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The action of the Frobenius map on rank 2 vector bundles

over a supersingular genus 2 curve in characteristic 2

L.Ducrohet

1 Introduction

Let X be a smooth proper genus g curve over a field k of characteristic p > 0. Denote by MX(r)

the moduli space of semi-stable vector bundles of rank r and trivial determinant. If X1 is the curve

X ×k, σ k, where σ : k → k is the Frobenius of k, the k-linear relative Frobenius F : X → X1

induces by pull-back a (rational) map V : MX1
(r) 99K MX(r). We are interested in determining

e.g. surjectivity and degree of V , density of Frobenius-stable bundles, loci of Frobenius-destabilized

bundles. For general (g, r, p), not much seems to be known (see the introductions of [LP1] and

[LP2] for an overview of this subject).

When g = 2, r = 2, the classical isomorphism D : MX → |2Θ| ∼= P
3 (see [NR] for the complex

case) remains valid for an algebraically closed field of positive characteristic (see [LP1], section 5

for a sketch of proof) and we have the commutative diagram

MX1
(2) MX(2)

|2Θ1| |2Θ|

-

-
? ?

D D

V

Ṽ

Furthermore, the semi-stable boundary of the moduli space MX(2) identifies via D with the

Kummer quartic surface KumX , which is canonically contained in the linear system |2Θ|, and Ṽ

maps KumX1
to KumX . In [LP2], it is shown that Ṽ is given by polynomials of degree p and

always has base-points.

When p = 2 and X is an ordinary curve, [LP1] determined the quadric equations of Ṽ in terms

of the generalized theta constants of the curve X and thus could answer the above mentioned

questions. In [LP2], they could give the equations of Ṽ in case of a non-ordinary curve X with

Hasse-Witt invariant equal to 1 by specializing a family X of genus 2 curve parameterized by a

discrete valuation ring with ordinary generic fiber and special fiber isomorphic to X . In particular,

they determined the coefficients of the quadrics of Ṽη, which coincide with the Kummer quartic

surface coefficients, in terms of the coefficients of an affine equation for the birational model of the

ordinary curve Xη.

In this paper, we complete the study of the (g, r, p) = (2, 2, 2) case by giving the equations of

Ṽ in case of a supersingular curve X (Theorem 4.2). We adapt the strategy of [LP2]. Namely, we

consider a family X of genus 2 curve of genus 2 curve parameterized by a discrete valuation ring R

with ordinary generic fiber and special fiber isomorphic to X . In order to find an R-base of the free

1



R-module W := H0(JX , 2Θ) and to express the canonical theta functions of order 2 in that base,

we pull back 2Θ on the product X × X via the Abel-Jacobi map X × X → JX and make use of

an explicit theorem of the square for hyperelliptic jacobians (see [AG]). As for the two other cases,

we can easily deduce a full description of the Verschiebung V : MX1
(2) → MX(2) (Proposition 4.3).

I would like to thank C. Pauly for helpful discussions and Y. Laszlo for having introduced me

to this question, for his help and encouragements.

2 Deformation of genus 2 curves

2.1 Specializing an ordinary curve

Let k be a characteristic 2 algebraically closed field, R the discrete valuation ring k[[s]] and K

its fraction field. We consider proper and smooth curve X , of genus 2, supersingular. After [L], we

know that there exists a unique µ ∈ k such that X is birationnally equivalent to the plane curve

given by the equation

y2 + y = x5 + µ2x3 (2.1)

The projection (x, y) 7→ x is the restriction of the ramified double cover π : X → P
1
k = |KX |

(where KX is the canonical divisor of X) with a single Weierstrass point, namely ∞.

Let’s choose an element ω of R − {0, 1} and denote by X the R-scheme defined by the two

affine charts

y2 + (s2x + 1)(s2ω2x + 1)y = x5 + µ2x3 (2.2)

and

ỹ2 + x̃(s2 + x̃)(s2ω2 + x̃)ỹ = x̃ + µ2x̃3

glued by the isomorphism given by x 7→ x̃−1 and y 7→ ỹ(x̃−3). X is a proper and smooth R-scheme

and again, the projection (x, y) 7→ x is the restriction of an R-morphism X → P1
R, still denoted

by π. It’s convenient to introduce the notations

{
q(x) = (s2x + 1)(s2ω2x + 1) = s4ω2x2 + s2(1 + ω2)x + 1

p(x) = x5 + µ2x3

The special fiber X0 is isomorphic to X , the generic fiber Xη is a proper and smooth or-

dinary curve of genus 2 over K, and πη : Xη → P1
K is a double ramified cover with Weier-

strass points 0η (with coordinate 1/s2), 1η (with coordinate 1/s2ω2) and ∞. Thus, we have

JX [2]η ∼= (Z/2Z)2 × µ2
2/K and JX [2]0 is a self dual local-local group scheme over k of di-

mension 2 and height 4.

One can define (over R) the Abel-Jacobi map

AJ : X × X → JX
(x, y) 7→ O(x + y) ⊗ K−1

X
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as the compositum of the quotient map X × X → Sym2X = Div2(X ) under the natural action of

S2 by the natural map Div2X → JX . Using Riemann-Roch, it is surjective, separable of degree

2. Denote by

[0]η = AJ(1η + ∞); [1]η = AJ(0η + ∞); [∞]η = AJ(0η + 1η)

the three non-zero elements of JX [2]et
η and notice that they specialize to 0.

