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1 Introduction and Main Results

In this paper we study the equation

−∆u + b(x)u = a(x)|u|p−1u, x ∈ Ω, (1)

and its more general version

−∆u + b(x)u = f(x, u), x ∈ Ω, (2)

with Dirichlet boundary conditions ; here Ω is a regular (unbounded) domain
in R

N , a(x) ∈ C(Ω, R), b(x) ∈ C1(Ω, R), f(x, u) ∈ C(Ω × R, R), and

1 < p < p# ≤ N+2
N−2

if N ≥ 3

1 < p < ∞ if N = 1, 2
(3)

(the definition of p# is given below).
Equations of this kind stem from various physical problems, such as the

existence of stationary states of nonlinear Schrödinger and Klein-Gordon
equations (for a discussion see for example [BL]).

We take Ω = R
N throughout the paper. It is easy to see that The-

orems 1.1-1.3 carry over, with minor changes, to the case of an arbitrary
regular domain.

In the classical paper [AR] Ambrosetti and Rabinowitz considered the
case of a bounded domain Ω. A great number of papers deal with these
equations in unbounded domains. We shall quote here [BL], where the au-
tonomous case is studied, [Li2], [BWi1] and [BWi2], where the radial non-
autonomous case is considered, [Ls], where a ”concentration-compactness”
argument is used, as well as [DW] and [Li1] (we refer also to the references
in these papers). All these works present different ways of overcoming the
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problem of ”lack of compactness”, typical for elliptic problems in unbounded
domains.

In the first part of this paper we consider another situation in which this
problem can be dealt with – the case when the potential b(x) is ”large” at
infinity. The pioneering work in this direction was done by Rabinowitz ([R]),
whose hypotheses on b(x) were the following

(r1) b0 = inf
x∈RN

b(x) > 0 ;

(r2) lim
|x|→∞

b(x) = ∞.

Theorem 1.7 of [R] states that (2) has a positive solution, under (r1),
(r2) and the standard ”mountain-pass” assumptions on f(x, u). Rabinowitz
showed that a subsequence of the sequence associated with the mountain
pass value of the functional

Φ(u) =
1

2

∫

RN

|∇u|2 + b(x)u2 dx −

∫

RN

F (x, u) dx,

defined on the space

H =

{

u ∈ D1,2(RN) |

∫

RN

b(x)|u|2 dx < ∞

}

,

‖u‖2
H :=

∫

RN

|∇u|2 + b(x)u2 dx,

converges weakly to a nontrivial solution of (2). The question whether this
functional satisfies the Palais-Smale condition on H remained open and was
later answered in the affirmative by Costa ([C]) (see also [OW]).

Note that condition (r2) is equivalent to the following hypothesis.

(r2) For every M > 0 the set

ΩM =
{

x ∈ R
N | b(x) < M

}

(4)

is bounded.

In ([BWa]) Bartsch and Wang proved that the functional Φ satisfies the
Palais-Smale condition on H, and thus obtained a positive solution of (2),
provided that (r1) holds and

(bw2) for every M > 0 the set ΩM has finite Lebesgue measure.
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Bartsch and Wang used the same hypotheses on f as in [R]. They also
remarked that (2) has infinitely many solutions when f(x, u) is odd in u.

To our knowledge, up to now (bw2) is the best hypothesis under which Φ
is known to satisfy the Palais-Smale condition. Note that (r1), (r2) and (bw2)
do not cover even cases like b(x) = x2

1x
2
2, N = 2, for which this condition is

clearly expected to hold.
Our goal is to extend the results of [BWa] in several directions. First, we

investigate to what extent (bw2) can be weakened, so that the compactness
in the functional is preserved. We obtain a necessary and sufficient condition,
on the domain and the potential b(x), for the functional to satisfy the Palais-
Smale condition (see Theorem 3.1).

Second, we weaken condition (r1). For instance, b(x) can be negative on
a ball which is not too large, in a sense to be explained below. Actually, b(x)
does not even have to be positive in an exterior domain. We find a necessary
and sufficient condition for the existence of a positive solution of (2) in H.

