the ver-
tices whose coreness is c. The maximum value c such that Cc

is not empty is denoted cmax. The k-core is thus the union
of all coreness sets Cc with c ≥ k.

Definition 4 Each connected set of vertices having the
same coreness c is a cluster Qc.

Each coreness set Cc is thus composed by clusters Qc
m, such

that Cc = ∪1≤m≤qc
max

Qc
m, where qc

max is the number of clus-
ters in Cc.

Two steps are necessary to perform the k-core decom-
position of a graph. First a list of the vertices with their
respective neighbors is prepared. The the recursive prun-
ing algorithm is applied. Building the list of n vertices with
their degree takes a time O(n). Starting from the lowest de-
gree value kmin, all the vertices of degree equal to kmin are
then recursively cut out. Pruning a neighbor j of a vertex i
of degree kmin + 1 means that the degree of i is decreased
to kmin, so that i is subsequently pruned as well. This is
what is meant by the expression “recursively cutting out”.
The first coreness set (of coreness kmin) contains all vertices
removed during this process. When the remaining graph
does not contain any vertex of degree kmin, the algorithm
repeats the procedure by recursively removing vertices of de-
gree kmin + 1, thus constructing the coreness set of coreness
kmin + 1. This process is repeated until no vertices are left,
thus obtaining the coreness sets cmax. The construction of
the coreness sets takes a time time O(e) (where e is the num-
ber of edges), because removing a vertex implies cutting the
edges between this vertex and its neighbors. The building

Algorithm 1

1 input: vectors of coreness C and cluster Q, and T , indexed by

vertex i

2 for each vertex i do

3 if ci == cmax then

4 set ρi and αi according to a uniform distribution in the

disk of radius u (u is the core representation unit size)

5 else

6 set ρi and αi according to Eqs. 1 and 2

7 return ρ and α vectors

Table 1: Algorithm for representing networks using k-cores decom-
position

of all coreness sets thus implies that all edges are removed
one after the other in the process. In summary, the total
time to perform the decomposition is O(n + e). In order
to build the clusters, each vertex should verify the coreness
of its neighbors, which takes 2 · e steps in the worse case.
Finally, the total time complexity is O(n + e) for a general
graph.

4 Graphical representation

The visualization algorithm we propose places vertices in
2 dimensions, the position of each vertex depending on its
coreness and on the coreness of its neighbors. A color code
allows for the identification of core numbers, while the ver-
tex’s original degree is immediately provided by its size that
depends logarithmically on the degree. For the sake of clar-
ity, our algorithm represent a small percentage of the edges,
chosen uniformly at random. As mentioned, a central role in
our visualization method is played by multi-components rep-
resentation of k-cores. In the most general situation, indeed,
the recursive removal of vertices having degree less than a
given k can break the original network into various connected
components, each of which might even be once again broken
by the subsequent decomposition. Our method takes into
account this possibility, but for the sake of simplicity, we
will first present the algorithm in the simplified case (Ta-
ble 1), in which none of the k-cores is fragmented. Then,
this algorithm will be used as a subroutine for treating the
general case (Table 2).

4.1 Drawing algorithm for k-cores with single con-
nected component

The network under study is represented by a graph G =
{V, E}, where V is the set of vertices and E is the set of
links.

k-core decomposition. The coreness of each vertex is
computed (according to the procedure described in section 3)
and stored in a vector C, along with the coreness sets Cc

and the maximum coreness value cmax. Each coreness set is
then decomposed into clusters Qc

m of connected vertices, and
each vertex i is labeled by its coreness ci and by a number
qi representing the cluster it belongs to.

The two dimensional graphical layout. The visu-
alization is obtained assigning to each vertex i a couple of
radial coordinates (ρi, αi): the radium ρi is a function of
the coreness of the vertex i and of its neighbors; the angle
αi depends on the cluster number qi. In this way, coreness
sets are displayed as layers with the form of circular shells,
the innermost one corresponding to the set of vertices with



highest coreness. A vertex i belongs to the cmax − ci layer
from the center.

