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GEOMETRIC LIFTING OF THE CANONICAL BASIS AND

SEMITORIC DEGENERATIONS OF RICHARDSON VARIETIES

SOPHIE MORIER-GENOUD

Abstract. In the sln case, A. Berenstein and A. Zelevinsky studied the
Schützenberger involution in terms of Lusztig’s canonical basis, [3]. We gener-
alize their construction and formulas for any semisimple Lie algebra. We use
for this the geometric lifting of the canonical basis, on which an analogue of the
Schützenberger involution can be given. As an application, we construct semi-
toric degenerations of Richardson varieties, following a method of P. Caldero,
[6].

Introduction

Let G be a semisimple simply connected complex Lie group. Fix opposite Borel
subgroups B and B− of G. In this paper we consider subvarieties of the flag va-
riety G/B known as Richardson varieties. They first appear in [16]. Our problem
is to construct toric or semitoric degenerations of these varieties. Such construc-
tions have already be done in the special cases of the flag variety and the Schubert
varieties, see [10], [8] and [5]. Our approach consists to extend the method intro-
duced by [5]. Let us mention that the method of [5] was recently extend for the
degenerations of spherical varieties, see [1].

A Richardson variety Xτ
w is the intersection of a Schubert variety Xw := BwB/B

and an opposite Schubert variety Xτ := B−τB/B, where w and τ are elements
in the Weyl group W of G. The opposite Schubert variety Xτ is the image of a
Schubert variety under the action of the longest element w0 of W . This element
plays an important role in our study.

An important tool in our work is the canonical/global basis of Lusztig and Kashi-
wara. This basis B lays in the negative nilpotent part of the enveloping algebra
U(g), where g is the Lie algebra of G, and has remarkable compatibility properties
with the simple G-modules of highest weight. This provides good bases to study
the homogenous coordinates algebras Rτ

w of the varieties Xτ
w.

The first step is to understand the action of w0 on the G-modules. By a result
of Lusztig, we know that w0 acts by a permutation on the elements of the bases
of the G-modules induced by B. To have explicit results we use a combinatorics
of B, given in terms of string parametrization and Lusztig parametrization. These
parametrizations depend on a choice of a reduced decomposition of w0. In the
case where G = SLn(C), for a convenient choice of the decomposition of w0, this
combinatorics is the same as the combinatorics of Young tableaux. In this case, the
action of w0 is given by the involution of Schützenberger described on the tableaux
in [17], and we have explicit formulas. This was done in [3]. We generalize these
results to any group G and to any choice of a reduced decomposition. A part of
our results was already announced in [15], and applied in [7].

The generalized Schützenberger involution is understood via the geometric lift-
ing, i.e a geometric version of the canonical basis which gives a combinatorics of
totally positive subvarieties in G. The formulas in the geometric version can be

1



2 SOPHIE MORIER-GENOUD

easily computed. These formulas are closely related to similar formulas in the alge-
braic version by a ”tropicalization” application. We strongly use the results of [2]
and [4].

This paper is organized as follows. Section 1 provides a construction of the
canonical basis and their parametrizations. It also recalls the compatibility property
with the simple highest weight G-modules. In Section 2, we define the action of w0

on the modules and we give its geometric analogue. We obtain explicit formulas
in terms of parametrizations of the canonical basis. In Section 3, we recall the
constructions of degenerations of the flag variety and the Schubert varieties due to
[5]. We then construct semitoric degenerations of the Richardson varieties.

I wish to thank P.Caldero for introducing me the statement of this problem
and for his constant help. I am deeply grateful to P.Baumann for enlightening
discussions and for his help with Lemma 3.6.

1. Notation and preliminaries

1.1. Let G be a semisimple simply connected complex Lie group. Fix a torus T
and a Borel subgroup B of G such that T ⊂ B ⊂ G. Let N be the unipotent
radical of B. Denote by B− the opposite Borel subgroup and N− its unipotent
radical. The complex Lie algebras associated to G, T , N , N− will be denoted by
g, h, n, n− respectively. There is a triangular decomposition g = n− ⊕ h ⊕ n. Let
{αi}1≤i≤n be the set of simple roots corresponding to this decomposition, where n
is the rank of g. This set provides a basis of the dual vector space h∗. The simple
coroots in h are denoted by {α∨

i }1≤i≤n. The weight lattice P := {λ ∈ h∗, λ(α∨
i ) ∈

Z, ∀1 ≤ i ≤ n} is generated by the fundamental weights ̟i, 1 ≤ i ≤ n, defined such
that ̟j(α

∨
i ) = δi,j . Let P+ :=

∑

i N.̟i be the semigroup of integral dominant
weights. The natural bilinear form on h∗×h is denoted by 〈 , 〉. The Cartan matrix
associated to g is (aij)1≤i,j≤n; one has aij = 〈αj , α

∨
i 〉. Recall that aii = 2, aij ≤ 0,

for all 1 ≤ i 6= j ≤ n, and there exist nonnegative integers (di)1≤i≤n such that
diaij = djaji.

1.2. The Weyl group W is the subgroup of End(h∗) generated by the reflexions si,
1 ≤ i ≤ n, such that si(λ) = λ−〈λ, α∨

i 〉αi, ∀λ ∈ h∗. We identify si with its adjoint
so we also have si(h) = h − 〈αi, h〉α∨

i , ∀ h ∈ h. The form 〈 , 〉 is W -invariant. A
reduced word for w ∈ W is a finite sequence of indices i = (i1, · · · , il) such that
w = si1 · · · sil

and the length ℓ(w) := ℓ is the shortest possible length. Let w0 be
the unique element of W with maximal length; set N := ℓ(w0). Reduced words for
w = w0 will be called reduced words for short. The involution i 7→ i∗ of the set
{1, . . . , n} is defined by w0(αi) = −αi∗ . Given a reduced word i = (i1, · · · , iN), we
set i∗ := (i∗1, · · · , i∗N). It is clear that i∗ is also a reduced word. Given λ ∈ P+, we
set λ∗ := −w0(λ).

1.3. Now, let us introduce the quantum enveloping algebras. They will be useful
in Sections 1.3, 1.4 and 1.5 for the definition of the canonical basis and there
parametrizations. After these sections, we will only consider the classical algebras
which are the specializations at q = 1. Let q be an indeterminate. The quantum
enveloping algebra Uq(g) of g, over C(q), is defined with generators Ei, Fi, Ki,
1 ≤ i ≤ n and quantum Serre relations. We also have a triangular decomposition
Uq(g) = Uq(n

−)⊗Uq(h)⊗Uq(n). One can construct bases of Uq(n) called Poincaré-
Birkhoff-Witt type bases as follows.

For all 1 ≤ i ≤ n and all k ∈ N, we set qi := qdi , [k]i :=
qk

i −q
−k
i

qi−q
−1

i

and:

E
(k)
i :=

1

[k]i[k − 1]i · · · [1]i
Ek

i , F
(k)
i :=

1

[k]i[k − 1]i · · · [1]i
F k

i
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Define automorphisms Ti, 1 ≤ i ≤ n of Uq(g) as follows:

Ti(Kj) = KjK
−aij

i , 1 ≤ j ≤ n

Ti(Ei) = −K−1
i Fi, Ti(Fi) = −EiKi,

Ti(Ej) =
∑

k+l=−aij

(−1)kqi
−kE

(k)
i EjE

(l)
i , 1 ≤ j 6= i ≤ n

Ti(Fj) =
∑

k+l=−aij

qk
i F

(l)
i FjF

(k)
i , 1 ≤ j 6= i ≤ n

One can check the compatibility with Serre’s relations. Now fix a reduced word
i = (i1, . . . , iN). For all k, 1 ≤ k ≤ N , set βi,k := si1 . . . sik−1

(αik
). It is well known

that {βi,k, 1 ≤ k ≤ N} is the set of positive roots and that the ordering

βi,1 < βi,2 < . . . < βi,N

is a convex ordering on R+. For all k, we define Ei

βi,k
= Ti1 . . . Tik−1

(Eik
). Fur-

thermore, for all t = (t1, · · · tN ) ∈ NN , we set Ei(t) := E
(t1)
βi,1

. . . E
(tN )
βi,N

, where

E
(tk)
βi,k

:= 1
[tk]β

i,k
!E

tk

βi,k
. The set {Ei(t), t ∈ NN} is the so-called Poincaré-Birkhoff-

Witt type basis of Uq(n) associated to the reduced word i. In the same way, we
define a Poincaré-Birkhoff-Witt basis {F i(t), t ∈ NN} of Uq(n

−).

