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1 The physical problems

In this survey we describe several physically motivated problems in which the
corresponding mathematical models lead to overdetermined elliptic boun-
dary-value problems. Such situations appear for instance in fluid mechanics
and capillarity theory, theory of elasticity, electrostatics. Our goal here is to
give an idea of how they have been treated mathematically.

1.1 Interior overdetermined problems. Examples

In this section we describe three physical problems which were first given
mathematical consideration and solved by Serrin in his classical paper [21].
They lead to overdetermined elliptic boundary-value problems in bounded
domains.

Fluid moving in a straight pipe. We begin with a simple example which
will help us to introduce the kind of problems we consider. Suppose we
have a viscous incompressible fluid moving in a straight pipe with a given
cross section. Fix rectangular coordinates (x, y, z) in space with the z−axis
directed along the pipe. Then the cross section of the pipe containing the
origin is a domain in the (x, y)-plane, which we denote by Ω. It is a standard
result from fluid mechanics that the flow velocity does not depend on z and
therefore can be regarded as a function of x and y, defined in Ω. Furthermore,
it is known (see for example [12]) that u satisfies the Poisson equation

∆u = − δ

ηl
in Ω, (1)

where η denotes the dynamic viscosity, l is the length of the pipe and δ is
the change of pressure between the two ends of the pipe.
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The adherence condition on the wall of the pipe is expressed by the Dirich-
let boundary condition

u = 0 on ∂Ω. (2)

Finally, the tangential stress on the wall is η
∂u

∂n
, where n denotes the

interior normal to ∂Ω. The precise determination of the point of maximal
tangential stress is an important but mathematically very difficult problem.
Here we are interested in the following question : when is the tangential stress
the same at each point of a cross section of the wall ? In other words, can
we have a solution of (1)–(2) which satisfies the Neumann type boundary
condition

∂u

∂n
= const on ∂Ω ? (3)

It is very standard and classical to consider the Poisson equation (1) with
either of the boundary conditions (2) or (3) and there is a huge literature
on both problems (1)-(2) and (1)-(3). However, the question we asked above
requires that both of these conditions be satisfied by the solution of (1) –
this is what we call overdetermined. Problem (1)-(2)-(3) can be viewed as a
free boundary problem, in the sense that the domain is part of the problem.

It is intuitively clear that (2) and (3) together is too much to ask, and
in most cases the answer to our question will be negative, that is, problem
(1)-(2)-(3) will not be solvable. On the other hand, if Ω is a ball with radius
R then the unique solution of (1)-(2) is

u(x) =
ηl

4δ
(R2 − x2 − y2),

and hence satisfies (3). Thus a natural question to ask is whether there exists
a non-circular pipe such that a fluid moving inside it has the same tangential
stress on all points of its wall. Theorem 1 in Section 2 provides a negative
answer to this question.

The torsion problem. An equation of type (1), together wtih the bound-
ary condtions (2) and (3), arises when we model the torsion of a solid cylin-
drical bar. We follow the presentation in [23]. Suppose we have a cylindrical
body of arbitrary (simply connected) cross section, one end of which is fixed,
while the other is twisted by a couple of given magnitude. We fix the coor-
dinate system as in the previous example, with the z−axis along the axis of
the cylinder. It is known that, in general, after the bar is twisted its cross
sections do not remain plane but are warped. Actually, any point P (x, y, z)
of the body occupies a new position P ′(x + r, y + s, z + t) after the twisting,
where

r = −αzy , s = αzx , t = αϕ(x, y), (4)
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where α is the twist per unit length of the bar and ϕ denotes the torsion
function. Let us note that the torsion is zero (that is cross sections of the
bar do remain plane) if and only if the cylinder is circular. This result turns
out to be a very particular case of the symmetry theorems we present in
Section 2.

We shall consider the torsion in terms of L. Prandtl’s “stress function”

Ψ(x, y) = ψ(x, y) − 1

2
(x2 + y2),

where ψ(x, y) stands for the complex conjugate of ϕ. It can be checked ([23])
that Ψ satisfies the equation

{

∆Ψ = −2 in Ω
Ψ = const on ∂Ω,

(5)

where Ω is an arbitrary cross section of the bar.
The function Ψ has the following important property : at each point of

a level curve of Ψ (these curves, defined by Ψ = const, are called lines of
shearing stress) the stress vector is directed along the tangent to the curve.
Furthermore, since all tangential derivatives of Ψ are zero on ∂Ω,

∂Ψ

∂n
= |∇Ψ| =

1

µα
.τ on ∂Ω ,

(see [23]) ; here µ denotes the modulus of rigidity of the bar and τ is the
magnitude of tangential stress (τ is called shearing stress).

Like in the previous example, the shearing stress is maximal on the lateral
boundary, so elastic failure of the material is to be expected on that boundary.
Here we address the following two questions :
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• Can the shearing stress be constant on the lateral surface ?

• If the bar is invariant under some group action, in particular, if the bar
is symmetric with respect to a hyperplane, then do lines of shearing
stress have the same property ?