2.2 Standard birational model

There exists a unique triplet (a, b, c) of elements in the algebraic closure K̄ of K such that Xη

is birationally equivalent to the plane curve given by the equation

w2 + z(z + 1)w = z(z + 1)(az3 + (a + b)z2 + cz + c) (2.3)

and such that, with these coordinates, 0η = 0, 1η = 1 and ∞ = ∞. These latter condition

amounts to an ordering of the Weierstrass points of Xη, and this is equivalent to an isomorphism

F2
2 ∼−→ JX [2]et

η , ie a level-2-structure on Xη (see [DO] for the characteristic 0 case).

One can determine explicitly this coordinate change. As x and z are rational coordinates on

P1
K , the function z = z(x) has to induce a K-isomorphism of P1

K , which fixes ∞, sends 1/s2 on 0

and 1/s2ω2 on 1. Thus, we have

z(x) =
ω2

1 + ω2
(s2x + 1) ⇔ x(z) =

1 + ω2

s2ω2
z +

1

s2
(2.4)

In particular, one has q(x) =
(1 + ω2)2

ω2
z(z + 1) and replacing in (2.2), one sees that the function

y(z, w) has to be of the form

y(z, w) =
(1 + ω2)2

ω2
[w + (αz2 + βz + γ)] (2.5)

with α, β and γ in K̄. Inversely, we have

w(x, y) =
ω2

(1 + ω2)2

[
y + α q(x) + (1 + ω2)

[
(α + β)s2x +

(
(α + β + γ) +

γ

ω2

)]]
(2.6)

2.1. Remark. At the Weierstrass point 0η, (2.2) gives that y(0η)2 = p

(
1

s2

)
and (2.3) gives that

w(0η) = 0. Therefore, one has, using (2.5), that

γ2 =
ω4

(1 + ω2)4
p

(
1

s2

)
=

ω4

s10

1 + µ2s4

(1 + ω2)4
(2.7)

Similarly with the Weierstrass point 1η, one gets that

(α + β + γ)2 =
ω4

(1 + ω2)4
p

(
1

s2ω2

)
=

1

s10ω6

1 + µ2s4ω4

(1 + ω2)4

For further use, we give

(α + β)2 =
1

s10ω6

[
1 + ω10

(1 + ω2)4
+ µ2s4ω4 1 + ω6

(1 + ω2)4

]
(2.8)

(α + β + γ)2 +
γ2

ω4
=

1

s10ω6

[
1 + ω6

(1 + ω2)4
+ µ2s4ω4 1

(1 + ω2)3

]
(2.9)

(α + β)2 + (1 + ω2)2
(

(α + β + γ)2 +
γ2

ω4

)
=

1

s10ω2

1 + µ2s4ω2

(1 + ω2)3
(2.10)
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Replacing x and y by their expressions (2.4) and (2.5), we deduce from (2.2) the equation

w2 + z(z + 1)w) =
ω4

(1 + ω2)4
[
[(α + α2)z4 + (α + β)z3 + (β2 + β + γ)z2 + γz + γ2] + p(x(z))

]

Identifying the right-hand term of this equality and the right-hand term of (2.3) (both are degree

5 polynomials), we get 6 equalities, the first five of which are




a =
1 + ω2

s10ω6

b = α2 + α +
1

s10ω4

a + b + c = α + β +
µ2

s6ω2(1 + ω2)

0 = β2 + β + γ +
µ2

s6(1 + ω2)2

c = γ +
ω2(1 + µ2s4)

s10(1 + ω2)3

(2.11)

Equation (2.7) gives γ and then, the last equality above gives

c =
1

s10

ω2

(1 + ω)6
(1 + ν0) with ν0 = µ2s4 + s5(1 + µs2)(1 + ω2)). (2.12)

Using the expressions of a and c, as well as the expression (2.9) of α + β, the third equality gives

b =
1

s10

1

ω6(1 + ω)6
(1 + ν1) with ν1 = µ2s4ω4 + s5ω3(1 + ω2)(1 + µs2ω2)). (2.13)

2.2. Remark. Because of the choice of the Weierstrass points 1/s2 and 1/s2ω2 (which belong to

K2 ⊂ K), the scalars a, b and c lie in fact in K (but not in K2). The same phenomenon occurs

with the parameter µ (hence the choice of µ2 in (2.1)).

2.3. Remark. On the other hand, α and β lie in the finite extension of K ⊂ K1/2. Furthermore, α

and β are not uniquely defined but their sum α + β is (and belongs to K). As it can be seen in

the expression (2.6) of w(x, y), this indeterminacy corresponds to the hyperelliptic involution of

the curve Xη (which is given by the transformation (x, y) 7→ (x, y + q(x))).

3 The space H0(JX , O(2Θ)) for a family of genus 2 curve

X /R

Let L be a field and C a smooth proper curve of genus 2 over L. If JC is the associated jacobian

variety, the Abel-Jacobi map AJ : C × C → JC is a surjective, separable of degree 2, morphism

of L-varieties. The canonical divisor KC gives a 2 sheets ramified cover π : C → P1
L, and denote

by p̄ the involutive conjugate of any point p in C.