Third, we show that the right-hand side of (2) does not have to be
bounded in x. We can obtain non-trivial solutions of (2), provided the growth
of f is controlled by the growth of b(x). Here appears the upper bound for
p. More precisely, we suppose that there exist a function A(x) ∈ L∞

loc(R
N),

with A(x) ≥ 1, and constants α > 1, C0 > 0, R0 > 0, µ0 > 2 such that

A(x) ≤ C0

(

1 + (max{0, b(x)})
1
α

)

, if |x| ≥ R0 ; (5)

|f(x, u)| ≤ C0A(x)(1 + |u|p) , for all x ∈ R
N and u ∈ R ; (6)

f(x, u)

A(x)
= o(|u|) as u → 0 uniformly in x ; (7)

0 < µ0F (x, u) = µ0

∫ u

0

f(x, s) ds ≤ uf(x, u), if u 6= 0. (8)

The preceding works dealt with the case A(x) ≡ 1. To our knowledge, this
is the first time a result covering unbounded nonlinearities in the non-radial
case appears in literature.

In the case of (1) we suppose (5) for A(x) = max{1, |a(x)|}, but we do
not suppose that a(x) is everywhere positive.

We set

p# =
N + 2

N − 2
−

4

α(N − 2)
.

We see that if (5) holds for any α > 1 and some R0 = R0(α), we may take
p# = N+2

N−2
in (3). Let us stress that the case when A(x) is bounded is the

simplest one in which (5) holds for any α > 1.
While studying equations (1) and (2) in the above framework, we came

across an intriguing observation, related to Pohozaev’s identity. In case a(x)
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is bounded and p ∈
[

N+2
N−2

,∞
]

, it can be inferred from this identity that
(1) has only the trivial solution in the variational space, whereas variational
methods ensure that (1) has non-trivial solutions for p ∈

[

1, N+2
N−2

)

. It turns
out that unbounded nonlinearities lead to a gap between the “existence”
range for p, given by variational methods, and the ”non-existence” range,
provided by Pohozaev’s identity (see Section 4 for details).

We use the following notation. If G ⊂ R
N is open and 2 ≤ s < 2N

N−2
, we

set

νs(G) = inf
u∈Ms(G)

∫

G

|∇u|2 + b(x)u2 dx,

where Ms(G) = {u ∈ H1
0 (G) | ‖u‖Ls(G) = 1}. We put νs(∅) = ∞.

The assumptions on b(x) that we use are the following.

(i) There exists a constant B ≥ 0 such that

b(x) ≥ −B for all x ∈ R
N ;

(ii)s For any r > 0 and any sequence {xn} ⊂ R
N which goes to infinity

lim
n→∞

νs(Bn) = ∞,

where Bn = B(xn, r) stands for the open ball with center xn and ra-
dius r.

We assume (i) throughout the paper. We consider the following condition

λ1 := inf
u∈H, ‖u‖

L2=1

∫

RN

|∇u|2 + b(x)u2 dx > 0. (9)

Note that (9) allows for potentials which change sign.
We now state our theorems about the existence of solutions of equations

(1) and (2).

Theorem 1.1 We suppose (3), (5)–(9), and (ii)p+1. Then (2) has a positive
solution. If, in addition, f(x, u) is odd in u then (2) has infinitely many
solutions.

Furthermore, if we suppose (ii)2 instead of (ii)p+1 then (9) is a necessary
and sufficient condition for the existence of a positive solution of (2).

Theorem 1.2 We suppose (3), (ii)p+1, (5), and (9). Then sufficient con-
dition for the existence of a positive solution of (1) is that a(x) is positive
somewhere. If we suppose (ii)2 instead of (ii)p+1, this is also necessary. Fur-
thermore, under (ii)2, if a(x) ≥ 0 and a(x) 6≡ 0 then (9) is a necessary and
sufficient condition for the existence of a positive solution of (1).
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Theorem 1.3 We suppose (3), (ii)2, (5), and (9). If a(x) is positive some-
where then there exist infinitely many solutions of (1).

It is useful to have geometric conditions on b(x) under which (ii)s holds
for all s ∈

[

2, 2N
N−2

)

, and the above theorems apply.

Theorem 1.4 The condition (ii)s holds for all s ∈ [2, 2N
N−2

), provided that

for any M > 0, any r > 0 and any sequence {xn} ⊂ R
N which goes to

infinity, we have
lim

n→∞
|ΩM ∩ Bn| = 0, (10)

where | · | denotes the Lebesgue measure in R
N .

In a way, Theorem 1.4 implies that Theorems 1.1, 1.2 and 1.3 apply
provided that for all M > 0 the set ΩM\BR becomes ”narrower and narrower”
when R goes to infinity. On the other hand, it is well-known that the Palais-
Smale condition fails if a level set of b(x) contains an unbounded sequence
of balls with fixed radius.