More precisely, ρi is computed according to the following
formula:

ρi = (1−ǫ)(cmax−ci)+
ǫ

|Vcj≥ci
(i)|

∑

j∈Vcj≥ci
(i)

(cmax−cj) ,

(1)
Vcj≥ci

(i) is the set of neighbors of i having coreness cj larger
or equal to ci. The parameter ǫ controls the possibility of
rings overlapping, and is one of the only three external pa-
rameters required to tune image’s rendering.

Inside a given coreness set, the angle αi of a vertex i is
computed as follow:

αi = 2π
∑

1≤m<qi

|Qm|

|Cci
|
+ N

(

|Qqi
|

2|Cci
|

, π ·
|Qqi
|

|Cci
|

)

, (2)

where Qqi
and Cci

are respectively the cluster qi and ci-
coreness set to which vertex i belongs, N is a normal distri-

bution of mean
|Qqi

|

2|Cci
|

and width 2π ·
|Qqi

|

|Cci
|
. Since we are

interested in distinguishing different clusters in the same
coreness set, the first term on the right side of Eq. 2, re-
ferring to clusters with m < qi, allows to allocate a correct
partition of the angular sector to each cluster. The second
term on the right side of Eq. 2, on the other hand, specifies
a random position for the vertex i in the sector assigned to
the cluster Qqi

.
Colors and size of vertices. Colors are assigned ac-

cording to the coreness: vertices with coreness 1 are violet,
and the maximum coreness vertices are red, following the
rainbow color scale. Finally, the diameter of each vertex
corresponds to the logarithm of its degree, giving a further
information on vertex’s properties. Note that the vertices
with largest coreness are placed uniformly in a disk of ra-
dius u, which is the unit length (u equals 1 for this reduced
algorithm).

The complete algorithm is presented in Table 1. In par-
ticular, vector Q collects the cluster numbers {qi} of all ver-
tices, and table T contains the following pair of elements,
indexed by the coreness c and cluster label q

T (c, q) =





∑

1≤m<q

|Qm|

|Cc|
,
|Qq|

|Cc|



 . (3)

These input quantities, used in Eq. 2, can be computed dur-
ing the k-core decomposition, when the cluster labels are
assigned.

4.2 Extended algorithm using k-cores components

The algorithm presented in the previous section can be used
as the basic routine to define an extended algorithm aimed
at the visualization of networks whose any given coreness
set is fragmented; i.e. made by more than one connected
component. This issue is solved by assigning to each con-
nected component of a k-core a center and a size, which de-
pends on the relative sizes of the various components. Larger
components are put closer to the global center of the repre-
sentation (which has Cartesian coordinates (0, 0)), and have
larger sizes.

The algorithm begins with the center at the origin (0, 0).
Whenever a connected component of a k-core, whose center p
had coordinates (Xp, Yp), is broken into several components
by removing all vertices of degree k, i.e. by applying the next

decomposition step, a new center is computed for each new
component. The center of the component h has coordinates
(Xh, Yh), defined by

Xh = Xp + δ(cmax − ch) · up · ̺h · cos(φh) (4)

Yh = Yp + δ(cmax − ch) · up · ̺h · sin(φh) , (5)

where δ scales the distance between components, cmax is the
maximum coreness and ch is the core number of component
h (the components are numbered by h = 1, · · · , hmax in an
arbitrary order), up is the unit length of its parent compo-
nent, ̺h and φh are the radial and angular coordinates of
the new center with respect to the parent center (Xp, Yp).
We define ̺h and φh as follows:

̺h = 1−
|Sh|

∑

1≤j≤hmax
|Sj |

(6)

φh = φini +
2π

∑

1≤j≤hmax
|Sj |

∑

1≤j≤h

|Sj | , (7)

where Sh is the set of vertices in the component h,
∑

j |Sj |
is the sum of the sizes of all components having the same
parent component. In this way, larger components will be
closer to the original parent component’s center p.

The angle φh has two contributions. The initial angle φini

is chosen uniformly at random1, while the angle sector is the
sum of component angles whose number is less than or equal
to the actual component number h.

