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GEOMETRIC LIFTING OF THE CANONICAL BASIS AND

SEMITORIC DEGENERATIONS OF RICHARDSON VARIETIES

SOPHIE MORIER-GENOUD

ABSTRACT. In the sl, case, A. Berenstein and A. Zelevinsky studied in [H] the
Schiitzenberger involution in terms of Lusztig’s canonical basis. We generalize
their construction and formulas for any semisimple Lie algebra. We use the
geometric lifting of the canonical basis, on which an analogue of the Schiitzen-
berger involution can be given. As an application, we construct semitoric
degenerations of Richardson varieties, following a method of P. Caldero, [
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2 SOPHIE MORIER-GENOUD

INTRODUCTION

Let G be a semisimple simply connected complex Lie group. Fix opposite Borel
subgroups B and B~ of GG. In this paper we consider subvarieties of the flag variety
G/B known as Richardson varieties. They first appear in } Our problem is
to construct toric or semitoric degenerations of these varieties. Such constructions
have already be done in the special cases of the flag variety and the Schubert vari-
eties, see [E], [E] and [ﬂ] Our approach consists to extend the method introduced by

. Let us mention that the method of @ was recently extend for the degenerations
of spherical varieties, see [[lf].

A Richardson variety X is the intersection of a Schubert variety X,, := BwB/B
and an opposite Schubert variety X~ := B~7B/B, where w and 7 are elements in
the Weyl group W of G. The opposite Schubert variety X7 is the image of a Schu-
bert variety under the action of the longest element wy of W. This element plays
an important role in our study. In order to construct toric degenerations of these
varieties, we define filtrations on the homogenous coordinates algebras associated
to the varieties (Sections B.d, B.3 and B.4)). All these algebras are direct sums of
subspaces of G-modules. The algebra R” associated to the opposite Schubert vari-
ety X7 is related to the algebra R, associated to the Schubert variety X, via the
action of wg. It is then important to understand the action of wg on the G-modules.

An important tool in our work is the canonical /global basis of Lusztig and Kashi-
wara. This basis B lays in the negative nilpotent part of the enveloping algebra
U(g), where g is the Lie algebra of G, and has remarkable compatibility properties
with the simple G-modules of highest weight. The basis B provides good bases of
simple G-modules. And this provides good bases to study the homogenous coordi-
nates algebras of the varieties.

By a result of Lusztig, we know that wg acts by a permutation on the elements of
the bases of the G-modules induced by B. To have explicit results we use a combi-
natorics of B, given in terms of string parametrization and Lusztig parametrization.
These parametrizations depend on a choice of a reduced decomposition of wg. In
the case where G = SL,,(C), for a convenient choice of the decomposition of wy, this
combinatorics is the same as the combinatorics given in terms of Young tableaux.
In this case, the action of wy is given by the involution of Schiitzenberger described
on the tableaux in , and we have explicit formulas. This was done in [E] We
generalize these results (Corollary @ and Corollary to any group G and to
any choice of a reduced decomposition. A part of our results was already announced
in [[I4], and applied in [7.

The generalized Schiitzenberger involution is understood via the geometric lift-
ing, i.e a geometric version of the canonical basis which gives a combinatorics of
totally positive subvarieties in G. We give (Theorem ) a geometric analogue of
the Schiitzenberger involution in the totally positive subvarieties of G. The formulas
in the geometric version can be easily computed. These formulas are closely related
to similar formulas in the algebraic version by a ”tropicalization” application. We
strongly use the results of [f] and [ff.

This paper is organized as follows. Section 1 provides a construction of the
canonical basis and their parametrizations. It also recalls the compatibility property
with the simple highest weight G-modules. In Section 2, we define the action of wq
on the modules and we give its geometric analogue. We obtain explicit formulas
in terms of parametrizations of the canonical basis. In Section 3, we recall the
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constructions of degenerations of the flag variety and the Schubert varieties due to
[E]. We then construct semitoric degenerations of the Richardson varieties.

I wish to thank P.Caldero for introducing me the statement of this problem
and for his constant help. I am deeply grateful to P.Baumann for enlightening
discussions and for his help with Lemma @

1. NOTATIONS AND PRELIMINARIES

1.1. Main data and notations. Let G be a semisimple simply connected complex
Lie group. Fix a torus T and a Borel subgroup B of G such that T'C B C G. Let
N be the unipotent radical of B. Denote by B~ the opposite Borel subgroup and
N~ its unipotent radical. The complex Lie algebras associated to G, T, N, N~
will be denoted by g, h, n, n~ respectively. There is a triangular decomposition
g=n" ®hdn Let {a;}1<i<n be the set of simple roots corresponding to this
decomposition, where n is the rank of g. This set provides a basis of the dual vector
space h*. The simple coroots in b are denoted by {«;}1<i<n. The weight lattice
P:={\eb* May) € Z,¥1 < i <n} is generated by the fundamental weights co;,
1 <i < n, defined such that w;(a;’) = d; ;. Let PT := 3. N.zw; be the semigroup
of integral dominant weights. The natural bilinear form on h* x b is denoted by
(, ). The Cartan matrix associated to g is (ai;)1<i j<n; one has a;; = (o, ).
Recall that a;; = 2, a;; < 0, for all 1 <4 # j < n, and there exist nonnegative
integers (d;)1<i<n such that d;a;; = d;aj;.

1.2. Weyl group and reduced words. The Weyl group W is the subgroup of
End(h*) generated by the reflexions s;, 1 < i < n, such that s;(A\) = X — (A, ),
VA € b*. We identify s; with its adjoint so we also have s;(h) = h — {(a;, h)ay,
Vh €. The form (, ) is W-invariant. A reduced word for w € W is a finite
sequence of indices i = (i1, - ,4;) such that w = s;, - - - s;, and the length (w) := ¢
is the shortest possible length. Let wg be the unique element of W with maximal
length; set N := ¢(wp). Reduced words for w = wy will be called reduced words

for short. The involution ¢ — * of the set {1,...,n} is defined by wo (o) = —a«.
Given a reduced word i = (i1, -+ ,in), we set i* := (i}, -+, 4% ). It is clear that i"
is also a reduced word. Given A\ € P, we set \* := —wg(\).