In the second part of the paper we study the situation when the potential
b(x) is only “sufficiently large” at infinity. We consider the equation

−∆u + λbλ(x)u = f(x, u), (11)

where λ ≥ 1 is a parameter, and show, under suitable assumptions on bλ(x),
it possesses a non-trivial solution for sufficiently large λ. More specifically,
we suppose that

(bl1) bλ(x) ≥ 0, for λ ≥ 1 and x ∈ R
N ;

(bl2) there exists M > 0 such that for all λ ≥ 1

|ΩM,λ| < ∞,

where ΩM,λ = {x ∈ R
N | bλ(x) < M}.

(bl3) lim
λ→∞

bλ(0) = 0.

In [BWa] Bartch and Wang studied the case bλ(x) = b(x) + 1
λ
, where

the function b(x) was supposed to be non-negative, to have a set ΩM of
finite measure for some M > 0, and to take value zero on an non-empty
open subset of R

N . The necessity of the last condition was left as an open
question. Applied to this bλ(x), our results give the existence only under the
hypothesis that b(x) vanishes at one point.
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We set

µ = max{µ > 0 | there exists a positive continuous function d(x) such
that F (x, u) ≥ d(x)|u|µ for x ∈ R

N , u ∈ R}.

It is clear that µ0 ≤ µ ≤ p + 1.
Our first result about equation (11) concerns the most frequent case when

µ = p + 1.

Theorem 1.5 Assume that (bl1)-(bl3) and (3), (5)–(9) hold (with b replaced
by bλ in (5)). Suppose also µ = p + 1. Then there exists λ0 ≥ 1, depending
only on the various constants involved in the assumptions, such that (11) has
a non-trivial (positive) solution, for any λ ≥ λ0.

If we want to remove the hypothesis µ = p + 1, we have to strengthen
(bl3), replacing it with a more precise condition about the behaviour of bλ(x)
near the origin, for λ sufficiently large.

Theorem 1.6 Assume that (bl1), (bl2), (3), (5)–(9) hold, and that

(bl4) there exist constants C1, ε0, β > 0, such that

bλ(x) ≤ C1

(

|x|β + λ
− β

β+2

)

for |x| ≤ ε0λ
− 1

β+2 ,

and
2

β + 2

(

µ

µ − 2
−

N

2

)

<
p + 1

p − 1
−

N

2
.

Then the conclusion of Theorem 1.5 holds.

It is clear that the result in [BWa] is a particular case of Theorem 1.6.

Acknowledgement. The author wishes to thank Prof. H. Berestycki for
raising some of the questions treated in this paper, and for useful discussions.

2 Preliminary Results and Proof of

Theorem 1.4

Our first lemma enables us to settle the variational setting.

Lemma 2.1 Assume (9) holds. Then the space H, endowed with the scalar
product

< u, v > =

∫

RN

∇u.∇v + b(x)uv dx, (12)

is a Hilbert space. Moreover, H is continuously embedded into H1(RN).
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Proof. We have only to show that there exists a positive constant a such
that, for u ∈ H,

∫

RN

|∇u|2 + b(x)u2 dx ≥ a

∫

RN

|∇u|2 dx.

Suppose that there exists a sequence {un} ⊂ H, such that
∫

RN

|∇un|
2 dx = 1 and

∫

RN

|∇un|
2 + b(x)u2

n dx ≤
1

n
.

The last inequality, together with λ1 > 0, implies un → 0 in L2(RN). We
obtain the contradiction

o(1) = −B

∫

RN

u2
n dx ≤

∫

RN

b(x)u2
n dx ≤

1

n
− 1. ✷

The following lemma shows the relation between the different (ii)s.

Lemma 2.2 Let Ω ⊂ R
N be open and let 2 ≤ p < q < 2N

N−2
. Then

νq(Ω) ≥ C(p, q, N, λ1) (νp(Ω))α1 ,

where α1 is a fixed number in (0, 1). If 2 < q < p < 2N
N−2

then

νq(Ω) ≥ C(p, q, N, λ1) (νp(Ω))α2 .

Therefore, (ii)p implies (ii)q, for 2 ≤ p ≤ q, and for 2 < q ≤ p.

