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1 Introduction

This paper is a contribution to the study of boundary value problems for
systems of elliptic partial differential equations of the form





−∆u1 = f(x, u1, u2) in Ω
−∆u2 = g(x, u1, u2) in Ω

u1 = u2 = 0 on ∂Ω,
(1)

where u1, u2 are real-valued functions defined on a smooth bounded domain
Ω in R

N , N ≥ 3, and f and g are Hölder continuous functions defined in
Ω × R × R.

This type of systems has been extensively studied during the last two
decades - see for example the survey paper [19] and the references therein.
One of the important questions is the existence of a priori bounds for
positive smooth solutions of these systems.

It is well known that the existence of a priori bounds depends on the
growth of the functions f and g as u1 and u2 go to infinity. In view of what
is known for scalar equations, one expects that some polynomial (subcritical)
growth is to be required. In fact such a restriction comes from the Sobolev
imbedding theorems in dimension N ≥ 3. It is also known that a priori
bounds are particularly interesting when superlinear equations are consid-
ered. In fact, it is classical (see [27], [4], [3], [34]) that establishing a priori
bounds for a scalar equation permits, through use of Krasnoselskii’s index
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theory, to obtain existence results for such an equation. Very recently it was
shown that systems have an analogous property and definitions of superlin-
earity for nonvariational systems of two equations were given in [2] ; see also
[19] and [40] for applications of index theory to some special types of sys-
tems. More general results can be found in [37] where, in addition, systems
of many equations are considered.

The simplest case of systems of type (1) — which is the only case in which
a priori bounds have been studied up to now — is when the leading parts of
f and g involve just pure powers of u1 and u2. More precisely, when f and
g are such that (1) can be written in the form

{
−∆u1 = a(x)uα11

1 + b(x)uα12

2 + h1(x, u1, u2)
−∆u2 = c(x)uα21

1 + d(x)uα22

2 + h2(x, u1, u2),
(2)

where the exponents αij are nonnegative real numbers, a(x), b(x), c(x), d(x)
are nonnegative continuous functions on Ω, and h1, h2 are locally bounded
functions such that uniformly in x ∈ Ω





lim
|(u1,u2)|→∞

(a(x)uα11

1 + b(x)uα12

2 )−1 |h1(x, u1, u2)| = 0

lim
|(u1,u2)|→∞

(c(x)uα21

1 + d(x)uα22

2 )−1 |h2(x, u1, u2)| = 0.
(3)

The method used here in order to obtain the a priori bounds, the so-called
blow-up method, was introduced in [24] to treat the scalar case. The use of
this method to treat systems like the one in (2) was first done in [38], and
then in [33], [8], [19], [40]. Let us note that the blow-up method itself depends
on results of nonexistence of positive solutions of equations and systems in
the whole space or in a half-space. Such results are usually referred to as
Liouville type theorems – see Section 2.

Our main result, Theorem 1.1, unifies and extends the previous results
on a priori bounds for (2). In addition, it allows more general nonlinearities
in systems of type (1), namely mixed powers of u1 and u2 in the principal
part of the nonlinearities f and g.

Specifically, our results will concern the following system

{
−∆u1 = a(x)uα11

1 + b(x)uα12

2 + f1(x)uγ11

1 uγ12

2 + h1(x, u1, u2)
−∆u2 = c(x)uα21

1 + d(x)uα22

2 + f2(x)uγ21

1 uγ22

2 + h2(x, u1, u2),
(4)

where we keep all the hypotheses made before for the system (2).
As for new hypotheses for system (4), we suppose that the continuous

functions f1 and f2 are nonnegative in Ω, so (2) is a particular case of (4),
and
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(γ1) we have 0 ≤ γij ≤ αij, i, j = 1, 2,

γ11

α11

+
γ12

α12

= 1 and
γ21

α21

+
γ22

α22

= 1. (5)

Hypothesis (5) means that the powers γij are such that the terms with co-
efficients fi in (4) are exactly of the order of the principal parts in (2) and
cannot be included in the functions h1, h2, via Young’s inequality.

We make the following superlinearity assumptions on the exponents αij :

either α11 > 1, or α22 > 1, or α12α21 > 1. (6)

We remark here that αii > 1 means the Emden-Fowler equation −∆ui = uαii

i

is superlinear, while the third inequality in (6) has long been used as a notion
of superlinearity for the Lane-Emden system

{
−∆u1 = uα12

2

−∆u2 = uα21

1 .
(7)

Further, we have to specify the maximal growth of f and g in (1) that
we can allow. This can best be done by using the following geometric con-
struction. We denote ~β = (β1, β2) ∈ R

2, and introduce the following lines
(see Figure 1 in Section 2)

l1 =
{

~β | β1 + 2 − β1α11 = 0
}

, l2 =
{

~β | β2 + 2 − β2α22 = 0
}

,

l3 =
{

~β | β1 + 2 − β2α12 = 0
}

, l4 =
{

~β | β2 + 2 − β1α21 = 0
}

.

A thorough explanation of how these lines appear will be given in the
next section, when we expound the blow-up method. We just note here that
if we set (β′

1, β
′
2) = l1 ∩ l2 (in case α11, α22 > 1) and (β′′

1 , β′′
2 ) = l3 ∩ l4 (in case

α12α21 > 1), then the Emden-Fowler equations −∆ui = uαii

i are subcritical
provided β′

i > N−2
2

, while system (7) is subcritical provided β′′
1 +β′′

2 > N −2.
Actually, the last condition is equivalent to saying that the exponents α12, α21

in (7) are under the so-called ”critical hyperbola” — a widely used notion of
criticality for (7), introduced in [16] and [26].

We consider points ~β ≥ 0 which are to the left of or on l1, below or on l2
(note that both l1 and l2 can be empty, and then they introduce no restric-
tion), below or on l3, and above or on l4. We call these points admissible
(this notion will be completely understood in the next section). So given a
system of type (2) the set of admissible points is automatically defined.
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We divide the systems of type (2) into three classes, determined by the
exponents αij. In each case we make a choice of (β1, β2) – which we shall use
to state our theorem – and make some assumptions on the coefficients of the
system.

Case A. The intersection of l1 and l2 is admissible. Then we set (β1, β2) =
l1 ∩ l2. In this case we shall assume that the functions a(x) and d(x)
are bounded below on Ω by a positive constant.

Case B. The intersection of l3 and l4 is admissible. For this type of
systems we take (β1, β2) = l3 ∩ l4. In this case we shall assume that the
functions b(x) and c(x) are bounded below on Ω by a positive constant.
Further, in case B we have to assume in addition that α12 > 1 and
α21 > 1 - see Remark 2 below.

Case C. None of l1∩l2 and l3∩l4 is admissible. Then either l1∩l3 or l2∩l4
is admissible and we take this intersection point to be our (β1, β2). In
this case we shall assume that the function b(x) (resp. c(x)) is bounded
below on Ω by a positive constant.

We stress that nothing prevents (β1, β2) from being the intersection of
more than two lines. Note that a system can be simultaneously of type A
and B, but type C is exclusive of the other two types.

In the special situation in Case B when β is the intersection of more than
two lines we shall need in our arguments below a further technical assumption
on the γij (we believe this hypothesis can be removed) :

(γ2) γ11, γ12 ≥ 1, if ~β = l1 ∩ l3 ∩ l4, ; γ21, γ22 ≥ 1, if ~β = l2 ∩ l3 ∩ l4.

Theorem 1.1 Assume that system (4) satisfies the conditions stated above,
and that the pair (β1, β2) which corresponds to the type of the system (A, B
or C) satisfies the condition

min {β1, β2} >
N − 2

2
. (8)

Then system (4) admits a priori estimates, that is, each couple of positive
classical solutions of (4) is bounded in the L∞-norm by a constant which
depends only on L∞-bounds for the coefficients of the system and on the
domain.

Remark 1. In Case C it is actually sufficient to suppose that β1 >
N − 2

2
if

l1 ∩ l3 is admissible, and that β2 >
N − 2

2
if l2 ∩ l4 is admissible.
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Remark 2. Note the additional assumption we have made in Case B - that
both exponents α12 and α21 are greater than 1. This is due to the problem
(7) in R

N
+ . We do not actually know of any Liouville-type result on this

problem in a half-space, which does not require this hypothesis. See the
detailed discussion at the end of the next section.
Remark 3. In [19] the first author presented the blow-up procedure for sys-
tems of type (2) and observed that there exist two special types of these sys-
tems (called weakly coupled and strongly coupled in [19]), contained in Cases
A and B respectively, for which the blow-up procedure leads to Liouville type
results for the equation −∆u = up or for the Lane-Emden system (7).