It’s classical that the natural map Sym2C = Div2(C) → JC identifies with the blowing-up

J̃C → JC of JC at the origin : Div2(C) → JC is a birational morphism of (nonsingular, projective)
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surfaces and, using Riemann-Roch theorem for C, we see that ∆̄ is the only irreducible curve in

Div2(C) contracted to a point in JC, namely the origin. Using [H] (Chp. V, Cor. 5.4.), we find that

Div2(C) → JC is a monoidal transformation, which is necessarily the monoidal transformation

J̃C → JC with center the origin since Div2(C) → JC factors through it (ibid. Prop. 5.3.).

Suppose there exists a L-rational ramification point ∞. Then, one can embed (non canonically)

the curve C in JC by associating to each point p ∈ C the degree 0 line bundle O(p−∞). Denote

by Θ the corresponding divisor on JC. Its support is the set {j ∈ JC/H0(j ⊗OC(∞)) 6= 0} and

it is well known that O(Θ) is a principal polarization on the jacobian JC. Consequently, we have

dimH0(JC, O(2Θ)) = 4.

When considering the family of genus 2 curve X → Spec R constructed in the previous section,

we can extend the construction and therefore, W := H0(JX , O(2Θ)) is a rank 4 free R-module.

3.1 Canonical theta functions

In the case of an ordinary genus 2 curve over an algebraically closed field of characteristic 2,

π has three ramification points. Up to an automorphism of P1
L, one can assume that they are 0, 1

and ∞, and that C is birational to a plane curve of the standard form (3), namely

w2 + z(z + 1)w = z(z + 1)(az3 + (a + b)z2 + cz + c)

with a, b, c in L. Thus, the three non-zero 2-torsion points of JC[2] are

[0] = AJ(1 + ∞); [1] = AJ(0 + ∞); [∞] = AJ(0 + 1)

Furthermore, JC is given a canonical polarization ΘB defined (see [R]) by means of the canonical

theta-characteristic B ∼= OC(0 + 1 + ∞) ⊗ K−1
C .

The 4-dimensional L-vector space W := H0(JC, O(2ΘB)) is the unique irreducible represen-

tation of weight 1 of the Heisenberg group G(O(2ΘB)), obtained as a central extension

0 → Gm → G(O(2ΘB)) → JC[2] → 0

(cf [Mu2] for the general theory of Heisenberg groups and [Sek] for the characteristic 2 case).

Taking a non-zero section θ of H0(JC, O(ΘB)) and setting

XB = θ2; X0 = [0]∗XB; X1 = [1]∗XB; X∞ = [∞]∗XB

one obtains a base (unique up to scalar if we ask for these conditions) of W (cf [LP1], section 2). As

Supp(XB) = {j ∈ JC/H0(j⊗B) 6= 0}, we have Supp(X∞) = {j ∈ JC/H0(j⊗ [∞]⊗B) 6= 0}. But

[∞]⊗B = OC(0+1)⊗OC(0+1+∞)⊗K−2
C and using the fact that 0 and 1 are Weierstrass points

of C, one finds [∞] ⊗ B = OC(∞). Thus, Supp(X∞) = Supp(Θ) and finally 2Θ = [∞]∗(2ΘB).

Following [LP2] (lemma 3.3), one can express, using the Abel-Jacobi map and an explicit

theorem of the square ([AG]), the rational functions
XB

X∞

,
X0

X∞

,
X1

X∞

∈ k̄(JC) ⊆ k̄(C × C), . We

have the following equalities in k̄(C × C) :

FB := AJ∗

(
XB

X∞

)
= αB

(W1 + W2)
2

P (z1, z2)
where





Wi =
wi

zi(zi + 1)

P (z1, z2) =
(z1 + z2)

2

z1z2(z1 + 1)(z2 + 1)

F0 := AJ∗

(
X0

X∞

)
= α0z1z2, F1 := AJ∗

(
X1

X∞

)
= α1(z1 + 1)(z2 + 1)
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with non-zero scalars αB, α0 and α1 explicitly determined in terms of the scalars a, b, c appearing

in the equation of the standard birational model of C, namely

αB =
1√
bc

; α0 =

√
a

c
; α1 =

√
a

b

3.2 Case of the family X → SpecR

The latter results only apply over the generic fiber Xη but we can use the coordinates change

formulae (2.4) and (2.6) to express the rational functions FB, F0 and F1 in terms of the R-

coordinates (xi, yi) instead of the K-coordinates (zi, wi). First, using the expressions (2.11), (2.12)

and (2.13) of coefficients a, b and c, and putting τ0 and τ1 for

√
1

1 + ν0
and

√
1

1 + ν1
respectively

(which belong to R[
√

s]), we have

√
a

c
=

1 + ω4

ω4
τ0;

√
a

b
= (1 + ω4)τ1;

√
1

bc
= s10ω2(1 + ω2)τ0τ1 (3.1)

Then, straightforward computations give

F0 = τ0(1 + s2(x1 + x2) + s4x1x2); F1 = τ1(1 + s2ω2(x1 + x2) + s4ω4x1x2) (3.2)

and

FB = τ0τ1

[
s6ω2(1 + ω2)

1

q(x1)q(x2)

(
q(x2)y1 + q(x1)y2

x1 + x2

)2

+s18ω6(1 + ω2)3(α + β)2
(x1x2)

2

q(x1)q(x2)

+

(
s14ω6(1 + ω2)3

(
(α + β + γ)2 +

γ2

ω4

))
(x1 + x2)

2

q(x1)q(x2)

+s10ω2(1 + ω2)3
(

(α + β)2 + (1 + ω2)2
(

(α + β + γ)2 +
γ2

ω4

))
1

q(x1)q(x2)