Proof. This is a consequence of the previous lemma and the Gagliardo–
Nirenberg inequality. Indeed, there exist a number α ∈ (0, 1) and a positive
contant C, depending only on p, q, N and λ1, such that

νq(Ω) = inf
u∈H1

0 (Ω)\{0}

∫

RN |∇u|2 + b(x)u2 dx
(∫

RN |u|q dx
) 2

q

≥ inf
u∈H1

0 (Ω)\{0}

∫

RN |∇u|2 + b(x)u2 dx

C
(∫

RN |u|p dx
) 2α

p
(∫

RN |∇u|2 + u2 dx
)1−α

≥
1

C
inf

u∈H1
0 (Ω)\{0}





∫

RN |∇u|2 + b(x)u2 dx
(∫

RN |u|p dx
) 2

p





α

=
1

C
(νp(Ω))α

.

The proof of the second inequality goes the same way. ✷

In the following proposition we establish an equivalent way of stating
condition (ii)s, which will be useful in the sequel.
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Proposition 2.1 Condition (ii)s holds if and only if

lim
R→∞

νs(R
N \ BR) = ∞. (13)

Proof. First, it is clear that (13) implies (ii)s, since νs(Ω2) ≤ νs(Ω1) for any
Ω1 ⊂ Ω2.

Suppose that (13) is false. Then we can find sequences Rn → ∞ and
{un} ⊂ H such that un ∈ H1(RN), suppun ⊂ R

N \ BRn
,

∫

RN

|∇un|
2 + b(x)u2

n dx ≤ C

and
∫

RN

|un|
s dx = 1

(everywhere in the sequel C will denote a positive constant whose value is
irrelevant and may change from line to line). Note that the sequence {un}
is bounded in H1(RN) (by Lemma 2.1) and does not converge to zero in
Ls(RN). This permits us to use a classical concentration result of Lions (see
[Ls] or Lemma 1.21 in [W]). This result states that there exist a sequence
{xn} ⊂ R

N and a number r0 > 0, such that
∫

B(xn,r0)

|un|
s dx ≥ c0 > 0

(up to a subsequence of {un}). Since the support of un is contained in
R

N \ BRn
, we have xn → ∞. We take a cut-off function ϕn, such that

ϕn ∈ C∞
c (RN), 0 ≤ ϕn ≤ 1, ϕn ≡ 0 in R

N\B(xn, 2r0) and ϕn ≡ 1 in B(xn, r0).
Then the sequence vn = ϕnun is bounded in H, belongs to H1

0 (B(xn, 2r0)),
and

‖vn‖Ls(B(xn,2r0)) ≥ c0 > 0.

It is not difficult to infer from this inequality that (ii)s does not hold, for
r = 2r0. ✷

Proof of Theorem 1.4. By Lemma 2.2, it suffices to prove that (10) implies
(ii)2. Suppose for contradiction that this is not true, that is, there exist a
sequence {xn}, a number r > 0, and a sequence {un} ⊂ H1

0 (Bn), such that
∫

Bn

|∇un|
2 + b(x)u2

n dx ≤ C, (14)

with
∫

Bn

|un|
2 dx = 1. (15)
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Note that {un} is bounded in H1(RN), by Lemma 2.1.
For any M > 0 we set ΩM,n = {x ∈ Bn | b(x) < M}, so that

lim
n→∞

|ΩM,n| = 0.

We have, for a fixed M ,

C ≥

∫

Bn\ΩM,n

b(x)u2
n dx +

∫

ΩM,n

b(x)u2
n dx

≥ M

∫

Bn

u2
n − (B + M)

∫

ΩM,n

u2
n dx. (16)

We use the following lemma.

Lemma 2.3 Let ωn ⊂ R
N be open, with

lim
n→∞

|ωn| = 0.

Then, for any C > 0 and any 2 ≤ p < 2∗ = 2N
N−2

,

lim
n→∞






sup∫

RN

|∇u|2≤C

∫

ωn

|u|p dx






= 0.