In [40] Zou considered system (2) and showed that it admits a priori
estimates under the supplementary assumptions that all exponents αij > 1,

that both coordinates of the point l1 ∩ l2 are larger than
N − 2

2
, that both

coordinates of the point l3∩ l4 are larger than
N − 2

2
(or one of them is larger

than N − 2), and that the point l3 ∩ l4 lies neither on l1 nor on l2. Note that
the hypotheses α12 > 1, α21 > 1 are not stated in [40] but they are actually
used in the proofs of the results, because of the previous remark.
Remark 4. The question of non-existence of positive bounded solutions of
(7) in R

N was completely solved when N = 3 by Serrin and Zou, [36]. So,
when N = 3 one can get more precise results than Theorem 1.1 - see [40],
Theorems 1.1, 2.1, and 3.1 for system (2).

As noted before, implementing the blow-up method depends on avail-
ability of Liouville type results in R

N or in a half-space. In a number of
situations that we are led to consider the results available in the literature
(see Section 2) are not sufficient, so we had to prove Liouville type theorems
for systems. Let us stress that our paper differs in that respect from all
previous works on a priori bounds for systems, where the conditions on the
system were actually chosen so that the limit process in the blow-up method
(see Section 2 for details) leads to known Liouville type theorems.

We prove nonexistence results in a half-space for limit systems of (4)
by showing that whenever such a system does not admit bounded solutions
in R

N−1 then it does not possess bounded solutions in any half-space of
R

N either (so actually it is enough to prove the required Liouville results
in the whole space). We prove this fact by using a monotonicity result
for autonomous systems in a half-space. Both these theorems – of clear
independent interest – hold under some supplementary assumptions that we
list next.
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Suppose we have an autonomous system of the type
{

∆u1 + f1(u1, u2) = 0
∆u2 + f2(u1, u2) = 0,

(9)

where fi ∈ C1(R2), i = 1, 2, and

∂fi

∂uj

(~u) ≥ 0 for all i 6= j, ~u ∈ R
2. (10)

Systems satisfying the last property are usually referred to as cooperative (or
quasi-monotone). We shall suppose in addition that we can write

f1(u1, u2) = up
2 + g1(u1, u2)u1, f2(u1, u2) = uq

1 + g2(u1, u2)u2, (11)

for some p, q > 1 and some continuous functions g1, g2, which have polynomial
growth in u1, u2.

Here are the precise statements of the results.

Theorem 1.2 Suppose we have a nontrivial nonnegative bounded classical
solution (u1, u2) of system (9) in R

N
+ = {x ∈ R

N | xN > 0}, such that
u1 = u2 = 0 on ∂R

N
+ . Suppose (10) and (11) are satisfied. Then

∂ui

∂xN

> 0 in R
N
+ , i = 1, 2. (12)

Theorem 1.3 Suppose we have a system of type (9) which satisfies (10)
and (11). If problem (9) with Dirichlet boundary condition has a nontrivial
nonnegative bounded solution in R

N
+ , then the same problem has a positive

solution in R
N−1 (the limit as xN → ∞ of the solution in R

N
+ ).

We note that Dancer [17] obtained property (12) for the scalar equation
−∆u = f(u) provided that either f(0) > 0 or both f(0) = 0 and f ′(0) ≥ 0.
Dancer’s result was proved to hold for unbounded solutions and globally
Lipschitz continuous f with f(0) ≥ 0 by Berestycki, Caffarelli and Nirenberg
([6]). In this paper the authors also showed that positive solutions of −∆u =
f(u) are functions of xN only, provided f(sup u) ≤ 0. They obtained even
stronger results in dimensions 2 and 3.

The proof of Theorem 1.2 is based on the moving planes method and has
two main ingredients. First, we use a maximum principle for cooperative
systems in unbounded narrow domains, which follows from a result on scalar
equations by Cabre [13]. Second, we make use of a recent Harnack type
inequality for nonlinear systems obtained in [12]. By using some ideas from
[12] we prove the following Harnack inequality for system (9).
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Theorem 1.4 Let (u1, u2) be a positive solution of (9) in some domain G
and suppose (10) and (11) hold. Suppose K is a compact set properly included
in G and

max

{
inf
x∈K

u1, inf
x∈K

u2

}
≤ 1, max

{
sup
x∈G

u1, sup
x∈G

u2

}
≤ M.

Then

sup
x∈K

max{u1, u2} ≤ C min

{(
inf
x∈K

u1

) 1

p

,

(
inf
x∈K

u2

) 1

q

}
.

where C depends only on N and M .

This inequality permits to us to use a technique inspired by the proof of
a symmetry result for scalar equations in cylinders in [6]. However, contrary
to [6], we avoid using boundary Harnack inequalities. A supplementary dif-
ficulty in the argument stems from the fact that we have to use a Harnack
inequality on a sequence of systems in which the coupling degenerates.

Finally, we prove some Liouville type results for systems in the whole
space by, on one hand, extending to general systems a recent monotonicity
result by Busca and Manasevich [10], who obtained a Liouville type theorem
for the Lane-Emden system (7), and, on the other hand, by noticing an
identity between exponents appearing after a blow-up change of variables
and after the passage to polar coordinates used in [10]. For instance, we
obtain the following result.

Theorem 1.5 The system





∆u1 + uα1

1 + u
α1

α2−1

α1−1

2 = 0

∆u2 + u
α2

α1−1

α2−1

1 + uα2

2 = 0,
(13)

does not have bounded positive classical solutions in R
N , provided

1 < α1, α2 <
N + 2

N − 2
.

The paper is organized as follows. In Section 2 we give some preliminary
results and state the known Liouville-type results for scalar equations and
Lane-Emden systems in R

N or R
N
+ . In Section 3 we prove Theorem 1.2 and

Theorem 1.3. Finally, in Section 4 we prove Theorem 1.5 and Theorem 1.1.
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2 Preliminaries

Let us first describe the blow-up procedure. We will only sketch this, a
full presentation can be found in [19], where this procedure is explained for
system (2) (for the scalar case see Gidas-Spruck [24]). Assume that positive
solutions of (4) do not have an a priori bound, that is, there exists a sequence
(u1,n, u2,n) of positive solutions of (4) such that at least one of the sequences
u1,n and u2,n tends to infinity in the L∞-norm. Let β1, β2 be fixed positive
constants to be chosen later. We set

λn = ||u1,n||
−β1

L∞(Ω) ,

if ||u1,n||
β2

L∞(Ω) ≥ ||u2,n||
β1

L∞(Ω) (up to a subsequence), and

λn = ||u2,n||
−β2

L∞(Ω)

otherwise. We shall suppose – without restricting the generality – that we
are in the first of these two situations.

Note that we have λn → 0 as n → ∞. Let xn ∈ Ω be a point where u1,n

assumes its maximum. The functions

vi,n(x) = λβi

n ui,n(λnx + xn),

are such that v1,n(0) = 1 and 0 ≤ vi,n ≤ 1 in Ω. One also verifies that the
functions v1,n and v2,n satisfy





−∆v1,n = a(·)λβ1+2−β1α11

n vα11

1,n + b(·)λβ1+2−β2α12

n vα12

2,n

+ f1(·)λ
β1+2−β1γ11−β2γ12

n vγ11

1,nvγ12

2,n + λβ1+2
n h̃1,n

−∆v2,n = c(·)λβ2+2−β1α21

n vα21

1,n + d(·)λβ2+2−β2α22

n vα22

2,n

+ f2(·)λ
β2+2−β1γ21−β2γ22

n vγ21

1,nvγ22

2,n + λβ2+2
n h̃2,n

(14)

in the domain Ωn =
1

λn

(Ω − xn), where the dot stands for λnx + xn, and

h̃i,n = hi

(
·, λ−β1

n v1,n, λ
−β2

n v2,n

)
. By compactness we can assume that {xn}

tends to some point x0 ∈ Ω.
The idea is to pass to the limit in (14) and obtain a system which can be

proven to have only the trivial solution. This would then contradict the fact
that the limit of v1,n has value 1 at the origin.

