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HIGH FREQUENCY ANALYSIS OF HELMHOLTZ EQUATIONS:

CASE OF TWO POINT SOURCES

ELISE FOUASSIER

Abstract. We derive the high frequency limit of the Helmholtz equation with source
term when the source is the sum of two point sources. We study it in terms of Wigner
measures (quadratic observables). We prove that the Wigner measure associated with the
solution satisfies a Liouville equation with, as source term, the sum of the source terms
that would be created by each of the two point sources taken separately. The first step,
and main difficulty, in our study is the obtention of uniform estimates on the solution.
Then, from these bounds, we derive the source term in the Liouville equation together
with the radiation condition at infinity satisfied by the Wigner measure.

AMS subject classifications. 35Q60, 35J05, 81S30.

1. Introduction

In this article, we are interested in the analysis of the high frequency limit of the
following Helmholtz equation

(1.1) −iαε

ε
uε + ∆uε +

n(x)2

ε2
uε = Sε(x), x ∈ R3

with

Sε(x) = Sε
0(x) + Sε

1(x) =
1

ε3
S0

(x
ε

)
+

1

ε3
S1

(x− q1
ε

)

where q1 is a point in R3 different from the origin.
In the sequel, we assume that the refraction index n is constant, n(x) ≡ 1.

The equation (1.1) modelizes the propagation of a source wave in a medium with
scaled refraction index n(x)2/ε2. There, the small positive parameter ε is related to
the frequency ω = 1

2πε of uε. In this paper, we study the high frequency limit, i.e.
the asymptotics ε → 0. We assume that the regularizing parameter αε is positive,
with αε → 0 as ε → 0. The positivity of αε ensures the existence and uniqueness
of a solution uε to the Helmholtz equation (1.1) in L2(R3) for any ε > 0.

The source term Sε models a source signal that is the sum of two source signals
concentrating respectively close to the origin and close to the point q1 at the scale
ε. The concentration profiles S0 and S1 are given functions. Since ε is also the
scale of the oscillations dictated by the Helmholtz operator ∆ + 1

ε2 , resonant inter-
actions can occur between these oscillations and the oscillations due to the sources
Sε

0 and Sε
1 . On the other hand, since the two sources are concentrating close to

two different points in R3, one can guess that they do not interact when ε → 0.
These are the phenomena that the present paper aims at studying quantitatively.
We refer to Section 3 for the precise assumptions we need on the sources.

In some sense, the sign of the term −iαεεu
ε prescribes a radiation condition at

infinity for uε. One of the key difficulty in our problem is to follow this condition
1
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in the limiting process ε→ 0.

We study the high frequency limit in terms of Wigner measures (or semi-classical
measures). This is a mean to describe the propagation of quadratic quantities, like
the local energy density |uε(x)|2, as ε → 0. The Wigner measure µ(x, ξ) is the
energy carried by rays at the point x with frequency ξ. These measures were intro-
duced by Wigner [14] and then developed by P. Gérard [6] and P.-L. Lions and T.
Paul [9] (see also the surveys [3] and [7]). They are relevant when a typical length
ε is prescribed. They have already proven to be an efficient tool in the study of
high frequencies, see for instance [2], [4] for Helmholtz equations, P. Gérard, P.A.
Markowich, N.J. Mauser, F. Poupaud [7] for periodic media, G. Papanicolaou, L.
Ryzhik [11] for a formal analysis of general wave equations, L. Erdös, H.T. Yau [5]
for an approach linked to statistical physics, and L. Miller [10] for a study in the
case with sharp interface.

Such problems of high frequency limit of Helmholtz equations have been studied
in Benamou, Castella, Katsaounis, Perthame [2] and Castella, Perthame, Run-
borg [4]. In [2], the authors considered the case of one point source and a general
index of refraction whereas in [4], they treated the case of a source concentrating
close to a general manifold with a constant refraction index. In the present paper,
we borrow the methods used in both articles.

In the case of one point source, for instance Sε
0 only, with a constant index of re-

fraction, it is proved in [2] that the corresponding Wigner measure µ0 is the solution
to the Liouville equation

0+µ0(x, ξ) + ξ · ∇xµ0(x, ξ) = Q0(x, ξ) =
1

(4π)2
δ(x)δ(|ξ|2 − 1)|Ŝ0(ξ)|2,

the term 0+ meaning that µ is the outgoing solution given by

µ0(x, ξ) =

∫ 0

−∞

Q0(x+ tξ, ξ)dt.

In particular, the energy source created by Sε
0 is supported at x = 0. Similarly,

the energy source created by the source Sε
1 is supported at x = q1. Thinking of

the orthogonality property on Wigner measures, one can guess that the energy
source generated by the sum Sε

0 + Sε
1 is the sum of the two energy sources created

asymptotically by Sε
0 and Sε

1 .
Indeed, we prove in this paper that the Wigner measure µ associated with the

sequence (uε) satisfies

(1.2) 0+µ(x, ξ) + ξ · ∇xµ(x, ξ) = Q0 +Q1,

where Q0 and Q1 are the source terms obtained in [2] in the case of one point
source. However, our proof does not rest on the mere orthogonality property.

Let us now give some details about our proof. Our strategy is borrowed from [2].
First, we prove uniform estimates on the sequence of solutions (uε). We also study

the limiting behaviour fo the rescaled solutions ε
d−1

2 uε(εx) and ε
d−1

2 uε(q1 + εx).
The obtention of these first two results is the key difficulty in our paper. It relies
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on the study of the sequence (aε) such that

−iαεεa
ε + ∆aε + aε = S1

(
x− q1

ε

)
.

Using the explicit formula for the Fourier tranform of aε, we prove that aε is uni-
formly bounded in a suitable space and that aε → 0 as ε → 0 weakly. We would
like to point out that our analysis, based on a study in Fourier space, strongly rests
on the assumption of a constant index of refraction.
Second, our results on the Wigner measure then follow from the properties proved
in [2]. They are essentially consequences of the uniform bounds on (uε): we write
the equation satisfied by the Wigner transform associated with (uε), and pass to
the limit ε→ 0 in the various terms that appear in this equation. The only difficult
(and new) term to handle is the source term.
Third, we prove an improved version of the radiation condition of [2]. Our argu-
ment relies on the observation that µ is localized on the energy set {|ξ|2 = 1}, a
property that was not exploited in [2].

The paper is organized as follows. In Section 2, we recall some definitions and
state our assumptions. Section 3 is devoted to the proof of uniform bounds on the
sequence of solutions (uε) and of the convergence of the rescaled solutions. Then,
in Section 4, we establish the transport equation satisfied by the Wigner measure
µ together with the radiation condition at infinity. In the appendix, we recall the
proof of some results established in [2] that we use in our paper.

2. Notations and assumptions

In this section, we recall the definitions of Wigner transforms and of the B,
B∗ norms introduced by Agmon and Hörmander [1] for the study of Helmholtz
equations. Then, we give our assumptions.

2.1. Wigner transform and Wigner measures. We use the following definition
for the Fourier transform:

û(ξ) = (Fx→ξu)(ξ) =
1

(2π)3

∫

Rd

e−ix·ξu(x)dx.