Proof. By Hölder and Sobolev inequalities

∫

ωn

|u|p dx ≤ |ωn|
1− p

2∗ ‖u‖p

L2∗ (RN )

≤ C|ωn|
1− p

2∗ ‖∇u‖p

L2(RN )
,

which proves the lemma. ✷

Finally, (15), (16) and Lemma 2.3 yield, for n sufficiently large,

C ≥
M

2
,

which is a contradiction, since M is arbitrary. Theorem 1.4 is proved. ✷

The next proposition will be used to derive the necessary conditions stated
in Theorems 1.1 and 1.2.
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Proposition 2.2 Suppose that (i) and (ii)2 hold. Then λ1 is the smallest
eigenvalue of the operator −∆ + b(x) in R

N , corresponding to a positive
principal eigenfunction. In other words, the equation







−∆ϕ1 + b(x)ϕ1 = λ1ϕ1

ϕ1 ∈ H ∩ C2(RN)
ϕ1 > 0

(17)

has a solution which, normalised so that
∫

RN ϕ2
1 dx = 1, is a minimiser for

the right-hand side of (9).

Proof. We shall prove that the infimum in the right-hand side of (9) is
attained. First of all we remark that λ1 ≥ −B > −∞.

Let {un} be a sequence of non-negative functions (if necessary, replace un

by |un|) in H such that
∫

RN

|∇un|
2 + b(x)u2

n dx → λ1 as n → ∞, (18)

and
∫

RN

u2
n dx = 1. (19)

From (i), (18) and (19) we obtain, for sufficiently large n,
∫

RN

|∇un|
2 dx ≤ λ1 + 1 + B. (20)

It follows that {un} is bounded in H1(RN) and converges (up to a subse-
quence) to a function u weakly in H1(RN), almost everywhere in R

N (which
implies u ≥ 0) and strongly in L2(BR), for all R > 0.

We take a function ϕ ∈ C∞(RN) such that ϕ ≡ 0 on BR and ϕ ≡ 1 on
R

N \ BR+1. We obtain

‖un − u‖2
L2(RN ) ≤ ‖(1 − ϕ)(un − u)‖2

L2(RN ) + ‖ϕ(un − u)‖2
L2(RN )

≤ βn +
1

ν2(RN \ BR)

∫

RN

|∇(ϕ(un − u))|2

+b(x)(un − u)2 dx

≤ βn + γR,

where βn and γR are quantities which tend to zero as n and R tend to infinity.
It follows that un → u strongly in L2(RN). Hence

∫

RN

u2 dx = 1. (21)
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Furthermore, the weak H1-convergence yields
∫

RN

|∇u|2 dx ≤ lim inf
n→∞

∫

RN

|∇un|
2 dx. (22)

Since un → u strongly in L2(RN) implies b
1
2 (x)un ⇀ b

1
2 (x)u weakly in L2(G),

with G = {x ∈ R
N | b(x) > 1}, we get

lim inf
n→∞

∫

RN

b(x)u2
n dx = lim

n→∞

∫

RN\G

b(x)u2
n dx + lim inf

n→∞

∫

G

b(x)u2
n dx

≥

∫

RN

b(x)u2 dx, (23)

where we have used the fact that b(x) ∈ L∞(RN \ G).
Finally, it follows from (21), (22) and (23) that u ∈ H is a minimiser

for the right-hand side of (9). Since u ∈ H1(RN), a standard bootstrap
argument yields u ∈ C2(RN). The strong maximum principle implies u > 0
in R

N , so u is a solution of (17). ✷

3 The Palais-Smale Condition.

Existence Results

We consider the functional

Φ(u) =
1

2

∫

RN

|∇u|2 + b(x)u2 dx −

∫

RN

F (x, u) dx.

Of course, we set F (x, u) = a(x)|u|p+1

p+1
in the case of (1).

Lemma 3.1 Suppose (3), (5)–(9) hold. Then the functional Φ is well defined
and C1 on H. Furthermore, for all ε > 0 there exists Cε > 0 such that

∫

RN

|F (x, u)| dx ≤ ε‖u‖2
H + Cε‖u‖

p+1
H . (24)

Proof. First we note that (6) and (7) imply

|F (x, u)| ≤ C0A(x)
(

ε|u|2 + Cε|u|
p+1

)

. (25)

By using (5) we get

∫

RN

A(x)|u|p+1 dx ≤

(

C0 + max
|x|≤R0

A(x)

)

‖u‖p+1
Lp+1(RN )
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+ C0

∫

{x : b(x)>0}

b(x)
1
α |u|p+1 dx

≤ C

(

‖u‖p+1
H1(RN )

+

(∫

{x : b(x)>0}

b(x)u2 dx

) 1
α

×

(∫

{x : b(x)>0}

|u|
α(p+1)−2

α−1 dx

)
α−1

α

)

≤ C

(

‖u‖p+1
H +

(

‖u‖2
H + B

∫

{x : b(x)≤0}

u2 dx

) 1
α

×‖u‖
α(p+1)−2

α

H

)