]

We compute the coefficients of the last three terms, using equalities (2.8), (2.9) and (2.10) and

finally obtain

FB = τ0τ1

[
s6ω2(1 + ω2)

1

q(x1)q(x2)

(
q(x2)y1 + q(x1)y2

x1 + x2

)2

+s8

(
1 + ω10

1 + ω2
+ µ2s4ω4 1 + ω6

1 + ω2

)
(x1x2)

2

q(x1)q(x2)

+s4

(
1 + ω6

1 + ω2
+ µ2s4ω4

)
(x1 + x2)

2

q(x1)q(x2)
+ (1 + µ2s4ω2)

1

q(x1)q(x2)

]
(3.3)

3.1. Remark. Notice that, as the product q(x1)q(x2) specializes to 1 over the special fiber, the

three rational functions
X0

X∞

,
X1

X∞

and
XB

X∞

specialize to 1 over the special fiber. This parallelizes

the specialization of the 2-torsion points [0]η, [1]η and [∞]η to 0.

3.3 Finding an R-base

Let’s consider again a genus 2 curve C over an arbitrary field L. Denote by ı the hyperelliptic

involution that permute the two sheets of the ramified double cover π : C → P1
L = |KC | given by
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the canonical map and assume that π is given a L-rational ramification point ∞. In the sequel,

we will use the Abel-Jacobi map AJ : C ×C → JC and the divisor Θ on JC defined as the image

of C in JC via the embedding p 7→ OC(p −∞).

Lemma 3.2 The pull-back AJ∗(Θ) is the divisor ({∞} × C + C × {∞}) + ∆̄ on C × C, where

∆̄ = (Id × ı)∗∆ and ∆ is the diagonal in the product C × C.

Proof : Let M (resp. N) be the prime divisor of Sym2C with support the set {(p+∞), p ∈ C} (resp.

the set {(p + p̄), p ∈ C}). From [AG], we know that b∗(Θ) = M + nN , where n is a non negative

integer, and that σ∗(M) = C×{∞}+{∞}×C. Furthermore, as σ−1(N) = ∆̄, σ∗(N) = k∆̄, where

k is an non negative integer satisfying the equation deg(σ)(N)2 = k2(∆̄)2. On one hand, since N

is the exceptional curve of the blowing-up b : Sym2C → JC, we have (N)2 = −1. On the other

hand, we have (∆̄)2 = deg∆̄(O(∆̄) ⊗ O∆̄). But O(∆̄) ⊗O∆̄ = N∆̄/C×C and taking determinants

in the short exact sequence of O∆̄-coherent sheaves

0 → N−1
∆̄/C×C

→ Ω1
C×C ⊗O∆̄ → ω∆̄ → 0

we obtain ωC ⊗ ı∗ωC
∼= ω2

C
∼= N−1

∆̄/C×C
⊗ ω∆̄ hence

ω−1
∆̄

∼= N∆̄/C×C (3.4)

Therefore, (∆̄)2 = 2− 2gC = −2, hence k = 1 and AJ∗(Θ) = C ×{∞}+ {∞}×C + n∆̄. One can

compute self-intersection again to determine n. We write

deg(AJ)(Θ)2 = (C × {∞})2 + ({∞} × C)2 + n2(∆̄)2

+ 2[(C × {∞}).({∞} × C) + n((C × {∞}).∆̄ + ({∞} × C).∆̄)]

It’s clear that (C × {∞})2 (resp. ({∞} ×C)2) equals to zero for C × {∞} (resp. {∞}× C) being

algebraically equivalent to a divisor that doesn’t meet C ×{∞} (resp. {∞}×C). It’s clear as well

that the intersection products (C × {∞}).({∞} × C), (C × {∞}).∆̄ et ({∞} × C).∆̄ equal to 1

since the two divisors in each pairs obviously meet transversally in a single point, namely (∞, ∞).

Furthermore, using Riemann-Roch theorem for an abelian variety of dimension 2 and a principal

(hence ample) divisor ([Mu1]), we have (Θ)2 = 2. Replacing, we obtain n = 1 �

Define by pi the canonical projection C × C → C on the i-th factor (i = 1, 2). Because the

canonical divisor of C is 2∞ and because Ω1
C×C

∼= p∗1(ωC) ⊕ p∗2(ωC), the canonical divisor KC×C

equals 2(C × {∞}) + 2({∞} × C). Therefore, the previous lemma allows us to see the L-vector

space H0(JC, O(2Θ)) as the linear subspace of H0(C × C, O(KC×C + 2∆̄)) consisting in the set

of symmetric sections (under the action of S2) that take constant value along ∆̄.

Lemma 3.3 The natural inclusion H0(C × C, KC×C) →֒ H0(C × C, O(KC×C + 2∆̄)) induces

three linearly independent sections 1, x1 + x2 and x1x2 of H0(JC, O(2Θ)).

