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SYMMETRY FOR EXTERIOR ELLIPTIC
PROBLEMS AND TWO CONJECTURES IN
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Boyan SIRAKOV
Laboratoire d’analyse numérique
Université Paris 6
Tour 55-65, 5e étage
75252 Paris Cedex 05, FRANCE

Abstract. In this paper we extend a classical result of Serrin to a class
of elliptic problems Au 4+ f(u,|Vu|) = 0 in exterior domains RV \ G (or
Q\ G with Q and G bounded). In case (G is an union of a finite number
of disjoint C*-domains G; and v = a; > 0, % —w; <0on 0G;, u— 0 at
infinity, we show that if a non-negative solution of such a problem exists,
then (G has only one component and it is a ball. As a consequence we
establish two results in electrostatics and capillarity theory. We further
obtain symmetry results for quasilinear elliptic equations in the exterior
of a ball.

1 Introduction and Main Results

This paper is a contribution to the study of symmetry properties of non-
negative solutions of elliptic partial differential equations, which started with
the classical papers by Serrin and by Gidas, Ni and Nirenberg ([S] and [GNN];
see also [BN] for a more recent approach). We concentrate on exterior and
annuli-like domains, possibly multiply-connected, with different boundary
conditions on each connected component of the boundary.

Consider the model problem

Au+ flu) = 0 in RN\ G
u > 0 in RV\@ (1)
u — 0 as || — oo,

where f € C''([0,00)), with f/(0) < 0. We suppose that
¢=0a, (2)

where k € N and G; are bounded C?-domains such that G; N G_7 = () for



The boundary conditions that we impose on dG are the following

du .
u=ua; >0 and %:aig() on 0G;,1=1,... k, (3)
where a;,a;,1 = 1,..., k, are constants and n denotes the inward normal to

the boundary of 2\ G.
Our main result (Theorem 2 below), applied to problem (1), gives the
following statement.

Theorem 1 Suppose u € C*RY \ &) is a solution of (1), satisfying (3).
Then G has only one connected component (i.e. k=1). Moreover, G is a ball
and the solution u is radial with respect to the center of this ball.

Let us now describe the general setting that we consider. We study
boundary-value problems of the type

Qu+ f(u,|Vul)=0, v>0, weC? in Q\G (4)
Boundary Conditions (BC)

where @) is a (nonlinear) strongly elliptic operator, € C RY, N > 2, is a
C*-domain, (¢ is as in (2), G C Q and Q\ G is connected.
We distinguish two cases for (2.

Case A. () is bounded. Here the boundary conditions on 0f2 read

u=0 and g—Z:ﬁ on 0f), (5)

where 3 is a constant.

Case B. ) = R". Then we suppose that
Vu(z) =0 and u(z) -0 as |z| = oo. (6)

In the particular case when f does not depend on |Vul, instead of (6) we
only suppose that
u(z) -0 as |z| = oo. (7)

A positive solution satisfying (7) is often called a ground state.
We consider the following assumptions on the elliptic operator and the
function f.

(@) Qu = div(g(|Vul)Vu), where g € CX([0,00)), g(s) > 0 and (sg(s))' > 0
for all s > 0. In other words, we suppose that () is a regular strongly
elliptic operator.



(f)  f(u,p) is a locally Lipschitz continuous function in [0, 00)? and, in Case
B, is a non-increasing function of u for small positive values of u and p.

These assumptions are satisfied in the applications we present below.
Our results remain true for any generalisation of (q) and (f) which leads to a
“good” equation for the comparison function in the “moving planes” method
(see Step 1 in Section 2.2). In particular, a natural question is whether we
can consider nonlinearities which are not Lipschitz continuous in u at the
origin. See Remark 2 at the end of this section.

In the sequel we denote by (BC) either (3) and (5), or (3) and (6), or (3)
and (7), depending on the case we consider. The following theorem contains
our main result.

Theorem 2 Suppose (q) and (f) hold. If w is a solution of (4) satisfying
(BC), then k = 1, Q and G are concentric balls centered at some point

2 € RY, u is radial, that is u = u(|z — 2°|), and

%<0 fO?“ T:|$—$O|E(p1,p2)7

where p; and py denote the radii of G and ) respectively (0 < p; < pa < 00).

The presence of assumptions on both the solution and its normal deriva-
tive on the boundary makes problem (4) overdetermined. It can be viewed
as a free boundary type problem. This kind of problem was introduced in
Serrin’s classical paper [S], where he considered the case u > 0,G = (), Q
bounded.

In recent years there have been some partial results for non-empty G
and unbounded ). In particular, when € is bounded, Alessandrini ([A])
obtained Theorem 2 when f = 0. In the same case (2 bounded), Willms,
Gladwell and Siegel ([WGS]) obtained the result for f = 1 and @ = A,
provided N = 2,  and (; are convex and satisfy some additional curvature
conditions. The most general previous results were derived by Reichel ([R1],
[R2], [R3]). He proved Theorem 2 under the additional hypotheses

(r) ag=...=ar=a¢ and O<u<a in Q\G.

Notice that in our result (r) is not assumed a priori, but is rather derived as
a consequence of Theorem 2.

The statement of Theorem 2 thus unifies and extends all the above results
for problem (4).