1.3. PBW-bases. Now, let us introduce the quantum enveloping algebras. They
will be useful in Sections [L.3, [L.4 and [L.g for the definition of the canonical basis
and there parametrizations. After these sections, we will only consider the classical
algebras which are the specializations at ¢ = 1. Let ¢ be an indeterminate. The
quantum enveloping algebra U, (g) of g, over C(g), is defined with generators E;,
F;, K;, 1 <i<n and quantum Serre relations. We also have a triangular decom-
position Uy (g) = Uy(n™) @ Uy (h) @ Uy(n). One can construct bases of U, (n) called
Poincaré-Birkhoff-Witt type bases as follows.

k —k
For all 1 <i<mnandall k € N, we set ¢; := q%, [k]; := ‘;?:Zf;l and:

1
(Klilk — 1]; - [1]; "

E® = EF, FY =

(k]i[k —1]; -~ - [1]
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Define automorphisms T;, 1 < i < n of Uy(g) as follows:

TZ(KJ) = KjKi_aij, 1§]§7’L

T,(E;) = -K;'F, Ti(F)=-EK;,

T(E) = Y (D tEMEEY 1<j#i<n
k-H:—aij

) = Y ¢FRVRFEY 1<j#i<n
k+l=—a;;

One can check the compatibility with Serre’s relations. Now fix a reduced word
i=(i1,...,in). Forall k, 1 <k < N, set Bik := iy - .- Sip_, (e, ). It is well known
that {3k, 1 <k < N} is the set of positive roots and that the ordering

Big < Big <...<BinN

is a convex ordering on R*. For all k, we define E},i =1 T (Ey,). Fur-

thermore, for all t = (t1,---ty) € NV, we set Ei(t) := Egll)Eg]jV), where

Eg’“) = = E% . The set {Ei(t), t € NV} is the so-called Poincaré-Birkhoff-
i,k [tk]ﬁi K ﬁl,k

Witt type basis of Uq(n) associated to the reduced word i. In the same way, we
define a Poincaré-Birkhoff-Witt basis { F(t), t € NV} of Uy (n™).

1.4. Canonical/global basis and its Lusztig parametrization. Lusztig, and
independantly Kashiwara [[L0], constructed a basis called canonical (or global) ba-
sis of the nilpotent part U, (n~) which have good compatibility properties with the
g-modules. Following Lusztig’s construction, let us introduce the ”"bar” automor-
phism of U, (g) over C, denoted ~ and defined by:

EZ:EMK’L:Kl_l;FZ:Flvq:q7151§2Sn

Proposition 1.1. [[J] Let i be a reduced word. For all t € 7, there exists a
unique element b = b;(t) inlUy(n~) such thatb = b and b—F(t) € ¢ Zlg Y F().
The set B := {bi(t),t € ZY,} does not depend on the choice of the reduced word i.
Moreover B is a basis on/_{q(n*).

The set B as above is namely the canonical basis of Uy (n™).
Given a reduced word i, the map ¢ — b = b;(t) is a bijection from ZY, to B, it gives
a parametrisation of the canonical basis that we call Lusztig’s parametrization.

1.5. Kashiwara operators and string parametrization. Kashiwara’s opera-
tors acting on the canonical basis may be defined as follows. For all ¢ in {1,---n},

there exists a unique injective map f;: B — B, such that if i starts with i1 = i,
then:
Filbi(ty,ta, ... tn)) = byt + 1, ta, ... tN).
We also define &; : B — BU {0} by &;(b) = b’ if there exists b’ such that f;(0') = b
and &;(b) = 0 otherwise. We set ¢;(b) =Max{k|&¥(b) # 0}.
The string parametrization of an element b € B associated to a reduced word
i= (i1, - ,in) is the N-tuple ¢;(b) := (t1,t2- - ,tn) defined recursively by

tr =i, (b), to = €5y (€1 (D)), ..t = iy (BN 1. M (D).
We denote by C; the image of B in Zgo under the map ¢;.
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Proposition 1.2. Let i = (i1, - ,in) be a reduced word, and let b be an
element of B with string parameter ¢;i(b) = (t1,t2-+- ,tn). One has

() fo . S (1) =1,
(11) Ci(fil (b)) = (tl + 17t27 o 7tN)

1.6. Transition maps Rﬁ,. Let us now introduce the various reparametrization
maps. Let i and i’ be reduced words, define:

R = (by) 'ob; : NV - NV,
Rj =cyo(a) ! G — Cy,
R = (i) o(a) - G — NV,
R;i, = Cy/ © bi . NN — Ci/,
Example 1.3. In the case G = SLs, there are exactly two reduced words, namely
i=(1,2,1) and i’ = (2,1,2). The map R%l was calculated by Lusztig, see [@] If
bi(a,b,c) = by (a’,b', ), then:

a = b+ c—min(a,c)
(1.1) b = min(a,c)
d = a+b—min(a,c)

The methods of computation and explicit formulas of all the previous maps are
given in [{], we will recall them in section R.7.

1.7. Canonical basis in the modules. Given a weight X in P+, the Weyl module
denoted by V() is a simple finite dimensional ¢/(g)-module with highest weight A.
From now on, we fix for any A € PT a highest weight vector v and a lowest weight
vector v{°¥ in every V(A). One has V() = U(n").wy = U(n).wl?. Tt is known
that the module V' (\) satisfies the Weyl character formula. Let w be an element in
W, fix an extremal vector v, in V() of weight wA. We introduce the Demazure
module Vi, (A\) 1= U(n).vyy which is a U(b)-submodule of V' (A).
The canonical basis and the above modules are compatible, by [[L(] and [L].

Theorem 1.4. One has:
(1) If B(A) :={b € B, buy # 0}, then B(A\)vy is a basis of V/(A).
(2) There exists a subset By, of B, which does not depend on X\, such that B,vy
generates Vi, (N).

We will use abreviation b instead of bvy and B(\) instead of B(A)vy when no
confusion occurs. Denote By, () := B(A) N By,

Now, we may suppose that v{® and v, belong to B()).

We still denote by é; and f; the Kashiwara operators define from B()) to B(A) U

{0} by &;(bvy) = &;(b)v and f;(bvy) = fi(b)va.

1.8. Examples in the A, case. In this section, we study the case where G =
SLyp11. In this case the Weyl group is isomorphic to the group of permutations
S,,. The element wy has length n(n + 1)/2 and the special reduced word i =
(1,2,1,---,n,n—1,---,2,1) will be called standard reduced word. Recall that in
the case G = SL, 1, one has a combinatoric model of Young tableaux. The Lusztig
parametrization and the string parametrization generalize this combinatory. They
coincide when the parametrizations are considered with the standard reduced word.
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Definition 1.5. Let A = Aoy + M@y + - - Ay, be an element of PT. The
Young tableau of shape A is a collection of boxes, arranged from left to right, from
An columns with n boxes to A\; columns with one boxes. Further, a tableau filled
with entries in {1,--- ,n + 1} such that the entries increase across each row and
strictly increase down each column, is called a semi-standard Young tableau of
shape A.