For u, v ∈ S(R3) and ε > 0, we define the Wigner transform

W ε(u, v)(x, ξ) = (Fy→ξ)(u
(
x+

ε

2
y
)
v̄
(
x− ε

2
y
)
),

W ε(u) = W ε(u, u).

In the sequel, we denote W ε = W ε(uε).

If (uε) is a bounded sequence in L2
loc(R

d), it turns out that (see [6], [9]), up to
extracting a subsequence, the sequence (W ε(uε)) converges weakly to a positive
Radon measure µ on the phase space T ∗R3 = R3

x × R3
ξ called Wigner measure (or

semiclassical measure) associated with (uε):

(2.1) ∀ϕ ∈ C∞
c (R6), lim

ε→0
〈W ε(uε), ϕ〉 =

∫
ϕ(x, ξ)dµ

We recall that these measures can be obtained using pseudodifferential opera-
tors. The Weyl semiclassical operator aW (x, εDx) (or OpW

ε (a)) is the continuous
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operator from S(Rd) to S′(Rd) associated with the symbol a ∈ S′(T ∗Rd) by Weyl
quantization rule

(2.2) (aW (x, εDx)u)(x) =
1

(2π)d

∫

R
d
ξ

∫

Rd
y

a

(
x+ y

2
, εξ

)
f(y)ei(x−y)·ξdξdy.

We have the following formula: for u, v ∈ S′(Rd) and a ∈ S(Rd × Rd),

(2.3) 〈W ε(u, v), a〉S′,S = 〈v̄, aW (x, εDx)ū〉S′,S ,

where the duality brackets 〈., .〉 are semi-linear with respect to the second argument.
This formula is also valid for u, v lying in other spaces as we will see in Section 3.

2.2. Besov-like norms. In order to get uniform (in ε) bounds on the sequence
(uε), we shall use the following Besov-like norms, introduced by Agmon and Hörman-
der [1]: for u, f ∈ L2

loc(R
3), we denote

‖u‖B∗ = sup
j≥−1

(
2−j

∫

C(j)

|u|2dx
)1/2

,

‖f‖B =
∑

j≥−1

(
2j+1

∫

C(j)

|f |2dx
)1/2

,

where C(j) denotes the ring {x ∈ R3/2j ≤ |x| < 2j+1} for j ≥ 0 and C(−1) is the
unit ball.

These norms are adapted to the study of Helmholtz operators. Indeed, if v is
the solution to

−iαv + ∆v + v = f

where α > 0, then Agmon and Hörmander [1] proved that there exists a constant
C independent of α such that

‖v‖B∗ ≤ C‖f‖B.

Perthame and Vega [12] generalised this result to Helmholtz equations with general
indices of refraction.

We denote for x ∈ R3, |x| =
√∑3

j=1 x
2
j and 〈x〉 = (1 + |x|2)1/2.

For all δ > 1
2 , we have

(2.4) ‖u‖L2

−δ
:= ‖〈x〉−δu‖L2 ≤ C(δ)‖u‖B∗ .

We end this section by stating two properties of these spaces that will be useful
for our purpose (the reader can find the proofs in [1]). The first proposition states
that, in some sense, we can define the trace of a function in B on a linear manifold
of codimension 1.

Proposition 2.1. There exists a constant C such that for all f ∈ B, we have
∫

R

‖f(x1, .)‖L2(R2)dx1 ≤ C‖f‖B.

The second property gives the stability of the space B by change of variables in
Fourier space.
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Proposition 2.2. Let Ω1, Ω2 be two open sets in R3, ψ : Ω1 → Ω2 a C2 diffeo-
morphism, χ ∈ C1

c (R3). For all u ∈ B, we denote

Tu = F−1
(
χ(û ◦ ψ)

)
.

Then

‖Tu‖B ≤ C‖χ‖C1

b
‖ψ‖C2

b
‖u‖B.

2.3. Assumptions. We are now ready to state our assumptions. Our first assump-
tion, borrowed from [2], concerns the regularizing parameter αε > 0.

(H1) αε ≥ εγ for some γ > 0.
This assumption is technical and is used to get a radiation condition at infinity in
the limit ε → 0. Next, in order to get uniform bounds on uε, we assume that the
source terms S0 and S1 belong to the natural Besov space that is needed to actually
solve the Helmholtz equation (1.1).

(H2) ‖S0‖B, ‖S1‖B <∞.
It turns out that, in order to compute the limit of the energy source, we shall need
the stronger assumption

(H3) 〈x〉NS0 ∈ L2(R3) and 〈x〉NS1 ∈ L2(R3) for some N > 1
2 + 3γ

γ+1 .

3. Bounds on solutions to Helmholtz equations

In this section, we first establish uniform bounds on the sequence (uε) that will
imply estimates on the sequence of Wigner transforms (W ε). It turns out that we
shall also need to compute the limit of the rescaled solutions wε

0 and wε
1 defined

below in order to obtain the energy source in the equation satisfied by the Wigner
measure µ.
Before stating our two results, let us define these rescaled solutions. Following [2]
and [4], we denote

(3.1)

{
wε

0(x) = ε
d−1

2 uε(εx),

wε
1(x) = ε

d−1

2 uε(q1 + εx).

They respectively satisfy
{

−iαεεw
ε
0 + ∆wε

0 + wε
0 = S0(x) + S1

(
x− q1

ε

)
,

−iαεεw
ε
1 + ∆wε

1 + wε
1 = S0

(
x+ q1

ε

)
+ S1(x).

We are ready to state our results on uε, wε
0 and wε

1.

Proposition 3.1. Assume S0, S1 ∈ B. Then, the solution uε to the Helmholtz
equation (1.1) satisfies the following bound

‖uε‖B∗ ≤ C(‖S0‖B + ‖S1‖B),

where C is a constant independent of ε.

Proposition 3.2. Let wε
0 and wε

1 be the rescaled solutions defined by (3.1). Then,
the sequences (wε

0) and (wε
1) are uniformly bounded in B∗ and they converge weakly-

∗ in B∗ to the outgoing solutions w0 and w1 to the following Helmholtz equations
{

∆w0 + w0 = S0

∆w1 + w1 = S1,
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i.e. w0 and w1 are given in Fourier space by

ŵj(ξ) =
−Ŝj(ξ)

|ξ|2 − 1 + i0
= −

(
p.v.
( 1

|ξ|2 − 1

)
+ iπδ(|ξ|2 − 1)

)
Ŝj(ξ), j = 0, 1.

Remark. The Helmholtz equation ∆w + w = S does not uniquely specify the
solution w. An extra condition is necessary, for instance the Sommerfeld radiation
condition. When the refraction index is constant equal to 1, this condition writes

(3.2) lim
r→∞

1

r

∫

Sr

∣∣∣∂w
∂r

+ iw
∣∣∣
2

dσ = 0.

Such a solution is called an outgoing solution.
Alternatively, still assuming that the refraction index is constant, the outgoing
solution to the Helmholtz equation may be defined as the weak limit w of the
sequence (wδ) such that

−iδwδ + ∆wδ + wδ = S(x).

We point out that the two points of views are equivalent in the case of a constant
index of refraction (which is not true for a general index of refraction).