The next lemma deals with the passage to the limit.

8



Lemma 2.1 The sequences v1,n, v2,n converge in W 2,p
loc , 2 ≤ p < ∞ to func-

tions v1, v2 ∈ C2(G)∩C0(G), satisfying the limiting system of (14) in G = R
N

or G = R
N
+ , provided all the powers of λn in (14) are non-negative. This lim-

iting system is obtained by removing the terms in (14) where the powers of
λn are strictly positive, the terms where the coefficient vanishes at x0, and
the terms containing hi,n, i = 1, 2.

Proof. The argument is standard. The proof of this lemma, except for the
last part, can be found in [19]. Note that the passage to the limit in the terms
containing products of v1,n and v2,n causes no problem, since W 2,p

loc ∩ L∞ is
an algebra. To prove that the terms in hi,n tend to zero we distinguish two
cases : if the sequences λ−β1

n v1,n and λ−β2

n v2,n are both bounded this follows
from the local boundedness of hi, if one of these sequences is unbounded, it
follows from hypothesis (3). ✷

Now we can explain the choice of the couple (β1, β2) which we made in
the introduction (Cases A, B and C). As stated above, in order to be able to
make a passage to the limit in (14) all the powers of λn in this system have
to be nonnegative. Hence, geometrically, we have to pick up a point (β1, β2)
which is to the left of or on l1, below or on l2, below or on l3, and above or
on l4 (we forget for an instant the mixing terms with coefficients fi). These
are exactly the points which we called admissible - see Figure 1.

Further, it is important to observe that not all admissible points (β1, β2)
would permit us to prove a priori bounds for positive solutions of (4), as we
explain next. Indeed, we have necessarily to make the choice of β1 and β2 in
such a way that at least two of the powers of λn in (14) are zero. Otherwise,
after the passage to the limit in (14) we may end up with an uncoupled system
in R

N in which at least one of the equations is the Laplace equation. Hence
the corresponding one of the functions v1 and v2 can be identically equal to
a positive constant, and in this way we do not come to a contradiction.

So (β1, β2) has to be chosen on the intersection of at least two of the
lines l1, l2, l3, l4. It can be seen that this is actually possible provided the
superlinearity conditions (6) hold. Indeed, the first inequality in (6) implies
that the line l1 is not empty, and similarly the second one implies that l2 is
not empty either. Note also that the slope of l3 is α−1

12 and the slope of l4 is
α21 ; consequently these two lines meet at a point with positive coordinates
provided α12α21 > 1.

Observe that the weakly coupled case of [19] corresponds to the situation
when the intersection of l1 and l2 lies strictly below l3 and strictly above l4,
while the strongly coupled case means l3 and l4 meet in Π, where Π denotes
the rectangle enclosed by l1, l2, and the axes. We remark that l1 and l2 can
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Figure 1: Admissible couples (β1, β2) lie to the left of or on l1, below or on l2,

below or on l3, and above or on l4.

be empty, in case α11 ≤ 1 or α22 ≤ 1; in this case Π would be a half strip or
the whole positive quadrant of the (β1, β2)-plane.

The next lemma shows how the terms in (14) with coefficients fi transform
after the passage to the limit.

Lemma 2.2 If hypothesis (γ1) holds and β1, β2 are chosen as in the previous
section then

β1 + 2 − β1γ11 − β2γ12 ≥ 0 and β2 + 2 − β1γ21 − β2γ22 ≥ 0. (15)

In Case A the first (resp. the second) inequality in (15) is strict if and only
if l3 (resp. l4) does not pass through l1 ∩ l2. In Case B the first (resp. the
second) inequality is strict if and only if l1 (resp. l2) does not pass through
l3 ∩ l4. In Case C one of the inequalities is always strict and the other is an
equality.

Proof. Suppose first that we are in Case A, that is, we have chosen (β1, β2)
to be the admissible point l1 ∩ l2. This means that

β1 + 2 = α11β1 ≥ α12β2 and β2 + 2 = α22β2 ≥ α21β1. (16)
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Then we have, by (16) and (5),

β1 + 2 − β1γ11 − β2γ12 = (α11 − γ11)β1 − γ12β2

= α11

(
1 −

γ11

α11

)
β1 − γ12β2

= γ12

(
α11

α12

β1 − β2

)

≥ 0

and the inequality is strict if and only if β1α11 = β1 + 2 > β2α12, i.e. l3 does
not pass through l1 ∩ l2. The second inequality in (15) is proved in a similar
way.

Suppose now we are in Case B, that is, we have picked the admissible
point l3 ∩ l4 to be our (β1, β2). This means

β1 + 2 = α12β2 ≥ α11β1 and β2 + 2 = α21β1 ≥ α22β2. (17)

Then, as before,

β1 + 2 − β1γ11 − β2γ12 = −β1γ11 + (α12 − γ12)β2

= γ11

(
−β1 +

α12

α11

β2

)

≥ 0,

and a similar computation proves the second inequality in (15).
Finally, let us consider Case C. Suppose we have chosen (β1, β2) = l1 ∩ l3

(a similar argument can be done when (β1, β2) = l2 ∩ l4). Then

β1 + 2 = α11β1 = α12β2 and β2 + 2 > max{α21β1, α22β2}, (18)

so β1 + 2 − β1γ11 − β2γ12 = 0 as in Case A. To prove the second inequality
in (15) we distinguish two cases. First, if α21β1 ≥ α22β2 we get

β2 + 2 − β1γ21 − β2γ22 > (α21 − γ21)β1 − γ22β2

= γ22

(
α21

α22

β1 − β2

)

≥ 0,

while if α21β1 ≤ α22β2 we have

β2 + 2 − β1γ21 − β2γ22 > −β1γ21 + (α22 − γ22)β2

= γ21

(
−β1 +

α22

α21

β2

)

≥ 0.
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This finishes the proof of the Lemma. ✷

We next list the known Liouville type theorems on the equation −∆u = up

and on the Lane-Emden system (7). We shall use some of these in the sequel.

Theorem 2.1 The problem

{
−∆u = up

u ≥ 0
in R

N (19)

has no nontrivial classical solution provided 0 < p <
N + 2

N − 2
(Gidas-Spruck

[24], Chen-Li [15]). The same problem has no nontrivial classical superso-

lution provided 1 < p ≤
N

N − 2
(Gidas [22], Souto [38], Mitidieri-Pohozaev

[32]).
The problem 




−∆u = up in R
N
+

u ≥ 0 in R
N
+

u = 0 on ∂R
N
+

(20)

has no nontrivial classical solution provided 1 < p <
N + 1

N − 3
(1 < p < ∞

if N = 3) - see Gidas-Spruck [24], Dancer [17]. The same problem has no
classical supersolution provided 1 < p ≤ N+1

N−1
(Bandle-Essen [5], Laptev [29]).

Theorem 2.2 Consider the problem





−∆u = vp

−∆v = uq

u, v ≥ 0
in R

N (21)

If pq ≤ 1 (Serrin-Zou [36]) or 0 < p, q <
N + 2

N − 2
(de Figueiredo-Felmer [20])

this problem has no nontrivial classical solutions. If pq > 1 we set

α =
2(p + 1)

pq − 1
, β =

2(q + 1)

pq − 1
.

Then problem (21) has no nontrivial classical solutions provided either
max{α, β} ≥ N − 2 (Mitidieri [30], Serrin-Zou [36]), or p, q > 1 and

min{α, β} >
N − 2

2
(Busca-Manasevich [10]). The same problem has no

nontrivial supersolutions provided pq > 1 and max{α, β} ≥ N − 2 (Mitidieri
[31], Laptev [29]).
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The problem 



−∆u = vp in R
N
+

−∆v = uq in R
N
+

u, v ≥ 0 in R
N
+

u, v = 0 on ∂R
N
+

(22)

has no nontrivial solutions provided p, q > 1 and max{α, β} ≥ N − 3 (Birin-
delli-Mitidieri [8]). The same problem does not have nontrivial classical su-
persolutions provided p, q > 1 and max{α, β} ≥ N − 1 (Laptev [29]).