Another related result was derived by Aftalion and Busca ([AB]). Using
a method based on the Kelvin transform in exterior domains, they obtained



Theorem 1 (2 = RY,Q = A) for a different class of functions f, including
power nonlinearities like u?, for % <p< % Aftalion and Busca suppose
k=1and 0 < u < a. One can see, using their method together with
our approach here, that their result holds if in their work the latter two
hypotheses are replaced by (2) and (3).

As a consequence of Theorem 2, we obtain two results in electrostatics

and capillarity theory. These problems have been open for some time.

Theorem 3 Two or more C**— regular conducting bodies in RY do not
admit constant equilibrium charge distributions on their boundaries.

Theorem 4 Two or more C*— regqular solid cylinders, dipped into an infi-
nite plain liquid reservoir, cannot raise a capillary surface to constant heights
on their walls.

As far as Theorem 3 is concerned, we recall that if  is a domain in RV,
a charge distribution p € C'(99) is said to be in equilibrium if the induced
single-layer potential

b(x) = / pwlle = o) do,

is constant in Q; here y(t) = —s-logt if N = 2 and v(t) = —= if N = 3.
Then the function ¢ satisfies an equation of type (4) with ¢ = A and f = 0.
Note that when N = 2 we have ¢y — —oo as |z| — oo, but this creates no
problems when we apply Theorem 2 (see a remark by Reichel in [R2]).

The physical setting described in Theorem 4 leads to an equation of type
(4), with

g(s) = \/% and  f(u) = —ku, Kk >0

(the original discussion on this problem can be found in [S]; see also [R2] and
[R3], where the cases of one conducting body or one cylinder were studied).

Our next result concerns the case when € or G (or both) is a priori
supposed to be a ball. In this situation, to obtain a symmetry result on the
solution, we do not need to assume that its normal derivative is constant on
the corresponding boundary. A previous result in this sense was obtained by
Reichel, who considered the case when € is bounded, and assumed condition

(r) (with weak instead of strict inequalities, see [R1]).

Theorem 5 Suppose G is a ball. Then the conclusion of Theorem 2 holds
true if (3) is replaced by

u=a>0 and — <0 on O0G. (8)



Analogously, if Q is a ball, the same conclusion holds if (5) is replaced by

u=0 on 0Q.

There is no difficulty in extending Theorem 5 (with the same proof) to
the limiting case G = {x¢} (i.e. p1 = 0), where z° € R" is such that
u(2?) = maxzequ(z) > 0. This actually means that, when € is a ball and
G = {ao}, Theorem 5 reduces to the classical symmetry result of Gidas, Ni
and Nirenberg ([GNN], see also [CS]). Furthermore, in the same situation
(G = {xo}), when Q is arbitrary, we obtain an extension of Serrin’s result to
non-negative solutions.

Theorem 6 Suppose (q) and (f) hold and let u € C*(Q) be a solution of the

following problem

Qu+ f(u,|Vul)=0 in Q

u=20, T const on 99,
an

Then Q is a ball with radius py, centered at z°, u is radial, and
— <0 for r=lz—2° €(0,p2).

The result which we get by putting Q@ = RY and ¢ = {2°} in Theorem 5
was recently obtained independently by Serrin and Zou in [SZ] (see also [L]).
In this paper they study the symmetry properties of a larger class of elliptic
equations on RY, which includes singular operators like the p-Laplacian.

Our theorems rely on the widely used method of “moving planes”, intro-
duced by Alexandrov and developed in this setting by Serrin.

Finally, we describe several possible extensions of our theorems.

Remark 1. We can weaken the hypothesis on the regularity of the solution
by adding an extra assumption on the shape of the domain Q \ G. All our
theorems remain true for weak solutions in C*(Q \ &) (as in [SZ]), provided
Q and (' are such that the critical positions A, and Aq in the moving planes
method are always attained when internal tangency occurs (see Section 2 for
definitions of these). In particular, this assumption is satisfied for symmetric
domains.

If we want to consider C'l-weak solutions, we need also to suppose that
the function f vanishes at u = 0. Note that this hypothesis is a consequence
of the existence of a C*-solution.



Remark 2. After this work was completed the author learned of a recent
paper on the strong maximum principle by Pucci, Serrin and Zou ([PSZ]),
where, extending earlier results by Vasquez ([V]), they establish essentially
optimal conditions on the function f under which a non-negative solution of
Qu+ f(u, |Vu|) = 0 is strictly positive everywhere. They consider differential
inequalities and singular elliptic operators.

For instance, when f is independent of |Vu/|, one of their results says the
strong maximum principle holds provided

% o (1)

where F'(u) = / f(s)ds. It is elementary to check that (10) is satisfied if

0
f is Lipschitz continuous at u = 0.

It is not difficult to see that condition (f) can be replaced by the hypothe-
ses in [PSZ] which ensure the validity of the strong maximum principle.

Acknowledgement. The author is very grateful to Prof. J. Serrin for
many valuable comments on this paper and for bringing to his attention the

two references [PSZ] and [SZ].

2  Proofs

We apply the method of “moving planes”, in order to show that for any
direction v € R\ {0} there exists A = A(y) € R, such that the domain and
the solution are symmetric with respect to the hyperplane

Ty={z e RY| <z,y>=2A};

here <-,-> denotes the scalar product in RY.