≤ C

(

1 +

(

1 +
B

λ1

) 1
α

)

‖u‖p+1
H ,

where we have used Lemma 2.1, together with the fact that assumption (3)

implies α(p+1)−2
α−1

< 2N
N−2

. We get, in a similar way,

∫

RN

A(x)u2 dx ≤ C‖u‖2
H ,

which proves (24). It is standard to see that Φ is C1 on H. ✷

It is easy to check that critical points of Φ on H are solutions of (2). The
proof of the existence of solutions of (1) and (2) then follows the standard
”Mountain Pass” procedure.

It is the Palais–Smale condition that creates difficulties in studying this
type of elliptic problems in unbounded domains. In order to establish its
validity in our case, we prove that H is compactly embedded into some
weighted Lebesgue spaces.

Let Ls
A(x)(R

N) denote the set of measurable functions u on R
N such that

∫

RN

A(x)|u|s dx < ∞.

We take the s-th square of this quantity to be the norm on Ls
A(x)(R

N).

Proposition 3.1 Suppose (5) and (9) hold. Then H is continuously embed-
ded into Ls

A(x)(R
N), for 2 ≤ s < p# + 1. Furthermore, (ii)s is a necessary

and sufficient condition for this embedding to be compact.
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Proof.The continuous embedding was established in the proof of Lemma 3.1.
Let us show that (ii)s is sufficient for the embedding H →֒ Ls

A(x)(R
N) to

be compact. Suppose that un ⇀ 0 weakly in H. By Lemma 2.1 we know
that un → 0 in Ls(BR), for all 2 ≤ s < 2N

N−2
, and all R > 0.

We obtain, as in the proof of Proposition 2.2,

‖un‖Ls(RN ) ≤ ‖(1 − ϕ)un‖Ls(RN ) + ‖ϕun‖Ls(RN )

≤ βn + γR.

By using (ii)s and Proposition 2.1 we see that βn and γR tend to zero as n

and R tend to infinity. This implies un → 0 in Ls(RN). Then, proceeding as
in the proof of Lemma 3.1, we obtain for any u ∈ H

‖u‖s
Ls

A(x)
(RN ) ≤ C

(

‖u‖s
Ls(RN ) +

(

1 +
B

λ1

) 1
α

‖u‖
2
α

H‖u‖
αs−2

α

L
αs−2
α−1 (RN )

)

, (26)

from which we infer that un → 0 in Ls
A(x)(R

N), since s ≤ αs−2
α−1

< 2N
N−2

.

We turn to the necessity of (ii)s. Assume (ii)s does not hold, that is, by
Proposition 2.1, there exists a sequence Rn → ∞ such that νs(R

N\BRn
) ≤ C.

This implies the existence of functions un ∈ H1(RN) such that

supp un ⊂ R
N \ BRn

, (27)
∫

RN

|∇un|
2 + b(x)u2

n dx ≤ C + 1, (28)

and
∫

RN

|un|
s dx = 1. (29)

If the embedding H →֒ Ls
A(x)(R

N) were compact, from (28) we could infer

the existence of a subsequence of {un}
∞
n=1 such that un → u strongly in

Ls
A(x)(R

N), for some function u. On the other hand (27), (28) and Rn → ∞

imply un ⇀ 0 weakly in H1(RN), that is u ≡ 0. This is a contradiction with
(29), since un → 0 in Ls

A(x)(R
N) clearly implies un → 0 in Ls(RN). ✷

We now state our main result about the Palais-Smale condition.

Theorem 3.1 Suppose that (3) and (5)–(9) hold. Then (ii)p+1 is a sufficient
condition for the functional Φ to satisfy the Palais-Smale condition on H.
If, in addition,

inf
x∈RN

|u|≥R0

F (x, u) > 0, (30)

for some R0 > 0, then (ii)p+1 is also necessary.
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Remark. For the necessity of (ii)p+1 we need to add a condition like (30).
For instance, in the case of (1), if a(x) → 0 as |x| → ∞ then Φ satisfies
the Palais-Smale condition even for b(x) = const (when (ii)p+1 clearly fails).
However, if we do not suppose (30), it is still possible to produce necessary
and sufficient conditions for (PS), which involve the ratio between a and b.
We leave the details to the reader.
Proof of Theorem 3.1. Suppose (ii)p+1 holds. It is standard to check that
the following claim implies the Palais-Smale condition for Φ.