The problem of non-existence of solutions of Lane-Emden systems in a
half-space (system (22)) deserves some discussion. There are two types of
results on this problem. On one hand, it is known that a Lane-Emden system
in a half-space does not possess positive supersolutions when max{α, β} ≥
N − 1. This is an exact result and a particular case of a more general
theorem about existence of supersolutions in cones. However, it does not
permit to obtain more precise results for solutions. On the other hand, in
the framework of a scalar equation Dancer developed a technique, based on
the moving planes method, which gives a monotonicity result for bounded
solutions of the equation in a half-space. Then one gets as a corollary that
the existence of a nontrivial bounded solution in R

N
+ implies the existence of

a non-trivial solution in R
N−1. However, the moving planes method requires

Lipschitz nonlinearities – that is why a result, where this method is directly
employed has to require that all powers involved be greater or equal to one.

The next section contains the proofs of Theorems 1.2 and 1.3, as well as
another monotonicity lemma, which will play an important role in the proof
of Theorem 1.1.

3 Monotonicity results for systems

3.1 A maximum principle in narrow domains

In this section we extend to cooperative systems a maximum principle in
narrow domains, proved by Cabre [13] in the case of a scalar equation.

We recall the following definition of [13]. For a given domain Ω ⊂ R
N ,

the quantity R(Ω) is defined to be the smallest positive constant R such that

meas (BR(x) \ Ω) ≥
1

2
meas (BR(x)) , for all x ∈ Ω.

If no such radius R exists, we define R(Ω) = +∞.
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It is easy to see that whenever the domain Ω is contained between two
parallel hyperplanes at a distance d, we have

R(Ω) ≤
2N d

ωN

, (23)

where ωN is the volume of the unit ball in R
N .

In the sequel we shall consider uniformly elliptic second-order operators
in the form

L =
∑

aij(x)∂ij +
∑

bi(x)∂i + c(x), (24)

where c0I ≤ (aij) ≤ C0I, sup |bi| ≤ b, for some positive constants c0, C0, and
some b ≥ 0.

In [13] (see also [14], Theorem 5.3) Cabre proved the following result.

Proposition 3.1 Let Ω be a domain such that R(Ω) < ∞ and let L be an
operator in the form (24), such that c ≤ 0 in Ω. Suppose u ∈ W 2,N

loc (Ω) and
f ∈ L∞(Ω) satisfy Lu ≥ f in Ω, lim sup

x→∂Ω
u(x) ≤ 0, and sup

Ω
u < ∞. Then

sup
Ω

u ≤ CR(Ω)2||f ||L∞(Ω),

where C is a constant depending only on N, c0, C0, bR(Ω).

It is not difficult to deduce from Proposition 3.1 a maximum principle for
systems in domains with small R(Ω).

Theorem 3.1 Let Lk, k = 1, . . . , n, be uniformly elliptic second-order oper-
ators with bounded coefficients and without zero-order term, that is, Lk =∑

a
(k)
ij (x)∂ij +

∑
b
(k)
i (x)∂i, c0I ≤ (a

(k)
ij ) ≤ C0I, sup |b

(k)
i | ≤ b. Let the func-

tions cij ∈ L∞(Ω), |cij| ≤ b, be such that cij ≥ 0 for i 6= j. Then there exists
a number R̄ depending only on N, c0, C0 and b, such that R(Ω) ≤ R̄ implies
that each solution ui ∈ W 2,N

loc (Ω) ∩ C(Ω) of





Liui +
n∑

j=1

cijuj ≥ 0 in Ω, i = 1, . . . , n

ui(x) ≤ 0 on ∂Ω, i = 1, . . . , n,

(25)

satisfies ui ≤ 0 in Ω, i = 1, . . . , n (in this case we shall say, with obvious

notation, that the matrix operator ~L + C(x) satisfies the maximum principle
in Ω).
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Proof. For a function f we denote f+ = max{f, 0}, f = f+−f−. Then (25)
implies

Liui − c−iiui ≥ −c+
iiu

+
i −

∑

j 6=i

ciju
+
j , i = 1 . . . , n.

By applying Proposition 3.1 to these equations we obtain

sup
Ω

u+
i ≤ CR(Ω)2

n∑

j=1

sup
Ω

|cij| sup
Ω

u+
j .

Hence, denoting ~v =

(
sup

Ω
u+

1 , . . . , sup
Ω

u+
n

)T

≥ 0 we have

~v ≤ R̄2B~v

where B is a constant matrix whose entries depend only on n,N and on
bounds for the coefficients of the elliptic operators. By choosing R̄ such that
the matrix I − R̄2B is positive definite and by multiplying scalarly the last
inequality by the nonnegative vector ~v, we obtain ~v ≡ 0. ✷

3.2 Harnack type estimates for systems

The moving planes argument in Section 3.3 will require some Harnack es-
timates which we state in this section. Such results were recently obtained
in [12]. The first two theorems below are particular cases of Theorem 3.2
and Propositions 3.1 and 8.1 in [12]. We include them here for the reader’s
convenience.

In this section G denotes an arbitrary domain in R
N and Ql (l = 1, 2) are

concentric cubes with side l, properly included in G.

Theorem 3.2 ([12]) Assume f1(u1, u2), f2(u1, u2) are globally Lipschitz con-
tinuous functions, with Lipschitz constant A, which satisfy the cooperative-
ness assumption (10). Let (u1, u2) be a nonnegative solution of (9) in G.
We suppose that the system is fully coupled, in the sense that f1(0, v) > 0
for all v > 0, and f2(u, 0) > 0 for u > 0. Then for any compact subset K
of G there exists a function Φ(t) (depending on A,K and G), continuous on
[0,∞), such that Φ(0) = 0 and

sup
x∈K

max{u1, u2} ≤ Φ( inf
x∈K

min{u1, u2}).

In particular, if any of u1, u2 vanishes at one point in G then both u1 and u2

vanish identically in G.
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Theorem 3.3 ([12]) Assume f1(u1, u2), f2(u1, u2) are globally Lipschitz con-
tinuous functions, with Lipschitz constant A, which satisfy the cooperative-
ness assumption (10). Let (u1, u2) be a nonnegative subsolution of (9) in G.
Then for each p > 0 there exists a constant C depending only on p,N, and
A such that

sup
x∈Q1

max{u1, u2} ≤ C‖max{u1, u2}‖Lp(Q2)

The same result holds if f1, f2 depend also on x and the constant A is uniform
in x.

In the sequel we shall need the following two classical results on scalar
equations by Krylov and Safonov.

Theorem 3.4 ([25], Theorem 9.22) Let L be a linear uniformly elliptic
operator with bounded coefficients in G, in the form (24). Suppose c0 is an
ellipticity constant for L, and b is an upper bound for the L∞-norms of the
coefficients of L. Let u ∈ W 2,N

loc (G) be a positive function satisfying Lu ≤ f
a.e. in G, for some f ∈ LN

loc(G). Then there exist positive constants p0 and
C depending on c0, b and N such that

‖u‖Lp0 (Q2) ≤ C

(
inf

x∈Q1

u + ‖f‖LN (Q2)

)
.

Theorem 3.5 (Krylov) Let L be a linear uniformly elliptic operator with
bounded coefficients in G, in the form (24). Suppose c0 is an ellipticity
constant for L, and b is an upper bound for the L∞-norms of the coefficients
of L. Let u ∈ W 2,N

loc (G) be a positive function satisfying Lu ≤ 0 a.e. in G
and Lu ≤ −ρ a.e. in a closed subset ω ⊂ Q2, for some ρ > 0. Then there
exists a constant m > 0, depending only on N, c0, b, and on a positive lower
bound on meas (ω) > 0, such that

inf
Q1

u ≥ mρ. (26)

Theorem 3.5 is a consequence of Theorem 12 on p. 129 in [28] - we state
it here in the form which was given in [7].

Next we state a partial Harnack inequality for a linear system, which will
play a crucial role in the proof of the monotonicity result in Section 3.3.

Theorem 3.6 Suppose a, b, c, d ∈ L∞(Q2) are such that |a|, |d| ≤ A, and
0 ≤ b ≤ A, 0 ≤ c ≤ A in Q2. Suppose (u1, u2) is a positive solution of

{
∆u1 + a(x)u1 + b(x)u2 = 0
∆u2 + c(x)u1 + d(x)u2 = 0
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in Q2. Assume in addition that b(x) is bounded below by a positive constant
on Q1. Then

sup
x∈Q1

u1 ≤ C inf
x∈Q1

u1. (27)

where the constant C depends on N, A, and on upper bound for
supQ2

b

infQ1
b
.