1.4. Lusztig, and independantly Kashiwara [11], constructed a basis called canon-
ical (or global) basis of the nilpotent part Uq(n

−) which have good compatibility
properties with the g-modules. Following Lusztig’s construction, let us introduce
the ”bar” automorphism of Uq(g) over C, denoted ¯ and defined by:

Ēi = Ei, K̄i = K−1
i , F̄i = Fi, q̄ = q−1, 1 ≤ i ≤ n

Proposition 1.1. [14] Let i be a reduced word. For all t ∈ ZN
≥0, there exists a

unique element b = bi(t) in Uq(n
−) such that b̄ = b and b−F i(t) ∈ q−1

∑
Z[q−1]F i(t′).

The set B := {bi(t), t ∈ ZN
≥0} does not depend on the choice of the reduced word i.

Moreover B is a basis of Uq(n
−).

The set B as above is namely the canonical basis of Uq(n
−).

Given a reduced word i, the map t 7→ b = bi(t) is a bijection from ZN
≥0 to B, it gives

a parametrisation of the canonical basis that we call Lusztig’s parametrisation.

1.5. Kashiwara’s operators acting on the canonical basis may be defined as follows.
For all i in {1, · · ·n}, there exists a unique injective map f̃i: B → B, such that if i

starts with i1 = i, then:

f̃i(bi(t1, t2, . . . , tN )) = bi(t1 + 1, t2, . . . , tN ).

We also define ẽi : B → B ∪ {0} by ẽi(b) = b′ if there exists b′ such that f̃i(b
′) = b

and ẽi(b) = 0 otherwise. We set εi(b) =Max{k | ẽk
i (b) 6= 0}.

The string parametrization of an element b ∈ B associated to a reduced word
i = (i1, · · · , iN) is the N -tuple ci(b) := (t1, t2 · · · , tN ) defined recursively by

t1 = εi1(b), t2 = εi2(ẽ
t1
i1

(b)), . . . , tN = εiN
(ẽ

tN−1

iN−1
. . . ẽt1

i1
(b)).

We denote by Ci the image of B in ZN
≥0 under the map ci.

Proposition 1.2. [11] Let i = (i1, · · · , iN ) be a reduced word, and let b be an
element of B with string parameter ci(b) = (t1, t2 · · · , tN ). One has

(i) f̃ t1
i1

. . . f̃ tN

iN
(1) = b,

(ii) ci(f̃i1(b)) = (t1 + 1, t2, · · · , tN )
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1.6. Let us now introduce the various reparametrization maps. Let i and i′ be
reduced words, define:

Ri
′

i = (bi′)
−1 ◦ bi : NN → NN ,

R−i
′

−i
= ci′ ◦ (ci)

−1 : Ci → Ci′ ,

Ri
′

−i = (bi′)
−1 ◦ (ci)

−1 : Ci → NN ,

R−i
′

i
= ci′ ◦ bi : NN → Ci′ .

Example 1.3. In the case G = SL3, there are exactly two reduced words, namely
i = (1, 2, 1) and i′ = (2, 1, 2). The map Ri

′

i
was calculated by Lusztig, see [13]. If

bi(a, b, c) = bi′(a
′, b′, c′), then:

(1.1)







a′ = b + c − min(a, c)
b′ = min(a, c)
c′ = a + b − min(a, c)

The methods of computation and explicit formulas of all the previous maps are
given in [4], we will recall them in section 2.7.

1.7. Given a weight λ in P+, the Weyl module denoted by V (λ) is a simple finite
dimensional U(g)-module with highest weight λ. From now on, we fix for any
λ ∈ P+, a highest weight vector vλ and a lowest weight vector vlow

λ in every V (λ).
One has V (λ) = U(n−).vλ = U(n).vlow

λ . It is known that the module V (λ) satisfies
the Weyl character formula. Let w be an element in W , fix an extremal vector
vwλ in V (λ) of weight wλ. We introduce the Demazure module Vw(λ) := U(n).vwλ

which is a U(b)-submodule of V (λ).
The canonical basis and the above modules are compatible, by [11] and [12].

Theorem 1.4. One has:

(1) If B(λ) := {b ∈ B, bvλ 6= 0}, then B(λ)vλ is a basis of V (λ).
(2) There exists a subset Bw of B, which does not depend on λ, such that Bwvλ

generates Vw(λ).

We will use abreviation b instead of bvλ and B(λ) instead of B(λ)vλ when no
confusion occurs. Denote Bw(λ) := B(λ) ∩ Bw.

Now, we may suppose that vlow
λ and vwλ belong to B(λ).

We still denote by ẽi and f̃i the Kashiwara’s operators define from B(λ) to

B(λ) ∪ {0} by ẽi(bvλ) = ẽi(b)vλ and f̃i(bvλ) = f̃i(b)vλ.

1.8. Particular case. In this section, we study the case where G = SLn+1. In this
case the Weyl group is isomorphic to the group of permutations Sn. The element w0

has length n(n+1)/2 and the special reduced word i = (1, 2, 1, · · · , n, n−1, · · · , 2, 1)
will be called standard reduced word. Recall that in the case G = SLn+1, one
has a combinatoric model of Young tableaux. The Lusztig parametrization and
the string parametrization generalize this combinatory. They coincide when the
parametrizations are considered with the standard reduced word.

Definition 1.5. Let λ = λ1̟1 + λ2̟2 + · · ·λn̟n be an element of P+. The
Young tableau of shape λ is a collection of boxes, arranged from left to right, from
λn columns with n boxes to λ1 columns with one boxes. Further, a tableau filled
with entries in {1, · · · , n + 1} such that the entries increase across each row and
strictly increase down each column, is called a semi-standard Young tableau of
shape λ.
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Example 1.6. Let n ≥ 3,

1 2 2 3
2 3 4
4

is a semi-standard Young tableau of shape ̟1 + 2̟2 + ̟3

Denote by Y (λ) the set of all semi-standard Young tableaux of shape λ. One
knows (see [11]) that the set Y (λ) gives a parametrization of the canonical basis
B(λ). Let us precise this fact.

Let T be a tableau Y (λ) and denote by bT the element associated to the tableau
T . Let i be the standard reduced word, introduce Lusztig’s parameters of bT :

(t11, t12, t22, t13, t23, t33 · · · , t1n, · · · , tnn) := b−1
i

(bT )

and the string parameters of bT :

(c11, c22, c12, c33, c23, c13 · · · , cnn, · · · , c1n) := ci(bT )

The link between all theses parametrizations is the following.

Proposition 1.7. [3] One has,

tij = (the number of j + 1 in the i-th row of T), 1 ≤ i ≤ j ≤ n

cij = (the number of j + 1 in the i first rows of T), 1 ≤ i ≤ j ≤ n

One can deduce explicit formulas for the maps R−i

i
and Ri

−i
in this special case.