Claim 1 The map

{

u →
∫

RN F (x, u) dx

(H, weak) → R

is continuous.

Proof of Claim 1. Let un ⇀ u weakly in H. Then un → u strongly in
L

p+1
A(x)(R

N). By the inverse Lebesgue theorem, we can find a subsequence

of {un}
∞
n=1 and a function h ∈ L

p+1
A(x)(R

N) such that |un(x)| ≤ h(x) and un

converges to u almost everywhere in R
N .

Then, if we note
vn = |F (x, un) − F (x, u)|,

it follows that vn → 0 almost everywhere in R
N . By using (25) we see that

we can find functions wn, f ∈ L1(RN) such that for any ε > 0 there exists a
constant Cε > 0, for which

‖wn‖L1(RN ) ≤ C,

and
vn ≤ εwn + Cεf.

Then it is readily checked that for every δ > 0 there exists R > 0 for which

‖vn‖L1(RN\BR) < δ for all n. (31)

It is also easily seen that for all δ > 0 we can find r > 0 such that for any
E ⊂ R

N , with |E| < r, we have

‖vn‖L1(E) < δ for all n. (32)

We finish the proof of Claim 1 by noticing that (31) and (32) are exactly what
we need in order to apply Vitali’s theorem, which yields vn → 0 strongly in
L1(RN). ✷

14



Let us prove the necessity of (ii)p+1. Suppose that there exist a number
r > 0 and a sequence {xn} ⊂ R

N which goes to infinity, such that

νp+1(Bn) ≤ C. (33)

By standard existence results for bounded domains we can find a function
un ∈ H1

0 (Bn), such that

Φ(un) = cn and Φ′(un) = 0,

where cn > 0. Note that we can take, as in [W],

cn = inf
γ∈Γn

max
t∈[0,1]

Φ(γ(t)),

where

Γn =
{

γ ∈ C([0, 1], H1
0 (Bn)) | γ(0) = 0, Φ(tγ(1)) < 0 for t ≥ 1

}

.

It is clear that un ⇀ 0 weakly in H1(RN) (we suppose that the functions in
H1

0 (Bn) are extended as zero outside the ball Bn).
We first show that the sequence of positive numbers {cn} is bounded from

above. Note that
cn ≤ inf

u∈H1
0 (Bn)\{0}

max
t≥0

Φ(tu),

since every ray in H1
0 (Bn) can be parametrised in such a way that a part of it

belongs to Γn. Furthermore, (8), (9) and (30) imply that for all u ∈ H1
0 (Bn)

Φ(u) ≤ Ψ(u) :=
C1

2

∫

RN

|∇u|2 + b(x)u2 dx − C2

∫

RN

|u|µ dx.

Hence
cn ≤ inf

u∈H1
0 (Bn)\{0}

max
t≥0

Ψ(tu). (34)

It is easy to compute that for any u ∈ H1
0 (Bn) \ {0}

max
t≥0

Ψ(tu) =
C(µ − 2)

2µ
µ

µ−2





∫

RN |∇u|2 + b(x)u2 dx
(∫

RN |u|µ dx
) 2

µ





µ
µ−2

,

so

cn ≤ const.νµ(Bn)
µ

µ−2

≤ C,
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by (33) and Lemma 2.2. This proves that {un} is a Palais-Smale sequence.
It follows from (25), (26), Lemmas 2.1 and 3.1 that

Φ(u) ≥
1

4
‖u‖2

H(RN ) − C‖u‖p+1
Lp+1(RN )

− C‖u‖q+1
Lq+1(RN )

≥ C0‖u‖
2
H1(RN ) − C‖u‖q+1

Lq+1(RN )
,

for all u ∈ H, with q = αp−1
α−1

. Hence {cn} is bounded from below by a positive
constant. It is clear that this prevents un → 0 strongly in H, which leads to
a contradiction with the Palais-Smale condition.

Proofs of Theorem 1.1 and 1.2. Let λ1 > 0. To see that this is a sufficient
condition for the existence of a positive solution of (1) and (2), we use the
mountain pass theorem of Ambrosetti and Rabinowitz. Its hypotheses are
satisfied, since, by Lemma 3.1,

Φ(u) ≥
1

4
‖u‖2

H − C‖u‖p+1
H for u ∈ H (35)

and

Φ(tu0) ≤
t2

2
− Ctµ0 → −∞ as t → ∞,

where u0 is a fixed function with compact support, such that ‖u0‖H = 1 (for
Theorem 1.2 we also suppose supp u0 ⊂ {x | a(x) > 0}).