Example 1.6. Let n > 3,

2[2]3]
314 is a semi-standard Young tableau of shape wy + 2ws + w3

‘plk[\)}—l

Denote by Y'(A) the set of all semi-standard Young tableaux of shape A. One
knows (see [[(]) that the set Y(\) gives a parametrization of the canonical basis
B()\). Let us precise this fact.

Let T be a tableau Y (\) and denote by by the element associated to the tableau
T. Let i be the standard reduced word, introduce Lusztig’s parameters of bp:

(t11,t12, ta2, tig, togstas -+ s tin, -+ s ton) == by (br)
and the string parameters of br:
(0117 C22,C12,C33,C23,C13 """ ,Cnpn, " " * ,Cln) = Ci(bT)

The link between all theses parametrizations is the following.

Proposition 1.7. [{] One has,

tij = (the number of j+ 1 in the i-th row of T), 1 <

(1.2) 1<j<n
' cij = (the number of j +1 in the i first rows of T), 1 <i<j

< j<n
One can deduce explicit formulas for the maps R; fand Rii in this special case.
Corollary 1.8. One has:
(1.3) tij = Ciyrj—cij 1<i1<]
cij = tijtiloj+--+1t, 1

Example 1.9. Figure describes the canonical basis B(w; + w2) in the case
As. For each element of the basis, we give the Young tableau associated, the string
parameters and the Lusztig’s parameters for the standard reduced word i = (1,2, 1).
In this figure, the simple arrows between two elements b — b’ mean that b’ = f; (b),
and the double arrows b = b’ mean that b’ = fo(b).

2. ACTION OF wy AND GEOMETRIC LIFTING

2.1. Modules twisted by automorphism. Let us consider the three automor-
phisms of U(g) defined on the generators by:

OE)=F, OF)=FE, oH)=-H
§(E;) =Ei-, O(F)=Fy-, 6(H;)=H,;-
W(El) = Fj«, 77(Fz) = Ej«, U(Hl) =—H;«
Notice that the automorphism 7 coincides with the action of wy up to a multiplica-

tive constant.
In the sequel, let us fix a dominant weight A € PT.
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Given an automorphism y of U(g), one can define the twisted module V (A)X as
the vector space V(\) with the following action: uxv = x(u)v, u € U(g), v € V().
The module V(A\)X is simple since V(\) is simple. And one has V(A\)X ~ V(\X),
for a certain AX € PT. The automorphism x leads an isomorphism of vector spaces
X 2 V(A) — V(WX), verifying xa(uv) = x(u)xa(v). Such isomorphism is unique
up to multiplicative constant by Schur’s lemma.

Let us describe these isomorphisms in the cases where x = 7, d and ¢. The
isomorphism ny : V(A) — V(A7) satisfies ny (u.v) = n(u)na(v), thus one has:

Finx(va) = n(Ei)na(va) = ma(Eirvy) =0, VI <i <n

The vector 7, (vy) is therefore a lowest weight vector in the corresponding twisted
module V(A"). Let us determine the weight of nx(vy). For all 1 < i < n, one has:

Hina(va) = ma(=Hi=va) = ma (= (N, o5 )oa) = =\ ad)ma(va) = (wo(N), o )na(va)

Hence, nx(vy) is a lowest weight vector of weight wg(X). One deduces that V(A7) ~

low

V(A) and that n(vy) is proportional to v}
From now on, set 1 (vy) = v{°?. To summarize, one has:

VN = V() with my(uvy) = n(u)vl®?, Yu € U(g)

In the same way, the automorphisms ¢ and ¢ induce the following isomorphisms
of vector spaces (normalized by the choice of the image of vy):

dx 1 V(A) = V(X)) with ¢x(uvn) = ¢(u)oil, Yu € U(g)

Ox: V(A — V(A*) with 6y (uvy) = d(u)vrx, Yu € U(g)
The isomorphism ¢, is compatible with the canonical basis in the following sense:

Proposition 2.1. [13, §21] One has:
() ér(BQJoa) = BOox- N
(i) V1<i<n, ¥be B, &da) = orfi(d)

It is clear from the definitions that &6(bi(t)) = &(bi-(t)), thus we also have
IN(B(MNvy) = B(A\*)vr-. It is also clear that ny = ¢x0x, and thus ny(B(MN)vy) =
B()\)’U)\.

2.2. Schiitzenberger involution. Fix a dominant weight A\ € P*. The isomor-
phism 7, generalizes the Schiitzenberger involution defined in the case G = SL(n)
in terms of Young tableaux. Schiitzenberger described (see [[]) an involution
S:Y(A) — Y()\) with an algorithm called ”jeu de taquin”.

In the case where G = SL(n), the link between 7, and S is the following:

Proposition 2.2. [{|] Given T € Y()\) and the associated element br € B()), one
has:

(br) = bs(r)

Example 2.3. Figure E describes the Schiitzenberger involution on the basis of
the slp-module V (wwy + ws).
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fi fa
O
(1,0,0) [1]2] (0,1,0) [1]1]
( Y 70) l (07 ’ ) é
\
0,1,1) [1]3] (1,1,0) [1]2]
( ) 70) l (17 ) ) i
(0,2,1) [1]3] (2,1,0) [2]2]
(O’ 7]‘) i (27 ’ ) i

FIGURE 2.1. Canonical basis B(w + wz) and Schiitzenberger involution.

2.3. Geometric lifting and tropicalization. In the sequel, we wish to compute
explicit formulas for the isomorphism 7, in terms of parametrizations of the canon-
ical basis. We first consider the isomorphism ¢, and then we use the composition
Ny = Ox= .

Our goal is to give explicit formulas for the application b;” o) Gy ! which expresses
Lusztig’s parameters t' = (¢, - ,t}y) of the element ¢ (b) € B(A*) in terms of the
string parameters t = (t1,--- ,ty) of an element b € B(\).

For this end we use the methods and the results of [f]] and [i] on geometric lifting
and tropicalization.
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We consider semifield structures, i.e commutative multiplicative groups equipped
with an additive law which is associative, commutative and distributive on the
product.