Corollary 1.8. One has:

tij = ci+1,j − cij , 1 ≤ i ≤ j ≤ n

cij = t1j + t2j + · · · + tij , 1 ≤ i ≤ j ≤ n

Example 1.9. Figure 1.1 describes the canonical basis B(̟1 + ̟2) in the case
A2. For each element of the basis, we give the Young tableau associated, the string
parameters and the Lusztig’s parameters for the standard reduced word i = (1, 2, 1).

In this figure, the simple arrows between two elements b −→ b′ mean that b′ = f̃1,
and the double arrows b =⇒ b′ mean that b′ = f̃2.

2. Action of w0 and geometric lifting

2.1. Let us consider the three automorphisms of U(g) defined on the generators
by:

φ(Ei) = Fi, φ(Fi) = Ei, φ(Hi) = −Hi

δ(Ei) = Ei∗ , δ(Fi) = Fi∗ , δ(Hi) = Hi∗

η(Ei) = Fi∗ , η(Fi) = Ei∗ , η(Hi) = −Hi∗

Notice that the automorphism η coincides with the action of w0 up to a multiplica-
tive constant.

In the sequel, let us fix a dominant weight λ ∈ P+.
Given an automorphism χ of U(g), one can define the twisted module V (λ)χ as

the vector space V (λ) with the following action: u∗v = χ(u).v, u ∈ U(g), v ∈ V (λ).
The module V (λ)χ is simple since V (λ) is simple. And one has V (λ)χ ≃ V (λχ),
for a certain λχ ∈ P+. The automorphism χ leads an isomorphism of vector spaces
χλ : V (λ) −→ V (λχ), verifying χλ(u.v) = χ(u)χλ(v). Such isomorphism is unique
up to multiplicative constant by Schur’s lemma. It’s easy to see that if χ = φ, δ
or η, then the induced isomorphisms (normalized by the choice of the image of vλ)
are the following ones:

φλ : V (λ) → V (λ∗) with φλ(vλ) = vlow
λ∗

δλ : V (λ) → V (λ∗) with δλ(vλ) = vλ∗
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(1, 2, 1)

(1, 1, 1)
2 3
3

(0, 2, 1)

(0, 1, 1)
1 3
3

(0, 1, 1)

(0, 1, 0)
1 3
2

(1, 0, 0)

(1, 0, 0)
1 2
2

f̃1

ci(0, 0, 0)

b−1
i

(0, 0, 0)

1 1
2

f̃2

(0, 1, 0)

(0, 0, 1)
1 1
3

(1, 1, 0)

(1, 0, 1)
1 2
3

(2, 1, 0)

(2, 0, 1)
2 2
3

Figure 1.1. Parametrizations of the basis B(̟1 + ̟2)

ηλ : V (λ) → V (λ) with ηλ(vλ) = vlow
λ

The isomorphism φλ is compatible with the canonical basis in the following sense:

Proposition 2.1. [13, §21] One has:
(i) φλ(B(λ)vλ) = B(λ∗)vλ∗

(ii) ∀ 1 ≤ i ≤ n, , ∀b ∈ B(λ), ẽi φλ(b) = φλf̃i(b)

It is clear from the definitions that δ(bi(t)) = δ(bi∗(t)), thus we also have

δλ(B(λ)vλ) = B(λ∗)vλ∗ . It is also clear that ηλ = φλδ̇λ, and thus ηλ(B(λ)vλ) =
B(λ)vλ.

2.2. Schützenberger involution. Fix a dominant weight λ ∈ P+. The isomor-
phism ηλ generalize the Schützenberger’s involution defined in the case G = SL(n)
in terms of Young tableaux. Schützenberger described (see [17]) an involution



GEOMETRIC LIFTING OF THE CANONICAL BASIS ... 7

S : Y (λ) → Y (λ) with an algorithm called ”jeu de taquin”.
In the case where G = SL(n), the link between ηλ and S is the following:

Proposition 2.2. [3] Given T ∈ Y (λ) and the associated element bT ∈ B(λ), one
has:

ηλ(bT ) = bS(T )

Example 2.3. Figure 2.2 describes Schützenberger involution on the basis of the
sl2-module V (̟1 + ̟2).

(1, 2, 1)

(1, 1, 1)
2 3
3

(0, 2, 1)

(0, 1, 1)
1 3
3

(0, 1, 1)

(0, 1, 0)
1 3
2

(1, 0, 0)

(1, 0, 0)
1 2
2

f̃1

ci(0, 0, 0)

b−1
i

(0, 0, 0)

1 1
2

f̃2

(0, 1, 0)

(0, 0, 1)
1 1
3

(1, 1, 0)

(1, 0, 1)
1 2
3

(2, 1, 0)

(2, 0, 1)
2 2
3

Figure 2.2. Schützenberger involution in B(̟1 + ̟2).

2.3. Geometric lifting. In the sequel, we wish to compute explicit formulas for
the isomorphism ηλ in terms of parametrizations of the canonical basis. We first
consider the isomorphism φλ, and then we use the composition ηλ = δλ∗φλ.
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Our goal is to give explicit formulas for the application b−1
i

φλc−1
i

which expresses
Lusztig’s parameters t′ = (t′1, · · · , t′N ) of the element φλ(b) ∈ B(λ∗) in terms of the
string parameters t = (t1, · · · , tN ) of an element b ∈ B(λ).

For this end we use the methods and the results of [2] and [4] on geometric lifting
and tropicalization.

We consider semifield structures, i.e commutative multiplicative groups equipped
with an additive law which is associative, commutative and distributive on the
product.

The main example of semifield is the set of integers Z endowed with the opera-
tions: a ⊕ b := min(a, b), a ⊙ b := a + b, a, b ∈ Z, it is called tropical structure of
Z. It induces a semifield structure on the set F(ZN

≥0, Z) of all maps from ZN
≥0 to Z

with the operations:

f ⊙ g : (t1, · · · , tN ) 7→ f(t1, · · · , tN ) + g(t1, · · · , tN ),

f ⊕ g : (t1, · · · , tN ) 7→ min(f(t1, · · · , tN ), g(t1, · · · , tN ))

for all f, g ∈ F(ZN
≥0, Z).

We denote by pi ∈ F(ZN
≥0, Z) 1 ≤ i ≤ N , the projections defined by pi(t1, · · · , tN ) =

ti. Let Q>0(t1, · · · , tN ) be the set of rational subtraction-free expressions in in-
derterminates t1, · · · , tN . This set is a semifield (the smallest one containing the
indeterminates t1, · · · , tN) for the usual laws + and ×. The tropicalization is de-
fined by:

Theorem 2.4 ([2]). There exists a unique homomorphism of semifields, denoted
by [.]Trop , such that:

[.]Trop : Q>0(t1, · · · , tN ) → F(ZN
≥0, Z),

ti 7→ pi, 1 ≤ i ≤ n,

In other words, if f(t1, · · · , tN ) is a subtraction-free expression, the tropicaliza-
tion [f ]Trop (t1, · · · , tN ) is the expression obtained from f(t1, · · · , tN ) by changing
the + in min, the × in +, et the ÷ in - . Let us give an example taken from [2].

Example 2.5. Consider the expression f(t1, t2) := t21 − t1t2 + t22. It is a ratio-

nal subtraction-free expression since f(t1, t2) =
t31+t32
t1+t2

. One has [f ]Trop (t1, t2) =

min(3t1, 3t2) − min(t1, t2) = min(2t1, 2t2).

The element f is called geometric lifting of [f ]Trop .
Notice that geometric lifting is not uniquely determined by [f ]Trop as we can

see in the above example. Indeed,
t31+t32
t1+t2

and t21 + t22 are both geometric lifting of

min(2t1, 2t2).
To finish this subsection, let us introduce the following notation.