Finally, the unit length uh of a component h is computed
as

uh =
|Sh|

∑

1≤j≤hmax
|Sj |
· up , (8)

where up is the unit length of its parent component. Larger
unit length and size are therefore attributed to larger com-
ponents.

For each vertex i, radial and angular coordinates are com-
puted by equations 1 and 2 as in the previous algorithm.
These coordinates are then considered as relative to the cen-
ter (Xh, Yh) of the component to which i belongs. The po-
sition of i is thus given by

xi = Xh + γ · uh · ρi · cos(αi) (9)

yi = Yh + γ · uh · ρi · sin(αi) (10)

where γ is a parameter controlling component’s diameter.
The global algorithm is formally presented in Table 2.

The main loop is composed by the following functions.
First, the function {(end, C)←make core k} recursively re-
moves all vertices of degree k − 1, obtaining the k-core,
and stores into C the coreness k − 1 of the removed ver-
tices. The boolean variable end is set to true if the k-
core is empty, otherwise it is set to false. The func-
tion {(Q, T )← compute clusters k − 1} operates the de-
composition of the (k − 1)-coreness set into clusters, stor-
ing for each vertex the cluster label into the vector Q,
and filling table T (see Eq. 3). The possible decom-
position of the k-core into connected components is de-
termined by function {S ← compute components k}, that
also collects into a vector S the number of vertices con-
tained in each component. At the following step, functions
{(X, Y )←compute origin coordinates cmp k} and
{U ←compute unit size cmp k} get, respectively, the cen-
ter and size of each component of the k-core, gathering them

1Note that if the φini is fixed, all the centers of the various
components are aligned in the final representation.



Algorithm 2

1 k := 1 and end := false

2 while not end do

3 (end, C)←make core k

4 if k > 1 (Q, T )←compute clusters k − 1

5 S← compute components k

6 (X, Y )←compute origin coordinates cmp k (Eqs. from 4 to 7)

7 U←compute unit size cmp k (Eq. 8)

8 k := k + 1

9 (ρ, α)←Algorithm 1 with C, Q, T and U

10 (X ,Y)←compute final coordinates ρ α U X Y (Eqs. 9 and 10)

Table 2: Extended algorithm for the representation of networks using
k-cores decomposition

Name # vertices 〈k〉 % dsp. links

ER 103 10 65
BA 104 4 1.3
RBA 103 10.8 65
FKPext 103 4 10

Table 3: Properties of generated networks; the percentage of dis-
played links is large because most edges are between vertices belong-
ing to the highest k-core and do not perturb the layout.

in vectors X, Y and U . Finally, the coordinates of each ver-
tex are computed and stored in the vectors X and Y.

5 Results from computer-generated and real net-
works

The algorithm presented in the previous section allows to
visualize the k-core hierarchy of a very large variety of net-
works. The three parameters ǫ, γ and δ may be tuned to pro-
vide an optimal visualization: ǫ controls the possibility for
various layers to overlap, δ determines the distance between
various connected components, and γ gives the component
diameter. In order to show how information on networks’
architecture can be gathered with our graphical representa-
tion, we present the results of the visualization of a set of
large graphs, corresponding to various computer-generated
and real networks,

For the sake of clarity, we draw only a randomly chosen
fraction of the huge total number of edges, while vertices are
all shown and colored according to their coreness. Further-
more, edges are colored in two halves, each half according
to the color of the corresponding extremity. Finally, the
external parameters of the algorithm are set to the values
ǫ = 0.18, δ = 1.3 and γ = 1.5, that give a very clear and
readable layout.

In the following we will outline the various properties of
the networks analyzed and we will discuss how the visual-
ization layout allows the discrimination of signatures and
fingerprints associated to the different topological and hier-
archical properties of the networks.

5.1 Computer-generated networks

The characteristics of the computer-generated networks are
listed in table 3. We display the number of vertices, their
average degree 〈k〉 and the percentage of represented links.