Proof. Note that inequality (27) was proved in [12] (Theorem 8.2 in that
paper) with the constant C depending on N , A, and on constants ρ > 0, δ > 0
such that b(x) ≥ ρ on a set with measure δ. Theorem 3.6 follows from this
result applied to the system

{
∆u1 + a(x)u1 + b̃(x)ũ2 = 0
∆ũ2 + c̃(x)u1 + d(x)ũ2 = 0,

(28)

where ũ2 = (infQ1
b)u2, c̃(x) = (infQ1

b)c(x), d̃(x) = (infQ1
b)d(x), and b̃(x) =

b(x)/(infQ1
b), so that b̃ ≥ 1 in Q1.

We are going to give the argument of the proof of inequality (27), since
we shall need it in the sequel. By Theorem 3.3 applied to (28) we have for
each p > 0

sup
x∈Q1

max{u1, ũ2} ≤ C‖max{u1, ũ2}‖Lp(Q2) ≤ C
(
‖u1‖Lp(Q2) + ‖ũ2‖Lp(Q2)

)
.

In order to estimate the right-hand side of this inequality we apply Theorem
3.4 to the following two scalar inequalities

{
∆u1 + a(x)u1 ≤ 0

∆ũ2 + d̃(x)ũ2 ≤ 0

(these are a consequence of (28)) and obtain

sup
x∈Q1

u1 ≤ sup
x∈Q1

max{u1, ũ2} ≤ C

(
inf

x∈Q1

u1 + inf
x∈Q1

ũ2

)
. (29)

Finally, we note that the first equation in (28) implies

∆u1 + a(x)u1 ≤ 0 in Q2 and ∆u1 + a(x)u1 ≤ − inf
x∈Q1

ũ2 in Q1,

so Theorem 3.5 gives
inf

x∈Q1

u1 ≥ m inf
x∈Q1

ũ2.

We finish the proof by combining this inequality and (29). ✷
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We finish this section by giving the proof of the strong Harnack inequality
for fully coupled systems satisfying hypothesis (11) - Theorem 1.4.

Proof of Theorem 1.4. By (10) and (11) we have

{
∆u1 + a(x)u1 + b(x)u2 = 0
∆u2 + c(x)u1 + d(x)u2 = 0

in Q2, where the coefficients a(x) = g1(u1(x), u2(x)), b(x) = up−1
2 (x), c(x) =

uq−1
1 (x), d(x) = g2(u1(x), u2(x)) are bounded continuous functions such that

b(x), c(x) > 0 in Q2.
As in the proof of the previous theorem we have

sup
x∈Q1

max{u1, u2} ≤ C

(
inf

x∈Q1

u1 + inf
x∈Q1

u2

)
. (30)

By applying Theorem 3.5 to

∆u1 + a(x)u1 ≤ 0 in Q2 and ∆u1 + a(x)u1 ≤ −

(
inf

x∈Q1

u2

)p

in Q1,

we get

inf
x∈Q1

u1 ≥ m

(
inf

x∈Q1

u2

)p

.

In the same way we obtain

inf
x∈Q1

u2 ≥ m

(
inf

x∈Q1

u1

)q

.

We obtain the statement of Theorem 1.4 by combining (30) with the last two
inequalities. ✷

3.3 Proof of Theorem 1.2

We use the moving planes method of Alexandrov [1], which was subsequently
developed in the framework of partial differential equations by Serrin [36],
Gidas-Ni-Nirenberg [23], Berestycki-Nirenberg [9].

We shall denote

M = max

{
sup
R

N
+

u1, sup
R

N
+

u2

}
.

We can suppose that the functions f1 and f2 are globally Lipschitz con-
tinuous. Indeed, if they are not, we can replace them by f1ϕ and f2ϕ, where
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ϕ is a cut-off function such that ϕ = 1 on the positive cube with side M , and
ϕ = 0 outside a cube with side M + 1, containing properly the previous one.

Hence system (9) satisfies the hypotheses of Theorem 3.2, from which
we deduce that either both functions u1 and u2 vanish identically on R

N
+ or

both u1 and u2 are strictly positive on R
N
+ . The first case is excluded by

hypothesis. So, from now on we shall assume that u1, u2 are strictly positive
in R

N
+ .

For each λ > 0 we denote

Tλ = {x ∈ R
N | xN = λ}, Σλ = {x ∈ R

N | 0 < xN < λ},

and introduce the functions

v
(λ)
i (x) = ui(x

′, 2λ − xN), w
(λ)
i (x) = v

(λ)
i (x) − ui(x), i = 1, 2,

defined in Σλ. Since both (u1, u2) and (v
(λ)
1 , v

(λ)
2 ) satisfy system (9) we obtain

by subtracting the corresponding equations and by Taylor’s expansion
{

∆w
(λ)
1 + c

(λ)
11 (x)w

(λ)
1 + c

(λ)
12 (x)w

(λ)
2 = 0

∆w
(λ)
1 + c

(λ)
21 (x)w

(λ)
1 + c

(λ)
22 (x)w

(λ)
2 = 0

(31)

in Σλ, where cλ
ij(x) is the partial derivative of fi with respect to uj, evaluated

at some point between uj(x) and v
(λ)
j (x). Note that c

(λ)
ij are bounded by a

Lipschitz constant of ~f = (f1, f2) on [0,M ]2, and c
(λ)
12 , c

(λ)
21 ≥ 0.

Obviously ~w(λ) = (w
(λ)
1 , w

(λ)
2 ) ≡ 0 on Tλ and ~w(λ) > 0 on T0 (recall that

ui = 0 on T0 and ui > 0 on Tλ, λ > 0). By Theorem 3.1, if λ is small enough,
then ~w(λ) ≥ 0 in Σλ. Hence

λ∗ = sup{λ | ~w(µ) ≥ 0 in Σµ, ∀µ < λ} > 0.

We see that for each 0 < λ ≤ λ∗ the function w
(λ)
i ≥ 0 satisfies the inequality

∆w
(λ)
i + c

(λ)
ii w

(λ)
i ≤ 0 in Σλ. Hence Hopf’s lemma implies w

(λ)
i > 0 and

∂ui

∂xN

= −
1

2

∂w
(λ)
i

∂xN

> 0 on Tλ.

Therefore, the theorem is proved if we show that λ∗ = +∞.
Suppose for contradiction that λ∗ is finite.
By Theorem 3.1 we can fix ε0 > 0 such that the matrix operator ~∆+Cλ(x)

satisfies the maximum principle in the domain Σλ∗+ε0
\ Σλ∗−ε0

(here Cλ(x)
denotes the matrix of the coefficients in (31)). For instance, we can take

ε0 =
ωN

2N+1
R

where R is the number from Theorem 3.1 (see inequality (23)).
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Lemma 3.1 There exists δ0 ∈ (0, ε0], such that for each δ ∈ (0, δ0) we have

w
(λ∗+δ)
i ≥ 0 in Σλ∗−ε0

\ Σε0
, i = 1, 2.

Suppose this lemma is proved. Then we can apply Theorem 3.1 to (31)
in Σλ∗+δ \Σλ∗−ε0

and in Σε0
(these domains are narrow enough) to conclude

that w
(λ∗+δ)
i ≥ 0 in Σλ∗+δ for each δ ∈ (0, δ0). This contradicts the maximal

choice of λ∗ and proves Theorem 1.2. ✷

Proof of Lemma 3.1. We denote y = (x1, . . . , xN−1). Suppose for con-

tradiction that there exist sequences δm → 0 and x(m) =
(
y(m), x

(m)
N

)
∈

Σλ∗−ε0
\ Σε0

such that

w
(λ∗+δm)
1

(
x(m)

)
< 0. (32)

We can suppose that x
(m)
N → x0

N ∈ [ε0, λ
∗ − ε0] as m → ∞.

We define the functions

u
(m)
i (y, xN) = ui(y + y(m), xN), i = 1, 2,

and, respectively,

w
(m)
i,λ (y, xN) = u

(m)
i (y, 2λ − xN) − u

(m)
i (y, xN), i = 1, 2.