Let f1, f2, · · · , fn ∈ Q>0(t1, · · · , tN), we set

[(f1, f2, · · · , fn)]Trop := ([f1]Trop , [f2]Trop , · · · , [fn]Trop )

2.4. Totally positive subvariety of G. For any 1 ≤ i ≤ n, denote by ϕi :
SL2 →֒ G the natural injective map corresponding to the simple root αi. Consider
the one-parameter subgroups of G defined by

xi(t) = ϕi

(
1 t
0 1

)

, yi(t) = ϕi

(
1 0
t 1

)

, t ∈ C

tα
∨
i = ϕi

(
t 0
0 t−1

)

, t ∈ C∗.
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Clearly, xi(t)’s, (resp. yi(t), tα
∨
i ) generate N , (resp. N−, T ). One has the following

relations of commutation:

tα
∨
i xj(t

′) = xj(t
aij t′)tα

∨
i , tα

∨
i yj(t

′) = yj(t
−aij t′)tα

∨
i(2.2)

One defines two involutive antiautomorphisms of G: x 7→ xT , called transposition,
and x 7→ xι, called inversion, as follows:

xi(t)
T = yi(t), yi(t)

T = xi(t), (tα
∨
i )T = tα

∨
i

xi(t)
ι = xi(t), yi(t)

ι = yi(t), (tα
∨
i )ι = t−α∨

i

Let G0 := N−TN be the set of all elements in G which admit a gaussian decom-
position. Given x ∈ G0, the gaussian decomposition is unique and we will write
x = [x]−[x]0[x]+, where [x]− ∈ N−, [x]0 ∈ T, [x]+ ∈ N .

Let G≥0 be the submonoid of G generated by xi(t), yi(t), tα
∨
i for all t > 0.

Given a word i = (i1, · · · , im) and a m-tuple t = (t1, · · · , tm) in Cm
6=0, we set:

xi(t) := xi1 (t1) · · ·xim
(tm), et x−i(t) := yi1(t1)t

−α∨
i1

1 · · · yim
(tm)t

−α∨
im

m

Consider the following reduced double Bruhat cells.

Le,w0 := N ∩ B−w0B− and Lw0,e := Nw0N ∩ B−(2.3)

Denote by Le,w0

>0 , resp. Lw0,e
>0 , their intersections with G>0. The maps xi and

x−i parametrize these subvarieties of G. More precisely,

Theorem 2.6. [4] For any reduced word i, the map xi, resp. x−i, is a birational
isomorphism between CN

6=0 and Le,w0 , resp. Lw0,e. It restricts to a bijection between

RN
>0 and Le,w0

>0 , resp. Lw0,e
>0 .

2.5. Geometric lifting of the maps R±i
′

±i
. In the sequel we will use the notation

(.)∨ that means we consider the analogous maps in the Langlands dual G∨ of G.
Recall that the Langlands dual G∨ is the semisimple Lie group with transposed
Cartan’s matrix. The simple roots of G∨ can be naturally identified with the
simple coroots of G and conversely. Thus the Weyl groups are naturally identified
with each other.

Let us introduce the reparametrization maps R̃i
′

i
:= x−1

i′
◦xi and R̃−i

′

−i
:= x−1

−i′
◦x−i

from CN
6=0 to itself. An important result from [4] is that these maps are geometric

liftings of Ri
′

i
and R−i

′

−i
. More precisely,

Theorem 2.7. The components of (R̃i
′

i
)∨(t1, · · · , tN ) and (R̃−i

′

−i
)∨(t1, · · · , tN ) are

expressed as rational subtraction-free expressions in t1, · · · , tN , and one has:

(i) [(R̃i
′

i )∨]Trop (t) = Ri
′

i (t) (ii) [(R̃−i
′

−i
)∨]Trop (t) = R−i

′

−i
(t)

Example 2.8. Explicit formulas in the case G = SL3(C) are:

x1(t) =





1 t 0
0 1 0
0 0 1



 , x2(t) =





1 0 0
0 1 t
0 0 1



 , t ∈ C

h1(t) =





t 0 0
0 t−1 0
0 0 1



 , h2(t) =





1 0 0
0 t 0
0 0 t−1



 , t ∈ C 6=0
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For any (t1, t2, t3) ∈ C3
6=0 and (t′1, t

′
2, t

′
3) ∈ C3

6=0:

x121(t1, t2, t3) = x1(t1)x2(t2)x1(t3) =





1 t1 + t3 t1t2
0 1 t2
0 0 1





x212(t
′
1, t

′
2, t

′
3) = x2(t

′
1)x1(t

′
2)x2(t

′
3) =





1 t′2 t′2t
′
3

0 1 t′1 + t′3
0 0 1





If x1(t1)x2(t2)x1(t3) = x2(t
′
1)x1(t

′
2)x2(t

′
3) then:

(t′1, t
′
2, t

′
3) = (

t2t3
t1 + t3

, t1 + t3,
t1t2

t1 + t3
).

Hence,

[(t′1, t
′
2, t

′
3)]Trop = (t2 + t3 − min(t1, t3), min(t1, t3), t1 + t3 − min(t1, t3))

This is precisely the formulas (1.1) which give the reparametrization R212
121.

Example 2.9. As in the previous example, we can also compute:

x−121(t1, t2, t3) = x−212(t
′
1, t

′
2, t

′
3)

One obtains:

(t′1, t
′
2, t

′
3) = (

t2t3
t2 + t1t3

, t1t3,
t2 + t1t3

t3
)

Hence:

[(t′1, t
′
2, t

′
3)]Trop = ( t2 + t3 − min(t2, t1 + t3), t1 + t3, min(t2, t1 + t3) − t3)

These formulas give the reparametrization R−212
−121.

We can also give a geometric lifting of the maps Ri
′

−i
. For this end, fix a rep-

resentative w0 ∈ Norm(T ) of w0. For instance, choose w0 := si1 si2 · · · siN
, where

i = (i1, · · · , iN) is a reduced word and

si := ϕi

(
0 −1
1 0

)

= xi(−1)yi(1)xi(−1), 1 ≤ i ≤ n

We know that w0 does not depend on the choice of the reduced word. An easy
computation shows that si

T = si
−1 and sι

i = si. Furthermore,

w0
T = w0

−1 = w0
ι = w0

−1(2.4)

Following [4], we define for x ∈ G

ηw0,e(x) := [(w0x
T )−1]+, ηe,w0(x) := ([w0

−1xT ]0[w0
−1

xT ]−)−1

Theorem 2.10. [4]

(1) The map ηw0,e is a birational isomorphism between Lw0,e and Le,w0 , which
restricts to a bijection from Lw0,e

>0 to Le,w0

>0 ; the inverse map is ηe,w0 .

(2) The components of (x−1
i′

◦ ηw0,e ◦x−i)
∨ are rational subtraction-free expres-

sions, and

Ri
′

−i
(t) = [(x−1

i′
◦ ηw0,e ◦ x−i)

∨]Trop (t)
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Example 2.11. In the case G = SL3(C), one has the following explicit formulas:

w0 =





0 0 1
0 −1 0
1 0 0



 , x−121(t1, t2, t3) =





t−1
1 t−1

3 0 0
t−1
3 + t1t

−1
2 t1t

−1
2 t3 0

1 t3 t2





(w0x−121(t1, t2, t3)
T )−1 =





1 (t2 + t1t3)t
−1
3 t1t3

−t−1
1 −t2t

−1
1 t−1

3 0
t−1
2 0 0





= y1(−t2t
−1
1 s−1)y2(−st−1

2 t−1
3 )y1(−t3s

−1)x1(t1)x2(t3)x1(t2t
−1
3 )

where s = t2 + t1t3.