Proof : Consider the short exact sequence of OC×C -coherent sheaves

0 → O(−∆̄) → OC×C → O∆̄ → 0 (3.5)

7



Tensoring with O(KC×C + 2∆̄) and taking cohomology groups, one gets the exact sequence of

L-vector spaces

0 → H0(O(KC×C + ∆̄)) → H0(O(KC×C + 2∆̄)) → H0(O(KC×C + 2∆̄) ⊗O∆̄)

But O(KC×C +2∆̄)⊗O∆̄
∼=

(
O(KC×C) ⊗O(∆̄) ⊗O∆̄

)
⊗O∆̄

(
O(∆̄) ⊗O∆̄

)
. The first term of this

tensorial product is isomorphic to ω∆̄ and the second to N∆̄/C×C . Thus, using the isomorphism

(3.4), we obtain the structural sheaf O∆̄ and we have an exact sequence

0 → H0(O(KC×C + ∆̄)) → H0(O(KC×C + 2∆̄)) → L

Tensoring (3.5) with O(KC×C + ∆̄) and taking cohomology groups, one gets the exact sequence

of L-vector spaces

0 → H0(O(KC×C)) → H0(O(KC×C + ∆̄)) → H0(O(KC×C + ∆̄) ⊗O∆̄)
δ−→ H1(O(KC×C))

with O(KC×C + ∆̄) ⊗ O∆̄
∼= ω∆̄. By Serre duality, the dual exact sequence corresponds to the

long exact sequence of cohomology groups associated to the short exact sequence (3.5). Therefore,

using Serre duality again and Kunnëth isomorphism, one has the following commutative diagram

of L-vector space morphisms

H1(O(KC×C))∨ H0(ω∆̄)∨-

6
≀

6
≀

H1(OC×C) H1(O∆̄)-

-

6
≀

6
≀

H1(OC)
Id + H

1(ı)

δ
∨

H1(OC) ⊕ H1(OC)

As the bottom horizontal arrow is surjective, δ∨ is surjective and δ is injective. Thus, the morphism

H0(O(KC×C)) → H0(O(KC×C + ∆̄)) is an isomorphism and using the Kunnëth isomorphism

again, one gets the following exact sequence of L-vector spaces

0 → H0(ωC) ⊗ H0(ωC) → H0(O(KC×C + 2∆̄)) → L

Denote by x the rational coordinate function of P1
L with pole at ∞. Considering H0(ωC) as a

sub-L-space of the function field k̄(C) by means of the differential dx, it has a base {1, x}. Thus,

considering H0(ωC) ⊗ H0(ωC) as a sub-L-space of the function field k̄(C × C), we find that(
H0(ωC) ⊗ H0(ωC)

)S2

has a base {1, x1 + x2, x1x2}. Note that the three corresponding sections

of H0(O(KC×C +2∆̄))S2 are in the kernel of the evaluation H0(O(KC×C +2∆̄)) → L ∼= H0(O∆̄)

so they have constant value (equal to zero) along ∆̄, hence define sections of H0(JC, O(2Θ)) �

3.4. Remark. Consider the exact sequence (3.5), tensored by O(KC×C + 2∆̄) and localized at the

generic point ∆̄ of the irreducible subscheme ∆̄ of C ×C. If A denotes the discrete valuation ring

OC×C, ∆̄, if t is a element of A that generates the maximal ideal, we find the exact sequence

0 → t−1.A → t−2.A → k̄(∆̄) → 0

Now, given g ∈ H0(O(KC×C + 2∆̄)), we can look at it as an element of t−2.A and write it as

a−2t
−2 + a−1t

−1 +
∑

n≥0 antn, where the ai are a priori elements of the residue field k̄(∆̄). Its
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class in k̄(∆̄) is a−2, which lies in fact in L since the following diagram (where the vertical arrows

are localization) commutes

H0(O(KC×C + 2∆̄)) L

t−2.A k̄(∆̄)-

-

? ?

Therefore, the morphism H0(O(KC×C + 2∆̄)) → L amounts, in some sense, to the computation

of a residue.

3.5. Remark. As H0(JC, O(2Θ)) is of dimension 4, the morphism H0(O(KC×C +2∆̄)) → L cannot

be zero and there must exist a symmetric rational function f on C × C such that

(1) div(f) + KC×C + 2∆̄ is effective ;

(2) f has a pole of order 2 along ∆̄.

Thus, we’ll have a base {1, x1 + x2, x1x2, f} of the vector space H0(JC, O(2Θ)).

3.6. Remark. These two lemmas extend to the relative case of the family of genus 2 curves

X → Spec R, and we find three linearly independent sections 1, x1 + x2 and x1x2 of W .

We now restrict to the case of the family X → Spec R. Note that FB certainly satisfies condition

(1) in the remark above : Over the generic point, it is the pull-back by AJ of the rational function
XB

X∞

, where XB and X∞ are two sections of the line bundle O(2Θ), which corresponds, by lemma

(3.2), to the divisor KXη×Xη
+2∆̄. Furthermore, the origin of JX η does not belong to Supp(ΘB) :

if it did, we would have H0(Xη, B) ≥ 1 and there would exist a point p in Xη such that the divisors

0η + 1η and p +∞ were linearly equivalent, which is impossible since the three Weierstrass points

of Xη are pairwise different. One the other hand, H0(Xη,O(∞)) ≥ 1 so
XB

X∞

has a pole at the

origin, and by pull-back, FB satisfies condition (2) over the generic fiber.

Of course, using lemma (3.3) and the remark (3.5), any linear combination

µ

(
1

τ0τ1
FB + (λ + λΣ(x1 + x2) + λΠ(x1x2))

)

with µ, λ, λΣ and λΠ in K such that it belongs to the ring

A = R[x1, x2, y1, y2, (x1 + x2)
−1, (q(x1)q(x2))

−1]

will fulfill condition (1) over both generic and special fibers and condition (2) over generic fiber.