Note that system (9) is autonomous, so ~u(m) satisfies the same system. Since

f1(u
(m)
1 , u

(m)
2 ) and f2(u

(m)
1 , u

(m)
2 ) are uniformly bounded in m (by a Lipschitz

constant of ~f on [0,M ]2), standard elliptic theory, applied to (9), then implies

||~u(m)||W 2,p(K) ≤ CM

for each compact set K in the closure of R
N
+ , where C depends on a Lipschitz

constant of ~f on [0,M ]2. It follows, by imbedding theorems and elliptic
theory, that ~u(m) converges in C1,α on compact sets to a classical solution
ũ = (ũ1, ũ2) of system (9), satisfying the Dirichlet boundary condition on
{xN = 0}.

It follows from Theorem 3.2 that either both ũ1 and ũ2 are strictly positive
on R

N
+ or both these two functions vanish identically on R

N
+ . Suppose that at

least one of the functions ũ1, ũ2 does not vanish identically in R
N
+ so we are

in the first of these two situations. By what we have already shown we know
that w

(m)
i,λ (y, xN) = wλ

i (y+y(m), xN) > 0 in Σλ for all λ ≤ λ∗. Hence the limit

functions w̃λ
i = lim

m→∞
w

(m)
i,λ are nonnegative in Σλ for all λ ≤ λ∗. However w̃λ

i

is to ũ what wλ
i is to u, so by repeating the moving planes argument for

ũ we see that λ̃∗ ≥ λ∗ (λ̃∗ is the critical value for ũ), since we can write
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a system like (31) for w̃λ
i . Applying the strong maximum principle to this

system we get, as before, that w̃λ
i > 0 in Σλ, for λ ≤ λ∗. On the other hand

w̃λ∗

1 (0, x0
N) = 0 and x0

N ∈ (0, λ∗ − ε0], a contradiction.
The argument is considerably more involved in case ũ ≡ 0 in R

N
+ . We fix

the rectangular domains

Q0 = {x ∈ R
N
+ | − 1 < x1 < 1, . . . ,−1 < xN−1 < 1, ε0 < xN < 2λ∗ + 1},

Q1 = {x ∈ R
N
+ | − 2 < x1 < 2, . . . ,−2 < xN−1 < 2,

ε0

2
< xN < 2λ∗ + 2},

Q2 = {x ∈ R
N
+ | − 3 < x1 < 3, . . . ,−3 < xN−1 < 3,

ε0

4
< xN < 2λ∗ + 3},

and note that all results from the previous section can trivially be applied in
Q1 and Q2 (one simply has to cover Q1 and Q2 with a finite number of cubes
and apply Harnack inequalities in these cubes).

Since ~u(m) converges uniformly to zero in Q2 we can suppose that u
(m)
1 ≤ 1,

u
(m)
2 ≤ 1 in Q2. We set

αm = u
(m)
1

(
0, x

(m)
N

)
, βm = u

(m)
2

(
0, x

(m)
N

)
.

By Theorem 1.4 we have

αm ≤ Cβ
1

q
m and βm ≤ Cα

1

p
m , (33)

where C is independent of m. We also recall inequality (30)

sup
x∈Q1

max{u
(m)
1 , u

(m)
2 } ≤ C

(
inf

x∈Q1

u
(m)
1 + inf

x∈Q1

u
(m)
2

)
. (34)

Next we introduce the functions

z
(m)
1 =

1

αm

u
(m)
1 , z

(m)
2 =

1

βm

u
(m)
2 , ζ

(m)
1 =

1

βm

u
(m)
1 , ζ

(m)
2 =

1

αm

u
(m)
2 .

Note that z
(m)
1 (0, x

(m)
N ) = z

(m)
2 (0, x

(m)
N ) = 1.

We distinguish two cases : up to a subsequence

inf
Q1

u
(m)
1 ≤ inf

Q1

u
(m)
2 (Case 1) and inf

Q1

u
(m)
2 ≤ inf

Q1

u
(m)
1 (Case 2).

Suppose we are in Case 1. Then, as in the previous section,
(
z

(m)
1 , ζ

(m)
2

)

satisfies the linear system
{

∆z
(m)
1 + am(x)z

(m)
1 + bm(x)ζ

(m)
2 = 0

∆ζ
(m)
2 + cm(x)z

(m)
1 + dm(x)ζ

(m)
2 = 0

(35)
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in Q2, where am(x) = g1(u
(m)
1 (x), u

(m)
2 (x)), bm(x) =

(
u

(m)
2 (x)

)p−1

> 0,

cm(x) =
(
u

(m)
1 (x)

)q−1

> 0, dm(x) = g2(u
(m)
1 (x), u

(m)
2 (x)) are uniformly

bounded in m.
By combining inequality (34) with the hypothesis of Case 1 we obtain

sup
Q1

u
(m)
2 ≤ C inf

Q1

u
(m)
2 ,

which implies that the quantity

supx∈Q1
bm(x)

infx∈Q1
bm(x)

is bounded by a constant independent of m. Hence we can apply Theorem
3.6 to (35), and infer that

sup
Q0

z
(m)
1 ≤ C1 inf

Q0

z
(m)
1 ≤ C1,

where C1 does not depend on m.
Next, recall that w

(λ∗)
1 ≥ 0 in Σλ∗ , which implies

z
(m)
1 (y, xN) ≤ z

(m)
1 (y, 2λ∗ − xN) ≤ C1

for every (y, xN) in the closure of Σλ∗ . Hence

‖z
(m)
1 ‖L∞(Q) ≤ C1,

where

Q = {x ∈ R
N
+ | − 1 < x1 < 1, . . . ,−1 < xN−1 < 1, 0 < xN < 2λ∗ + 1}.

In Case 2 we write a linear system for
(
ζ

(m)
1 , z

(m)
2

)
and use an analogous

reasoning to infer that
‖z

(m)
2 ‖L∞(Q) ≤ C2,

where C2 does not depend on m.
Next we prove that actually both z

(m)
1 and z

(m)
2 are bounded in L∞(Q).

To this end we remark that
(
z

(m)
1 , z

(m)
2

)
satisfies the system





∆z
(m)
1 + g1(u

(m)
1 , u

(m)
2 )z

(m)
1 +

βp
m

αm

(
z

(m)
2

)p

= 0 in R
N
+

∆z
(m)
2 +

αq
m

βm

(
z

(m)
1

)q

+ g1(u
(m)
1 , u

(m)
2 )z

(m)
2 = 0 in R

N
+

z
(m)
1 = z

(m)
2 = 0 on ∂R

N
+

(36)
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by (11). We recall that we have already proved that the sequences {βp
mα−1

m }
and {αq

mβ−1
m } are bounded (see (33)). It follows from the above argument that

one of the sequences {z
(m)
1 }, {z

(m)
2 } (say the first) is bounded in L∞(Q). Then

standard elliptic estimates applied to the second equation in (36), regarded as

a scalar equation in z
(m)
2 with bounded coefficients and bounded right-hand

side, imply that {z
(m)
2 } is also bounded in L∞(Q) (if necessary, we restrict a

little the upper and the lateral boundaries of Q).

Now, since both {z
(m)
1 }, {z

(m)
2 } are bounded on Q, elliptic theory and (36)

imply that (up to a subsequence) these two sequences converge uniformly to
nonnegative functions z1, z2 ∈ W 2,p

loc (Q) ∩ C(Q), which satisfy the system




∆z1 + g1(0, 0)z1 + β0 (z2)
p = 0 in Q

∆z2 + α0 (z1)
q + g1(0, 0)z2 = 0 in Q

z1 = z2 = 0 on {xN = 0} ∩ ∂Q,

(37)

for some constants α0 ≥ 0, β0 ≥ 0. Since z1 ≥ 0 and ∆z1 + g1(0, 0)z1 ≤ 0 in
Q, the strong maximum principle implies that either z1 vanishes identically
in Q or z1 > 0 in Q. The first possibility is excluded by z1(0, x

0
N) = 1.

Introduce the comparison functions

ω
(λ)
i (y, xN) = zi(y, 2λ − xN) − zi(y, xN), , i = 1, 2,

defined in Σλ ∩ Q, for all λ ≤ λ∗ + 1/2. We have, by continuity,

ω
(λ⋆)
i ≥ 0, i = 1, 2, and ω

(λ⋆)
1 (0, x0

N) = 0

(recall (32)). Since ∆ω
(λ⋆)
1 + g1(0, 0)ω

(λ⋆)
1 ≤ 0 the strong maximum principle

implies ω
(λ⋆)
1 ≡ 0 in Σλ∗ ∩ Q. This contradicts the fact that z1 = 0 on

{xN = 0} and z1 > 0 on {xN = 2λ∗}.
The proof of Theorem 1.2 is finished. ✷

3.4 Proof of Theorem 1.3

Set
x′ ∈ R

N−1, u
(t)
i (x′) = ui(x

′, t), i = 1, 2.