Hence, if x121(t
′
1t

′
2t

′
3) = ηw0,e(x−121(t1, t2, t3)) then

(t′1, t
′
2, t

′
3) = (t1, t3, t2t

−1
3 )

Hence,
[(t′1, t

′
2, t

′
3)]Trop = (t1, t3, t2 − t3)

This is precisely the formulas (1.8) which give the changing of parametrization
R212

−121.

2.6. Geometric lifting of φλ. Now we fix a dominant weight λ = λ1̟1 + · · · +
λn̟n to the end of the section.
Given x ∈ G, we set ζ(x) := [xιT ]+. Our first observation is

Proposition 2.12.

(i) Let i = (i1, · · · , iN) be a reduced word. If x = x−i(t1, · · · , tN ) then ζ(x) =
xi(t

′
1, · · · , t′N), where

(2.5) t′k = t−1
k

∏

j>k

t
−aijik

j

(ii) The application ζ defines a bijection from Lw0,e
>0 to Le,w0

>0 .

Proof : (i) follows from the relations (2.2) and (ii) follows from Theorem 2.6 and
(2.5).

Now we can give a geometric lifting and an explicit formula for φλ:

Theorem 2.13. Let i and i′ be reduced words.
(i) Components of (x−1

i
◦ ζ ◦ x−i′)

∨ are rational subtraction-free expressions.
(ii) One has,

b−1
i

φλc−1
i′

(t) = [(x−1
i

◦ ζ ◦ x−i′)
∨]Trop (t) + b−1

i
φλ(vλ)

As a consequence of the above proposition and the above theorem, we have:

Corollary 2.14. If (t′1, · · · , t′N ) = b−1
i

φλc−1
i

(t1, · · · , tN ), then

(2.6) t′k = lk − tk −
∑

j>k

aikij
tj

where (l1, · · · , lN ) := b−1
i

φλ(vλ).

Remark 2.15. The constants (l1, · · · , lN) can be computed in different ways.
One can use [6, §4.1] or one can compute directly from the above formula. In-
deed, one knows, [13, §28.1], that (l′1, · · · , l′N) := ci(v

low
λ ) are given by l′k =

〈λ∗, si1si2 · · · sik−1
(α∨

ik
)〉 = 〈λ∗, βi,k〉, 1 ≤ k ≤ N and resolving (0) = b−1

i
φλc−1

i
(l′1, · · · , l′N )

one obtains the constants (l1, · · · , lN ) = b−1
i

(vlow
λ∗ ). These constants are given by

lk = 〈λ, α∨
ik
〉 = λik

.
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Proof of the theorem: Fix a weight λ in P+. Let Φi,i′ : Ci(λ) → ZN be a family
of applications indexed by two reduced words, satisfying the following properites:

(1) Φi,i′(0, · · · , 0) = b−1
i

φλ(vλ)

(2) Φi,i′ = Ri

i′′
◦ Φi′′,i′ = Φi,i′′ ◦ R−i

′′

−i′

(3) If Φi,i(t1, · · · , tN ) = (t′1, · · · , t′N ), then t′1 + t1 and the t′k’s, k 6= 1 only
depend on t2, · · · , tN .

The theorem will be a consequence of the following proposition:

Proposition 2.16. One has,

(i) If (Φi,i′) is a family satisfying conditions (1), (2), (3), then

Φi,i′ = b−1
i

φλc−1
i′

(ii) The family (Φi,i′) defined by

Φi,i′(t) = [(x−1
i

◦ ζ ◦ x−i′)
∨]Trop (t) + b−1

i
φλ(vλ)

satisfies conditions (1), (2), (3).

Proof: Let us first prove (ii). Given a rational subtraction-free expression Q,
one has [Q]Trop (0, ..., 0) = 0, so condition (1) is clear. Using (2.7) and (2.12)
the conditions (2) and (3) are also clear. Let us now prove (i). Let (Φi,i′) be a

family satisfying the conditions (1), (2), (3). We define maps Fi : B(λ) → ZN
≥0 by

Fi(b) = Φi,i′◦ci′(b), b ∈ B(λ). Condition (2) implies that the maps do not depend on

the choice of i′. By induction on the weight of b, we show that for every reduced word
i one has Fi(b) = b−1

i
(φλ(b)). Indeed, if b = vλ, this is clear by (1). If b = f̃i(b

′),
we can choose a reduced word i′ starting with i, namely i′ = (i, i′2, · · · , i′N). By

Proposition 1.2, one has ci′(f̃i(b
′)) = ci′(b

′)+(1, 0, · · · , 0), so b and b′ have the same
string parameters, except the first parameters which differ of 1. Hence, by (3) we

have Φi′,i′ ◦ ci′(f̃i(b
′)) = Φi′,i′(ci′(b

′) + (1, 0, · · · , 0)) = Φi′,i′ ◦ ci′(b
′) − (1, 0, · · · , 0)

and so Fi′(b) = Fi′(b
′)− (1, 0, · · · , 0). Furthermore by induction hypothesis one has

Fi′(b) = b−1
i′

(φλ(b′))− (1, 0, · · · , 0). Using Proposition 1.2 and Theorem 2.1(ii), one

obtains Fi′(b) = b−1
i′

(ẽiφλ(b′)) = b−1
i′

(φλ(f̃ib
′)) = b−1

i′
(φλ(b)). Finally, by (2) one

deduces Fi(b) = b−1
i

(φλ(b)) for any reduced word i.

2.7. Geometric lifting of ηλ. Let i be a reduced word and let λ = λ1̟1 + · · · +
λn̟n be a dominant weight. One knows that i∗ is also a reduced word. And it
is clear that the isomorphism δλ∗ (see section 2.1) induced by δ on V (λ∗) satisfies
δλ∗(bi(t)) = bi∗(t).

Now we give geometric lifting of Schützenberger involution ηλ = δλ∗φλ:

Corollary 2.17. If (t′1, · · · , t′N ) = b−1
i∗

ηλ(c−1
i

(t1, · · · , tN )), then

t′k = λik
− tk −

∑

j>k

aikij
tj

It is remarkable that the application b−1
i∗

ηλc−1
i

is affine, and that its linear part
does not depend on λ.

We define a linear map Ωi as follows: for all (λ, t) = (λ1, · · · , λn, t1, · · · , tN) ∈
Rn+N ,

Ωi(λ, t) = (λ1, · · · , λn, t′1, · · · , t′N ), where t′k = λik
− tk −

∑

j>k

aikij
tj
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2.8. Formulas of inverse maps. In this section we study the inverse maps ciφλbi
and ζ−1. We have explicit formulas:

Proposition 2.18. [7] Let i be a reduced word and let λ = λ1̟1 + · · · + λn̟n be
a dominant weight. One has:

(i) If (t1, · · · , tN ) = x−1
−i

ζ−1xi(t
′
1, · · · , t′N ), then

(2.7) tk = t′
−1
k

∏

j>k

t′
−a′

ijik

j , 1 ≤ k ≤ N

where a′
ijik

= 〈βi,k, β∨
i,j〉.

(ii) If (t1, · · · , tN ) = ciφλbi(t
′
1, · · · , t′N) then

(2.8) tk = l′k − t′k −
∑

j>k

a′
ikij

t′j , 1 ≤ k ≤ N

where a′
ijik

= 〈βi,k, β∨
i,j〉 et l′k = 〈λ, β∨

i,k〉.

Now we determine the inverse map ζ−1 viewed as a map from Le,w0

>0 to Lw0,e
>0

Proposition 2.19. The map ζ−1 : Le,w0

>0 → Lw0,e
>0 is given by:

ζ−1(x) = [w0x
T ]0x

ιT

Proof: Let us check that ζ−1(x) is well defined. We use definitions (2.3) and
relations (2.2). Given x ∈ Le,w0

>0 , set y := [w0x
T ]0x

ιT and let us show that y ∈ Lw0,e
>0 .