The interior capillarity problem. A more complicated example is pro-
vided by the equation of equilibrium shapes of the surface of a homogeneous
and incompressible liquid contained in a straight tube, subject to a gravita-
tional field. Our presentation follows [15], Chapter 2.

We again consider a rectangular coordinate system with the z−axis di-
rected along the axis of the vessel and denote with Ω the cross section of
the tube containing the origin. For each (x, y) ∈ Ω we define u(x, y) to be
the height, with respect to the level of Ω, to which the liquid rises above or
below the point (x, y).

In this situation, the first two conditions for hydrostatic equlibrium (Eu-
ler’s condition and Laplace’s condition) reduce to the following equation

div
∇u

√

1 + |∇u|2
− bu = q in Ω, (6)

where b =
ρg

σ
and q is some constant depending only on the height at which

we fix the origin. As usual, ρ denotes the density of the fluid, σ is the surface
tension, and g is the intensity of the gravitational field. All these quantities
are constants in this model.

In this setting the Dupré-Young condition for hydrostatic equilibrium
becomes

∂u

∂n
= − cos α

√

1 + |∇u|2 on ∂Ω, (7)

where n is the interior normal to the boundary of ∂Ω and α is the contact
(or wetting) angle between the liquid surface and the wall of the vessel.

The question we are interested in is : when does the liquid rise to the
same height at each point of the wall ?

If u = const on ∂Ω then the normal derivative of u is equal to the length
of the gradient of u on ∂Ω, so (7) transforms into

∂u

∂n
= −cotgα on ∂Ω. (8)

We shall exclude the two limiting cases α = 0 and α = π
2

(α = 0 is clearly

irrealistic, while for α = π
2

the only solution of (6)-(7) is u ≡ −q

b
, indepen-

dently of the shape of the vessel).
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Note that the maximum principle (see Section 3), applied to (6), says u

attains its maximum in Ω on the boundary ∂Ω. By the strong maximum
principle, if u = const on ∂Ω then u attains its maximum only on ∂Ω, except
if it is constant in Ω. The latter is excluded by α 6= π

2
.

Finally, to answer the question we asked above, we have to study the
solvability of the following problem



























div
∇u

√

1 + |∇u|2
− bu = const in Ω

u > 0 in Ω
u = 0 on ∂Ω

∂u

∂n
= const on ∂Ω

(9)

(we have fixed the reference level to be the surface level on the vessel wall,
and have replaced u by −u).

1.2 Exterior elliptic problems

The theory of elliptic partial differential equations is far less advanced when
these equations are considered on unbounded domains. We give below some
examples of physical problems whose mathematical representation leads to
free boundary problems in exterior domains (we recall that an exterior do-
main is the complement of a bounded domain).

An important feature of exterior problems is that they permit us to con-
sider systems of many bodies interacting with each other.

The electrostatics problem. Consider a smooth conducting body G in
R

N (N = 2 or 3) with a charge distribution on its boundary. We recall that
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a charge distribution ρ ∈ C(∂G) is called an equilibrium charge distribution
if the single-layer potential induced by ρ

ψ(x) =

∫

∂G

ρ(y)γ(|x − y|) dσy (10)

is constant in G ; here γ(t) = − 1
2π

log t if N = 2 and γ(t) = − 1
4πt

if N = 3.
Note that the potential ψ is harmonic and smooth in G and Ω := R

N \ G.
We are interested in constant equilibrium charge distributions. First, if

G is a ball and ρ = const then ψ, being rotationally invariant and harmonic,
is constant in G. Hence, a natural question is : do non-circular conductors
admit constant equilibrium charge distributions ? This question was given
a negative answer by Martensen ([14]) and Reichel ([19]), respectively for
N = 2 and N = 3.

However, the exterior nature of the problem permits an important gener-
alisation, namely, we can ask the same question for several conducting bodies
in the space. More precisely, suppose we have m conductors (m ≥ 2), with
possibly different (but constant !) charge distributions on their boundaries.
Can such a system be an equilibrium one ? The negative answer is contained
in Theorem 4.

The mathematical formulation of the problem is as follows. Suppose we
have C2,α-regular mutually disjoint bounded domains G1, . . . , Gm, such that
R

N \ G is connected, where

G =
k∪

i=1
Gi. (11)

Suppose each body Gi has a constant equilibrium charge distribution ρi on
its boundary. This means that the single-layer potential defined by (10),
with ρ(y) = ρi for y ∈ ∂Gi, is constant in each Gi.

Then
∂ψ

∂n
= −ρi on ∂Gi,

by the jump condition for single-layer potentials ; here n is the exterior
normal to ∂Gi (interior to ∂Ω). Furthermore, ψ is always above its value ψ∞

at infinity ; indeed, we have ψ∞ = −∞ for N = 2 and ψ∞ = 0 for N = 3.
Hence, if the system is in equilibrium, then the function ψ ∈ C2,α(Ω)

satisfies


















∆ψ = 0 in R
N \ G

ψ > ψ∞ in R
N \ G

ψ = ai > 0 on ∂Gi, i = 1, . . . , m
∂u

∂n
= −ρi on ∂Gi, i = 1, . . . , m.