Since the sequence {u
(t)
i }t is uniformly bounded and pointwise increasing in t

(by Theorem 1.2) the Lebesgue monotone convergence theorem implies that

u
(t)
i converges as t → ∞ in Lp

loc

(
R

N−1
)
, p < ∞, to a bounded function ũi.

Then the hypotheses we made on fi imply

fi(u
(t)
1 , u

(t)
2 ) −→ fi(ũ1, ũ2) as t → ∞,
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in Lp
loc

(
R

N−1
)
, p < ∞, i = 1, 2. We shall prove that (ũ1, ũ2) is a weak

solution to the problem in R
N−1 (then standard elliptic regularity theory

implies that it is a classical solution). Let φ(x′) ∈ C∞
c (RN−1) be an arbitrary

function and let

ψ(t) =





0 if t ≤ 0, t ≥ 2
t if 0 ≤ t ≤ 1

2 − t if 1 ≤ t ≤ 2.

The function ψ(t) is chosen so that ψ ∈ Cc(R), suppψ = [0, 2],

1∫

0

ψ(t) dt =

2∫

1

ψ(t) dt =
1

2
and ψ′′(t) = δ(0) − 2δ(1) + δ(2),

where δ(t) is the Dirac mass at t. We set ψm(t) = ψ(t − m).
We multiply each equation in (9) by φ(x′)ψm(xN) and integrate over R

N
+ .

Integration by parts and Fubini’s theorem then yield
∫
R

N
+

ui (∆x′φ(x′)ψm(xN) + φ(x′)ψ′′
m(xN)) dxN dx′

=
∫
R

N
+

fi(u1, u2)φ(x′)ψm(xN) dxN dx′

or

∫
RN−1

(
2∫
0

ui(x
′, xN + m)ψ(xN) dxN

)
∆x′φ(x′) dx′

+
∫

RN−1

(
u

(m)
i (x′) − 2u

(m+1)
i (x′) + u

(m+2)
i (x′)

)
φ(x′) dx′

=
∫

RN−1

(
2∫
0

fi (u1(x
′, xN + m), u2(x

′, xN + m)) ψ(xN) dxN

)
φ(x′) dx′.

Since u
(m)
i tends to ũi in any Lebesgue space, the following lemma finishes

the proof of Theorem 1.3. Note that the second integral in the left-hand side
of the last equality vanishes at the limit.

Lemma 3.2 Under the hypotheses we made on f1, f2

2∫

0

fi (u1(x
′, xN + m), u2(x

′, xN + m)) ψ(xN) dxN (38)

tends to fi (ũ1(x
′), ũ2(x

′)) in L1
loc

(
R

N−1
)

as m → ∞.

24



Proof. We split the integral (38) in two and use the fact that ψ is continuous
and monotonous in [0, 1] and in [1, 2]. By standard properties of the Riemann
integral (38) is equal to

f (u1(x
′, ξ1 + m), u2(x

′, ξ1 + m)) + f (u1(x
′, ξ2 + m), u2(x

′, ξ2 + m))

2

where ξ1 ∈ (0, 1), ξ2 ∈ (1, 2). Obviously ui(x
′, ξj + m) tends to ũi(x

′) in
Lp

loc

(
R

N−1
)
, p < ∞, so the lemma follows. ✷

3.5 A monotonicity lemma

In the proof of Theorem 1.1 we shall need the following monotonicity result,
which is an extension of a recent result of Busca and Manasevich [10].

Lemma 3.3 Let fi ∈ C1((R+)2), fi(0, 0) = 0, ∇fi(0, 0) = 0, i = 1, 2 satisfy
(10). Suppose that f1(0, v) > 0 for all v > 0, and f2(u, 0) > 0 for u > 0. Let
ui(t, θ) ≥ 0, i = 1, 2 be C2-functions defined on R × SN−1 and satisfying





∂2ui

∂t2
+ ∆θui − δi

∂ui

∂t
− νiui + fi(u1, u2) = 0 in R × SN−1

ui → 0 as t → −∞,
(39)

where δi ≥ 0, max{δ1, δ2} > 0, νi > 0, i = 1, 2 are constants. Suppose also

that there exists t0 ∈ R such that
∂ui

∂t
> 0 in (−∞, t0) × SN−1, for i = 1, 2.

Then
∂ui

∂t
> 0 in R × SN−1, for i = 1, 2.

In [10] the authors studied the case n = 2, f1(u1, u2) = up
2, f2(u1, u2) = uq

1.
Note that the result in [10] was stated without the hypothesis p, q > 1, but
this hypothesis is actually used in their proof.

The proof of Lemma 3.3 is based on the moving planes method and uses
both ideas from the proof in [10] and from the proof of the symmetry result
for systems in R

N obtained in [11].
We set

hi(u1, u2) = −νiui + fi(u1, u2)

and remark that all we shall need is the fact that the matrix of the partial
derivatives of h1 and h2 is negative definite at (0, 0). We use this fact as in
the proof of Theorem 2 from [11] (see hypotheses (i)–(iii) in Section 2.1 of
[11]).

For each λ > 0 we denote

Tλ = {(t, θ) ∈ R × SN−1 | t = λ}, Σλ = {(t, θ) ∈ R × SN−1 | t < λ},
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and introduce the functions

w
(λ)
i (t, θ) = ui(2λ − t, θ) − ui(t, θ), i = 1, . . . , n,

defined in Σλ. By Taylor’s expansion ~wλ satisfies the system

∂2 ~w(λ)

∂t2
+ ∆θ ~w(λ) − D

∂ ~w(λ)

∂t
+ Cλ(x)~w(λ) = −2D

∂~u

∂t
in Σλ, (40)

where

D = diag(δ1, δ2), Cλ(x) = (cij(x))2
i,j=1 , cij(x) =

∂hi

∂uj

(ξ1, ξ2),

and ξij = ξij(t, θ, λ),

ξij ∈ [min(uj(t, θ), uj(2λ − t, θ)), max(uj(t, θ), uj(2λ − t, θ))] .

System (40) is treated in basically the same way as inequality (3)–(4)
from [11] - note that the right hand side of (40) is nonpositive in Σλ for any
λ ≤ t0, by hypothesis. We shall only sketch the argument, since most of the
details can be seen in [11] (note only that here the moving planes go ”to the
right”, contrary to the choice made in [11]). First, there exists λ∗ < t0 such
that ~w(λ) ≥ 0 in Σλ, for any λ ≤ λ∗. The proof of this fact goes like the proof
of Step 1 in the proof of Theorem 2 in [11]. Second, we define

λ0 = sup

{
λ ∈ R : ~w(µ) ≥ 0 and

∂ ~w(µ)

∂t
> 0 in Σµ, for all µ < λ

}
.

If λ0 = +∞ we are done (note that
∂ ~w(λ)

∂t
= 2

∂~u

∂t
on Tλ). If λ0 is finite we

reason like in Step 2 in the proof of Theorem 2 in [11], to infer that either

w
(λ0)
1 or w

(λ0)
2 vanishes in Σλ0

. Since the system is fully coupled this implies

that ~w(λ0) ≡ 0 in Σλ0
, or, equivalently,

∂~u

∂t
is odd with respect to Tλ0

. On the

other hand, by (40) at least one of the derivatives with respect to t of u1 and
u2 (the one which corresponds to a strictly positive δi) is even with respect
to Tλ0

. Hence at least one of the functions ui is equal to a constant, which
contradicts the hypothesis that ui is strictly increasing in t for t ∈ (−∞, t0).
✷

In the next section we prove our main result.
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4 Proof of Theorem 1.1

We divide the proof in three parts, according to the case we consider (A, B
or C). We recall that the values of the parameters αij determine which case
we are in.

In the sequel G will denote either R
N or R

N
+ .