Using (3.3), recall that

1

τ0τ1
FB = s6ω2(1 + ω2)

1

q(x1)q(x2)

(
q(x2)y1 + q(x1)y2

x1 + x2

)2

+s8

(
1 + ω10

1 + ω2
+ µ2s4ω4 1 + ω6

1 + ω2

)
(x1x2)

2

q(x1)q(x2)

+s4

(
1 + ω6

1 + ω2
+ µ2s4ω4

)
(x1 + x2)

2

q(x1)q(x2)
+ (1 + µ2s4ω2)

1

q(x1)q(x2)

9



As
1

q(x1)q(x2)

(
q(x2)y1 + q(x1)y2

x1 + x2

)2

obviously has a pole of order 2 along ∆̄ over both generic

and special fibers, we look for λ, λΣ and λΠ in K such that we can take µ =
1

s6ω2(1 + ω2)
. Looking

at the class of
1

τ0τ1
FB in A/s6, we find

1

q(x1)q(x2)

[
s4 1 + ω6

1 + ω2
(x1 + x2)

2 + (1 + µ2s4ω2)

]

On the other hand, (λ + λΣ(x1 + x2) + λΠ(x1x2))q(x1)q(x2) equals

λ + (λΣ + λs2(1 + ω2))(x1 + x2) + (λΠ + λs4(1 + ω4))(x1x2) + (λs4ω2 + λΣs2(1 + ω2))(x1 + x2)
2

in A/s6. Thus,we see that

1

τ0τ1
FB + (1 + µ2s4ω2) + s2(1 + ω2)(x1 + x2) + s4(1 + ω4)(x1x2)

belongs to s6A. A few more calculations show that it is in fact in s6ω2(1 + ω2)A and we set

f =
1

s6ω2(1 + ω2)

[
1

τ0τ1
FB + (1 + µ2s4ω2) + s2(1 + ω2)(x1 + x2) + s4(1 + ω4)(x1x2)

]

Therefore,

FB = τ0τ1((1 + µ2s4ω2) + s2(1 + ω2)(x1 + x2) + s4(1 + ω4)(x1x2) + s6ω2(1 + ω2)f) (3.6)

Proposition 3.7 The projective space PW ∼= P3
R has homogeneous coordinates {z1, z2, z3, z∞}

in terms of which, over the generic point Spec K → Spec R, the canonical theta coordinates

{xB, x0, x1, x∞} are given, up to scalar, by the formulae





xB = z1

x0 = τ1(z1 + s2ω2z2 + s4ω4z3)

x1 = τ0(z1 + s2z2 + s4z3)

x∞ = τ0τ1((1 + µ2s4ω2)z1 + s2(1 + ω2)z2 + s4(1 + ω4)z3 + s6ω2(1 + ω2)z∞)

Proof : The previous calculations show that one can form an R-base {Z•} of W by setting

Z∞ = X∞ Z1 = f X∞

Z2 = x1x2X∞ Z3 = (x1 + x2)X∞

The expressions of the X• in terms of the Z• are then given by the equations (3.2) and (3.6). By

duality, we easily deduce the corresponding base change for coordinates �

4 Equations of Ṽ for a supersingular genus 2 curve in char-

acteristic 2

In [LP1] (section 5), it is shown that the morphism D : MX → P3 = |2Θ| is, as in the complex

case (see [NR]), an isomorphism when X is an ordinary genus 2 curve over a characteristic 2

algebraically closed field. As asserted in [LP2], this identification extends to the relative case

X → Spec R, so that Frobenius morphism X → X1 induces, by pull-back, a rational map

10



PW1 PW

Spec R

@
@@R

�
��	

-Ṽ

where W1 stands for the 2-twist H0(JX 1, O(2Θ1)) of W .

Over the generic point η, [LP1] (Proposition 3.1) gives the form of the rational map

Ṽη : P (W1)η → P (W)η

x = (x•) 7→ (λBPB(x) : λ0P0(x) : λ1P1(x) : λ∞P∞(x))

where the x• are the theta coordinates of the spaces (W1)η and (W)η (which correspond via the

K-semi-linear isomorphism i∗ : (W)η → (W1)η), where the P• are the quadrics

PB(x) = x2
B + x2

0 + x2
1 + x2

∞; P0(x) = xBx0 + x1x∞;

P1(x) = xBx1 + x0x∞; P∞(x) = xBx∞ + x0x1.

and where the λ• are non zero constants depending on the curve X . In [LP2] (section 3), we find

explicit determination (up to scalar) of these coefficients, namely

(λB : λ0 : λ1 : λ∞) = (
√

abc :
√

c :
√

b :
√

a)

Using the base change formulae given in Proposition (3.7) and the expressions (2.11), (2.12) and

(2.13) of coefficients a, b and c, we can compute the rational map

Ṽ : z = (z•) 7→ (R1(z) : R2(z) : R3(z) : R∞(z))

First, we express the polynomials Q•(z) = P•(x) (notice that the coefficients appearing in the

formulae given in Proposition (3.7) are squared since we are dealing with elements of the 2-twist

(W1)η). We find

QB(z) = (τ0τ1)
4
(
(ν0ν1 + µ4s8ω4)2z2

1 + s8(ν0ω
4 + ν1)

2z2
2 + s16(ν0ω

8 + ν1)
2z2

3 + s24ω8(1 + ω8)z2
∞

)