We fix v, say v = e; = (1,0,...,0). Forany z = (21,...,2x) € RY we
put = (21,2') € R x RV~ and denote by Bs(z) the open ball with radius
§ centered at z. For every A C RN and )\, € R we set

Dy = {zeRY | 2z, >)\};
A" = the reflection of A with respect to T} ;
I[(A) = A—tey={z cRY | (z1+t,2') € A}, T(A) = U I'(A).

For ¢ =1,...,k, we define the quantities

di = inf{AeR | T,NG; =0 forall up>A};
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N o= inf{A<d; | (GinD,)" CG;i and <n(2),e,> >0
forall g > A and all z € T, NG} ;
d = maxd;, A,= maxA\,.
1<i<k 1<i<k
In other words, d; is the z;-coordinate of the right-hand cap of G;. Note that
Ty, is tangent to G, and that A\; < d; (this is well-known, see [AF]). For a
bounded domain €2 we denote by dg and Aq the corresponding values for 2.
We call A; (resp. A,) the critical position for G; (resp. ). We say that
); is attained at a position of internal tangency if (G; N DM)M ¢ G (see
Fig. 1). When J; is not attained at a position of internal tangency, we say it
is attained at a position of orthogonality.

Figure 1: Two types of domains G; : the critical position X; is attained at a point
of orthogonality (a), or at a point of tangency (b). For all u > X; the part of G; to
the right of T,, has its reflection inside G; and the outward normal to 0G; at each
point of the boundary of this part makes an acute angle with the direction e;.

We set ¥y = (Dy N Q) \ (G* U G) and consider the function
wy(z) = u(z) — u(z).

This function is well defined in ¥5. Our goal is to show that wy = 0 in X\
for some A € R such that T is a hyperplane of symmetry for Q and G.

In the next section we establish some properties of the reflected set G*,
which we use in Sections 2.2 and 2.3 to prove our theorems.



2.1 Some Reflection Properties of the Set G

The following easy property of GG will permit us to treat this set in most cases
like consisting of only one domain.

Lemma 2.1 Let A > \,. For anyt € {1,...,k}, we have
an (g.(G_?U@O N Dy =0.
j#1

Hence any point on OGN Dy has a neighbourhood which does not intersect
— =

Proof. It is obvious that G; N G; = @ implies G_ZA N G_? = (). Tt is also clear

that A > A, implies, by the definition of A,

G;N Dy CGYN Dy,

for all « € {1,...,k}. Hence, for any 1 # j,

GIN(GUGHNDC(GNG)NDy=0. O

We use Lemma 2.1 to obtain a characterisation of the boundary points
of the reflected regions G2. It will be crucial in the subsequent discussion.

Let z € OG> N Dy be such that I';(2) belongs to G2 for small positive
values of t. We define the quantities

t=12) := min{t > 0| I\(2) € 9G}};
t=1(z) = min{t > 0| T,(2) € G} U IG;}; (11)
p=plz) = dist(z,T) > 0.

It is clear that 0 < ¢ <t < oo, since (&; is smooth and bounded.

Lemma 2.2 If A > )., then any 2z € G2 N Dy, 1 =1,...,k, has one of the
following properties (exclusively)

(I) Tu(z) € X\ for small positive values of t or there exists a sequence

tm \( 0 such that Ty, (2) € G N Dy, ;

(II) 0 < t(z) < pz), the open segment (I'y(z),z) belongs to G, and



(III) 0 < i(z) < p(z), the open segment (T'y(z),z) belongs to G?, and
FE(Z) € an 5y

(IV) A=) and z € G2 N IG; (the symmelry case).

The four cases of Lemma 2.2 are shown on Fig. 2. In this way we obtain
four types of points on 9G? N Dy,

Figure 2: Four types of points on 0G2 N D), : the arcs (A,B], [H,I), (J,K) are
of type (1), the arcs (B,C], [E,F], [G,H) are of type (II), the arcs (C,D), (D,E),
(F,G) are of type (II1), and the point D is of type (IV).

Proof of Lemma 2.2. Fix a point z € 9G? N D, and suppose (I) does
not hold for z. We are going to show that z satisfies one of the other three
alternatives.

Since (I) is false for z, Lemma 2.1 implies that I';(z) € G2 for small
positive values of ¢, so that #(2) and #(z) are well-defined. First we observe
that

1(z) < 2p(z2).



Indeed, if this is not true, we obtain a contradiction with the fact that A > A,.
In order to write this rigorously we note that

AL (t-2p)
{F;(Z)/\} e

Since z* and F;(z)A are two points on dG;, this implies that we have internal
tangency for (¢; to the right of or at position A + %(f— 2p). Consequently, in
case 1 > 2p,

1
Aoz Nz A5 (T-20) > ),

which is a contradiction.

If #(z) = 2p(z), then it is obvious that z* = ['/(z) € 0G?, so

Since in this situation we have tangency to the right of or at position A, we
deduce A = A, that is, we are in case (IV).

The last case to consider is {(z) < 2p(z). We claim that in this case
t(2) < p(2), that is, I'y(2) € Dy. If #(z) < p(2), this is obvious. If

plz) < t(z) < 2p(2),

then the point F;(Z)A € 00 is to the left of z and to the right of T)\; we infer

t(z) < dist <Z, F;(Z)/\> < p(z).