Proof in Case A. In this case we choose (β1, β2) = l1 ∩ l2, that is

β1 =
2

α11 − 1
, β2 =

2

α22 − 1
. (41)

1. First, if none of the lines l3 and l4 passes through l1∩l2 we are precisely
in the weakly coupled case considered in [19]. By using Lemmas 2.1 and 2.2,
and by letting n → ∞ in (14) we obtain (after scaling) the uncoupled system

{
−∆v1 = vα11

1

−∆v2 = vα22

2 ,
(42)

in G, which has only the trivial solution because

max {α11, α22} <
N + 2

N − 2
, (43)

which is a consequence of (8) and (41).
2. Next, suppose exactly one of l3 and l4 (say l3) passes through l1 ∩ l2.

Then again by Lemmas 2.1 and 2.2, after letting n → ∞ in (14) we obtain
the system





−∆v1 = a0v
α11

1 + b0v
α12

2 + c1v
γ11

1 vγ12

2

−∆v2 = d0v
α22

2

u, v ≥ 0
in G, (44)

where a0, d0, b0, c1 are constants such that a0, d0 > 0, b0, c1 ≥ 0. Since (43)
holds this system has no nontrivial solution. Indeed, the second equation
in (44) implies v2 ≡ 0. Then the first equation becomes a scalar equation,
which again has no nontrivial solutions under (43).

3. Finally, suppose all four lines l1, l2, l3, l4 meet at one point (so we are
simultaneously in Cases A and B). Letting n → ∞ in (14), we come to the
system





−∆v1 = a0v
α11

1 + b0v
α12

2 + c1v
γ11

1 vγ12

2

−∆v2 = c0v
α21

1 + d0v
α22

2 + c2v
γ21

1 vγ22

2

u, v ≥ 0
in G, (45)
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where a0, b0, c0, d0 > 0, c1, c2 ≥ 0. Note that now

α12 =
α11(α22 − 1)

α11 − 1
, α21 =

α22(α11 − 1)

α22 − 1
.

Assume first G = R
N
+ . Then (45) satisfies the hypotheses of Theorem 1.2

and Theorem 1.3. Hence, by Theorem 1.3, if (v1, v2) 6≡ (0, 0) then there exists
a nontrivial solution of (45) in R

N−1. So, if we manage to prove that (45)
has only the trivial solution in R

N under (8) (note that a particular case of
this result would be Theorem 1.5), then it has no nontrivial solutions in R

N
+

under min{β1, β2} >
N − 3

2
which is consequence of (8).

From now on we suppose G = R
N and distinguish two cases,

max{β1, β2} ≥ N − 2 (Case 1) and max{β1, β2} < N − 2 (Case 2).

In Case 1 (say β1 ≥ N − 2) we have α11 ≤ N
N−2

. But the first equality

in (45) implies −∆v1 ≥ a0v
α11

1 in R
N , so v1 ≡ 0 in R

N , by the results about
non-existence of supersolutions (Theorem 2.1). Then the second equation in
(45) becomes −∆v2 = d0v

α22

2 in R
N . So v2 ≡ 0 in R

N , because α22 < N+2
N−2

,
which is a consequence of (8).

In Case 2 we write system (45) in polar coordinates (r, θ) ∈ R × SN−1

and make the change of variables, as in [10],

r = |x|, t = ln |x| ∈ R, θ =
x

|x|
∈ SN−1,

and set
wi(t, θ) = eβitvi(e

t, θ).

Then system (45) transforms into





−L1w1 = a0e
(β1+2−α11β1)twα11

1 + b0e
(β1+2−α12β2)twα12

2

+c1e
(β1+2−γ11β1−γ12β2)twγ11

1 wγ12

2

−L2w2 = c0e
(β2+2−α21β1)twα21

1 + d0e
(β2+2−α22β2)twα22

2

+c2e
(β2+2−γ21β1−γ22β2)twγ21

1 wγ22

2

(46)

in R × SN−1, where

Li =
∂2

∂t2
+ ∆θ − δi

∂

∂t
− νi, i = 1, 2,

and
δi = 2βi − (N − 2), νi = βi(N − 2 − βi), i = 1, 2.
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It is remarkable that after this change of variables one obtains the same
powers in the exponential functions in (46) as the powers of the parameter
λn after the ”blow-up” change of variables. So, in the case we consider all
these powers are zero, and system (46) is autonomous.

Observe that condition (8) implies that δi > 0, and that the condition of
Case 2 gives νi > 0. Further, by by applying Theorem 3.2 to system (45) we
see that we can suppose that v1 and v2 are strictly positive in R

N . This easily
implies that the derivatives of w1 and w2 with respect to t are positive for

large negative t. So we can now apply Lemma 3.3 to (46), and infer
∂wi

∂t
> 0

in R × SN−1, or

βivi + r
∂vi

∂r
> 0 , i = 1, 2. (47)

Then, using a reasoning from [10], we remark that all the above argument
can be carried out for any translation of (v1, v2) (since (45) is autonomous),
so (47) implies

βivi(x) + ∇vi(x)(x − x0) ≥ 0,

for all x, x0 ∈ R
N . This easily implies ∇vi(x) ≡ 0 (write x0 = x − τe, τ > 0,

e ∈ SN−1, divide by τ , let τ → ∞ and observe that the resulting inequality
holds for any e ∈ SN−1), which contradicts (45).

Proof in Case B. We recall that in this case we choose (β1, β2) = l3 ∩ l4,
that is,

β1 =
2(1 + α12)

α12α21 − 1
, β2 =

2(1 + α21)

α12α21 − 1
.

1. First, suppose none of l1 and l2 passes through l3 ∩ l4; this is precisely
the strongly coupled case from [19]. Then by using Lemmas 2.1 and 2.2,
after the passage to the limit in (14) we obtain (after scaling) the system





−∆v1 = vα12

2

−∆v2 = vα21

1

u, v ≥ 0
in G, (48)

Observe that it is known that under (8) system (48) in R
N has only the

trivial solution, see Theorem 2.2. However, as in the beginning of point 3
of the proof of Case A above we see that we can restrict the analysis to
G = R

N . Indeed, system (48) satisfies the hypotheses of Theorem 1.2, since
by assumption b0, c0 > 0, α12, α21 > 1. Let us stress again that this argument
requires Lipschitz nonlinearities.

2. Second, if one of l1 or l2 (say l1) passes through l3 ∩ l4, by letting
n → ∞ in (14) we obtain, again with the help of Lemmas 2.1 and 2.2, the
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following system





−∆v1 = a0v
α11

1 + b0v
α12

2 + c1v
γ11

1 vγ12

2

−∆v2 = c0v
α21

1

u, v ≥ 0
in R

N , (49)

where b0, c0 > 0, a0, c1 ≥ 0. So (49) implies





−∆v1 ≥ b0v
α12

2

−∆v2 ≥ c0v
α21

1

u, v ≥ 0
in R

N . (50)

We split the argument in two cases once again.

• If max{β1, β2} ≥ N − 2, Theorem 2.2 applied to (50) gives v1 = v2 ≡ 0
in R

N .

• Finally, if we have
N − 2

2
< β1, β2 < N − 2, we apply Lemma 3.3 to

(49), and conclude v1 = v2 ≡ 0 in R
N , through the same argument as

in the last part of the proof of Case A.

Proof in Case C. All that remains to consider are the cases when either l3
meets l1 at a point above l4 or l4 meets l2 at a point below l3. In both cases
we take the couple (β1, β2) to be this intersection point, that is, for instance
in the first of these two situations

β1 =
2

α11 − 1
, β2 =

2α11

α12(α11 − 1)
.

Then, after passing to the limit in (14) we obtain a nontrivial bounded solution
to the system

{
−∆v1 = a0v

α11

1 + b0v
α12

2 + c1v
γ11

1 vγ12

2

−∆v2 = 0
(51)

in the whole space or in a half-space, with v1 and v2 vanishing on the bound-
ary of the half space. Then Liouville’s theorem applied to the second equation
in (51) implies that v2 is identically equal to a constant c. If c = 0 (this is
the only case if (51) is in a half-space, because of the boundary condition)
we replace in the first equation in (51) and obtain a nontrivial solution to
the Emden-Fowler equation (19) with p = α11, which is known not to have
solutions for

1 < α11 <
N + 2

N − 2
,
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and this is a consequence of (8).
If c > 0 the first equation in (51) implies that the inequality

−∆v1 ≥ b0 cα12 > 0

has a bounded solution in R
N , which is well-known to be impossible. ✷
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