We prove the two propositions in the following two sections. As we will see in the
proofs, our main difficulties are linked to the rays that are emitted by the source at
0 towards the point q1 (and conversely). Hopefully, the interaction between those
rays is ”destructive” and not constructive.

3.1. Proof of Proposition 3.1. In the sequel, C will denote any constant inde-
pendent of ε.
The scaling invariance

‖uε‖B∗ ≤ ‖wε
0‖B∗ ,

makes it sufficient to prove bounds on wε
0. Since wε

0 is a solution to

−iαεεw
ε
0 + ∆wε

0 + wε
0 = S0(x) + S1

(
x− q1

ε

)

we may decompose wε
0 = w̃ε

0 + aε, where w̃ε
0 and aε satisfy

{
−iαεεw̃ε

0 + ∆w̃ε
0 + w̃ε

0 = S0(x),
−iαεεa

ε + ∆aε + aε = S1

(
x− q1

ε

)
.

First, we note that the bound ‖w̃ε
0‖B∗ ≤ C‖S0‖B is established in Agmon-Hörman-

der [1] (see also Perthame-Vega [12]). Hence, the proof of Proposition 3.1 reduces
to the proof of the following lemma.

Lemma 3.3. If aε is the solution to

−iαεεa
ε + ∆aε + aε = S1

(
x− q1

ε

)

then aε is uniformly (in ε) bounded in B⋆:

‖aε‖B∗ ≤ C‖S1‖B
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Proof. We want to prove that

∀v ∈ B, |〈aε, v〉| ≤ C‖S1‖B‖v‖B.

Using Parseval’s equality, we write

(3.3) 〈aε, v〉 =

∫

R3

e−i
q1·ξ

ε Ŝ1(ξ)¯̂v(ξ)

−|ξ|2 + 1 − iεαε
dξ.

To estimate this integral, we shall distinguish the values of ξ close to or far from
two critical sets: the sphere {|ξ|2 = 1} (the set where the denominator in (3.3)
vanishes when ε → 0) and the line {ξ collinear to x0} (the set where we cannot
apply directly the stationary phase theorem to (3.3)).

More precisely, we first take a small parameter δ ∈]0, 1[, and we distinguish in
the integral (3.3), the contributions due to the values of ξ such that |ξ2 − 1| ≥ δ
or |ξ2 − 1| ≤ δ. Let χ ∈ C∞

c (R) be a truncation function such that χ(λ) = 0 for

|λ| ≥ 1. We denote χδ(ξ) = χ
( |ξ|2−1

δ

)
. We accordingly decompose

〈aε, v〉 =

∫

R3

e−i
q1
ε
·ξŜ1(ξ)¯̂v(ξ)χδ(ξ)

−|ξ|2 + 1 − iεαε
dξ +

∫

R3

e−i
q1
ε
·ξŜ1(ξ)¯̂v(ξ)(1 − χδ(ξ))

−|ξ|2 + 1 − iεαε
dξ

= Iε + IIε.

First, since the denominator is not singular on the support of χδ, we easily bound
the first part with the L2 norms

|Iε| ≤ ‖χ‖L∞

δ
‖Ŝ1‖L2‖v̂‖L2 ,

and using B →֒ L2, we obtain the desired bound

(3.4) |Iε| ≤ C‖S1‖B‖v‖B.

Let us now study the second part IIε where the denominator is singular. Up to
a rotation, we may assume q1 = |q1|e1, where e1 is the first vector of the canonical
base. We make the polar change of variables

ξ =





r sin θ cosϕ
r sin θ sinϕ
r cos θ

.

Remark. In order to make the calculations easier, we write this paper in di-
mension equal to 3, but the proof would be similar in any dimension d ≥ 3.

Hence, q1 · ξ = |q1|r sin θ cosϕ, and we get

IIε =

∫
e−i

|q1|
ε

r sin θ cos ϕ

−r2 + 1 − iεαε

(
Ŝ1

¯̂v(1 − χδ)
)
(ξ(r, θ, ϕ))r2 sin θdrdθdϕ

Now, we distinguish the contributions to the integral dθdφ linked to the values close
to, or far from, the critical direction {θ = π

2 , ϕ = 0} (which corresponds to the case
{ξ collinear to q1}). To that purpose, let η > 0 be a small parameter and denote

K =

{
(r, θ, φ)

∣∣∣∣ 1 − χ
(r2 − 1

δ

)
6= 0, χ

(
θ − π

2

η

)
6= 0, χ

(ϕ
η

)
6= 0

}
.
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Then K is a compact set. Let k ∈ C∞
c be such that (1−χδ)k(θ, ϕ) is a localization

function on K. We write

IIε =

∫
e−i

|q1|
ε

r sin θ cos ϕ

−r2 + 1 − iεαε
(Ŝ1

¯̂v)(ξ(r, θ, ϕ))(1 − χδ(r))k(θ, ϕ)r2 sin θdrdθdϕ

+

∫
e−i

|q1|
ε

r sin θ cos ϕ

−r2 + 1 − iεαε
(Ŝ1

¯̂v)(ξ(r, θ, ϕ))(1 − χδ(r))(1 − k(θ, ϕ))r2 sin θdrdθdϕ

IIε = IIIε + IV ε.

To estimate the contribution IIIε, we apply the stationary phase method. We
denote α = θ − π

2 . The phase function is gr(α, ϕ) = r cosα cosϕ so

∂gr

∂α
= −r sinα cosϕ = 0 at (α, ϕ) = (0, 0),

∂gr

∂ϕ
= −r cosα sinϕ = 0 at (α, ϕ) = (0, 0),

and the Hessian at the point (0, 0) is

D2gr(0, 0) =

(
−r 0
0 −r

)
,

which is invertible at any point in K. Since K is a compact set, we can apply the
Morse lemma: there exists a finite covering (Ωj)j=1,n (n ∈ N) of K such that on
each set Ωj , there exists a C∞ change of variables (α, ϕ) 7→ (αj , ϕj) such that

gr(α, ϕ) = r − r
α2

j

2
− r

ϕ2
j

2
.

Moreover, we can write (1 − χδ)k =
∑n

j=1 χj where χj ∈ C∞
c and supp(χj) ⊂ Ωj .

Then, we make the changes of variables α′
j =

√
r
2αj , ϕ

′
j =

√
r
2ϕj . Finally, we

decompose χj = χ1
jχ

2
j . Thus, we obtain, for the contribution IIIε, the formula

(3.5) IIIε =

n∑

j=1

∫
ei

x1

ε
(−r+α′2

j +ϕ′2
j )

−r + 1 + iεαε
T̂ 1

j S1(r, α
′
j , ϕ

′
j)T̂

2
j v(r, α

′
j , ϕ

′
j)drdα

′
jdϕ

′
j ,

where

T 1
j S1 := F

(
(χ1

j Ŝ1) ◦ ξ(r, α(αj , ϕj), ϕ(αj , ϕj))
)
,

T 2
j v := F

( −r + 1 + iεαε

−r2 + 1 − iεαε
(χ2

j v̂) ◦ ξ(r, α(αj , ϕj), ϕ(αj , ϕj))

×2

r

∣∣∣ dξ

d(r, α, ϕ)

∣∣∣
∣∣∣ d(α, ϕ)

d(αj , ϕj)

∣∣∣
)
.