The main example of semifield is the set of integers Z endowed with the opera-
tions: a @ b := min(a,b), a ®b:=a+b, a,b € Z, it is called tropical structure of
Z. Tt induces a semifield structure on the set F(ZY,,Z) of all maps from ZY, to Z
with the operations: B B

f®g(t17 7tN)'_>f(t17 7tN)+g(t1; atN);
fEBg : (tlu"' 7tN) '_)mln(f(tlu 7tN)7g(t17"' 7tN))
for all f,g € F(ZY,,Z).
We denote by p; € F(Z%,,Z) 1 < i < N, the projections defined by p;(t1,--- ,tx)

t;. Let Qso(t1, -+ ,tn) be the set of rational subtraction-free expressions in in-
derterminates tq,--- ,¢y. This set is a semifield (the smallest one containing the
indeterminates t1,--- ,ty) for the usual laws + and x. The tropicalization is de-
fined by:

Theorem 2.4 ([f]). There exists a unique homomorphism of semifields, denoted
by [Jrop » such that:

[-]Trop :Q>0(t17"' atN) - ‘F(ZgOaZ)a
ti — pi, 1<i<n,

In other words, if f(¢1,---,tn) is a subtraction-free expression, the tropicaliza-
tion [f]mop (t1,--- ,tn) is the expression obtained from f(¢1,---,tnx) by changing
the 4+ in min, the x in +, et the = in - . Let us give an example taken from [E]

Example 2.5. Consider the expression f(t1,t2) := t3 — t1to + t3. It is a ratio-

3443
I One has [f]mop (t1,t2) =

nal subtraction-free expression since f(t1,t2) =
min(3t1, 3t2) — min(tl, tg) = min(2t1, 2t2).

The element f is called geometric lifting of [f]tvop -

Notice that geometric lifting is not uniquely determined by [f]mop as we can
3+t

T and t? + t3 are both geometric lifting of

see in the above example. Indeed
min(2t1, 2t2)

To finish this subsection, let us introduce the following notation.
Let fi, f2, -+, fn € Qso(t1, -+ ,tN), we set

[(flu f27 T 7fn)]Trop = ([fl]Trop y [fZ]Trop y Ty [fn]Trop )

2.4. Totally positive subvariety of G. For any 1 < i < n, denote by ¢; :
SLs — G the natural injective map corresponding to the simple root «;. Consider
the one-parameter subgroups of G defined by

Iz‘(f)Z%'((l) §>7 yi(f)ZsDi(i (1))7 teC

Clearly, z;(t)’s, (resp. y;(t), %) generate N, (resp. N—, T). One has the following
relations of commutation:

(2.4) 1 a5 () = (P9 1y () = gy (e
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One defines two involutive antiautomorphisms of G: z +— z”, called transposition,
and x — z*, called inversion, as follows:

)T =y (), vi®)T =zi(t), ()T =t
ity = wilt), gty = (), (@) = o

Let Go := N™TN be the set of all elements in G which admit a Gaussian
decomposition. Given x € Gy, the Gaussian decomposition is unique and we will
write @ = [z]_[z]o[x]+, where [z]_ € N7, [z]o € T, [z]+ € N.

Let G be the submonoid of G' generated by z;(t), y;(t), t* for all t > 0.
Given a word i = (i1, ,%m) and a m-tuple t = (t1,- - ,ty) in CZy, we set:

%

wi(t) == g, (1) - i, (tm), et 2oi(8) = ya, (Bt i, (b )t ™

Consider the following reduced double Bruhat cells.

(2.5) L&Y .= NNB_wyB- and L"°:= NwyNNB_

Denote by LZg°, resp. LYY, their intersections with Gso. The maps z; and

x_;j parametrize these subvarieties of G. More precisely,

Theorem 2.6. [@] For any reduced word i, the map xj, resp. x_i, 1s a birational
isomorphism between (Cgo and L0, resp. LW, It restricts to a bijection between

N €,wo wo,e
Ry and L2y°, resp. Loy*.

2.5. Geometric lifting of the maps Ri;l. In the sequel we will use the notation
()Y that means we consider the analogous maps in the Langlands dual G¥ of G.
Recall that the Langlands dual GV is the semisimple Lie group with transposed
Cartan’s matrix. The simple roots of GV can be naturally identified with the
simple coroots of G and conversely. Thus the Weyl groups are naturally identified
with each other. )

Let us introduce the reparametrization maps f%il = :E71 ox; and R_i = :E_ll, ox_j
from (C o to itself. An important result from [E is that these maps are geometric

liftings of R; and R_; . More precisely,

Theorem 2.7. The components of (RV)Y (t1,--- ,tn) and (R:;l)v(tl, <, tN) are
expressed as rational subtraction-free expressions in t1, -+ ,tn, and one has:

@) [(R))mop (8) = RE(H) (i) [(R7E)YJmvop (£) = R7Y (8)

Example 2.8. Explicit formulas in the case G = SL3(C) are:

1t 0 1 00

LL‘l(f)Z 0 1 0 ,l‘g(t): 0 1 ¢ ,teC
0 0 1 0 0 1
t 0 0 1 0 0

t“ =0 t' 0|, t=01¢t O ,t€Cyo
0 0 1 0 0 t!
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For any (t1,t2,t3) € C and (t;,th,15) € Coy:

1 t1+1ts tits

x121(t1,t2,t3) = z1(t1)x2(t2)21(t3) = [ O 1 t2
0 0 1
Loty oty
To12(th, by, t5) = wo(t])x1 (ta)x2(tz) = | O 1 ) + 15
0 O 1

If I (t1)$2(t2)$1 (tg) = $2(t/1)$1 (fé),@g(fé) then:

tots t1to
th,th, th) = , ts, )
(t1,t,13) (t1+t3 1+ 13 t1+t3)
Hence,
(1,15, t5))Tvop = (2 + t3 — min(t1,t3), min(ty,t3), t1 + to — min(ty, t3))

This is precisely the formulas ([[.1)) which give the reparametrization R732.

Example 2.9. As in the previous example, we can also compute:

z_121(t1, b2, t3) = T_012(t], th, t5)

One obtains:

|
—~

(1,15, 3)
Hence:

(1,15, t5)]vop = (t2 +t3 — min(to, t1 + t3), t1 + t3, min(te, t1 + t3) — t3)

These formulas give the reparametrization R 757

We can also give a geometric lifting of the maps Riii. This geometric lifting is an
isomorphism between the subvarieties L"°¢ and L*"°. To define this isomorphism,
we need to introduce a representative of wy in G.

Recall that W ~ Norm(T')/T. Fix a representative wy € Norm(T') of wp. In the
sequel, the results will not depend on the choice of this representative.

For instance, choose Wy := $;, S, - - - Siy, Where i = (i1,--- ,in) is a reduced
word and

5= i ( (1) _01 > =z;(—Dy:(Dzi(-1), 1<i<n
We know that wg does not depend on the choice of the reduced word. An easy
computation shows that 5 =5 'and 5t =55 Furthermore,
(2.6) W' =wp ! =W = wy |
Following [}, we define for » € G
0 (x) = [(@oz") 4,

and .
e (x) = ([wo 'z’ lo[wg a"]-)7"
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Theorem 2.10. [ff
(1) The map n*°° is a birational isomorphism between L' and L®"°, which
restricts to a bijection from LYY to LG°; the inverse map is n®*°.
(2) The components of (zy ' on**cox_;)V
sions, and

are rational subtraction-free expres-

RYi(t) = [(23 07" 0 3) V] mvop (¢)

Example 2.11. In the case G = SL3(C), one has the following explicit formulas:

0 0 1 to gt 0 0
wo=1 0 —1 0 |, x_121(t1,t0,t3) = t:s_l ity tity 'ty 0
1 0 0 1 ts  to

1 (tg + tltg)tgl tits
(Wor_121(t1, t2,t3)") " = | —t7"  —taty M5! 0
ty? 0 0
= y1(—taty '™ ya(—sty '3 yr(—tas™ ) (fr) 2o (ts)z (taty )
where s = to + t1t3.