(12)
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The exterior capillarity problem. Here we consider a large (mathemat-
ically speaking : infinite) reservoir full of a homogeneous and incompressible
liquid, into which we dip a straight solid cylinder. We study the contact
surface between the liquid and the cylinder’s wall. This problem is dual to
the third problem considered in Section 1.1 and leads to the same equation
in the exterior of the cylinder (see [19] and [20]) .

More generally, consider m solid cylindrical bodies of arbitrary (smooth)
cross sections Gi, i = 1, . . . , m, dipped into a large reservoir without touching
each other. They make the liquid rise around their walls to some level higher
than the (reference) level at the walls of the reservoir. We want to know
if the points on the contact surfaces between the liquid and the walls of
the cylinders can be at the same height, allowing different heights for the
different contact lines. Another way of putting the question is : if we have a
set of cylinders dipped into a infinite reservoir, can we build another set of
cylinders which, added to the first, will create a system in equilibrium, with
each contact surface being at constant height ?

The mathematical problem to which the above question reduces is the
following. As in the previous example, suppose we have m C2,α-regular mu-
tually disjoint bounded domains G1, . . . , Gm, such that R

N \G is connected.
We need to investigate the solvability of the problem



































div
∇u

√

1 + |∇u|2
− bu = const in R

N \ G

u ≥ u∞ in R
N \ G

u → u∞ as |x| → ∞
u = ai > 0 on ∂Gi, i = 1, . . . ,m.

∂u

∂n
= −cotgαi on ∂Gi, i = 1, . . . ,m.

(13)

Both (12) and (13) are particular cases of the boundary-value problem
considered in Theorem 4 of Section 2. This theorem says (12) and (13) do
not have a solution, more precisely, if they do, then m = 1 and G = G1 is a
ball.
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2 The symmetry theorems

In this section we present the mathematical results which answer the ques-
tions posed in Section 1. All of them are based on the famous “moving
planes” method of Alexandrov (1962) which has proved to be by far the
most powerful tool for establishing symmetry properties of positive solutions
of elliptic partial differential equations.

We begin with the case of a bounded domain Ω ⊂ R
N , N ≥ 2. We

consider classical (i.e. C2−regular) solutions of the problem






Qu + f(u) = 0 in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(14)

where f ∈ C1(R+, R) and Q is a regular uniformly elliptic operator, that is,

(q) Qu = div(g(|∇u|)∇u), where g ∈C2([0,∞)) , g(s) > 0 and (sg(s))′ > 0
for all s ≥ 0.

This assumption is satisfied by the Laplace operator (Q = ∆), and by the
mean curvature operator (Qu = div ∇u√

1+|∇u|2
). Let us note that all results in

this paper remain true for another physically important operator, the Monge-
Ampère operator (Qu = det(D2u)), and also for any linear uniformly elliptic
operator. We note the function f can be allowed to depend on |∇u|.

We shall often consider (14) together with the following boundary condi-
tion (n will always denote the interior normal to ∂Ω)

∂u

∂n
= const on ∂Ω. (15)

We are interested in the following two questions :

• if the domain is symmetric with respect to a hyperplane, do solutions
of (14) have the same property ?

• if problem (14)-(15) is solvable, then is Ω a ball ?

These two questions were answered in the affirmative in two classical and very
well-known today papers, by Serrin (1971) and Gidas-Ni-Nirenberg (1981).

In the context of elliptic partial differential equations the moving planes
method was developed by Serrin in [21], where he proved the following the-
orem.

Theorem 1 (Serrin, 1971) Suppose Ω is a bounded C2-domain and let u ∈
C2(Ω) be a classical solution of (14)-(15). Then Ω must be a ball.
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The result of Gidas, Ni and Nirenberg states the following.

Theorem 2 (Gidas-Ni-Nirenberg, 1981) Suppose Ω is bounded and con-
vex with respect to some direction γ ∈ R

N \ {0}. Suppose also that Ω is sym-
metric with respect to a hyperplane perpendicular to γ. Then any solution of
(14) is symmetric with respect to this hyperplane. In addition, all solutions of
(14) are strictly decreasing functions along any parallel to γ segment, which
links the hyperplane and ∂Ω.

In particular, if Ω is a ball, then any solution of (14) is radial and de-
creasing, that is, it depends only on, and decreases with, the distance to the
center of the ball.

In 1991 Berestycki and Nirenberg (see [6]) gave an alternative proof of this
theorem. In this paper they greatly simplified the moving planes method and
showed Theorem 2 can be extended to only Liptscitz continuous functions f ,
and to a large class of non-smooth domains.

The Berestycki-Nirenberg improved moving planes method became very
popular during the last decade. It was used in many different contexts, where
symmetry of solutions of elliptic PDE’s was studied.

We next turn to unbounded domains. In 1991 C. Li adapted the moving
planes method to the case when equation (14) is defined in the whole space.
He proved the following theorem.

Theorem 3 (C. Li, 1991) Suppose we have a classical solution of







Qu + f(u) = 0 in R
N

u ≥ 0, u 6≡ 0 in R
N

u → 0 as |x| → ∞,

(16)

and, in addition, that f is (weakly) decreasing in a right neighbourhood of
zero. Then the solution u is radial with respect to some point x0 ∈ R

N , that
is, u is a function of |x − x0| alone, and

du

dr
< 0 for r = |x − x0| ∈ (0,∞).