It follows from Lemma 2.1 that if ¢{(z) < p(z), then ¢(z) does not change
in case we replace G; by G in (11). We infer from this fact that the open
segment (I';(z), 2) belongs to G?.

Finally, it is clear that we have either case (II) or case (III), depending
on whether the point at which we reach ¢(z) is on dG2 or on JG;.

2.2 The Case Q = RN,

We first give the general plan of the proof of Theorem 2. We use a hyperplane
perpendicular to e; and say it has reached a position A provided w, > 0 in
Y, for all g > A. The hyperplane “starts” at A = 400 and “moves” as A
decreases. In the initializing step of our proof we show that this process can
begin, that is, wy > 0 in X, for sufficiently large A. Next we observe that
if the moving plane has reached a position A, then the solution u is strictly
decreasing — in the x;-direction — in the region to the right of the plane
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T. By using this fact we show that the moving plane reaches position d,
which permits us to prove that, in a neighbourhood of dG, the solution u
is strictly decreasing in the direction of the outward normal to dG. Then,
having already all the necessary information on the solution, we can show
that the moving plane reaches the critical position .. A device due to Serrin
permits us to prove that w,, = 0 in a connected component Z of >,,. We
conclude by showing that all points on 97 \ T\, are of the symmetry type
(IV) (see Lemma 2.2), and by using a topological argument due to Fraenkel.

We divide the proof of Theorem 2 into ten steps.
Step 1 There exists A € R such that wy > 0 in Xy, for all X > X.

Proof. In order to simplify the presentation, we first suppose that we are in
the situation of Theorem 1, that is, hypotheses (q) and (f) are replaced by

(@) Q=4;
(fi)  f(u,p) does not depend on p, f € C'([0,00)) and f'(0) < 0.

Since u tends to zero at infinity we can take ) € R such that A > d and
1

u(z) < 5 1000 @ for x| > A,

so that wy > % > 0 on G, for all ¢ and all X > .

Now we can proceed in a standard way. Suppose the claim in Step 1 is
false, that is, there exists a sequence {A,, }2°_, such that

lim A, = 00, A, > A,

m—r00

and w,,, takes negative values in X, . Since w) is zero on Ty and tends to
zero at infinity for a fixed A, we see that w,, attains its negative minimum
inside ¥y . say at a point (™). Then

Vwy, (2" =0 and Awy, (™) > 0.

On the other hand, it is clear that the function vy(z) = u(z") satisfies in ¥,
the same equation as u. By substracting the two equations we see that w,
satisfies a linear equation of the type

Aw/\ + b/\(l')w/\ =0 in E/\ (12)
for all A € R, where by(z) = f'(c¢(A, x)), with
(M) e [min{u(mA),u(m)},max{u(mA),u(:U)}].

11



Since wy,, (™) < 0, we see that 0 < ¢(\,,, (™) < u(2{™) and therefore
lim ¢(Ap, 2(™) = 0. It follows that by, (2(™) is strictly negative for large

™m—00
m. Hence

0 < Awy,, («) = =by,, (2w, (™)) <0,

which is a contradiction.

The way to extend this argument to the general case is well-known. We
sketch it here, for the sake of completeness. After substracting the two
equations for u, and vy and doing some standard computations, we obtain a
linear strictly elliptic equation with bounded coefficients, in the form

—&»(aij(:n)aij) —|— bz(it)azw/\ —|— C(:E)w/\ = 0, (13)

where ¢(x) <0, provided the functions u(z) and vy (x) are sufficiently small.
Then we can use the weak maximum principle, as in [GT], to conclude that
wy > 0 in Xy, for A sufficiently large. 1

Step 1 shows that the number
Ao =inf{AeR | w, >0 in ¥, forall g > A}

is well defined. It is obvious that Ag is finite. Notice that, by continuity,
Wi, Z 0 in E/\O.

Step 2 We have
Ju

B
in the set {z € RN | 2y > max{Xo, d}}.

<0

Proof. Fix ;1 > max{Ag, d}. Notice that for all A > d the set ¥, is connected
and regular. It follows from the strong maximum principle and Hopf’s lemma,
applied to (13), that for any A € [Ag,00) N (d, 00), either wy = 0 in X, or
wy > 01n Xy, with % < 0 on points of d¥, at which w, takes value zero

v
(here and in the sequel v denotes the outward normal to 9%,).
If w, >0 in ¥, we obtain, using the fact that w, =0 on T},

ow,

v

ow,

:_al’l

_28u

T, al’l

0> (14)

T, T,

Supose for contradiction that w, = 0in X,. We distinguish two cases. First,
if wy > 0in X, for all A > x then, using (14) with u replaced by A, we see

12



Figure 3: The contradictions in Steps 2 and 3.

0 —
that a_u < 0in D,. Then we fix a point T € ¥, such that I'(z) N G = 0,
X1

and obtain the contradiction
u(z) < u(@*) = u (T°)) = u(@1 + 201 - ),7) < u()

(see Fig. 3).

Second, if wy = 0 in X5 for some g > p, we take a point § € 9G such
that T'(y) N G = 0 and, by using consecutive reflexions with respect to T,
and T%, obtain an unbounded sequence of points at which u takes a fixed
positive value — contradiction with (BC). O

Step 3 Ay < d.