Hence, if x121 (8], th,t5) = 0" °(x_121(t1,t2, t3)) then
(#1,t5,t5) = (1, t3, tat3")
Hence,
(1,15, t3)]mrop = (t1, t3, t2 — t3)
This is precisely the formulas ([.) which give the changing of parametrization
R,
2.6. Geometric lifting of ¢,. Now we fix a dominant weight A = \jw; 4+ --- +

Aoy to the end of the section.
Given z € G, we set ((x) := [z*T],. Our first observation is

Proposition 2.12.
(i) Let i = (i1, -+ ,in) be a reduced word. If x = x_;i(t1,--- ,tn) then ((z) =
xi(th, -+, thy), where

(27) t;c — t;;l H t;aijik
i>k
(ii) The application ¢ defines a bijection from LY to LI°.
Proof: (i) follows from the relations (P.4) and (ii) follows from Theorem P.g and
()2
Now we can give a geometric lifting and an explicit formula for ¢y:

Theorem 2.13. Let i and i’ be reduced words.
(i) Components of (xfl oCox_y)V are rational subtraction-free expressions.
(ii) One has,

bitoney () = (27" 0 Coxy)]mvop (8) + b5 9 ()

As a consequence of the above proposition and the above theorem, we have:



GEOMETRIC LIFTING OF THE CANONICAL BASIS ... 13

Corollary 2.14. If (t},--- ,thy) = by "éac; *(t1, -+ ,tn), then

(28) t;c = lk - tk - Z aikijtj
i>k

where (I, ,In) := b ' (vy).

Remark 2.15. The constants (I1,---,Ix) can be computed in different ways.
One can use @, §4.1] or one can compute directly from the above formula. In-
deed, one knows, [@, §28.1], that (I},---,ly) = c(v{®) are given by I} =
(N*, 86,805 -+ 80, (o)), 1 < k < N and resolving (0) = b b N1, L 1Y)
one obtains the constants (I1,---,Iy) = b; '(vi?)
=\ aj) =N\

. These constants are given by

Proof of the theorem: Fix a weight A in P*. Let ®;y : C;(A) — Z" be a family
of applications indexed by two reduced words, satisfying the following properties:

(1) (I)i,i/ (07 T 70) = b;1¢k(vk)

(2) (I)i)if = R%,, (e} (I)i/f)i/ = ‘I’Li” [¢] R:::/

(3) If ®5;(t1,---,tn) = (¢, -+ ,ty), then ¢§ + t1 and the ¢}’s, k # 1 only
depend on to,--- ,tn.

The theorem is a consequence of the following proposition:

Proposition 2.16. One has,
(i) If (®iy) is a family satisfying conditions (1), (2), (3), then

®;p = by "oac;,
(ii) The family (®;y) defined by

Oy (1) = (77" 0 Coxir) ]mvop (1) + by Toa(va)
satisfies conditions (1), (2), (3).

Proof: Let us first prove (ii). Given a rational subtraction-free expression @,
one has [Q]trop (0,...,0) = 0, so condition (1) is clear. Using (23 and (R12)
the conditions (2) and (3) are also clear. Let us now prove (i). Let (®;;) be a
family satisfying the conditions (1), (2), (3). We define maps F; : B(A) — Z&, by
E;(b) = ®; y0cy(b), b € B(\). Condition (2) implies that the maps do not depend on
the choice of i’. By induction on the weight of b, we show that for every reduced word
i one has F(b) = b; *(#x(b)). Indeed, if b = vy, this is clear by (1). If b = f;(V),
we can choose a reduced word i’ starting with 4, namely i’ = (i,45, - ,i). By
Proposition [.3, one has ¢y (fi(')) = e (b)+(1,0,-- - ,0), so b and b have the same
string parameters, except the first parameters which differ by 1. Hence, by (3) we
have Dy y 0 Ci/(fi(b/)) =Dy y (Ci’ (b/) + (L 0,--- aO)) =y v ocy (b/) - (L 0,--- aO)
and so Fy(b) = Fy (V') — (1,0,---,0). Furthermore, by induction hypothesis one
has Fy (b) = by, ' (¢ (b)) — (1,0, -+ ,0). Using Proposition [[.9 and Theorem P.1(ii),
one obtains Fy (b) = by (&5 (V) = by (oa(fit')) = by (#a(b)). Finally, by (2)
one deduces Fj(b) = b; ' (¢x(b)) for any reduced word i.
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2.7. Geometric lifting of 7). Let i be a reduced word and let A = A\yooy + -+ - +
MA@, be a dominant weight. One knows that i* is also a reduced word. And it
is clear that the isomorphism dy- (see section P.1]) induced by & on V(\*) satisfies
Ixn (bi()) = bix (2).

Now we can give an explicit formula for the Schiitzenberger involution 17y = dx« @y
in terms of parametrizatons of the canonical basis:

Corollary 2.17. If (t,--- ,thy) = b na(c; ' (t1, -+, tN)), then
t;c = /\Zk - tk - Zaiki].tj
J>k
It is remarkable that the application b;lmci_ !is affine, and that its linear part

does not depend on A.

We define a linear map € as follows: for all (A\,t) = (A, -, A\p,t1,- - ,tn) €
Rn-{-N7

QN 1) = (A1, A, th, -, ), where th = Aj, — tp — Zaikijtj
i>k

In other words, if b is an element of B(\) then Q;(\, ci(b)) = (A, byz'na(b)).

We can also give a geometric lifting of 7).
Given z € G, we set £(z) := [Wo(z ™) wy ]+

Proposition 2.18.
(i) The application & defines a bijection from LY to LS,
(ii) Components of (:v;l ofox_y)V are rational subtraction-free expressions,

(iii) One has,
by taen 1) = (w7 0 o) Y] mvop (8) + b5 'na(v2).

Proof: It suffices to notice that wyy;(t)wp ! = x;-(—t) and Wot™ Wy~ = o
Then one has &(z_j(t1, - ,tn)) = ((x_i=(t1, - ,tn)). The proposition then fol-
lows from Proposition and Theorem .