As a first step, using Proposition 2.2, we directly get T 1
j S1 ∈ B with

‖T 1
j S1‖B ≤ C‖S1‖B.

As a second step, we study T 2
j v. Since for r close to 1,
∣∣∣ −r + 1 + iεαε

−r2 + 1 − iεαε

∣∣∣ ≤ 1,

we recover, from Proposition 2.2,

T 2
j v ∈ B and ‖T 2

j v‖B ≤ C‖v‖B.
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Now, we apply Parseval’s equality with respect to the r variable in the formula (3.5)

IIIε =

n∑

j=1

∫
ei

|q1|
ε

(α′2
j +ϕ′2

j )

−r + 1 + iεαε

̂
T 1

j S1(.−
|q1|
ε
, ., .)T̂ 2

j vdrdα
′
jdϕ

′
j

=

∫
ei

|q1|
ε

(α′2
j +ϕ′2

j )1{ρ>0}e
−(εαε−i)tFr→ρ(

̂
T 1

j S1(.−
|q1|
ε
, ., .))(ρ− t, α′

j , ϕ
′
j)

×Fr→ρ(T̂ 2
j v)(ρ, α

′
j , ϕ

′
j)dtdρdα

′
jdϕ

′
j .

where 1{ρ>0} denotes the characteristic function of the set {ρ > 0}.
Hence, we obtain

|IIIε| ≤
n∑

j=1

(∫
‖Fr→ρ(

̂
T 1

j S1(.−
|q1|
ε
, ., .))(ρ))‖L2dρ

)

×
(∫

‖Fr→ρ(T̂ 2
j v)(ρ)‖L2dρ

)

|IIIε| ≤
n∑

j=1

(∫
‖T 1

j S1(ρ−
|q1|
ε

)‖L2dρ
)(∫

‖T 2
j v(ρ)‖L2dρ

)

|IIIε| ≤
n∑

j=1

(∫
‖T 1

j S1(ρ)‖L2dρ
)(∫

‖T 2
j v(ρ)‖L2dρ

)

|IIIε| ≤ C

n∑

j=1

‖T 1
j S1‖B‖T 2

j v‖B

|IIIε| ≤ C‖S1‖B‖v‖B,

which is the desired estimate.

We are left with the part IV ε, which corresponds to the directions ξ that are
not collinear to q1. We denote K ′ the support of (1−χδ)(1−k) which is a compact
set. In K ′, we can choose as new independent variables

η1 = −q1 · ξ, η2 = |ξ|2 − 1.

More precisely, since
d(η1, η2)

dξ
=

(
−q1
2ξ

)

is of maximal rank 2, there exists a finite covering (Ω′
j)j=1,m (m ∈ N) of K ′ such

that in Ω′
j , we can make the change of variables ξ 7→ η. As before, we denote

χ′
j = χ3

jχ
4
j some localization functions on Ω′

j such that (1− χδ)(1− k) =
∑m

j=1 χ
′
j .

Thus, for j = 1, . . . ,m,
∫

e−i
q1
ε
·ξ

−|ξ|2 + 1 + iεαε
Ŝ1v̂χ

′
jdξ =

∫
ei

η2

ε

−η1 + iεαε
(Ŝ1v̂χ

′
j)(ξ(η))

∣∣∣dξ
dη

∣∣∣dη.

If we denote

T 3
j S1 := F−1((χ3

j Ŝ1) ◦ ξ),

T 4
j v := F−1

(
(χ4

j v̂) ◦ ξ)
∣∣dξ
dη

∣∣),
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and if F1 denotes the Fourier transform with respect to the η1 variable, Parseval’s
equality with respect to η1 gives
∣∣∣∣
∫

e−i
q1
ε
·ξ

−|ξ|2 + 1 + iεαε
Ŝ1v̂χ

′
jdξ

∣∣∣∣ = (2π)d

∣∣∣∣
∫
χ{t>0}e

−εαεt(F−1
1 (T̂ 3

j S1))(x1 − t)

×(F−1
1 (T̂ 4

j v))(x1)e
iη2/εdtdx1dη2dη3

∣∣∣∣
≤ C‖S1‖B‖v‖B.

Summing over j, we obtain

|IV ε| ≤ C‖S1‖B‖v‖B,

which ends the proof of the bound

|〈aε, v〉| ≤ C‖S1‖B‖v‖B.

�

3.2. Proof of Proposition 3.2. We prove the result for the sequence (wε
0), the

convergence of the sequence (wε
1) can be obtained similarly. As we did in the proof

of Proposition 3.1, we write wε
0 = w̃ε

0 + aε. Since w̃ε
0 is the solution to a Helmholtz

equation with constant index of refraction and fixed source, it converges weakly-∗
to the outgoing solution w0 to ∆w+w = S0. Hence, it suffices to show the following
result.

Lemma 3.4. If aε ∈ B⋆ is the solution to

−iαεεa
ε + ∆aε + aε = S1

(
x− q1

ε

)

then aε → 0 in B⋆.

Proof. The proof of this result requires two steps (using a density argument):

(1) for v ∈ B, we have the bound
∣∣〈aε, v〉

∣∣ ≤ C‖S1‖B‖v‖B

(2) if S1 and v are smooth, then 〈aε, v〉 → 0.

The first point is exactly the result in Lemma 3.3. It remains to prove the conver-
gence in the smooth case (the second point above).
We write

〈aε, v〉 =

∫

R3

e−i
q1
ε
·ξŜ1(ξ)¯̂v(ξ)

−|ξ|2 + 1 − iεαε
dξ.

We are thus left with the study of

(3.6) Rε(ψ) =

∫

R3

e−i
q1
ε
·ξψ(ξ)

−|ξ|2 + 1 − iεαε
dξ

where ψ = Ŝ1v̂ belongs to S(R3).

As in the proof of Lemma 3.3, we distinguish the contributions of various values
of ξ. We shall use exactly the same partition, according to the values of ξ close to,
or far from, the sphere |ξ| = 1 and collinear or not to q1. We shall use the same
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notations for the various truncation functions.
We first separate the contributions of ξ such that |ξ2 − 1| ≤ δ and |ξ2 − 1| ≥ δ

Rε(ψ) =

∫

R3

e−i
q1
ε
·ξψ(ξ)χδ(ξ)

−|ξ|2 + 1 − iεαε
dξ +

∫

R3

e−i
q1
ε
·ξψ(ξ)(1 − χδ(ξ))

−|ξ|2 + 1 − iεαε
dξ

= Iε + IIε.

In the support of χδ, since the denominator is not singular, we can apply the
non stationary phase method.
Since q1 6= 0, we may assume q11 6= 0 and we have

Iε =
ε

iq11

∫

R3

e−i
q1
ε
·ξ∂ξ1

(
ψ(ξ)χδ(ξ)

−|ξ|2 + 1 − iεαε

)
dξ

=
ε

iq11

∫

R3

e−i
q1
ε
·ξ

(
∂ξ1

(ψ(ξ)χδ(ξ))

−|ξ|2 + 1 − iεαε
− 2ψ(ξ)χδ(ξ)ξ1

(−|ξ|2 + 1 − iεαε)2

)
.