Proof. Suppose for contradiction that Ay > d. As explained above, either
wy, = 0 in Xy, or wy, > 0 1in X,,. First assume w,, = 0 in X,,. We can
always take two points y, z € 9G}° such that y; < z; and v = 2. Then, by
Step 2, u(y) > u(z). However, we get

u(y) = u(y™) = a; = u(2™) = u(z),

because w,, = 0.
aw/\o

Next, suppose wy, > 0 in X, , with < 0 on points of 9%, where

wy, = 0. By using the minimal choice of Ay we can find a sequence {A,, }2°_,

such that lim A, = Ag, Ay < Ao, and w),, takes negative values in X, .
m—r00

Let (™ € 3, be such that

wy,, (™) = min_wy,, (z) < 0.
I‘Ezkm’

13



Using the assumption A\g > d, we fix mg such that
S 1 .
dist (ka, TM) > Sdist <GA0, TM) >0, (15)

for m > mo.
We distinguish two cases.

Case 1 (™ € intX, , for all m > my.

In this case a contradiction is obtained in a standard way. As in Step 1
we see that Awy, (z(™) > 0 and Vw,, (™) = 0. If {™} tends to in-
finity we obtain a contradiction exactly as in Step 1. If a subsequence
of {z™} converges to a point z°, then by passing to the limit we obtain
2% € Xy, wy,(2°) < 0 and Vw,,(z°) = 0. This means that 2° € 9%,, and
wy,(2%) = 0, so Hopf’s lemma implies Vu(2°) # 0, a contradiction.

(m

Case 2 (™ € 9%, , for some m > my.

We drop the super(sub-)script m, for simplicity. Since wy = 0 on T), we
see that x € G2, for some 7 € {1,...,k}. We infer from (15) that T';(z)
belongs to D,,, for small ¢t > 0.

We apply Lemma 2.2, which says x has one of the four properties de-
scribed in the statement of this lemma. Here A > d > A,, hence = cannot be
of type (IV). It cannot be of type (III) either, since G C RN\ D,. We are
going to obtain a contradiction in the remaining two cases.

First, suppose z is of type (I). If [';(z) belongs to ¥ for small ¢ > 0 we

consider the directional derivative (z). By the minimal choice of «

W
a(—el)
this derivative has to be non-negative. On the other hand, it is easy to see
that

Ow, _ Ou ou . ou .
a(_el)(x) - axl (:E) —I_ axl(x ) < axl (:E )7
by Step 2.
We are going to show that a—u(:ﬂ) is non-positive. The fact that I';(z) €

X1
¥y for small ¢ > 0 implies <n(z"),e; >> 0 (it is a standard fact that a

direction which makes an acute angle with the inward normal to the boundary
of a smooth domain enters the domain). It is clear that v = const on 9G;
implies

du
— =0, y=1,....N—1,
af] G,
for any orthonormal basis &;,...,&nv_1 in the tangent plane to dG;. Hence,
by (BC),
Ju Ju
a—%(fﬂ) =<n(z?), e1> a—n(fﬂA) <0,

14



which leads to a contradiction.
Next, still in case (I), suppose that there exists a sequence of positive
numbers t,, — 0, such that 2™ := T, (z) € dG?. We have

wx(z™) > wy(z),

by the minimal choice of z. On the other hand, Step 2 together with ¢,, > 0
implies u(z(™) > u(z). Hence

wy (™) = a; — u(z'™) < a; — u(x) = wy(z),

a contradiction. o
Finally, if z is of type (I1), we see that [;(z) € G*ND,, (since G* C D,,),
where ¢ = {(z) is the number defined in Section 2.1. Hence, by Step 2,

wy (Ty(2)) = a; — u(Ty(2)) < a; — uz) = wi(z),

which contradicts the minimal choice of z. ]

Remark 3. We can now prove Theorem 5 for GG = {2°}, where 2° ¢ RV
is such that u(z") = max,cpnvu(z) > 0. By Step 3, A\ < 29 and wy, > 0 in
Y- By taking a moving plane coming from the left we get w0 =0 in X 0.
To be more precise, by “a plane coming from the left” we mean the same

process of moving a hyperplane T which starts at A = —oo and moves as A
increases. The region ¥\ would then be defined to the left of T.

Step 4 For any z € G and any unit vector n, for which <n,n(z)> >0, we
can find a sufficiently small ball Bs(z) such that

g—z(g) <0 forall (€ Bs(2)\G.
This statement was already used by Reichel, who established it under the
condition (r). Since we do not assume this stronger condition, we have to
provide a different proof.
The proof of Step 4 is the only place in Section 2.2 where we have to be
careful about the fact that there might be more than one domain G;. We
postpone this proof for the time being.

Step 5 wy > 0 in Xy, for any A € [Ag,00) N (A4, 00).

Proof. In view of steps 2 and 3 we can restrict ourselves to the case A < d.
By the strong maximum principle, all we have to exclude is wy = 0 in a
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connected component Z of ¥,. Suppose for contradiction we are in this
situation.
First we observe that any connected component Y of ¥, satisfies

dist (Y N Dy, Ty) = 0 (16)

(see Fig. 4). Indeed, Y is connected, so_YA is also connected and hence YA
is a connected component of (RY\ G)\ D,. Since R\ G is itself connected,
we see that either Y contains a left neighbourhood of T or

dist(9Y*\ Dy, Ty) = 0. (17)

The first alternative is impossible because of the fact that 7' touches at least
one of the domains G; (recall that A < d). By reflection (17) implies (16).