Q0(z) = τ4
0 τ2

1

(
(ν0 + µ2s4ω2)2z2

1 + s4ω4(ν0 + µ2s4)2z1z2 + s8ω4(ν0ω
2 + µ2s4)2z1z3

+s8(1 + ω4)z2
2 + s12ω4(1 + ω4)(z2z3 + z1z∞) + s16(1 + ω8)z2

3

+s16ω4(1 + ω4)(z2z∞ + s4z3z∞)
)

Q1(z) = τ2
0 τ4

1

(
(ν1 + µ2s4ω2)2z2

1 + s4(ν1 + µ2s4ω4)2z1z2 + s8(ν1 + µ2s4ω6)2z1z3

+s8ω4(1 + ω4)z2
2 + s12ω4(1 + ω4)(z2z3 + z1z∞) + s16ω8(1 + ω8)z2

3

+s16ω8(1 + ω4)(z2z∞ + s4ω4z3z∞)
)

Q∞(z) = (τ0τ1)
2s8ω4

(
(µ4z2

1 + z2
2) + s4(1 + ω4)(z2z3 + z1z∞) + s8ω4z2

3

)
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Secondly, using the coefficients λ• and the formulae of the Proposition (3.7) again (after inver-

sion and up to scalar), we obtain that

R1(z) =
1

(τ0τ1)4s18ω6(1 + ω)6
QB(z)

R2(z) =
1

(τ0τ1)4s2ω2(1 + ω2)

[
1

s18ω6(1 + ω2)
QB(z) +

1

s8(1 + ω4)
(Q0(z) + Q1(z))

]

R3(z) =
1

(τ0τ1)4s4ω2(1 + ω2)

[
1

s18ω6(1 + ω4)
QB(z) +

1

s8ω2(1 + ω4)
(ω2Q0(z) + Q1(z))

]

R∞(z) =
1

(τ0τ1)4s6ω2(1 + ω2)

[
1 + µ2s4ω2

s18ω6(1 + ω)6
QB(z)

+
1

s8ω4(1 + ω4)
(ω4Q0(z) + Q1(z)) +

1

s8ω4
Q∞(z)

]

Now, using the expansions of ν0 and ν1, we obtain that

R1(z) = µ4z2
1 + z2

2 + s2R̄1(z)

R2(z) = z2
1 + s2R̄2(z)

R3(z) = (z2z3 + z1z∞) + s2R̄3(z)

R∞(z) = (µ4z2
3 + z2

∞ + µ2z2
1 + z1z2) + s2R̄∞(z)

(4.1)

where the R̄•(z) are quadrics with coefficients in R[ω−1, (1 + ω)−1].

4.1. Remark. A few more calculations show that the R̄•(z) coefficients lie in fact in R, so that

we can choose any ω we want in R − {0, 1} (and not necessarily an element that specializes in

k − {0, 1}). It means that any deformation of X leads to the same equations.

Let’s introduce the set of homogeneous coordinates {y1, y2, y3, y∞} of |2Θ| given by

y1 = z1, y2 = z2 + µz1,

y3 = z3, y∞ = z∞ + µz3.

Thus, the corresponding coordinate change in |2Θ1| is obtained by squaring the coefficients and

we have proved the following :

Theorem 4.2 Let X be a smooth supersingular genus 2 curve over a characteristic 2 algebraically

closed field. There exist coordinates {z•} (resp. {y•}) on |2Θ| (resp. |2Θ1|) such that the equations

of Ṽ are given by

Ṽ : |2Θ1| → |2Θ|, y = (y•) 7→ z = (z•) = (Q1(y) : Q2(y) : Q3(y) : Q∞(y))

with
Q1(y) = y2

2 , Q2(y) = y2
1 ,

Q3(y) = y2y3 + y1y∞, Q∞(y) = y2
∞ + y1y2.

5 Frobenius action on MX for a supersingular genus 2 curve

in characteristic 2

We know ([LP2], section 3) that the Kummer surface KumXη
is given, in terms of the theta

coordinates {x•} on |2Θ|η, by the homogeneous quartic

c(x2
Bx2

0 + x2
1x

2
∞) + b(x2

Bx2
1 + x2

0x2∞2) + a(x2
Bx2

∞ + x2
0x

2
1) + xBx0x1x∞

12



the a, b, c being the scalars appearing in the standard birational model (2.3) of the curve Xη.

The same kind of calculations as in section 4 give the equation of KumX in the coordinate

system {z•} of |2Θ|, namely

µ2z3
1z2 + z3

1z∞ + z2
1z2z3 + µ4z2

1z2
3 + z1z

3
2 + z2

2z2
∞ + z4

3 (5.1)

As in [LP1], we easily deduce from theorem (4.2) and from the latter calculations a complete

description of the action of Frobenius on MX , more precisely of its separable part V : MX1
→ MX .

Proposition 5.1 Let X be a smooth supersingular genus 2 curve over a characteristic 2 alge-

braically closed field.

1 The semi-stable boundary of MX (resp. MX1
) is isomorphic to Kummer’s quartic surface

KumX (resp. KumX1
) the equation of which is (5.1). In particular, Ṽ maps KumX1

onto

KumX .

2 There is a unique stable bundle EBAD ∈ MX1
which is destabilized by Frobenius (ie F ∗EBAD

is not semi-stable). We have EBAD = F∗B
−1 and its projective coordinates are (0 : 0 : 1 : 0).