Example 2.19. In the A; case, let b be an element of B(Awy + Aewa). If we
denote (t1,ta,t3) = c121(b) and nx(b) = ba12(¢], th, t5) then,

th = A —t+ty— 2
(2.9) th = dg—ta+ts
th = A\ —t3

And 1f (tl,tz, t3) = Clgl(b) and ’I])\(b) = blgl(tlll,tg, tg) then,

t = Ao+t —to+ 2tz —min (t; +t3,t2)
(.10) B= M =2t min (o bt
ty = Xo+tz—min(t; +t3,12)

Example 2.20. In the By case, let b be an element of B(A1wy + Aaws). If we
denote (tl,tg,tg,bl) = 61212(()) and 7’]>\(b) = blglg(tll,té,té,til) then,

I = M—ti+ta—2t3+1y
th = g —to+ 2 — 2y
2.11 2
(2.11) th = M—ts+t

th = A—ts
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2.8. Formulas of inverse maps. In this section we study the inverse maps cj¢b;
and (~1. We have explicit formulas:

Proposition 2.21. [ﬂ] Let 1 be a reduced word and let A = \yw1 + -+ + A\, be
a dominant weight. One has:

(1) If (tlv e atN) = I:ilcilxi(t/la e 7%\/’)7 then
(2.12) o=t [[t;, 7" 1<k<N
>k
where a;jik = (Bik, BY)-
(ii) If (t1, - ,tN) = cgabi(ty, -~ tly) then
(2.13) =1, —t,—Y aj,t;, 1<k<N
j>k
where a/ijik = (Gik, le> et l) = <)\,ﬂi\fk>.

Now we determine the inverse map (™! viewed as a map from Lg° to LYY

>0
Proposition 2.22. The map (' : LY — LYY° is given by:
(M) = [woa"Joa' "

Proof: Let us check that ¢~!(z) is well defined. We use definitions (2.3) and
relations (2.4). Givenz € LS§°, set y := [z ]oz*” and let us show that y € LY9°.
One can express « as:

x = nihiwohons, with ny,ne € N~ ,hy,hy € T.

Thus,
Wor!  =wond hiwethinT =woniwo ' wohlwe AT nT .
~—
eEN— eT EN
Hence,

— T T ——1T——13T T 3/ T——T 1T, T

y = [Wox" Jox'" =wWohaWo ~hy ny" hi wo"" hy n
N ——
eT eEN

Let us commute the above two elements in 7" and N:

Wl T 13 T3 0T——7T T
Yy = mn,; WohyWo ~hihi Wohy ns
=1
P2 R
= n, Wy Ny
~—~
eEN eEN

Since x is in N, then y = [woz’]oz*? is in B~. Hence y belongs to L“¢ by
definitions (E) It remains to check the positivity of y. Fix a reduced word i

and let us use Theorem E for z and y. One can write y = z_;(t1, -+ ,tn) =
—aVY —a
Yi, (t1)t i (tN)tNa”V with (t1,--- ,tn) € (CQO. Using relations (P-4) we

write y = hyi;, (¢1) - yiy (ty) With a certain h € T" and ¢} = [[;5, t;iji’“. But
there also exists (t7,---,t%) € RY, such that © = a;(¢},--- ,t%). Then y =
[worT)oz'T = [woxT|oyi, (#]) - yin (t%). Identifying both expressions one deduces
that (t1,---,tn) belongs to RY; and thus y = [woz”]oz'? € LYY°. Hence the
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definition makes sense. Furthermore it is easy to see from the definitions that we
have (([woxT]ox'T) = x. It means that the map x — [wozT|ox'? is precisely the
inverse map of (.

3. TORIC AND SEMITORIC DEGENERATIONS OF RICHARDSON VARIETIES

3.1. Problem of toric degenerations. A complex projective variety X degener-
ates into a toric variety, resp. semi-toric variety (i.e a variety whose irreducible
components are toric varieties), if there exists a variety X and a regular map
7w : X — C such that 771(2) 2 X for all z € C* and 7—*(0) = Xy, where Xp
is a toric variety, resp. semi-toric variety.

One can construct toric degenerations of varieties in the following way. Denote
by R the algebra of regular functions on X. Endow R with an increasing filtration
(Rn)n>o0 such that the associated graded algebra GrR is isomorphic to one algebra
of semigroup. Consider R := @®,>0R,t" C R[t] where t is an indeterminate over
R. One has R/tR ~ ®p>0Rnt+1/Rn ~ GrR and R/(t — 2)R ~ R, for all z € C*.
Thus if X := Proj R, m := ¢t and Xy := Proj GrR, then we have a (flat) toric
degeneration of X in Xj.

3.2. Flag varieties. Cousider the flag variety G/B and denote by R its algebra of
homogenous coordinates. Let A\g be a regular dominant weight and denote by Ly,
the corresponding ample line bundle on G/B. Recall that:

R=EPH"G/B,L) = @ V(N @wa
neN AEN-Ao
where N.)\q is the cone of all the multiples of Ag.
From now on, we fix a regular dominant weight A\g = Ay + Aowa + -+ Aoy,

One can identify each element of N.\g with the n-tuple of its coordinates on the
fundamental weights wy,..., w,. The set N.)\g is naturally identified with N".

The set {(bvy)*®@uva, b € B(A), A € N.\g} is the canonical basis of R. The product
on R is given by:

((bva)" @ vA)((V'v)" @ V) = (Db VA4p)™ ® Vrsp
Given a reduced word i, one parametrize an element (bvy)* ® vy of the canonical
basis of R by (A, ci(b)) € ZggN and one introduce the set of all parameters:
i = {(\ai(b) € ZLY, X € N.Xo, b € B(M)}
One has

Theorem 3.1. [@] The set 'y is the set of all integral points in a rational polyhedral
convex cone of RV,

We will use the notation by ¢, (A, t) € I'y, for the element (bvy)* ® vy € R where
b € B(\) is such that ¢;(b) = t.

The following multiplicative property of two elements of the canonical basis, is
due to Caldero:
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Proposition 3.2. [{] Given (\,t), (N, t') in T},

baibae =bxpxre + Y divebiins

SEZEJSN
with d , yrp 7 0= s <t +1', where < is the usual lexicographic order of Z%;.