One can express x as:

x = n1h1w0h2n2, with n1, n2 ∈ N−, h1, h2 ∈ T.

Thus,

w0x
T = w0n

T
2 hT

2 w0
T hT

1 nT
1 = w0n

T
2 w0

−1

︸ ︷︷ ︸

∈N−

w0h
T
2 w0

−1hT
1

︸ ︷︷ ︸

∈T

nT
1

︸︷︷︸

∈N

.

Hence,

y = [w0x
T ]0x

ιT = w0h
T
2 w0

−1hT
1

︸ ︷︷ ︸

∈T

nιT
1

︸︷︷︸

∈N

hιT
1 w0

ιT hιT
2 nιT

2

Let us commute the above two elements in T and N :

y = n′ιT
1 w0 hT

2 w0
−1hT

1 hιT
1 w0h

ιT
2

︸ ︷︷ ︸

=1

nιT
2

= n′ιT
1

︸︷︷︸

∈N

w0 nιT
2

︸︷︷︸

∈N

Since x is in N , then y = [w0x
T ]0x

ιT is in B−. Hence y belongs to Lw0,e by
definitions (2.3). It remains to check the positivity of y. Fix a reduced word i

and let us use Theorem 2.6 for x and y. One can write y = x−i(t1, · · · , tN ) =

yi1(t1)t
−α∨

i1

1 · · · yiN
(tN )t

−α∨
iN

N with (t1, · · · , tN ) ∈ CN
6=0. Using relations (2.2) we

write y = hyi1(t
′
1) · · · yiN

(t′N ) with a certain h ∈ T and t′k =
∏

j>k t
aijik

j . But

there also exists (t′′1 , · · · , t′′N ) ∈ RN
>0 such that x = xi(t

′′
1 , · · · , t′′N ). Then y =

[w0x
T ]0x

ιT = [w0x
T ]0yi1(t

′′
1) · · · yiN

(t′′N ). Identifying both expressions one deduces
that (t1, · · · , tN ) belongs to RN

>0 and thus y = [w0x
T ]0x

ιT ∈ Lw0,e
>0 . Hence the

definition makes sense. Furthermore it is easy to see from the definitions that we
have ζ([w0x

T ]0x
ιT ) = x. It means that the map x 7→ [w0x

T ]0x
ιT is precisely the

inverse map of ζ.
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3. Toric and semitoric degenerations of Richardson varieties

3.1. A complex projective variety X degenerates into a toric variety, resp. semi-
toric variety (i.e a variety whose irreducible components are toric varieties), if there
exists a variety X and a regular map π : X → C such that π−1(z) ∼= X for all
z ∈ C∗ and π−1(0) = X0, where X0 is a toric variety, resp. semi-toric variety.

One can construct toric degenerations of varieties in the following way. Denote
by R the algebra of regular functions on X . Endow R with an increasing filtration
(Rn)n≥0 such that the associated graded algebra GrR is isomorphic to one algebra
of semigroup. Consider R := ⊕n≥0Rntn ⊂ R[t] where t is an indeterminate over
R. One has R/tR ≃ ⊕n≥0Rn+1/Rn ≃ GrR and R/(t − z)R ≃ R, for all z ∈ C∗.
Thus if X := Proj R, π := t and X0 := Proj GrR, then we have a (flat) toric
degeneration of X in X0.

3.2. Flag varieties. Consider the flag variety G/B and denote by R its algebra of
homogenous coordinates. Let λ0 be a regular dominant weight and denote by Lλ0

the corresponding ample line bundle on G/B. Recall that:

R =
⊕

n∈N

H0(G/B,L⊗n
λ0

) =
⊕

λ∈N·λ0

V ∗(λ) ⊗ vλ

where N·λ0 is the cone of all the multiples of λ0.

From now on, we fix a regular dominant weight λ0 = λ1̟1 +λ2̟2 + · · ·+λn̟n.
One can identify each element of N·λ0 with the n-tuple of its coordinates on the
fundamental weights ̟1,..., ̟n. The set N·λ0 is naturally identified with Nn.

The set {(bvλ)∗⊗vλ, b ∈ B(λ), λ ∈ N·λ0} is the canonical basis of R. The product
on R is given by:

((bvλ)∗ ⊗ vλ)((b′vµ)∗ ⊗ vµ) = (bb′vλ+µ)∗ ⊗ vλ+µ

Given a reduced word i, one parametrize an element (bvλ)∗⊗ vλ of the canonical

basis of R by (λ, ci(b)) ∈ Zn+N
≥0 and one introduce the set of all parameters:

Γi := {(λ, ci(b)) ∈ Zn+N
≥0 , λ ∈ N·λ0, b ∈ B(λ)}

One has

Theorem 3.1. [12] The set Γi is the set of all integral points in a rational polyhedral
convex cone of Rn+N .

We will use the notation bλ,t, (λ, t) ∈ Γi, for the element (bvλ)∗ ⊗ vλ ∈ R where
b ∈ B(λ) is such that ci(b) = t.

The following multiplicative property of two elements of the canonical basis, is
due to Caldero:

Proposition 3.2. [5] Given (λ, t), (λ′, t′) in Γi,

bλ,tbλ′,t′ = bλ+λ′,t+t′ +
∑

s∈Z
n+N

≥0

ds
λ,t,λ′,t′bλ+λ′,s

with ds
λ,t,λ′,t′ 6= 0 ⇒ s ≺ t + t′, where ≺ is the usual lexicographic order of ZN

≥0.

Using this property one can construct in a first step, a Γi-filtration of R such
that the associated graded algebra is isomorphic to the algebra of the semigroup
C[Γi]. In a second step, using an adapted linear form e : ZN

≥0 → N (see [5]) one

construct a N-filtration Fi := (Fi,m)m∈N of R such that the associated graded
algebra is isomorphic to C[Γi]. Denote by GrR the graded algebra associated to
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this filtration and denote by b̄λ,t the image of bλ,t in GrR. The elements b̄λ,t satisfy
b̄λ,tb̄λ′,t′ = b̄λ+λ′,t+t′ , thus one has GrR = ⊕(λ,t)∈Γi

Cb̄λ,t = C[Γi].

Remark 3.3. The toric variety Proj(C[Γi]) is the same as the toric variety con-
structed from the convex polytope Ci(λ0) := ci(B(λ0)) = λ0 × ZN

≥0 ∩ Γi. By [12],

one knows equations of the polytope Ci(λ0). One has Ci(λ0) = {(t1, · · · , tN) ∈
Ci | tk = λik

−
∑

j>k aikij
tj , 1 ≤ k ≤ N} where λi is the coordinate of λ0 on ̟i

(note that one can also obtain these equations with the formula (2.6) using the
positivity of the t′k’s). In the cases where G is of type An or G arbitrary and i is
a nice decomposition of w0, one also have equations for the string cone Ci (see [4,§3.4], [12, §4]).

3.3. Schubert varieties. Consider the Bruhat’s cellular decompositions:

G/B =
⋃

w∈W

BwB/B =
⋃

τ∈W

B−τB−/B

Closures Xw := BwB/B, w ∈ W , resp. Xτ := B−τB/B, τ ∈ W in G/B are the
so-called Shubert varieties, resp. oppposite Schubert varieties.