The Erdös-Rényi (ER) model [15], with poissonian degree
distribution, and very small density of triangles, is a typical

Name # vertices 〈k〉 % dsp. links date

AS 11174 4.19 1 4 − 2001
AS+ 11461 5.71 1 5 − 2001
IR 228263 2.15 0.1 2000
IR CAIDA 192244 6.62 0.05 5 − 2003
WWW 106 3.56 0.01 2002
Cond-Mat 15616 5.51 0.5 1995 − 1998
WWA 3880 9.7 1 2002

Table 4: Properties of real networks

example of graphs with a characteristic value for the degree
(the average value 〈k〉). Since an ER graph can consist of
more than one connected component, we consider only the
largest of these components.

Since many real-world networks have been shown to dis-
play a very heterogeneous topology as measured by broad de-
gree distributions, many models and mechanisms have been
proposed to construct heterogeneous networks. The most
famous is the Barabási-Albert (BA) model [6], which con-
siders growing networks according to the preferential attach-
ment mechanism: each new vertex is connected to m already
existing vertices chosen with a probability proportional to
their starting degree. The Heuristically Optimized Trade-
off model of Fabrikant, Koutsoupias and Papadimitriou [16]
(FKP model), is another well-known model for heteroge-
neous networks; here, we consider an extension of this model
proposed by Alvarez-Hamelin and Schabanel [3]. This model
of growing network embedded in a two-dimensional space is
essentially based on a competition criterium: a new vertex n
is connected to already existing vertices in a way to optimize
a combination of its distance on the graph to a predefined
”center” and the Euclidean length of the connections. Both
models produce graphs with power-law degree distributions,
thus characterized by a very large variety of degree values.

5.2 Real world networks

The principal characteristics of the real networks are given
in table 4.

Internet’s maps: In real mapping projects, information
about Internet’s topology are collected studying the network
at two different levels of granularity: the autonomous sys-
tems (AS) level and the router (IR) level. The autonomous
system level of the Internet is represented by collected routes
of the Oregon route-views project [24]; its extended ver-
sion AS+, enriched with a large quantity of links, and ob-
tained using informations from peering relationships of the
autonomous systems, is presented in Chen et al. [12]. Both
graphs date back to May 26, 2001.

For the Internet router level we also consider two different
graphs: the one assembled by the explorations of Govindan
and Tangmunarunkit [18] in 2000, here called IR graph, and
the IR CAIDA graph collected by the CAIDA project [13]
between April 21st and May 8th, 2003. The differences are
due to the diversity of exploration methods: the IR CAIDA
map was obtained by sending traceroute probes from many
sources (i.e. 23 variously placed) to many destinations, while
the IR map was obtained from single-source probing, but
using other heuristics in order to obtain also lateral connec-
tions.

World Wide Web (WWW): Because of the huge size
of the World Wide Web, of its dynamical nature and of
the different methodologies of explorations, no complete and



unique map of WWW can be obtained. We present here a
portion of the .fr domain, composed by 1 million of web-
pages (vertices) beginning by the string ”www”. We limit the
application of the algorithm to 1 million pages, because its
actual implementation depends on the RAM memory size,
which was 1GB for the presented figures. Since the actual
definition of k-cores is made for undirect graphs, we consider
the WWW as undirected, aiming to compare this network
with others undirected networks. We are also working on an
extension of k-core decomposition for the directed case.

Scientific Collaboration Network (Cond-Mat):
this network considers scientists who have authored
manuscripts submitted to the e-print archive relative
to condensed matter physics between 1995 and 1998
(http://xxx.lanl.gov/archive/cond-mat). Scientists are
identified with vertices and an edge exists between two
scientists if they have co-authored at least one paper. The
topological properties of this network and other similar
networks of scientific collaborations have been studied in
Ref. [22, 23].

World-Wide Airport Network (WWA): We analyze
the International Air Transportation Association (IATA)2

database containing the world list of airports pairs connected
by direct flights for the year 2002. The resulting network
counts n = 3880 vertices (airports) and e = 18810 edges
(direct flight connection between two airports). Graph’s
topology has been recently studied [19, 7], showing scale-
free properties on a definite range of degree values.