In a series of papers Berestycki, Caffarelli and Nirenberg (see [5] and
the references therein) studied symmetry properties of positive solutions of
elliptic equations in various types of unbounded domains, including a half-
space, a cylinder, and a domain bounded by a Lipschitz graph.

In view of the applications exterior and annuli-like domains were exten-
sively studied too. In particular, a number of important partial results were
obtained by Alessandrini, Aftalion-Busca, Willms-Gladwell-Siegel, Phillipin
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and Reichel. None of these results could apply to the problems of many
bodies discussed in Section 1.2.

In our forthcoming paper [22] we study these two problems, and answer
the questions from Section 1.2. Here is the precise statement of the main
result in this paper.

We make the following hypotheses :

(i) we are in the context of Section 1.2, that is, we have a set G which is
the union of m mutually disjoint bounded C2,α-domains G1, . . . , Gm ;

(ii) f is a Lipschitz continuous function in [0,∞) and is decreasing in a
right neighbourhood of zero ;

(iii) there exists a C2-regular solution of the problem



























Qu + f(u) = 0 in R
N \ G

u ≥ 0 in R
N \ G

u → 0 as |x| → ∞
u = ai > 0 on ∂Gi, i = 1, . . . , m

∂u

∂n
= bi ≤ 0 on ∂Gi, i = 1, . . . , m,

(17)

where ai and bi, i = 1, . . . , m, are constants and n denotes the exterior
normal to the boundary of G (interior to ∂Ω = ∂(RN \ G)).

Remark The constant which appears in the right-hand side of the equation
in (13) is necessarily zero, since the solvability of (17) implies f(0) = 0.

Theorem 4 Suppose (i), (ii) and (iii) hold. Then m = 1, G = G1 is a
ball centered at some point x0 ∈ R

N , the solution of (17) u is radial, that is
u = u(|x − x0|), and

du

dr
< 0 for r = |x − x0| ∈ (ρ1,∞),

where ρ1 denotes the radius of G.

There is a version of this theorem for multiply connected bounded do-
mains, more specifically, domains of the type Ω \ G, where Ω is a smooth
bounded domain and G is as above. Furthermore, we have a Gidas-Ni-
Nirenberg type result in the exterior of a ball. More precisely, if G is a ball
and we have a solution of (17), with the last boundary condition relaxed to
∂u

∂n
≤ 0 on ∂G, then this solution depends only on and decreases with the

distance to the center of G.
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3 Maximum principles. The moving planes

method in bounded domains

3.1 The improved moving planes method.

In this section we describe the moving planes method of Berestycki and
Nirenberg, and give their proof of Theorem 2.

Before going to the method itself we recall two very classical results in
elliptic theory, the maximum principle and Hopf’s lemma (known also as the
strong maximum principle). For their proofs, see for example [17]. More
recent (and precise) results are contained in [7].

Theorem 5 (The maximum principle) Let Ω be a bounded domain and

L =
n

∑

i,j=1

aij(x)∂ij +
n

∑

i=1

bi(x)∂i + c(x)

be a linear uniformly elliptic operator (that is, the matrix (aij(x)) is positive
definite uniformly in x), with bounded coefficients. Suppose c(x) ≤ 0 in Ω.
Then, for any u ∈ C2(Ω) ∩ C0(Ω),

{

Lu ≤ 0 in Ω
u ≥ 0 on ∂Ω

implies u ≥ 0 in Ω. We say that L satisfies the maximum principle in Ω.

Theorem 6 (Hopf’s lemma) Let Ω be a bounded domain and L be a linear
uniformly elliptic operator with bounded coefficients. Then

{

Lu ≤ 0 in Ω
u ≥ 0 in Ω

implies that either u ≡ 0 in Ω or u > 0 in Ω and, in addition,
∂u

∂n
> 0 on

any point of ∂Ω at which ∂Ω admits an interior tangent ball and u vanishes.

Note that in Theorem 5 we supposed that the zero-order coefficient of
the elliptic operator is non-positive. In general, the maximum principle is
false if we do not make a hypothesis on c(x). However, it is possible to give
conditions on the domain Ω which ensure the validity of the maximum prin-
ciple, for any bounded c(x). In particular, the following maximum principle
“in small domains” holds.
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Theorem 7 Let Ω be a bounded domain, with diam Ω ≤ d. Let L be a linear
uniformly elliptic operator with coefficients bounded in the uniform norm by
a constant A. Then the maximum principle is satisfied by L in Ω, provided
vol(Ω) < δ, where δ is a constant depending only on d,A, and the ellipticity
constant of L.

Proof of Theorem 2 Suppose for simplicity Ω is convex in the direction of
the vector e1 = (1, 0, . . . , 0) and is symmetric with respect to the hyperplane
T0 = {x | x1 = 0}. We want to show that

u(−x1, x2, . . . , xN) = u(x1, x2, . . . , xN) for any x ∈ Ω.