Using this property one can construct in a first step, a I'j-filtration of R such
that the associated graded algebra is isomorphic to the algebra of the semigroup
C[T;]. In a second step, using an adapted linear form e : ZY; — N (see [f]) one
constructs a N-filtration Fj := (Fim)men of R such that the associated graded
algebra is isomorphic to C[I;]. Denote by GrR the graded algebra associated to
this filtration and denote by B)\7t the image of by + in GrR. The elements B)\7t satisfy
l_))\_’tl_))\/ﬁt/ = l_))\Jr)\/’tth/, thus one has GrR = 69(,\7t)6piCl;A7t = (C[Fl]

Remark 3.3. The toric variety Proj(C[T';]) is the same as the toric variety con-
structed from the convex polytope Ci(Xo) := & (B(Xo)) = Ao x ZY,NT;. By [L], one
knows equations of the polytope Ci(\g). One has Ci(A\o) = {(t1,--- ,tn) € Ci| tx =
Aij, — Zj>k aii;tj, 1 <k < N} where \; is the coordinate of A\g on w; (note that
one can also obtain these equations with the formula (@) using the positivity of
the t;’s). In the cases where G is of type A, or G arbitrary and i is a nice decom-
position of wy, one also has equations for the string cone C; (see [, §3.4], , §4]).

3.3. Schubert varieties. Consider the Bruhat cellular decompositions:

G/B= | ) BwB/B= | J B"tB/B
weWw TeW

Closures X, := BwB/B, w € W, in G/B, are the so-called Shubert varieties. It is
well known that dim(X,,) = ¢(w). Let us denote by X7 := wo(X,) = B-worB/B,
T € W, the oppposite Schubert varieties in G/B. Recall that G/B = X,,, = X ™.

In the sequel, let us fix two elements w and 7 in W. The algebra R,, associated to
X, is a quotient of R by a certain ideal I, := ), oy, Ve (A) T @ vy, where Vi, (A)*
is the orthogonal of V,,(A) in V(A)*. By Theorem the ideal I,, is compatible
with the canonical basis of R. More precisely, {(bvx)* @ vx, A € N.Ag, b & By (M)} is
a basis of I,,. Denote by m,, the canonical projection of R onto R/I,, = R,,. The
set {my (bv ® va),b € Byw(A), A € N.Ag} is a basis of R,,. Let i be a reduced word,
define

T = {(\ci(b) € ZEN, N € Nodo, b € By (M)}

We will say that a reduced word i = (i1,42, - ,in) is adapted to w, if w =
Siy Siy *+* 8i, 15 a reduced decomposition.

Theorem 3.4. [@] If the reduced word i is adapted to w then I'y’ is a face of the
cone I'y. Moreover, T =T N (Z’;gp x {0}N=P) where p = €(w). In particular, T'Y
is the set of all integer points in a rational polyhedral convex cone of R,

Using the above filtration Fj, one can construct a filtration F{* of R,,, as follows
fi”m ‘= Fim + Ly, m € N. The associated graded algebra GrR,, is such that
GrR, = GrR/Grl,. The ideal Grl, of GrR is generated by {bx, (A, t) & T¥*}.

In the case where i is adapted to w one has GrR,, = C[I'}"] which is the algebra

of a semigroup. Therefore one obtains toric degenerations of Shubert varieties X,,.
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In the case where i is not adapted to w, we will see in the next paragraph that
I'}” is a union of faces of I';. Thus, we will deduce semitoric degenerations of the
Schubert varieties X,,.

Regarding opposite Shubert varieties we denote by R”™ the algebra associated.
This algebra is obtained from R, by the wg-action; one has R™ = wo(R,) =
R/wo(I;). The ideal I" := wo(I+) = @yen.r, I (Vr(X))T @ va of R has the basis
{(bva)* @ va, A € NXg,b & na(B-(A))}. Denote by n7 the canonical projection
of R onto R/I™. The elements {77 (nx(bva)* @ vy), where A € N.)\g, b € B,(\)}
constitute a basis of R”. We set:

] = {(\ (b)) € ZZEY, X € Nodo,b € na(B-(V))}
We will also show that I'] is a union of faces of T}.

3.4. Richardson varieties. More generally, consider Richardson varieties X, :=
XwNX7 w, T € W. Since G/B = X,,, = X™° the Schubert varieties, resp opposite
Schubert variety, are the particular cases corresponding to 7 = wg, resp. w = wy.
Recall that if £(w) + £(7) < N then the intersection X7 is empty.

For the sequel we fix w and 7 in W such that X7 # (0, and an arbitrary reduced
word i. Denote by I7 := I, + I” and R}, := R/I]. The ideal I is generated by
{(bvr)* @ v, A € N Ao, b & na(B-(N) N By(A)}. We set:

PP = TP AT = {(\ (b)) € 225N, A € Ndo,b € (B, (W) N Bu(V)}

1

Then I, = (bx¢, (A, t) € T{"7). The set {7}, ((bvr)*®@wva), A € N.Ag, b € na(B- ()N
B, (A)}, where 77, is the canonical projection of R onto R/I7, is a basis of RT.

One constructs a filtration F{""" of R}, using the previous filtration F; of R, as
follows F{""" = Fim + Ij,, m € N. The associated graded algebra GrRj, is the
quotient GrR?, = GrR/GrI,. The ideal GrI7, of GrR is generated by {bx s, (A, t) &
IV
Proposition 3.5. The set I'\"" is a union of faces of Ts. In particular T'"" is the
set of all integer points in a rational polyhedral convex cone of R’;J(SN.

This proposition is a consequence of the following lemma.

Lemma 3.6. Let I'r be a rational polyhedral convex cone of RZ, and let T'y be an
arbitrary subset of Tg. Consider T :=Tgr NZ%, and I := T NZ%,. If T satisfies
the following conditions: B -

(a) Forally €T and 6 €17, one has v+ 0 ¢ T’

(b) For all v € TV and m € N, one has m~y € T”
then I" is a union of faces of T'r intersected with ZZ,.

Proof: Given v € I consider a face g of I'g (eventually Pgr = T'g) such that
~ belongs to the relative interior of ®r. It suffices to prove that all elements of
® := Pr N ZZ, belongs to I'. Assume ¢ € ®. Since v lies in the interior of ®p,
there exists m € N such that v — %5 is in ®r. Hence 7' := my — 0 € Ppr NZY,,
and therefore 4/ € T'. If § ¢ T then by condition (a) one has 7/ + & ¢ I, but one
also has v + 6 = my € TV by (b), this is contradiction. Therefore one has § € T".
This proves Lemma B.6.

Proof of the proposition: Let us apply Lemma B.4 with I}”" C I'y. Taking into
account that GrI], = (bx, (A, t) € I'}"7) is an ideal of GrR, one concludes that the
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set I';"" satisfies condition (a) of the lemma. Condition (b) is also satisfied. Indeed,
fix (\,t) e I} and m € N.