5.3 Visualization and analysis of computer-
generated graphs

An instance of the visualization of Erdös Rényi random
graphs is provided by Figure 1: the minimum and maximum
coreness are clearly related to the average degree 〈k〉 = 10.
The large central mass is the result of the very homoge-
neous topology; the vertex degree have only small fluctua-
tions, thus most vertices belong to the highest k-core.

The Barabási-Albert network with fixed m = 2, reported
in Fig. 2, produces another peculiar representation. Indeed,
although this graph displays a very heterogeneous vertex de-
gree distribution, its k-core decomposition is trivial; only few
layers at very small coreness are visible. The construction
mechanism provides a simple explanation. Each new vertex
enters the system with degree m, but at the following time
steps new vertices may connect to it, increasing its degree.
Inverting the procedure, we obtain exactly the k-core decom-
position. The minimum degree is m, therefore all coreness
sets Cc with c < m are empty. Recursively pruning all ver-
tices of degree m, one first removes the last vertex, then
the one added at the preceding step, whose degree is now
reduced to the initial value m, and so on, up to the initial
vertices which may have larger degree. Hence, all vertices
except the initial ones belong to the coreness set of coreness
m. This somewhat pathological property holds for all grow-
ing networks with fixed attaching rate for new vertices, but
is easily removed by randomly varying m during the growth:
this yields a “Random BA” (RBA) network. Figure 3 shows
a graph generated varying m randomly between 1 and 10
(at each time step). The layout’s structure remains however
quite simple, only few coreness sets being populated, and
most of the vertices have the largest coreness value. More-
over, each layer is almost ring-like, rather than a real circular
shell of some width, suggesting that the vertices of a given

2http://www.iata.org.

coreness set have a similar number of neighbors in the sets
of larger coreness.

The Extended FKP model is an attempt to model Inter-
net, therefore it is remarkable that, at a first glance, the
result (Fig. 4) is rather similar to that obtained for the AS
graphs (see next subsection). At a deeper insight, one ob-
serves that some vertices in medium k-cores have a large
degree, while in the ASes large degree vertices are in the
innermost layers. In spite of this, the link structure seems
to indicate a standard hierarchy, because the connectivity
between different layers plays an important role. It is worth
remarking that this network has only 1000 vertices because
of the strong limitations due to the extremely long genera-
tion time, and it would be interesting to check the present
finding for larger samples.

5.4 Visualization and analysis of real networks

Figures 5 and 6 display the representation of the autonomous
system graphs AS and AS+. All coreness layers are pop-
ulated, and, in a given coreness set, the vertices are dis-
tributed on a relatively large range of the radial coordinate,
which means that their neighborhoods are variously com-
posed. It is worth noting that the coreness and the degree are
very correlated, with a clear hierarchical structure. Links go
principally from one coreness set to another, although there
are of course also intra-layer links. The hierarchical struc-
ture exhibited by our analysis of the autonomous system
level is a striking property; for instance, one might exploit it
for showing that in the Internet high-degree vertices are nat-
urally (as an implicit result of the self-organizing growing)
placed in the innermost structure.

At high resolution, i.e. at the IR level, Internet’s proper-
ties are less structured, which is reflected in Figures 7 and 8,
in which a completely different scenario emerges: external
layers, of lowest coreness, contain vertices with large degree.
There are 20 vertices for the IR case, and 5 vertices for the
IR CAIDA graph, which have a degree larger than 100 and
coreness less than 6. In contrast, the AS and AS+ have only
two vertices with degree larger than 100, and coreness 5 and
13 for AS, and 10 for AS+. The correlation between core-
ness and degree is thus clearly of a very different nature in
the maps of Internet obtained at different granularities i.e.
routers or autonomous systems.

The lowest coreness sets, containing vertices that are very
external, are displayed as quite broad shells, meaning that
the corresponding vertices have neighbors with coreness cov-
ering a large range of values. The larger coreness sets, in
particular for the IR CAIDA network, are thin rings, as for
the RBA, which means that the neighbors of the vertices in
a given layer have similar coreness.