For any λ ∈ R we define

Tλ = {x | x1 = λ} , Dλ = {x | x1 > λ} , Σλ = Dλ ∩ Ω,

xλ = (2λ − x1, x2, . . . , xn) − the reflexion of x with respect to Tλ,

wλ(x) = u(xλ) − u(x) , provided x ∈ Σλ,

d = inf{λ ∈ R | Tµ ∩ Ω = ∅ for all µ > λ}
(see Fig. 1). With this notation, our goal is to show that w0 ≡ 0 in Σ0.

λ

Σλ

T

xλ

T T0 d

Ω . .x

Figure 1: The moving planes method

Lemma 3.1 The function wλ, λ ∈ [0, d), satisfies a linear uniformly elliptic
equation of the form (summing over repeting indices)

{

L0wλ = aij(x)∂ijwλ + bi(x)∂iwλ + c(x)wλ = 0 in Σλ

wλ ≥ 0 on ∂Σλ.
(18)

The ellipticity constant and the coefficients of L are bounded independently
of λ.
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This lemma is obvious for Q = ∆ and requires some computations in the
case of a more general operator (see for example [20]). Note that we take

c(x) =







f(u(xλ)) − f(u(x))

u(xλ) − u(x)
if u(xλ) 6= u(x)

0 if u(xλ) = u(x).
(19)

We say the hyperplane Tλ has reached a position λ < d provided wµ is
non-negative in Σµ, for all µ ∈ [λ, d). The plane Tλ “starts” at λ = d and
“moves” to the left as λ decreases. If we prove that Tλ reaches position zero
we are done, since then we can take a hyperplane coming from the other side,
that is, starting from -d and moving to the right. The situation is totally
symmetric so the second hyperplane would reach position zero too. This
means that w0 ≥ 0 and w0 ≤ 0 in Σ0, hence w0 ≡ 0 in Σ0.

Step 1 The above procedure can begin, that is, there exists λ < d such that
wµ ≥ 0 in Σµ, for all µ ∈ [λ, d).

Proof By using Theorem 7 we can find a number δ such that the operator
L0 defined in Lemma 3.1 satisfies the maximum principle in any subdomain
Ω′ ⊂ Ω, with vol(Ω′) < δ. We fix λ < d so close to d that vol(Σλ) < δ, for
any λ ∈ [λ, d). Hence, by Theorem 7, equation (18) implies that wµ ≥ 0 in
Σµ, for all µ ∈ [λ, d). ✷

Note that, by the definition of wλ, we have wλ > 0 on ∂Σλ ∩ ∂Ω, for any
λ ∈ (0, d) (since u vanishes on ∂Ω and is strictly positive in Ω). Hence, by
Hopf’s lemma, wλ > 0 in Σλ, for λ ∈ (λ, d).

Step 1 permits us to define the number

λ0 = inf{λ ∈ (0, d) | wµ ≥ 0 in Σµ for all µ ≥ λ}.

Note that, by continuity with respect to λ, wλ0
≥ 0 in Σλ0

. By Hopf’s lemma,
if λ0 > 0 then wλ0

> 0 in Σλ0
.

Step 2
∂u

∂x1

< 0 in Σλ0
.

Proof Let x be an arbitrary point in Σλ0
, with x1 = λ. Then, by the

preceding remarks, wλ > 0 in Σλ. Since wλ = 0 on Tλ, Hopf’s lemma implies

0 <
∂wλ

∂x1

(x) = −2
∂u

∂x1

(x)

(recall that wλ(x) = u(xλ) − u(x)). ✷
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Step 3 λ0 = 0.

Proof Suppose for contradiction λ0 > 0. We are going to “push” the moving
plane to the left of λ0. Let K be a compact subset of Σλ0

such that

vol (Σλ0
\ K) <

δ

2

(δ is the number from Theorem 7). Since wλ0
is continuous and strictly

positive in Σλ0
, there exists a number ε > 0 such that wλ0

≥ ε in K. Fix a
number λ1, 0 < λ1 < λ0, such that vol (Σλ\K) < δ, for λ ∈ [λ1, λ0) (see figure
2). By continuity, if λ1 is sufficiently close to λ0 we have wλ ≥ ε

2
> 0 in K, for

K

Ω

0
Tλ1

Tλ

Figure 2: The contradiction in Step 3

any λ ∈ [λ1, λ0). In the remaining part of Σλ the function wλ, λ ∈ [λ1, λ0),
satisfies the equation

{

L0wλ = 0 in Σλ \ K

wλ1
≥ 0 on ∂(Σλ \ K).

By Theorem 7, wλ ≥ 0 in Σλ \ K. Hence wλ ≥ 0 in Σλ, for any λ ∈ [λ1, λ0).
This contradicts the definition of λ0. ✷

3.2 Overdetermined Problems. Serrin’s lemma

In this section we give a summary of the proof of Serrin’s result (Theorem 1).
The idea is to show that for any direction γ ∈ R

N \ {0} there exists λ =
λ(γ) ∈ R such that the domain and the solution are symmetric with respect
to the hyperplane Tλ = {x ∈ R

N | <x, γ>= λ} ; here <·, ·> denotes the
scalar product in R

N .