Figure 4: The shaded regions are the connected components of Xy.

Now (16) permits us to take a sequence {z(™}>_ C 92N D,, which con-
verges to a point z° € T\NIZNAG. Since A > A, we have <n(2(m)A), er> >0

for sufficiently large m, and the open segment between 2™ and 2(m) belongs
to Bs(z°) \ G, where ¢ is chosen as in Step 4. Then, by Step 4, u decreases

strictly from 2 to 2™ which yields wy(2(™) > 0, a contradiction with
the fact that wy = 0 in Z. This last argument was used by Reichel in [R1].
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Step 6 We have
— <0 in Dy \G,

where A* = maxq{ Ao, Ac}.

Proof. By proceeding as in Step 2, we see that this is a direct consequence
of Step 5 and Hopf’s lemma. ]

Step 7 Ao < A,

Proof. Suppose Ao > A,. By Step 5 we know that wy, > 0 in ¥,,. Proceed-
ing as in Step 3, we find two sequences {\,, }2°_,, {2{™}>_,  such that

lim Apm = Xy A < Ap < Xo, 2™ €3, \ T,
m—r00
and w,, attains its negative minimum in ¥, at (™).
A number of different situations may arise. We are going to obtain a
contradiction in each of them.

Case 1 There is a subsequence of {z("™}, such that (™ € int¥,, .

If lim |2 = co we obtain a contradiction as in Step 1. If a subsequence
m—r00

of {z(™} converges to a point z° which belongs to the regular part of 9%y,
we obtain a contradiction as in Case 1 of Step 3. If 2° belongs to the singular
part of 9¥,,, we have z° € T\, N G, so that the argument we used at the
end of the proof of Step 5 implies wy,, (™) > 0, for m su‘fﬁciently large.

Case 2 There is a subsequence of {z("™}, such that z(™ € 9%, .

Notice that in this case {z(™} is bounded, since 9%, \ T,, is a bounded
set. Fix 7 such that (along a subsequence) (™) € 9G?™. We shall apply
Lemma 2.2 to (™) and reach a contradiction in all its four cases, with the
help of Step 6. However, Step 6 gives information on the behaviour of the
solution only to the right of T),, so we have first to exclude the case when
{z(mY C 9%, \ Dy, (see Fig. 5). If such a subsequence exists, then A,, — Ao
implies (along a subsequence) z(™ — 2z° € T\, N dG;. Then the argument
we used at the end of the proof of Step 5 leads to a contradiction.

Therefore we can assume that 2™ € G2 N D,,. We apply Lemma 2.2
to 2™, If, for some m, the point 2™ is of type (I) we obtain a contradiction
exactly as in Step 3. Points of type (IV) are also excluded, since A,, > A,.

It remains to reach a contradiction in case (™) is of type (II) or (III)
for all m. Let t = t(m) be the quantity defined in Section 2.1 and let

(™) .= T,(2™). We treat separately the cases when z(™) ") belongs or not to
DAO (note that by Lemma 2.2 we only know that 2™ € D, see Fig. 5).
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Figure 5: The different situations in Case 2. For instance, the points on the arcs

[A,B] and [C,D] give rise to Case 2.2.

Case 2.1 2™ € D,, for some m € N.

First suppose (™ is of type (II), that is, 2™ € G} N Dy,. Then we
obtain a contradiction with the minimal ch01ce of :E(m), exactly as in Step 3.

Second suppose (™ is of type (III), that is, (™ € 9G; N D,,. Then
<n(z(™), e;>> 0 (since A\g > A,). Therefore u decreases strictly from z(™)
to (™ (indeed, by Step 4 it starts from z(™) by decreasing and continues
decreasing, by Step 6). Hence u(z!™) < u(z™) = a;, and

wAm(x(m)) =aq; — u(:n(m)) > 0,

a contradiction (recall that wy,, is negative at (™).

Case 2.2 ZE(m) € D, \ Dy, for all m € N.

Since (™ € AG; U 0G2™, we see that {z(™} is bounded. So we can
extract a subsequence 2" 5 2% € 96N Ty, = G N'T,. Then for m
sufficiently large the segment between 2™ and its orthogonal projection on
T,, belongs to Bs(z"). Step 4 implies that u decreases on that segment. By
using Step 6 to the right of T, we see that u decreases on the whole segment
(™), (™). Then we obtain a contradiction exactly as in Case 2.1, for both
types of points. ]

Step 8 w), =0 in at least one connected component of 3 .

Proof. By Step 7, wy, > 0in X, . The following argument was carried out
in [R2]. We outline the proof for completeness.
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If there exists 2° € dG' N T), such that <n(z°),e;> = 0, one can show
that all first and second order derivatives of w,, vanish at 2% (see [R2], pp.
389-391 for detailed computations). Then Serrin’s corner lemma (see [S])
immediately implies that w,, = 0 in the connected component of ¥, whose
boundary contains z°.

If no such z° exists, by the definition of A, we can find 2z, € dG N Dy,

such that z)* € 8G and (8(G'N Dy,))™ is internally tangent to dG at z;*.