Hence, we obtain the bound

|Iε| ≤ ε

|q11 |

∫

R3

(1

δ
|∂ξ1

(χψ)| + 2

δ2
|ξ1χψ|

)
dξ.

Since ∂ξ1
(χψ) and ξ1χψ belongs to S, we have, as ε→ 0,

Iε → 0.

Let us now study the second term IIε. We use the same changes of variables as
in Section 3.1. It leads to the following formula

IIε =
n∑

j=1

∫
e−i

q1
ε

(r−α′2
j −ϕ′2

j )

−r + 1 + iεαε
χ̃j(r, α

′
j , ϕ

′
j)ψ̃(r, α′

j , ϕ
′
j)drdα

′
jdϕ

′
j ,

where

χ̃j(r, α
′
j , ϕ

′
j) = χj ◦ ξ(r, α(α′

j , ϕ
′
j), ϕ(α′

j , ϕ
′
j))

2(−r + 1 + iεαε)

r(−r2 + 1 − iεαε)

∣∣∣∣
d(α, ϕ)

d(αj , ϕj)

∣∣∣∣,

ψ̃(r, α′
j , ϕ

′
j) = ψ ◦ ξ(r, α(α′

j , ϕ
′
j), ϕ(α′

j , ϕ
′
j)),

are still smooth functions that are bounded independently from ε.
Using Parseval’s inequality with respect to the variables (α′

j , ϕ
′
j) for each integral,

we obtain the bound

|IIε| ≤ Cε

n∑

j=1

∣∣∣∣∣

∫
e−i

|q1|
ε

re−iε(λ2

j+µ2

j )

−r + 1 + iεαε
Fλj ,µj

(χ̃jψ̃)drdλjdµj

∣∣∣∣∣ .

To obtain the convergence of IIε, it remains to study an integral of the following
type

∫

|r−1|≤δ

e−i
|q1|

ε
rw(r)

−r + 1 + iεαε
dr, where w ∈ S.

This is done in the following lemma.

Lemma 3.5. ∀w ∈ S, ∀θ ∈ (0, 1), we have

∫

|r|≤δ

e−i
|q1|

ε
rw(r)

−r + iεαε
dr = −iπw(0) +Oε→0(ε

−θ).
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Using this lemma, we readily get the estimate

(3.7) |IIIε| ≤ Cε1−θ ∀θ ∈ (0, 1),

which proves that IIIε → 0 as ε→ 0.

There remains to give the
Proof of Lemma 3.5. We write
∫ δ

−δ

e−i
|q1|

ε
rw(r)

−r + iεαε
dr =

∫ δ

−δ

e−i
|q1|

ε
rw(r)

r2 + (εαε)2
(r − iεαε)dr

= −iεαε

∫ δ

−δ

e−i
|q1|

ε
rw(r)

r2 + (εαε)2
dr +

∫ δ

−δ

e−i
|q1|

ε
r rw(r)

r2 + (εαε)2
dr

= I + II.

We have

I = −i
∫ δ

εαε

− δ
εαε

e−i|q1|αεyw(εαεy)

y2 + 1
dy → −iπw(0),

and

II =

∫ δ

−δ

(
e−i

|q1|

ε
rw(r) − w(0)

) r

r2 + (εαε)2
dr +

∫ δ

−δ

w(0)
r

r2 + (εαε)2
dr .

The last term vanishes because the integrand is odd. Moreover, using the smooth-
ness of w, we easily obtain that for all θ ∈ (0, 1),

∣∣e−i
|q1|

ε
rw(r) − w(0)

∣∣ ≤ Cθ

(r
ε

)θ

Thus, ∣∣∣∣
∫ δ

−δ

(
e−i

|q1|
ε

rw(r) − w(0)
) r

r2 + (εαε)2
dr

∣∣∣∣ ≤
C

εθ

∫ δ

−δ

|r|θ−1dr

and the result is proved. �

We are left with the study of IV ε. We use the same change of variables as in
Section 3.1.

IV ε =

m∑

j=1

∫
e−i

q1
ε
·ξ

−|ξ|2 + 1 + iεαε
ψ(ξ)χj(ξ)dξ

=

m∑

j=1

∫
ei

η2

ε

−η1 + iεαε
(ψχj)(ξ(η))

∣∣∣ dξ
dη

∣∣∣dη

= iε

m∑

j=1

∫
ei

η2

ε

−η1 + iεαε
∂η1

(
(ψχj)(ξ(η))

∣∣∣dξ
dη

∣∣∣
)
dη.

The integral obviously converges with respect to all the variables except η1. It re-
mains to prove the convergence with respect to the η1 variable, i.e. the convergence
of ∫

φ(η)

−η1 + iεαε
dη1,

where

φ = ∂η1

(
(ψχj)(ξ(η))

∣∣∣dξ
dη

∣∣∣
)
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is smooth and compactly supported with respect to η. It is a consequence of the
fact that the distribution (x+ i0)−1 is well-defined on R by

1

x+ i0
= v.p.(

1

x
) − iπδ(x).

We conclude that IV ε → 0 and 〈aε, v〉 → 0 as ε→ 0. �

4. Transport equation and radiation condition on µ

In this section, we state and prove our results on the Wigner measure associated
with (uε). Since we established the uniform bounds on (uε) and the convergence
of (wε

0), (wε
1), these results now essentially follows from the results proved in [2].

We first prove bounds on the sequence of Wigner transforms (W ε) that allow us to
define a Wigner measure µ associated to (uε). Then, we get the transport equation
satisfied by µ together with the radiation condition at infinity, which uniquely
determines µ.

4.1. Results.

Theorem 4.1. Let S0, S1 ∈ B and λ > 0. The sequence (W ε) is bounded in
the Banach space X⋆

λ and up to extracting a subsequence, it converges weak-⋆ to a
positive and locally bounded measure µ such that

(4.1) sup
R>0

1

R

∫

|x|<R

∫

ξ∈R3

µ(x, ξ) dxdξ ≤ C(‖S0‖B + ‖S1‖B)2.

The Banach space X∗
λ is defined as the dual space of the set Xλ of functions ϕ̂(x, ξ)

such that ϕ(x, y) := Fξ→y(ϕ̂(x, ξ)) satisfies

(4.2)

∫

Rd

sup
x∈Rd

(1 + |x| + |y|)1+λ|ϕ(x, y)|dy <∞.

Theorem 4.2. Assume (H1), (H2), (H3). Then the Wigner measure µ asssociated
with (uε) satisfies the following transport equation

(4.3) ξ · ∇xµ =
1

(4π)2

(
δ(x)|Ŝ0(ξ)|2 + δ(x− q1)|Ŝ1(ξ)|2

)
δ(|ξ|2 − 1) := Q(x).

Moreover, µ is the outgoing solution to the equation (4.3) in the following sense:
for all test function R ∈ C∞

c (R6), if we denote g(x, ξ) =
∫∞

0 R(x− ξt, ξ)dt, then

(4.4)

∫

R6

R(x, ξ)dµ(x, ξ) = −
∫

R6

Q(x, ξ)g(x, ξ)dxdξ.

Remark. Here the support of the test function R contains 0, contrary to [2].