In the sequel, let us fix two elements w and τ in W . The algebra Rw associated
to Xw is a quotient of R by a certain ideal Iw :=

⊕

λ∈N·λ0
V ⊥

w (λ)⊗ vλ, where V ⊥
w (λ)

is the orthogonal of Vw(λ) in V (λ)∗. By Theorem 1.4 the ideal Iw is compatible
with the canonical basis of R. More precisely, {(bvλ)∗ ⊗ vλ, λ ∈ N·λ0, b 6∈ Bw(λ)} is
a basis of Iw . Denote by πw the canonical projection of R onto R/Iw = Rw. The
set {πw(bv∗λ ⊗ vλ), b ∈ Bw(λ), λ ∈ N·λ0} is a basis of Rw. Let i be a reduced word,
define

Γw
i := {(λ, ci(b)) ∈ Zn+N

≥0 , λ ∈ N·λ0, b ∈ Bw(λ)}

We will say that a reduced word i = (i1, i2, · · · , iN) is adapted to w, if w =
si1si2 · · · sip

is a reduced decomposition.

Theorem 3.4. [12] If the reduced word i is adapted to w then, Γw
i

is a face of the

cone Γi. Moreover, Γw
i

= Γi ∩ (Zn+p
≥0 × {0}N−p) where p = ℓ(w). In particular, Γw

i

is the set of all integer points in a rational polyhedral convex cone of Rn+N .

Using the above filtration Fi, one can construct a filtration Fw
i

of Rw, as follows
Fw

i,m := Fi,m + Iw, m ∈ N. The associated graded algebra GrRw is such that

GrRw = GrR/GrIw. The ideal GrIw of GrR is generated by {b̄λ,t, (λ, t) 6∈ Γw
i
}.

In the case where i is adapted to w one has GrRw = C[Γw
i
] which is the algebra

of a semigroup. Therefore one obtain toric degenerations of Shubert varieties Xw.
In the case where i is not adapted to w, we will see in the next paragraph that

Γw
i

is a union of faces of Γi. Thus, we will deduce semitoric degenerations of the
Schubert varieties Xw.

Regarding opposite Shubert varieties we denote by Rτ the algebra associated.
This algebra is obtained from Rτ by the w0-action; one has Rτ = w0(Rτ ) =
R/w0(Iτ ). The ideal Iτ := w0(Iτ ) =

⊕

λ∈N·λ0
ηλ(Vτ )⊥(λ) ⊗ vλ of R has the ba-

sis {(bvλ)∗ ⊗ vλ, λ ∈ N·λ0, b 6∈ ηλ(Bτ (λ))}. Denote by πτ the canonical projection
of R onto R/Iτ . The elements {πτ (ηλ(bvλ)∗ ⊗ vλ), where λ ∈ N·λ0, b ∈ Bτ (λ)}
constitute a basis of Rτ . We set:

Γ̃τ
i

:= {(λ, ci(b)) ∈ Zn+N
≥0 , λ ∈ N·λ0, b ∈ ηλ(Bτ (λ))}

We will also show that Γ̃τ
i

is a union of faces of Γi.
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3.4. Richardson varieties. More generally, consider Richardson varieties Xτ
w :=

Xw ∩ Xτ , w, τ ∈ W . Schubert varieties are the particular cases corresponding to
w = w0 and τ = id. Recall that if ℓ(w) + ℓ(τ) < N then the intersection Xτ

w is
empty. For the sequel we fix w and τ in W such that Xτ

w 6= ∅, and an arbitrary
reduced word i. Denote by Iτ

w := Iw + Iτ and Rτ
w := R/Iτ

w. The ideal Iτ
w is

generated by {(bvλ)∗⊗vλ, λ ∈ N·λ0, b 6∈ ηλ(Bτ (λ))∩Bw(λ)}. If Γw,τ
i

:= Γw
i
∩Γ̃τ

i
then

Iτ
w = 〈bλ,t, (λ, t) 6∈ Γw,τ

i
〉. The set {πτ

w((bvλ)∗⊗vλ), λ ∈ N·λ0, b ∈ ηλ(Bτ (λ))∩Bw(λ)},
where πτ

w is the canonical projection of R onto R/Iτ
w, is a basis of Rτ

w.
One constructs a filtration Fw,τ

i
of Rτ

w using the previous filtration Fi of R, as
follows Fw,τ

i,m = Fi,m + Iτ
w, m ∈ N. The associated graded algebra GrRτ

w is the

quotient GrRτ
w = GrR/GrIτ

w. The ideal GrIτ
w of GrR is generated by {b̄λ,t, (λ, t) 6∈

Γw,τ
i

}.

Proposition 3.5. The set Γw,τ
i

is a union of faces of Γi. In particular Γw,τ
i

is the

set of all integer points in a rational polyhedral convex cone of Rn+N
≥0 .

This proposition is a consequence of the following lemma.

Lemma 3.6. Let ΓR be a rational polyhedral convex cone of Rn
≥0 and let Γ′

R
be an

arbitrary subset of ΓR. Consider Γ := ΓR ∩ Zn
≥0 and Γ′ := Γ′

R
∩ Zn

≥0. If Γ′ satisfies
the following conditions:

(a) For all γ ∈ Γ and δ 6∈ Γ′, one has γ + δ 6∈ Γ′

(b) For all γ ∈ Γ′ and m ∈ N, one has mγ ∈ Γ′

then Γ′ is a union of faces of ΓR intersected with Zn
≥0.

Proof : Given γ ∈ Γ′ consider a face ΦR of ΓR (eventually ΦR = ΓR) such that
γ belongs to the relative interior of ΦR. It suffices to prove that all elements of
Φ := ΦR ∩ Zn

≥0 belongs to Γ′. Assume δ ∈ Φ. Since γ lies in the interior of ΦR,

there exists m ∈ N such that γ − 1
m

δ is in ΦR. Hence γ′ := mγ − δ ∈ ΦR ∩ Zn
≥0,

and therefore γ′ ∈ Γ. If δ 6∈ Γ′ then by condition (a) one has γ′ + δ 6∈ Γ′, but one
also has γ′ + δ = mγ ∈ Γ′ by (b). This is absurd. Therefore one has δ ∈ Γ′. This
prove the Lemma 3.6.

Proof of the proposition: Let us apply Lemma 3.6 with Γw,τ
i

⊂ Γi. Taking into

account that GrIτ
w =

〈
b̄λ,t, (λ, t) 6∈ Γw,τ

i

〉
is an ideal of GrR, one concludes that the

set Γw,τ
i

satisfies condition (a) of the lemma. Condition (b) is also satisfied. Indeed,
fix (λ, t) ∈ Γw,τ

i
and m ∈ N.

First of all, choose i
′ adapted to w and use the reparametrization R−i

′

−i
=

ci′(ci)
−1. One has (λ, t) ∈ Γw

i
, hence (λ, R−i

′

−i
t) ∈ Γw

i′
. On the one hand, as a con-

sequence of Theorem 2.7 the reparametrization verifies R−i
′

−i
(mt) = mR−i

′

−i
(t). On

the other hand Γw
i′

is a cone by Theorem 3.1. Therefore (mλ, R−i
′

−i
(mt)) ∈ Γw

i′
. One

easily deduces that m(λ, t) = (mλ, mt) ∈ Γw
i
. Next, choose i′′ adapted to τ and use

the reparametrization R
(i′′)∗

−i
= b−1

(i′′)∗ ◦ c−1
i

. Since (λ, t) ∈ Γ̃τ
i

there exists b ∈ Bτ (λ)

such that (λ, t) = (λ, ciηλ(b)). Thus (λ, Ri
′′

−i
t) = (λ, b(i′′)∗ηλ(b)) = Ωi′′(λ, ci(b)),

where Ωi′′ is the map defined in section 2.7. One has (λ, Ri
′′

−i
t) ∈ Ωi′′Γ

τ
i′′

. Since

Ωi′′ is linear and Γτ
i′′

is a cone, one has (mλ, mRi
′′

−i
t) ∈ Ωi′′Γ

τ
i′′

. As a conse-

quence of Theorem 2.10 one also has mRi
′′

−i
t = Ri

′′

−i
(mt). Hence there exists

b′ ∈ Bτ (λ) such that (mλ, Ri
′′

−i
(mt)) = Ωi′′(mλ, ci′′(b

′)). In other words, we have

(mλ, b−1
(i′′)∗ ◦ c−1

i
(mt)) = (mλ, b(i′′)∗ηλ(b′)). Hence (mλ, mt) = (mλ, ci′′ηλ(b′)) ∈ Γ̃τ

i
.