First of all, choose i’ adapted to w and use the reparametrization Rj/ =
cir(ci)™!. One has (A, t) € T¥, hence (), Rj/t) € I'Y/. On the one hand, as a con-
sequence of Theorem P.7 the reparametrization verifies R:;l (mt) = ij/ (t). On
the other hand '/ is a cone by Theorem B.1 Therefore (mA, Rj/ (mt)) € I'y). One
easily deduces that m(\, t) = (mA, mt) € 'V Next, choose i” adapted to T and use
the reparametrization Rg;l)* = b(;,%)* o c(l. Since (A, t) € l:‘f there exists b € B (\)
such that (A, £) = (A, cina(b)). Thus (\, RY)"t) = (A, bghy.m(9)) = Qi (A, (b)),
where €y~ is the map defined in section E One has (A, Rgli/)*t) € 17, Since
Qv is linear and I'], is a cone, one has (m)\,ng;/)*t) € NI, As a conse-
quence of Theorem one also has ng:)*t = Rg;l)*(mt). Hence there exists
b € B-(\) such that (mA, Rﬁ'{’”‘ (mt)) = Qy(mA, ¢z (b')). In other words, we have
(mA,b(}%)* oc; Hmt)) = (mA,b&%)*nA(b’)). Hence (m\, mt) = (mA, ey (b)) € T7.

Finally, we obtain (mA, mt) € I';””", that shows that the hypothesis of the Lemma
@ are satisfied. We deduce that I'{”" is a union of faces of T}.

We are now ready to prove the main result of this section.

Theorem 3.7. Richardson varieties X, degenerate in union of irreducible toric
varieties wich are given by the faces of Ty

Proof: By Proposition @, there exists faces of I';, namely @f, k=1---r, such that
"7 = |J®F. Thus, one has GrI] = (by+, (A1) & Up®F) = Ni(bas, (A, 1) & OF).
Spaces IF := (by ¢, (A, t) & ®F) are prime ideals of GrR = (by 4, (\,t) € T';) since ®F
are faces of I';. The algebras GrR/Z} = C[®F] give irreducible toric varieties which
are the irreducible components of the variety associated to GrR;,.

3.5. Particular case of toric degenerations. In the case where G = SL,,, one
can construct toric degenerations of the Richardson varieties X for a suitable
choice of (w, ) as follows.

Proposition 3.8. Leti = (1,2,1,--- ,n,n —1,---,2,1) be the standard reduced
word, and let w,7 € W. Ifi is adapted to w and i* is adapted to T then I'{"" is at
most one face of I'.

Proof: In the case where i is the standard reduced word, the map R, !is linear by
Corollary @ The map ;- is always linear by definition Section @ By Theorem
B-4one knows that T'7. is a face of T';+, thus one deduces that T'] = (idx Ry ")+ (I'%.)

is a face of I';. Hence, I'}"”" := ¥ NT7 is only one face of T; when it is not empty.

3.6. Example in the A; case. Let us study the case where G = SL3. Let us fix
)\0 = w1 + w2 and i = (1,2, 1)

Figure B.J represents the polytope Ci(\o) of all string parameters of B(w + ws).
The cone T is the cone over this polytope. The flag variety G/B degenerates in
the toric variety associated to this polytope.

Given w,7 in W, denote by C;"" (o) := Ao x ZY, NT{"" the set of all string
parameters of the elements lying in 7, (B, (\o))NBuw(Ao). By TheoremB.7, ;""" (\o)
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(0,2,1) (1,2,1)
F

(21,0

(0,0,0)

A B
(1,0,0

FIGURE 3.2. Polytope ¢;(B(w1 + w2))

is a face or a union of faces (see Fig.d) of Ci(\o) corresponding to the toric or
semitoric degeneration of the subvariety X7 . Some of the starting varieties X are
already toric, if they degenerate in toric varieties then the varieties are the same.

Let us describe this polytope more detailly in terms of degeneration of Richardson
varieties. The vertices A, B, C, D, E, F of the polytope correspond to the T-fixed
points wB/B of G/B, for respectively w = id, s1, $182, S2, $251, S18281. Note that
there is an extra vertex, G, resulting from the degeneration.

The Richardson curves are Xy, Xs,, X%, X%, X772 XJ201 X7Jiez X Z201
and correspond respectively to the edges [AB], [AD], [CF], [EF], [BC], [CD], [DE],
[EG] U [BG]. The point G correspond to the intersection of the irreducible compo-
nents of the degeneration of X J271. There are also two extra edges, namely [AG] and
[FG], which will be understood as the intersection of the irreducible components of
the degeneration of Richardson surfaces.

The Richardson surfaces are X, s,, Xsys,, X1, X®1%2 and correspond to the

faces represented Figure @

The edge [AG] corresponds to the intersection of the irreducible components of
Xs,s,, and the edge [FG] corresponds to the intersection of the irreducible compo-
nents of X*12,

3.7. Examples in the By case. In the By case there are two reduced words for
wp, namely i = (1,2,1,2) and i’ = (2,1,2,1). There is no non trivial diagramm
automorphism thus i* =i and i’ = i. We will use the word i. Using @, §4], one
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w = S152
T = Wo

21

w = $281
T = W

w = Wy

w = Wy

T = 8981 T = 5152

FIGURE 3.3. Faces C;""(\o) in the polytope C;(Xo)

describes the string cone C; in Z4 as follows:

t1 >0 (®1)

C' . t2 — t3 Z 0 ((132)
Vs —ta >0 (®3)
t4 >0 (®4)

Let us fix a regular dominant weight A\g = w; + wy. By [@, §1] the polytope
Ci(Mp) is the intersection between C; and the following affine cone:

ty—tg+2t3—t, <1 (D)
ty — 2342ty <1 (®s)
t3 —1t4 <1 (&)3)
tay <1 (P4)

Denote by ®;, resp. ®;, the face of the polytope Ci(X\o) determined by the
inequality (®;), resp. (®;).

The flag variety G/B degenerates in the toric variety associated to the polytope
Ci(XAo). The subvarieties X degenerate in toric or semitoric varieties which are
associated to face or union of faces of the polytope. We describe some of them.
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The variety Xs, 5,5, is associated to the face ®4. It is a 3-dimensional polytope
whose vertices are {(0,0,0,0), (0,1,0,0), (1,0,0,0), (0,3,1,0), (2,1,0,0), (2,3,1,0),
(0,1,1,0)}. The variety X %251 ig agsociated to the faces 3 UP4. And the variety

X 15231 is associated to the face ®4 N B, It is a plane polytope whose vertices are
{(0,1,0,0), (2,1,0,0), (2,3,1,0), (0,3,1,0)}.

The variety Xs,s, is associated to the face ®3 N ®4. It is a plane polytope
whose vertices are {(0,0,0,0), (0,1,0,0), (2,1,0,0), (1,0,0,0)} (in this case the
degeneration is trivial). The variety X 12 is associated to the face Py N Py, Tt is
a plane polytope whose vertices are {(1,3,2,1), (2,3,1,0), (0,3,1,0), (0,3,2,1)}.
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