14



We fix for instance γ = e1 = (1, 0, . . . , 0). By using the moving planes
method described in the previous section we can show, in exactly the same
manner, that a hyperplane starting from position d and moving to the left
will move as long as the function wλ is defined in Σλ, that is, as long as the
reflexion of Σλ with respect to Tλ is contained in Ω.

In any case the moving plane reaches position λ⋆ (called the critical po-
sition), where

λ⋆ = inf{λ ≤ d | (Σµ)µ ⊂ Ω and <n(z), e1> < 0 for all µ > λ, z ∈ Tµ∩∂Ω}

(here, and in the sequel, an upper index means reflexion with respect to the
hyperlane with the same index). In other words, the reflexion of Σλ with
respect to Tλ stays in Ω until at least one of the following two events occurs

(i) the reflexion of ∂Ω∩∂Σλ wih respect to Tλ becomes internally tangent
to ∂Ω at some point P ;

(ii) Tλ becomes orthogonal to ∂Ω at some point Q.

(see figure 3).

(b)

Σλ
Σλ

T

z

n(z)

1

(a)

e

.

e1
z

T
d

T λλ

Q

Tλ

ΩΩ

* *

*

P P
λ*.

n(z)--

Figure 3: Two types of domains Ω : the critical position λ⋆ is attained at a point
of orthogonality (a), or at a point of tangency (b). For all µ > λ⋆ the part of Ω to
the right of Tµ has its reflection inside Ω and the outward normal to ∂Ω at each
point of the boundary of this part makes an acute angle with the direction e1.

We are going to show that wλ⋆
≡ 0 in Σλ⋆

. Since u > 0 in Ω, this implies
that the reflexion of ∂Σλ⋆

∩ ∂Ω with respect to Tλ⋆
lies on ∂Ω, that is, Ω is

symmetric with respect to Tλ⋆
.
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In case (i) Hopf’s lemma (applied to (18) for wλ⋆
) immediately yields

wλ⋆
≡ 0 in Σλ⋆

. Indeed, the function wλ⋆
vanishes at P λ⋆ ∈ ∂Σλ⋆

∩∂Ω (since
u = 0 on ∂Ω) and so does its normal derivative, because of condition (15).

Case (ii) is more difficult to treat, since Hopf’s lemma does not apply at
Q (∂Σλ⋆

does not admit an interior tangent ball at this point). Serrin proved
the following refinement of Hopf’s lemma (see [21], p. 313-314). For more
general results, see [9].

Lemma 3.2 Let D∗ be a C2-domain and let T be a plane containing the
normal to ∂D∗ at some point Q. Let D then denote the portion of D∗ lying
on some particular side of T . Suppose w ∈ C2(D) satisfies a linear uniformly
elliptic inequation with bounded coefficients of the form

{

Lw = aij(x)∂ijw + bi(x)∂iw ≤ 0 in D

w ≥ 0 in D.
(20)

Suppose also that

|aij(x)ξiηj| ≤ K(| <ξ, η> | + |ξ||d(x)|), K = const,

where ξ ∈ R
N , η ⊥ T, d(x) = dist(x, T ). Under these hypotheses, if w and all

its first and second order derivatives vanish at Q then w ≡ 0 in D.

Let us show that Serrin’s lemma applies to wλ⋆
, for Q = ∆ and N = 2 (for

the general case we refer the reader to [21], p. 315-316 and [20], Appendix 1).
First, wλ⋆

satisfies an equation of type (20), by Lemma 3.1 (we can always
achieve c(x) ≥ 0 in (18), by making the change of functions w = exp (βx1)w,
with β sufficiently large). Recall that

wλ⋆
(x) = u(2λ⋆ − x1, x2) − u(x1, x2), for (x1, x2) ∈ Σλ⋆

.

This trivially yields (we write w instead of wλ⋆
)

∂w

∂x2

(Q) =
∂2w

∂x1x1

(Q) =
∂2w

∂x2x2

(Q) = 0.

Since τ = −e1 is tangent to ∂Ω at Q and n = −e2 is normal to ∂Ω at Q, we
get

∂w

∂x1

(Q) = −2
∂u

∂x1

(Q) = 2
∂u

∂τ
(Q)

∂2w

∂x1x2

(Q) = −2
∂2u

∂x1x2

(Q) = −2
∂

∂τ

(

∂u

∂n

)

(Q).

Since both u and its normal derivative are constant on ∂Ω, the last two
quantities vanish. By Serrin’s lemma wλ⋆

≡ 0 in Σλ⋆
. ✷
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4 Exterior domains. Proof of Theorem 4

In this section we give a short version of the proof of Theorem 4. The
complete proof is rather lengthy and can be found in [22]. Our goal here is
to outline its main ideas.

The proof is based on the moving planes method. The principal difficulties
are the following.

• The domain Ω is unbounded ;

• The domain Σλ can be very complex in nature (in particular, not
connected, see Fig. 4 below) ;

• We do not know a priori whether the solution is below its value on the
boundary ∂G.