3 Let H1 be the hyperplane in |2Θ1| defined by y2 = 0. The map Ṽ contracts H1 to the conic

KumX ∩ H, where H is the hyperplane in |2Θ| defined by z1 = 0.

4 The fiber of Ṽ over a point [E] ∈ MX is

• a single point [E1] ∈ MX1
, if [E] /∈ H,

• empty, if [E] ∈ H \ KumX ∩ H,

• a projective line passing through EBAD, if [E] ∈ KumX ∩ H.

In particular, Ṽ is dominant, non surjective. The separable degree of Ṽ is 1.

Proof : The fact that the Kummer’s quartic surface KumX is the semi-stable boundary of MX

comes from [NR]. On one hand, the inverse image of KumX is a closed subspace in MX1
the ideal

of which is generated by the homogeneous polynomial obtained by replacing the {z•} in equation

(5.1) by the {Q•(y)} given in theorem (4.2), namely

y4
2 [y

3
1y∞ + µ2y2

1y
2
2 + y2

1y2y3 + µ4(y2
1y

2
∞ + y2

2y
2
3) + y1y

3
2 + y2

2y
2
∞ + y4

3 ]

One the other hand, we obtain the equation

y3
1y∞ + µ2y2

1y
2
2 + y2

1y2y3 + µ4(y2
1y

2
∞ + y2

2y
2
3) + y1y

3
2 + y2

2y
2
∞ + y4

3

of KumX1
in |2Θ1| by squaring the coefficients in equation (5.1) and replacing the coordinates

{z•} on |2Θ1| by their expressions

z1 = y1, z2 = y2 + µ2y1,

z3 = y3, z∞ = y∞ + µ2y3;

in terms of the {y•}. Thus, Ṽ −1(KumX) = KumX1

⋃
H1 (where H1 = (y2 = 0)), hence (1).

Furthermore, H1 is mapped onto the hyperplane H = (z1 = 0) of MX , hence (3).

In [LP1] (Prop. 6.1), it is shown that there is exactly one base point, namely F∗B
−1. Now, solving

Q•(y) = 0, we find that (0 : 0 : 1 : 0) is the unique base point of Ṽ , hence (2).

Let’s [E] be a k-point of MX , with coordinates (a2 : b2 : c2 : d2), and solve the system

y2
2 = a2; y2

1 = b2; y2y3 + y1y∞ = c2; y2
∞ + y1y2 = d2. (5.2)
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We must have y1 = b and y2 = a, so y∞ = d +
√

ab and finally ay3 = c2 + bd + b
√

ab. If [E]

belongs to H (ie if a = 0), it has solutions iff c2 = bd, that is iff [E] belongs to H ∩KumX . In that

case, there is no condition on y3 and the inverse image of such a point is a projective line passing

through EBAD. If [E] does not belong to H (ie if a 6= 0), we see that the inverse image is a single

point �

Denote by NX (resp. NX1
) the moduli of semi-stable bunbles with rank 2 and degree 0 over

X (resp. X1). In the case of an ordinary genus 2 curve, [LP1] (prop. 6.4) show the surjectivity of

the (rational map) Verschiebung NX1
→ NX ; [E1] 7→ [F ∗E1]. In the case of a supersingular curve,

this result doesn’t hold any more. Let E be a vector bundle in NX . JX being divisible, we can

assume that detE is trivial. Now, if [F ∗E1] = [E], we have F ∗(det E1) = detE and detE1 has

to be a 2-torsion point of JX1. Therefore, detE1 is trivial as well and the following appears as a

corollary of proposition (5.1) :

Proposition 5.2 Let X be a supersingular genus 2 curve over a characteristic 2 algebraically

closed field. The rational map NX1
→ NX given by [E1] 7→ [F ∗E1] is not surjective.

Now, we are interested in those vector bundle over X that are destabilized by a finite number of

iteration of the (absolute) Frobenius. Let ΩFrob be the complementary set of classes of semi-stable

bundles E with trivial determinant over X such that F
(n) ∗
abs E is semi-stable for all n ≥ 1.

Proposition 5.3 Let X be a supersingular genus 2 curve over a characteristic 2 algebraically

closed field. The open subset MX −{EBAD} is stable under the action of the (absolute) Frobenius.

In particular, ΩFrob = MX − {EBAD} and is Zariski dense in MX.

Proof : Pulling-back a semi-stable bundle E over X by the semi-linear isomorphism i : X1 → X , we

obtain a semi-stable bundle i∗E over X1. If E has trivial determinant, i∗E has trivial determinant

as well. If E (6= EBAD) has coordinates (a : b : c : d) in the system {z•}, i∗E has squared

coordinates in the corresponding system {z•} of MX1
. Using theorem (4.2) (actually, the quadrics

given by equations (4.1) from which we deduce theorem (4.2) after the mentioned coordinates

change), we find that F ∗
absE = V ∗(i∗E) has coordinates

(µ4a4 + b4 : a4 : a2d2 + b2c2 : µ4c4 + d4 + µ2a4 + a2b2)

in the system {z•}, hence cannot be EBAD �

14



References

[AG] J. Arledge, D. Grant : An explicit of the square for hyperelliptic Jacobians, Michigan

Math. J., vol. 49 (2001), pp. 485-492.

[DO] I. Dolgachev : D. Ortland, Point sets in projective sets and theta functions, Astérisque
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