By (BC), wy,(z1) = 0 and a;)UA* (z1) = 0, so the claim of Step 8 follows from
v
Hopf’s lemma. O

Step 9 Let Z be a connected component of ¥, such that wy, = 0 in Z.
Then
aZ\T,, C 0G.

Proof. We shall once more make use of Lemma 2.2. Another way of stat-
ing Step 9 is to say that all points on 97 \ T\, are of the symmetry type
(IV). Suppose for contradiction that there exists a point z € 9Z \ T, (say
z € 9G*), which is not of type (IV). We are going to obtain a contradiction
in all of the remaining three cases.

The point z is not of type (I), since if it were, w,, = 0 in Z would lead
to a contradiction, exactly as in Step 3. If z is of type (II) or (III), we set,
as before, z = I';,y(2) € D,,. Then Step 6 implies that u decreases strictly
on the segment (z, z). In case (II) we get

a; = u(2™) > u(z) > u(z) = u(z™) = a;,
since wy, > 0 in X, and wy,(z) = 0. Analogously, in case (III) we have
/\*)

a; = u(z) > u(z) = u(z™) = a,.

Step 9 follows.
Step 10 Conclusion.

Proof. Once we have proved Step 9, the conclusion is obtained via a topo-
logical argument, due to Fraenkel and used in this setting by Reichel. Note
that under condition (r) the previous Step 9 is obvious and is independent
of all other steps.

We sketch the argument for completeness. Set G¢ = R \ ¢ and

X=ZUZ"U(0ZNG)U (02> N G).
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The set X is symmetric with respect to T), since Step 9 implies
ozZNGeCcThndaGe.

One may check that X is open in G and hence dX C 9G. Then
G\ X = G°\ X, which implies that X = G°, since G° is connected. O

Finally we go back to Step 4.

Proof of Step 4. We use induction with respect to k. First assume & = 1.
If oy < 0, Step 4 is obvious, by continuity. Hence we can assume «; = 0, or

0%

equivalently Vu = 0 on dG. Notice that this implies |D*u| = 2| 0 JdG.
n
Fix a point z° € T; N JG, so that
ou , o Ou, 4
— = — =0.
92, ) =g, (#)
Steps 2 and 3, together with the assumption Ag < d, imply
du
— (Ty(2° 0
a$1 < t(Z )> < ’
for negative t. We conclude that
Pu, o u,
— = — <0. 18
S () = 5 < (18)

On the other hand, it is easy to compute that v = const and Vu = 0 on G
imply

div (Q(IVu)Vu)l,e = QUVul)Aulyq + <VIQ(Vu])], Vux|,g,

= Q(O)Au|ac
and e
U
Auly = —| -
G ang o
Hence
aZU f(ah 0)

= — =const on OG.

In? Q(0)
By (18), f(a1,0) > 0. If f(ay,0) > 0, Step 4 follows easily, since

0%u , 0*u
8—772—<77,n> a2 " ad.
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If f(a1,0) = 0, we see that all first and second order derivatives of u vanish
on JG. This implies that the function

_fu(z) for zeRN\G
(z) = ay for z€d@

belongs to C?(RY) and solves the equation

Qu+ f(w,|Vu)) =0 in RY
u>0, u#0 in RY (19)
u(xz) =0 as  x — 0o.

However, the shape of @ contradicts the result for equations on RY that we
have already proved (see Remark 3), which says a solution of (19) has a
non-zero gradient everywhere, except at one point.

Suppose next that Step 4 is proved for kK — 1 domains (;, and consider a
problem with & domains. By Steps 5-10, Theorem 2 holds for problems with
k — 1 domains ;. Set

0%

on?
and J = {1,...,k}\ I. Note that the statement of Step 4 is true for G; with
rel.

We claim that J is empty. Suppose this is not the case, and set

I={i]|a;<0 or <0 on 0G;}

d = maxd;.
JjeJ
It is clear that Step 5 can be proved for values of A such that A > Xy and
A > max{A,,d}. Hence, as in Step 6,

ou _
— <0 m Dpax G
Oz < m {2 d} \

It follows that, if A, > d, Steps 7-10 hold with the same proofs, yielding a
contradiction. If A, < d the moving plane reaches at least one domain G,
with jo € J. Asin the case k = 1, this implies f(a;,,0) > 0 and f(«;,,0) = 0,
by the definition of J. Then, defining the function @ with ay replaced by «;,

and G replaced by G

Jos
case when there are £k — 1 domains.

This concludes the proof of Theorem 2 for Q = RV,

Proof of Theorem 5. We now suppose that G is a ball and (8) holds.
Observe that the hypotheses of Theorem 5 are sufficient to carry out the

we obtain a contradiction with Theorem 2, in the
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first three steps in the above proof. It is easy to see that Step 3 implies
u < a in RV \ G. Indeed, if there exists x € RY \ G such that u(z) > a, we
take moving planes T'(,), for v = z, and see that u has to increase strictly
on the ray from z to the boundary dG, which is a contradiction, since u = a
on 0.

The rest of the proof is elementary. We know that wy, > 0 in ¥, for
A > max{Ag, A }. To prove \g < A,, we have only to consider Case 1 in
Step 7. It remains the same, since u < a in R\ ¢ implies Step 4 (see for
example [R2]). Finally, wy, = 0 is obtained with the help of a moving plane
coming from the left.