We shall suppose that

Q = ∆, m = 1, f ∈ C1(R+) and f ′(0) < 0,

for simplicity. With the notations from the preceding sections, our goal is
again to show that the domain Ω = R

N \G and the solution u are symmetric
with respect to a hyperplane Tλ, for some λ. The function wλ is now defined
in the set Σλ = Dλ \Gλ, for λ ≥ λ⋆ (here λ⋆ denotes the critical position for
G ; note that G ⊂ Gλ, for λ ≥ λ⋆).

We divide the proof into ten steps. The first step is again “initializing”,
in the sense that it permits us to begin the moving plane process.

Step 1 There exists λ ∈ R such that wλ ≥ 0 in Σλ for all λ ≥ λ.

Proof. This step is based on the the proof of C.Li’s result (see [13]). We
shall take the opportunity to explain its idea. In order to use Li’s argument
we notice that, since u tends to zero at infinity, we can take λ̃ ∈ R such that
λ̃ > d and

u(x) <
a1

2
for |x| > λ̃,

so that wλ >
a1

2
> 0 on ∂Gλ, for all λ ≥ λ̃.

Suppose the claim in Step 1 is false, that is, there exists a sequence
{λm}∞m=1 such that

lim
m→∞

λm = ∞ , λm ≥ λ̃,

and wλm
takes negative values in Σλm

. Since wλ is zero on Tλ and tends to
zero at infinity for a fixed λ, we see that wλm

attains its negative minimum
in the interior of Σλm

, say at a point x(m). Then

∇wλm
(x(m)) = 0 and ∆wλm

(x(m)) ≥ 0.
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Recall that wλ satisfies a linear equation of the type

∆wλ + cλ(x)wλ = 0 in Σλ (21)

for all λ ∈ R, where cλ(x) = f ′(d(λ, x)), with

d(λ, x) ∈ [min{u(xλ), u(x)}, max{u(xλ), u(x)}]

(see (19)). Since wλm
(x(m)) < 0 we see that 0 ≤ d(λm, x(m)) ≤ u(x(m)) and

therefore lim
m→∞

d(λm, x(m)) = 0. It follows that cλm
(x(m)) is strictly negative

for m large. Hence

0 ≤ ∆wλm
(x(m)) = −cλm

(x(m))wλm
(x(m)) < 0,

a contradiction. ✷

Step 1 shows that the number

λ0 = inf{λ ∈ R | wµ ≥ 0 in Σµ for all µ > λ}

is well defined. It is obvious that λ0 is finite. Notice that, by continuity,
wλ0

≥ 0 in Σλ0
.

Step 2 We have
∂u

∂x1

< 0 in the set
{

x ∈ R
N | x1 > max{λ0, d}

}

.

The proof of this step is similar in idea to the proof of Step 2 in Section 3.1.

Step 3 λ0 ≤ d.

The ideas of the proof of this step appear in the proof of Step 7 below.

Step 4 For any z ∈ ∂G and any unit vector η, for which <η, n(z)> >0, we
can find a sufficiently small ball Bδ(z) such that

∂u

∂η
(ζ) < 0 for all ζ ∈ Bδ(z) \ G.

Proof. Step 4 claims that the solution u is strictly decreasing in a neighbour-
hood of ∂G, along any outgoing direction. If α1 < 0, this claim is obvious,
by continuity. Hence we can assume α1 = 0, or equivalently ∇u ≡ 0 on ∂G.

Notice that this implies |D2u| =

∣

∣

∣

∣

∂2u

∂n2

∣

∣

∣

∣

on ∂G.

Fix a point z0 ∈ Td ∩ ∂G, so that

∂u

∂x1

(z0) =
∂u

∂n
(z0) = 0
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(note that n = e1 at z0). Steps 2 and 3, together with the assumption λ0 ≤ d,
imply

∂u

∂x1

(

z0 + te1

)

< 0,

for positive t. We conclude that

∂2u

∂n2
(z0) =

∂2u

∂x2
1

(z0) ≤ 0. (22)

On the other hand, it is easy to compute that u = const and ∇u = 0 on ∂G

imply

∆u|∂G =
∂2u

∂n2

∣

∣

∣

∣

∂G

.

Hence
∂2u

∂n2
≡ −f(a1) = const on ∂G.

By (22), f(a1) ≥ 0. If f(a1) > 0, Step 4 follows easily, since

∂2u

∂η2
=<η, n>2 ∂2u

∂n2
on ∂G.

If f(a1) = 0, we see that all first and second order derivatives of u vanish on
∂G. This implies that the function

u(x) =

{

u(x) for x ∈ R
N \ G

a1 for x ∈ G

belongs to C2(RN) and solves the equation







∆u + f(u) = 0 in R
N

u ≥ 0 , u 6≡ 0 in R
N

u(x) → 0 as x → ∞.

(23)

However, the shape of u contradicts C. Li’s result for equations on R
N (The-

orem 3). ✷

Step 5 wλ > 0 in Σλ, for any λ ∈ [λ0,∞) ∩ (λ⋆,∞).

Step 6 We have
∂u

∂x1

< 0 in Dλ⋆ \ G,

where λ⋆ = max{λ0, λ⋆}.
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Figure 4: The shaded regions are the connected components of Σλ.