It is worth remarking how the present visualization al-
lows the distinction of networks which appears very simi-
lar on the basis of the sole statistical properties. Indeed,
we can notice that the IR map is quite different from the
IR CAIDA map. This difference likely finds its origin in the
different exploration methods used to gather the two data
sets. The IR map has been obtained from one source moni-
tor using, using source routing to detect lateral connectivity.
The IR CAIDA map, instead, is the merger of data gath-
ered by 23 different probing monitors. On one hand, it is
likely that the high cores of the IR network are composed
by routers with source routing activated (approximately 8%
of the total routers, see Ref. [18]). These routers sampled
destinations unevenly resulting in a less regular layout. On
the other hand, the role of sources in the IR CAIDA map is



symmetric, that is all the monitor sent traceroute probes to
all destinations, resulting in a very regular layout.

The appearance of the WWA (Fig. 9) is highly hierarchi-
cal: large degree vertices are very entangled in the core of
the network. Some similarities with the AS graphs emerge,
but the major difference resides in the large number of con-
nections between vertices with similar coreness.

Figures 10 and 11 represent the graphs of the Cond-Mat
archive and the World-Wide-Web respectively. Their partic-
ularity resides in the existence of various fragmented com-
ponents. Let us consider the Cond-Mat graph: we can dis-
tinguish three different fragments for orange and red ver-
tices. One of these fragments is very small (it is far away
from the center because of its size) and it has few green ver-
tices attached. The largest of these fragments on the other
hand does not contain vertices with the largest coreness (red
vertices): this particularity is detected by the fact that its
vertices are orange and that the center of the corresponding
ring is empty. The last one is of medium size and contains
vertices with the highest coreness. It is also interesting that
even for small coreness, there are various small components
but only one giant component. This is shown by some ver-
tices in blue inside the violet layer. Links arrangement as
well as vertices degree suggest a standard hierarchy, where
the predominant connections are between different layers.
This means that larger coreness layers have vertices with an
elevated degree. On the other hand, the WWW graph is an
interesting example of how also two components of approx-
imately the same size (here at the coreness 12 level) can be
well represented using the algorithm.

In summary, heterogeneous real networks present differ-
ent kinds of k-core hierarchies, with one or more connected
components, for which the proposed visualization tool allows
an easy access and characterization. A detailed discussion
of each network and the relative fingerprints are beyond the
scope of this paper and are left to the specific investigation
of the corresponding network.

6 Conclusions

In this paper, we have proposed a general visualization tool
for large scale graphs. Exploiting k-core decomposition, and
the natural hierarchical structures emerging from it, our al-
gorithm allows a layout, that posses both the simplicity of
a 2D representation with a considerable amount of infor-
mation encoded. One can easily read basic features of the
graph (degree, hierarchical structure, position of the highest
degree vertices, etc.) as well as more complicated proper-
ties, e.g. the relation between a vertex and the hierarchical
position of its neighbors. Our results show the possibility
of gaining clear insights on the architecture of many real
world and computer-generated networks by a visualization
based on the rationalization of the corresponding graph. In
conclusion, the present visualization strategy is a useful tool
for a distinction between networks with different topological
properties and structural arrangement, but it may be also
used for determining if a certain model is in good agreement
with real data, providing a further interesting tool for mod-
els validation. Finally, we also provide a publicly available
tool for visualizing networks [20].
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Figure 1: Graphical representation of an ER graph with 〈k〉 = 10
and 1000 vertices

Figure 2: Graphical representation of a BA network with 〈k〉 = 4
and 10000 vertices

Figure 3: Graphical representation of a BA network with a random
m ∈ [1 : 10], and n=1000

Figure 4: Graphical representation of the extended Heuristically Op-
timized Trade-off (FKP model) (n = 1000)

Figure 5: Graphical representation of the AS graph



Figure 6: Graphical representation of the AS+ graph

Figure 7: Graphical representation of the IR graph

Figure 8: Graphical representation of the CAIDA IR graph

Figure 9: Graphical representation of the Airports network

Figure 10: Graphical representation of the scientific collaboration
network (Cond-Mat)

Figure 11: Graphical representation of a fraction of the .fr domain
of the WWW