2.3 Bounded Domains

We begin with a simple but basic observation, which permits us to treat this
case in essentially the same way as the case Q = RV,

Lemma 2.3 [f wy =0 in a connected component 7 of ¥ then
ZNnoanaGc’ = 0.

Proof. At any point z € 9Q N G we have
wy(z) =a; — 0> 0.

Corollary 2.1 If wy = 0 in a connected component Z of Xy, then either
dist(Z , 0Q) > 0 or Z contains a neighbourhood of 00 N OA(Z) in Q, where
A(Z) denotes the connected component of QN Dy containing Z.

The next three lemmas ensure the symmetry of 2, provided the moving
plane reaches the critical position Aq.

2
Lemma 2.4 FEither >0 or 3 =0 and (,)—1; > 0 on 2. Hence the state-
n

ment of Step 4 in Section 2.2 is true for  and we can find eg > 0 such that
u>0in{z e Q| dist(x,00) < 2e}.

Proof. Since u > 0 in Q, we immediately see that either 3 > 0, or 3 =0
0*u

and Fwe) > 0 on 0. If Lemma 2.4 were false, following the proof of Step 4
n
92
of Section 2.2 we obtain |Vu| = = 0 and |D?*u| = (,)—1; = 0 on 9Q. This
n

implies that the function

| ou(z) for zeQ\G
(2) { 0 for zcRM\Q.
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belongs to C*(RY \ ) and solves (4) in RY \ G. On the other hand, the

result we already proved in Section 2.2 says u has to be strictly positive.

Lemma 2.5 [f A € [Aq, dg) and wy = 0 in a connected component Z of ¥
which contains a neighbourhood of QN AA(Z) in Q, then A = Aq and Q is

symmetric with respect to T).

Proof. Note that for A € [Aq, da) the set S := 92 N JA(Z) is connected
and its reflexion with respect to T is contained in ). We shall prove that
S* C 99, which is the desired symmetry property. Set

H={z¢€5]|zeon.

We are going to show that H = 5. First, H is clearly not empty, since it
contains the set T\ N S. Second, the set H is open in S. To prove this, fix
2% € H and ¢ € (0,¢0), such that B.(2°) N A(Z) C Z; here ¢ is the number
from the previous lemma. By Lemma 2.4, if z € (B.(z°) N S)\ H, then
wy(z) > 0, which implies z € Z — a contradiction (see Fig 6). We infer that
B.(z)N S C H, that is, H is open. Finally, it is clear that S\ H is open in
S, and we conclude that H = 9.

Figure 6: The contradiction in Lemma 2.5.

Lemma 2.6 If Ay < A, then wy, = 0 in some connected component 7Z of
Yg, which contains a neighbourhood of 0Q N IA(Z) in Q.
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Proof. To construct Z such that w,, = 0in Z we repeat the proof of Step 8,
Section 2.2. Then it is obvious from the construction that 92N 9Q # @, and
Corollary 2.1 yields Lemma 2.6.

Proof of Theorem 2 (bounded domains). We shall only sketch this
proof, as all its ingredients have already appeared above. We adapt the
proof in Section 2.2 to the case of a bounded domain €. Step 1 is again the
initialising step, in which we now prove that wy, > 0 in X, for A smaller,
but sufficiently close to dg (this is easy, by using the fact that the maxi-
mum principle holds for any linear strictly elliptic operator with bounded
coefficients, provided the measure of the domain is sufficiently small). Step
2 is the same, since Corollary 2.1 and Lemma 2.5 prevent wy = 0 in a con-
nected component of ¥, and, in particular, in a right neighbourhood of T},
for A > max{d, Aq, A, }. By using this fact, we can prove (as in Step 3) that
Ao < max{d, Aq}, replacing the convergence to infinity of {z(™} by conver-
gence to 9. It is important to note that the points 2™ can neither lie on
08 (since wy > 0 there), nor tend to a point on IQNIG; (since wy = a; > 0
at such points). The only difference with Step 3 is that here {z{™} may
tend to a point on dQ N T. In this case we obtain a contradiction by using
Lemma 2.4 and the argument at the end of Step 5.

Theorem 6 is already proved, since we can always suppose that we have
Ao > 20 = d (if necessary, take a moving plane coming from the left). This
means that the moving plane reaches the critical position Ag, so Lemmas 2.5
and 2.6 permit us to obtain Theorem 6.

There are no other modifications in Steps 4-7, from which we infer that
Ao < max{Aq, A}, If Ag > A, then it follows from Lemmas 2.5 and 2.6 that
0 is symmetric with respect to T),. By applying the argument in Steps 9-10
to the set Z given by Lemma 2.6, we see that G is also symmetric (note that
the symmetry of Q implies G* C Q). If A\, > Aq, as in Steps 8-9 we obtain
wy, = 0 in a connected component Z of X, such that 92\ T\, C dG. Since
2\ G is connected, we can repeat the topological argument in Step 10 to
conclude that Q \ G is symmetric.

Proof of Theorem 5. If (G is a ball, as in Section 2.2 we obtain u < « in
Q\ G If Qis a ball and A\, > Aqg, we obtain a contradiction as in the last
proof. If A, < Ag, we consider a moving plane coming from the left.
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