4.2. Proof of Theorem 4.1. This theorem, that is proved in [2], is a consequence
of the uniform estimate on the sequence (uε) in the spaceB∗ obtained in Proposition
3.1. We observe that for any λ > 0,

(4.5) ‖〈x〉− 1

2
−λuε(x)‖L2 ≤ C‖uε‖B∗ ≤ C‖f‖B,
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hence, for any function ϕ satisfying (4.2), we have

|〈W ε(uε), ϕ̂〉|

≤
∫

R6

|uε|(x+ ε
2y)|uε|(x− ε

2y)

〈x+ ε
2y〉

1

2
+0〈x− ε

2y〉
1

2
+0

〈x +
ε

2
y〉 1

2
+0〈x − ε

2
y〉 1

2
+0|ϕ|(x, y)dxdy

≤ C‖f‖2
B

∫

R3

sup
x∈R3

〈|x| + |y|〉1+0|ϕ(x, y)|dy.

So (W ε(uε)) is bounded in X∗
λ, λ > 0. We deduce that, up to extracting a subse-

quence, (W ε(uε)) converges weak-∗ to a nonnegative measure µ satisfying

(4.6) |〈µ, ϕ̂〉| ≤ C‖f‖2
B

∫

R3

sup
x∈R3

〈|x| + |y|〉1+0|ϕ(x, y)|dy.

We refer for instance to Lions, Paul [9] for the proof of the nonnegativity of µ.
The bound (4.1) is obtained using the following family of functions

ϕR
µ (x, y) =

1

µ3/2
e−|y|2/µ 1

R
χ(〈x〉 ≤ R)

and letting µ→ 0, R → ∞. �

4.3. Proof of the transport equation 4.3. This section is devoted to the proof of
the transport equation satisfied by µ. We first write the transport equation satisfied
by W ε in a dual form. Then, we study the convergence of the source term (the
convergence of the other terms is obvious). Finally, choosing an appropriate test
function in the limiting process, we get the radiation condition at infinity satisfied
by µ. Proving first a localization property, we improve the radiation condition
proved in [2].

4.3.1. Transport equation satisfied by W ε. W ε satisfies the following equation

(4.7) αεW
ε + ξ · ∇xW

ε =
iε

2
Im W ε(fε, uε) := Qε.

This equation can be obtained writing first the equation satisfied by

vε(x, y) = uε
(
x+

ε

2
y
)
uε
(
x− ε

2
y
)
.

From the equality

∇y · ∇xv
ε =

ε

2

[
∆uε(x+

ε

2
y)uε(x− ε

2
y) − ∆uε(x− ε

2
y)uε(x+

ε

2
y)
]
,

we deduce

αεv
ε + i∇y · ∇xv

ε +
i

2ε

[
n2(x+

ε

2
y) − n2(x− ε

2
y)
]
vε = σε(x, y),

where

σε(x, y) :=
iε

2

[
Sε(x+

ε

2
y)uε(x − ε

2
y) − Sε(x− ε

2
y)uε(x +

ε

2
y)
]
.

After a Fourier transform, we obtain the equation (4.7).
Then we write the dual form of this equation. Let ψ ∈ S(R6), we have

(4.8) αε〈W ε, ψ〉 − 〈W ε, ξ · ∇xψ〉 = 〈Qε, ψ〉.
By the definition of the Wigner measure µ, we get

αε〈W ε, ψ〉 → 0 and 〈W ε, ξ · ∇xψ〉 → 〈µ, ξ · ∇xψ〉.
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Hence we are left with the study of the source term 〈Qε, ψ〉.
4.3.2. Convergence of the source term. In order to compute the limit of the source
term in (4.7), we develop

〈Qε, ψ〉 =
iε

2
Im
(
〈W ε(Sε

0 , u
ε), ψ〉 + 〈W ε(Sε

1 , u
ε), ψ〉

)
.

Thus, the result is contained in the following proposition.

Proposition 4.3. The sequences
(
εW ε(Sε

0 , u
ε)
)

and
(
εW ε(Sε

1 , u
ε)
)

are bounded in

S′(R6) and for all ψ ∈ S(R6), we have

lim
ε→0

ε〈W ε(Sε
0 , u

ε), ψ〉S′,S =
1

(2π)3

∫

R3

ŵ0(ξ)Ŝ0(ξ)ψ(0, ξ)dξ,(4.9)

lim
ε→0

ε〈W ε(Sε
1 , u

ε), ψ〉S′,S =
1

(2π)3

∫

R3

ŵ1(ξ)Ŝ1(ξ)ψ(q1, ξ)dξ,(4.10)

where w0 and w1 are defined in Proposition 3.2.

Using Proposition 4.3, we readily get

lim
ε→0

〈Qε, ψ〉 =
i

2(2π)3
Im

(∫

R3

ŵ0(ξ)Ŝ0(ξ)ψ(0, ξ)dξ +

∫

R3

ŵ1(ξ)Ŝ1(ξ)ψ(q1, ξ)dξ

)

=
1

(4π)2

(∫

R3

|Ŝ0(ξ)|2δ(ξ2 − 1)ψ(0, ξ)dξ

+

∫

R3

|Ŝ1(ξ)|2δ(ξ2 − 1)ψ(q1, ξ)dξ

)
,

which is the result in Theorem 4.2. �

Let us now prove Proposition 4.3.
Proof of Proposition 4.3. The two terms to study being of the same type, we only
consider the first one in our proof. Let ψ ∈ S(T ∗Rd) and ϕ(x, y) = F−1

y→ξ(ψ(x, ξ)),
then we have

ε〈W ε(Sε
0 , u

ε), ψ〉S′,S = ε

∫
Sε

0

(
x+

ε

2
y
)
uε
(
x− ε

2
y
)
ϕ(x, y)dxdy

=

∫
S0(x)wε

0(x+ y)ϕ(ε(x+
y

2
), y)dxdy.

Hence, using that ψ ∈ S(R2d), we get

∣∣ε〈W ε(Sε
0 , u

ε), ψ〉S′,S

∣∣ ≤ C

∫
〈x〉N |S0(x)|

|wε
0(x+ y)|
〈x+ y〉β

〈x+ y〉β
〈x〉N 〈y〉k dxdy

≤ C‖〈x〉NS0‖L2‖wε
0‖B∗

∫

R3
y

sup
x∈R3

〈x+ y〉β
〈x〉N 〈y〉k dy

for any k ≥ 0 and β > 1/2, upon using the Cauchy-Schwarz inequality in x.
Then, we distinguish the cases |x| ≤ |y| and |x| ≥ |y| : the term stemming from

the first case gives a contribution which is bounded by C
∫

dy
〈y〉k−β and the second

contribution is bounded by C
∫

dy
〈y〉k . So, upon choosing k large enough, we obtain

that
|ε〈W ε(Sε

0 , u
ε), ψ〉S′,S | ≤ C‖〈x〉NS0‖L2‖wε‖B∗ .
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Now, in order to compute the limit (4.9), we write

ε〈W ε(Sε
0 , u

ε), ψ〉 =

∫
S0(x)wε

0(x+ y)

(
ϕ
(
ε
(
x+

y

2

)
, y
)
− ϕ(0, y)

)
dxdy

+

∫
wε

0(x)S0(x− y)ϕ(0, y)dxdy

= Iε + IIε.