Finally, we obtain (mλ, mt) ∈ Γw,τ
i

, that shows that the hypothesis of the Lemma
3.6 are satisfied. We deduce that Γw,τ

i
is a union of faces of Γi.
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We are now ready to prove the main result of this section.

Theorem 3.7. Richardson varieties Xτ
w degenerate in union of irreducible toric

varieties wich are given by the faces of Γw,τ
i

.

Proof: By Proposition 3.5, there exists faces of Γi, namely Φk
i
, k = 1 · · · r, such that

Γw,τ
i

=
⋃

Φk
i
. Thus, one has GrIτ

w = 〈b̄λ,t, (λ, t) 6∈ ∪kΦk
i
〉 = ∩k〈b̄λ,t, (λ, t) 6∈ Φk

i
〉.

Spaces Ik
i

:= 〈b̄λ,t, (λ, t) 6∈ Φk
i
〉 are prime ideals of GrR = 〈b̄λ,t, (λ, t) ∈ Γi〉 since Φk

i

are faces of Γi. The algebras GrR/Ik
i

= C[Φk
i
] give irreducible toric varieties which

are the irreducible components of the variety associated to GrRτ
w.

3.5. Particular case. In the case where G = SLn, one can construct toric degen-
erations of the Richardson varieties Xτ

w for a suitable choice of (w, τ) as follows.

Proposition 3.8. Let i = (1, 2, 1, · · · , n, n − 1, · · · , 2, 1) be the standard reduced
word, and let w, τ ∈ W . If i is adapted to w and i∗ is adapted to τ then Γw,τ

i
is at

most one face of Γi.

Proof: In the case where i is the standard reduced word, the map R−i

i
is linear

by Corollary 1.8. The map Ωi∗ is always linear by definition Section 2.7. By
Theorem 3.4 one knows that Γτ

i∗
is a face of Γi∗ , thus one deduces that Γ̃τ

i∗
=

(id × R−i

i
)Ωi∗(Γ

τ
i∗

) is a face of Γi. Hence, Γw,τ
i

:= Γw
i
∩ Γ̃τ

i
is only one face of Γi

when it is not empty.

3.6. Example in the A2 case. Let us study the case where G = SL3. Let us fix
λ0 = ̟1 + ̟2 and i = (1, 2, 1).

(1,2,1)(0,2,1)

(0,1,0)

(1,1,0)

(1,0,0)

(2,1,0)

(0,1,1)

(0,0,0)

A

CD

E
F

B

G

Figure 3.3. Polytope ci(B(̟1 + ̟2))

Figure 3.3 represents the polytope Ci(λ0) of all string parameters of B(̟1 +̟2).
The cone Γi is the cone over this polytope. The flag variety G/B degenerates in
the toric variety associated to this polytope.

Given w, τ in W , denote by Cw,τ
i

(λ0) := λ0 × ZN
≥0 ∩ Γw,τ

i
the set of all string

parameters of the elements lying in ηλ0
(Bτ (λ0))∩Bw(λ0). By Theorem 3.7, Cw,τ

i
(λ0)

is a face or a union of faces (see Fig.3.4) of Ci(λ0) corresponding to the toric or
semitoric degeneration of the subvariety Xτ

w. Some of the starting varieties Xτ
w are

already toric, if they degenerate in toric varieties then the varieties are the same.
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Let us describe this polytope more detailly in terms of degeneration of Richardson
varieties. The vertices A, B, C, D, E, F of the polytope correspond to the T -fixed
points wB/B of G/B, for respectively w = id, s1, s1s2, s2, s2s1, s1s2s1. Note that
there is an extra vertex, G, resulting from the degeneration.

The Richardson curves are Xs1
, Xs2

, Xs1 , Xs2 , Xs1s2
s1s2

, Xs2s1
s1s2

, Xs1s2
s2s1

, Xs2s1
s2s1

,
and correspond respectively to the edges [AB], [AD], [CF], [EF], [BC], [CD], [DE],
[EG] ∪ [BG]. The point G correspond to the intersection of the irreducible compo-
nents of the degeneration of Xs2s1

s2s1
. There are also two extra edges, namely [AG] and

[FG], which will be understood as the intersection of the irreducible components of
the degeneration of Richardson surfaces.

The Richardson surfaces are Xs1s2
, Xs2s1

, Xs2s1 , Xs1s2 and correspond to the
faces represented Figure 3.4.

w = s1s2

τ = id

w = s2s1

τ = id

w = w0

τ = s2s1

w = w0

τ = s1s2

Figure 3.4. Faces Cw,τ
i

(λ0) in the polytope Ci(λ0)

The edge [AG] corresponds to the intersection of the irreducible components of
Xs2s1

, and the edge [FG] corresponds to the intersection of the irreducible compo-
nents of Xs1s2 .

3.7. Examples in the B2 case. In the B2 case there are two reduced words for
w0, namely i = (1, 2, 1, 2) and i′ = (2, 1, 2, 1). There is no non trivial diagramm

automorphism thus i∗ = i and i′
∗

= i′. We will use the word i. Using [12, §4], one
describes the string cone Ci in Z4

≥0 as follows:

Ci :







t1 ≥ 0 (Φ1)

t2 − t3 ≥ 0 (Φ2)

t3 − t4 ≥ 0 (Φ3)

t4 ≥ 0 (Φ4)
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Let us fix a regular dominant weight λ0 = ̟1 + ̟2. By [12, §1] the polytope
Ci(λ0) is the intersection between Ci and the following affine cone:







t1 − t2 + 2t3 − t4 ≤ 1 (Φ̃1)

t2 − 2t3 + 2t4 ≤ 1 (Φ̃2)

t3 − t4 ≤ 1 (Φ̃3)

t4 ≤ 1 (Φ̃4)

Denote by Φi, resp. Φ̃i, the face of the polytope Ci(λ0) determined by the

inequality (Φi), resp. (Φ̃i).
The flag variety G/B degenerates in the toric variety associated to the polytope

Ci(λ0). The subvarieties Xw,τ degenerate in toric or semitoric varieties which are
associated to face or union of faces of the polytope. We describe some of them.

The variety Xs1s2s1
is associated to the face Φ4. It is a 3-dimensional polytope

whose vertices are {(0, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 3, 1, 0), (2, 1, 0, 0), (2, 3, 1, 0),

(0, 1, 1, 0)}. The variety Xs1s2s1 is associated to the faces Φ̃2 ∪ Φ̃4. And the variety

Xs1s2s1
s1s2s1

is associated to the face Φ4 ∩ Φ̃2. It is a plane polytope whose vertices are
{(0, 1, 0, 0), (2, 1, 0, 0), (2, 3, 1, 0), (0, 3, 1, 0)}.

The variety Xs1s2
is associated to the face Φ3 ∩ Φ4. It is a plane polytope

whose vertices are {(0, 0, 0, 0), (0, 1, 0, 0), (2, 1, 0, 0), (1, 0, 0, 0)} (in this case the

degeneration is trivial). The variety Xs1s2 is associated to the face Φ̃2 ∩ Φ̃3. It is
a plane polytope whose vertices are {(1, 3, 2, 1), (2, 3, 1, 0), (0, 3, 1, 0), (0, 3, 2, 1)}.
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