The last two steps follow from Hopf’s lemma. However, we have to be
careful about the fact that the domain Σλ may have many connected compo-
nents (see Figure 4), so we have to exclude wλ ≡ 0 in each of them. Suppose
for contradiction that wλ ≡ 0 in a connected component Z of Σλ. By Step
3 we can suppose λ ≤ d. We observe that the boundary of each connected
component of Σλ contains a point of intersection between ∂G and Tλ. We
take a point y ∈ Z so close to such a point of intersection z ∈ Z, that y

belongs to the ball Bδ(z) defined in Step 4. Then, by Step 4, u decreases
strictly from yλ to y. Hence wλ(y) > 0, a contradiction. ✷

The next step is the most involved part of the proof of Theorem 4. We
shall avoid being too rigorous here, and try to concentrate on the main ideas.

Step 7 λ0 = λ⋆.

Proof. According to the defintion of λ0, we can find two sequences {λm}∞m=1,
{x(m)}∞m=1, such that

lim
m→∞

λm = λ0 , λ⋆ < λm < λ0 , x(m) ∈ Σλm
\ Tλm

,

and wλm
attains its negative minimum in the closure of Σλm

at x(m).
A number of different situations may arise. We obtain a contradiction in

each of them.

Case 1 There is a subsequence of {x(m)}, such that x(m) ∈ intΣλm
.
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We know that ∆wλm
(x(m)) ≥ 0 and ∇wλm

(x(m)) = 0. If lim
m→∞

|x(m)| = ∞
we obtain a contradiction as in Step 1. If a subsequence of {x(m)} converges
to a point x0 which belongs to Σλ0

or to the regular part of ∂Σλ0
, by passing

to the limit we obtain wλ0
(x0) ≤ 0 and ∇wλ0

(x0) = 0. This implies that
x0 belongs to ∂Σλ0

and wλ0
(x0) = 0, so Hopf’s lemma yields ∇u(x0) 6= 0,

a contradiction. If a subsequence of {x(m)} converges to a point x0 which
belongs to the singular part of ∂Σλ0

(which is nothing else but ∂G ∩ Tλ0
),

then, as in the proof of Steps 5-6, we get wλm
(x(m)) > 0 for large m, which

is a contradiction.

Case 2 There is a subsequence of {x(m)}, such that x(m) ∈ ∂Σλm
.

The following lemma plays a crucial role.

Lemma 4.1 Suppose λ ≥ λ⋆. Any z ∈ ∂Gλ ∩ Dλ has one of the following
properties

(I) If we move along direction −e1, from z to the left, we enter Σλ ;

(II) If we move along direction −e1, from z to the left, we enter Gλ and,
in addition, we meet ∂Gλ again before or on reaching Tλ ;

(III) If we move along direction −e1, from z to the left, we enter Gλ and,
in addition, we meet ∂G before or on reaching Tλ ;

(IV) λ = λ⋆ and z ∈ ∂Gλ ∩ ∂G (the symmetry case).

The four cases of Lemma 4.1 are shown on Fig. 5. In this way we obtain
four types of points on ∂Gλ ∩ Dλ.

Since λm > λ⋆ all points x(m) are of one of the first three types. To
simplify the notation we omit the index m. Suppose x is of type (I). Then,

by Step 6,
∂u

∂(−e1)
(x) is strictly positive. By the boundary conditions in (17)

and the fact that e1 is an outgoing direction with respect to ∂G at xλ, we

have
∂u

∂e1

(xλ) ≤ 0. This yields
∂wλ

∂(−e1)
(x) < 0, which contradicts the minimal

choice of x.
Suppose next that x is of type (II) or (III). Suppose for simplicity that,

when we move along -e1 to the left of x, the first point x ∈ ∂G ∪ ∂Gλ we
reach is to the right of Tλ0

. Then, by Step 6, u(x) > u(x). If x is of type (II)
we obtain

wλ(x) = a1 − u(x) < a1 − u(x) = wλ(x),

which contradicts the minimal choice of x. If x is of type (III) we obtain
a1 = u(x) > u(x). Hence wλ(x) = a1 − u(x) > 0, which is a contradiction
(recall that x was chosen so that wλ(x) < 0).
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Figure 5: Four types of points on ∂Gλ ∩ Dλ : the arcs (A,B], [H,I), (J,K) are
of type (I), the arcs (B,C], [E,F], [G,H) are of type (II), the arcs (C,D), (D,E),
(F,G) are of type (III), and the point D is of type (IV).

Step 8 wλ⋆
≡ 0 in at least one connected component of Σλ⋆

.

This is a consequence of Hopf’s lemma and Serrin’s lemma (see Sec-
tion 3.2).

Step 9 Let Z be a connected component of Σλ⋆
such that wλ⋆

≡ 0 in Z.
Then

∂Z \ Tλ⋆
⊂ ∂G.

Step 9 says all points on ∂Z \ Tλ⋆
are of the symmetry type (IV). The

other three types of points are excluded by an argument similar to the one
we used in the proof of Step 7.

Step 10 Conclusion.

Once we have proved Step 9, the conclusion is obtained via a (not quite
explicit) topological argument, due to Fraenkel.
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