Reasonning as above, we readily get that limε→0 Iε = 0. For the second term, we
have

IIε =

∫
wε

0(x)
(
S0 ∗ ϕ(0, .)

)
(x)dx,

hence, since wε
0 converges weakly-∗ in B∗, it suffices to prove that S0∗ϕ(0, .) belongs

to B. We denote φ = ϕ(0, .). We have, for β > 1/2,

‖S0 ∗ φ‖B ≤ C‖S0 ∗ φ‖L2

β
= C

∫
〈x〉β |S0 ∗ φ(x)|2dx

≤ C‖φ‖L1

∫
〈x〉β |S0|2 ∗ |φ|(x)dx

where we used the Cauchy-Schwarz inequality. Hence, we get

‖S0 ∗ φ‖B ≤ C‖〈x〉NS0‖L2

∫

R3
y

sup
x∈R3

〈x+ y〉β
〈x〉N 〈y〉k dy,

for any k. As before, this integral converges. Thus, we have established that

S0 ∗ ψ̂(0, .) belongs to B, which implies that

IIε →
∫
S0(x)w0(x+ y)ψ̂(0, y)dxdy.

�

4.4. Proof of the radiation condition (4.4). It remains to prove that µ satisfies
the weak radiation condition (4.4).

4.4.1. Support of µ. In order to prove the radiation condition without restriction
on the test function R (as assumed in [2]), we first prove a localization property on
the Wigner measure µ. This property is well-known when uε satisfies a Helmholtz
equation without source term. It is still valid here thanks to the scaling of Sε.

Proposition 4.4. Under the hypotheses (H1), (H2), (H3), the Wigner measure µ
satisfies

supp(µ) ⊂ {(x, ξ) ∈ R6/ |ξ|2 = 1}.
Proof. Let φ ∈ C∞

c (R6) and φε = φW (x, εDx). Let us denote Hε = −ε2∆ − 1.
Since uε satisfies the Helmholtz equation (1.1), we have

(4.11) iαεεu
ε +Hεuε = ε2Sε.

Moreover, Hε is a pseudodifferential operator with symbol |ξ|2 − 1. By pseudodif-
ferential calculus, φεHε = OpW

ε (φ(x, ξ)(|ξ|2 − 1)) +O(ε) so, using the definition of
the measure µ, we get that

lim
ε→0

(φεHεuε, uε) = lim
ε→0

(OpW
ε (φ(x, ξ)(|ξ|2 − 1))uε, uε)

=

∫
φ(x, ξ)(|ξ|2 − 1))dµ.
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Using the equation (4.11), we write

(φεHεuε, uε) = ε2(φεSε, uε)− iαεε(φ
εuε, uε) = ε2(W ε(Sε, uε), φ) − iαεε(φ

εuε, uε).

On the first hand, Proposition 4.3 gives that limε→0 ε
2(W ε(Sε, uε), φ) = 0. On the

other hand, (φεuε, uε) is bounded so limε→0 αεε(φ
εuε, uε) = 0. Therefore, for any

φ ∈ C∞
c (R6), we have

∫
φ(|ξ|2 − n2(x))dµ = 0, so supp(µ) ⊂ {|ξ|2 = 1}. �

4.4.2. Proof of the condition (4.4). Using the previous localization property, in
order to prove the radiation condition (4.4), one may only use test functions R ∈
C∞

c (R6) such that supp(R) ⊂ R6\{ξ = 0}.
Let R be such a test function. We associate with R the solution gε to

−αεg
ε + ξ · ∇xg

ε = R(x, ξ).

By duality, we have
〈Qε, gε〉 = 〈W ε, R〉,

so that it sufffices to establish the following two convergences:

(4.12) lim
ε→0

〈Qε, gε〉 = 〈Q, g〉,

(4.13) lim
ε→0

〈W ε, R〉 = 〈f,R〉,

where Q et g are defined in Theorem 4.2.
As before, since R ∈ Xλ for any λ > 0, the limit (4.13) follows from the weak-∗
convergence of W ε in X⋆

λ.
On the other hand,

〈Qε, gε〉 = Im
∫

R6

S0(x)w
ε
0(x+ y)ĝε(ε[x+

y

2
], y)dxdy(4.14)

+Im
∫

R6

S1(x)w
ε
1(x+ y)ĝε(q1 + ε[x+

y

2
], y)dxdy,

so 〈Qε, gε〉 is the sum of two terms of the same type. Such a term has been studied
in [2], where the following result is proved.

Proposition 4.5. Assume (wε) is bounded in B∗ and that (wε) converges weakly-∗
in B∗ to w0. Assume S0 satisfy (H3). Let R ∈ C∞

c (R6) be such that supp(R) ⊂
R6\{ξ = 0}. Let gε be the solution to

−αεg
ε + ξ · ∇xg

ε = R(x, ξ)

and g(x, ξ) =
∫∞

0 R(x+ tξ, ξ)dt. Then, we have

lim
ε→0

∫

R6

S0(x)w
ε
0(x+ y)ĝε(ε[x+

y

2
], y)dxdy =

1

(2π)3

∫

R3

Ŝ0(ξ)ŵ0(ξ)g(0, ξ)dξ.

Proof. The proof of this result is written in the appendix. �

Using the proposition above together with Proposition 3.2, we get that

lim
ε→0

〈Qε, gε〉

= Im
(

1

(2π)3

∫

R3

Ŝ0(ξ)ŵ0(ξ)g(0, ξ)dξ +
1

(2π)3

∫

R3

Ŝ1(ξ)ŵ1(ξ)g(q1, ξ)dξ

)

=
1

(4π)2

(∫

R3

|Ŝ0(ξ)|2δ(ξ2 − 1)g(0, ξ)dξ +

∫

R3

|Ŝ1(ξ)|2δ(ξ2 − 1)g(q1, ξ)dξ

)
.
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Thus, the radiation condition (4.4) is proved.

Appendix A. Proof of Proposition 4.5

In the sequel, we denote

Gε = lim
ε→0

∫

R6

S0(x)w
ε
0(x+ y)ĝε(ε[x+

y

2
], y)dxdy.

A.1. Bounds on Gε. In order to study Gε, we need a preliminary result on the
test function gε.

Lemma A.1. Let R ∈ C∞
c (R6 \ {ξ = 0}). We denote gε the solution to

(A.1) −αεg
ε + ξ.∇xg

ε = R(x, ξ).

It is given by the explicit formula

(A.2) gε(x, ξ) = −
∫ ∞

0

exp(−αε|ξ|−1s)
1

|ξ|R(x− ξ

|ξ|s, ξ)ds.

Then we have the estimate

(A.3) ∀M ≥ 0, |ĝε(x, y)| ≤ C
〈x〉M ∧ α−M

ε

〈y〉M ,

where . ∧ . denotes the infimum of two numbers, and C is a constant depending on
M and R.

Proof. Let a be a multiindex such that |a| ≤M . We denote ω = ξ
|ξ| . We write

yaĝε(x, y) = Fξ→y

(∫ ∞

0

(i∂ξ)
a

[
e−αε|ξ|

−1s 1

|ξ|R(x− ωs, ξ)

]
ds
)

=

∫

R3

dξe−iξ.y

∫ +∞

s=0

ds
∑

b,c,d,e,f

C(a,b,c,d,e,f)e
−αε|ξ|

−1s(i∂ξ)
b(−αε|ξ|−1s)

×(−αε|ξ|−1s)f (i∂ξ)
c(−sω)(i∂x)d(i∂ξ)

e

(
1

|ξ|R
)

(x− ωs, ξ).(A.4)

Using that
• R ∈ C∞

0 (R6\{|ξ| = 0}) so
• there exists r0, A, B > 0 such that supp(R) ⊂ {|x| ≤ r0} × {A ≤ |ξ| ≤ B},
• R and its derivatives belong to L1(R6).

• |(i∂ξ)
b(−αε|ξ|−1s)| ≤ Cs, ∀ |ξ| ≥ A.

• |(i∂ξ)
c(−sω)| ≤ Cs, ∀ |ξ| ≥ A.

• in the integral above, s ∈ [|x| − r0, |x| + r0], so for |x| large enough, we can use
the equivalence s ∼ |x| ∼ 〈x〉 (where we dente for a, b > 0, a ∼ b if ∃ c1, c2 >
0/ c1a < b < c2a), we get in (A.4),

|yaĝε(x, y)| ≤ C〈x〉M exp(−αε

B
〈x〉).

The desired estimate follows. �
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Using this lemma, we estimate

|Gε| ≤
∣∣∣
∫

R6

wε
0(x+ y)S0(x)ĝε(ε(x+

y

2
, y)dxdy

∣∣∣

≤ C

∫

R6

|wε
0(x+ y)|

〈x+ y〉 1

2
+0

〈x+ y〉 1

2
+0〈x〉N1 |S0(x)|〈x〉−N1

〈ε(x+ y
2 )〉M ∧ α−M

ε

〈y〉M

≤ C‖wε
0‖B⋆‖〈x〉N1S0(x)‖L2

×
∫

R3

sup
x∈R3

〈x+ y〉 1

2
+0〈x〉−N1

〈ε(|x| + |y|)〉M ∧ α−M
ε

〈y〉M dy.

Now, we prove that the integral

Iε =

∫

R3

sup
x∈R3

〈x+ y〉 1

2
+0〈x〉−N1

〈ε(|x| + |y|)〉M ∧ α−M
ε

〈y〉M dy

is bounded uniformly with respect to ε.
Let us define the following three subsets in R6

(A.5)
Aε = {(x, y) ∈ R6/|x| ≥ |y|}, Bε = {|x| ≤ |y|, |ε1−0y| ≤ 1},
Cε = {|x| ≤ |y|, |ε1−0y| ≥ 1},

where ε1−0 means ε1−δ with δ > 0 sufficiently small.
If (x, y) ∈ Aε, then

〈x+ y〉 1

2
+0〈x〉−N1

〈ε(|x| + |y|)〉M ∧ α−M
ε

〈y〉M ≤ C〈x〉−N1+ 1

2
+0
(
〈εx〉M ∧ α−M

ε

)
〈y〉−M .

Now, we distinguish the relative size of 〈εx〉 and εγ :
• if 〈εx〉 ≥ ε−γ , we have

〈x〉 1

2
+0−N1

(
〈εx〉M ∧ α−M

ε

)
≤ 〈x〉 1

2
+0−N1ε−γM ≤ ε−γ( 1

2
+0−N1+M).

• if 〈εx〉 ≤ ε−γ , we have 〈x〉 ≤ 1
ε 〈εx〉, hence we get

〈x〉 1

2
+0−N1

(
〈εx〉M ∧ α−M

ε

)
≤ 〈x〉 1

2
+0−N1ε−γM ≤ ε−γMε−(γ+1)(1

2
+0−N1).

Now, we choose 1/2 + 0 such that N1 <
1
2 + 0. Then, we get the following bound

for the contribution of the set Aε to Iε

Cε−γM−(γ+1)(1/2+0−N1)

∫

R3

〈y〉−Mdy.

Since N1 >
3γ

γ+1 + 1
2 , we can choose M > 3 such that this contribution is uniformly

bounded with respect to ε.
If (x, y) ∈ Bε, then |εy| ≤ 1 so we obtain

〈x+ y〉 1

2
+0〈x〉−N1

〈ε(|x| + |y|)〉M ∧ α−M
ε

〈y〉M ≤ C〈y〉−M+ 1

2
+0.

Thus, the corresponding contribution to Iε is bounded by C
∫

R3〈y〉−M+ 1

2
+0dy which

is convergent.
If (x, y) ∈ Cε, then

〈x+ y〉 1

2
+0〈x〉−N1

〈ε(|x| + |y|)〉M ∧ α−M
ε

〈y〉M ≤ C〈y〉 1

2
+0 〈εy〉M ∧ α−M

ε

〈y〉M .
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Since |y| ≥ ε−1+0, if we denote z = εy, we have |z| ≥ εδ, for some δ > 0, which
implies that

ε〈z
ε
〉 ≥ εδ

√
2
〈z〉.

Thus, we have

Iε ≤ Cε−3

∫

R3

〈z
ε
〉−M+ 1

2
+0(〈z〉M ∧ ε−γM )dz

≤ CεM(1−δ)−4

∫

R3

〈z〉−M+ 1

2
+0(〈z〉M ∧ ε−γM )dz

where we used the hypothesis (H1) αε ≥ εγ .
We distinguish two cases, according to the relative size of 〈z〉 and ε−γ . We have

∫

〈z〉≥ε−γ

〈z〉 1

2
+0 〈z〉M ∧ ε−γM

〈z〉M dz ≤ ε−Mγ

∫

〈z〉≥εγ

〈z〉 1

2
+0−Mdz

≤ Cε−γ( 3

2
+0),

and ∫

〈z〉≤εγ

〈z〉 1

2
+0 〈z〉M ∧ ε−γM

〈z〉M dz ≤
∫

〈z〉≤εγ

〈z〉 1

2
+0dz

≤ Cε−γ( 3

2
+0).

Hence, we get

Iε ≤ CεM(1−δ)−4−γ( 3

2
+0).

To conclude, we choose M >
4+ 3

2
γ

1−δ , which gives that Iε is uniformly bounded with
respect to ε.

A.2. Convergence of Gε. We decompose Gε in the following way

Gε =

∫

R6

wε
0(x + y)S0(x)

(
ĝε(ε(x+

y

2
), y) − ĝε(0, y)

)
dxdy

+

∫

R6

wε
0(x+ y)S0(x)

(
ĝε(0, y) − ĝ(0, y)

)
dxdy

+

∫

R6

wε
0(x+ y)S0(x)ĝ(0, y)dxdy

= Iε + IIε + IIIε

Using the same method as in Section A.1, we prove that Iε, IIε → 0. Then, we
may write

IIIε =

∫

R6

wε
0(x)

(
S0 ∗ ĝ(0, .)

)
(x)dx.

Moreover, we established in the proof of Proposition 4.3 that if φ is rapidly decreas-
ing at infinity, then S0 ∗ φ ∈ B. Hence, since (wε

0) converges weakly-∗ in B∗ to w0,
we get

lim
ε→0

IIIε =

∫

R6

w0(x)
(
S0 ∗ ĝ(0, .)

)
(x)dx,

which ends the proof.
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