To see that the mountain pass procedure yields a positive solution, we
replace the function f(x, u) by

f+(x, u) =

{

f(x, u) if u > 0
0 if u ≤ 0,

and carry out the same argument.
We see that λ1 > 0 is a necessary condition for the existence of a positive

solution of (2) (and (1), if a(x) ≥ 0) by multiplying both sides of this equation
by ϕ1 and by integrating. In the same way we show, when λ1 > 0, that (1)
can have a positive solution only if a(x) takes a positive value.

Finally, it is standard to check, in the case of an odd f , that the Symmet-
ric Mountain Pass theorem implies the existence of an unbounded sequence
of critical values of Φ. This concludes the proof of Theorem 1.1 and Theo-
rem 1.2. ✷

Proof of Theorem 1.3. In the case of a bounded domain this theorem was
proved in [AT]. To see that their proof carries over to our case, it suffices to
notice that Proposition 3.1 standardly implies the following result.
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Lemma 3.2 The spectrum of the operator −∆ + b(x) on H consists of a
sequence {λn} of eigenvalues such that λn → ∞ when n → ∞.

Then, following [AT], we can prove that there exist a subspace X ⊂ H of
finite codimension and a number r > 0 such that

inf
u∈X, ‖u‖H=r

F (u) > F (0).

It is not difficult to see, as in [AT], that for all k ≥ 1 there exist subspaces
Yk of H such that dimYk ≥ k and

sup
u∈Yk

F (u) < ∞.

Indeed, it suffices to take X = E⊥
j , where Ej denotes the subspace of H

spanned by the proper vectors of −∆ + b(x) corresponding to λ1 . . . λj.
Fixing j so that λj+1 > 0, we get (35) on X. As for Yk, one can take
Yk = span{φ1 . . . φk}, where φ1 . . . φk are arbitrary C∞

c (RN)-functions with
disjoint supports, contained in the set a(x) > 0 (see [AT] for details). We
finish the proof with the help of a Benci’s pseudoindex theorem (see [AT]
and [Be]). ✷

Remark 3.1 Theorem 1.4 and the remark immediately after it give handy
conditions to check whether we can or cannot apply the existence theorems.
We can get plenty of examples of functions that satisfy neither (r1) nor (bw2)
but for which equation (2) is still solvable – for example x2

1 . . . x2
N − A, with

any constant A > 0 chosen so that λ1 > 0. It is clear, for most “reasonable”
potentials, that Theorem 1.4 and the remark following it should give an
answer to the question whether Theorems 1-3 apply.

Remark 3.2 It is not difficult to see that the same results hold for a general
strictly elliptic operator in divergence form

∞
∑

i,j=1

∂

∂xj

(

aij(x)
∂

∂xi

)

+ b(x),

under suitable conditions on the coefficients aij(x).

Remark 3.3 It is worth noting that in the case of a bounded domain there
are some results concerning the existence of a positive solution of (1) when
λ1 ≤ 0 (see [AT] and [BCN]). For example, when λ1 = 0, necessary and
sufficient conditions are

a(x) changes sign in Ω
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and
∫

Ω

a(x)ep+1
1 dx < 0,

where e1 denotes the principal eigenfunction of −∆ + b(x) on the domain Ω.
It is not difficult to see, under (i) and (ii)2, that these results carry over to
R

N . We leave the details to the reader.

4 The Pohozaev Identity does not Give a Full

Answer to the Existence Question

We consider the following example

−∆u + |x|au = |x|b|u|p−1u, (36)

where N ≥ 3, 0 ≤ b < a. We are searching for solutions u ∈ H such that
u ∈ L

p+1
|x|b

(RN). Theorem 1.2 states that (36) has a non-trivial solution,

provided p ∈ (1, p#), where

p# =
N + 2

N − 2
−

4b

a(N − 2)
.

On the other hand, the generalised Pohozaev identity, established by
Pucci and Serrin ([PS]), gives

N − 2

2

∫

RN

|∇u|2 dx +
N + a

2

∫

RN

|x|au2 dx −
N + b

p + 1

∫

RN

|x|bup+1 = 0, (37)

for any solution u of (36). By multiplying (36) by u and by integrating we
see that

∫

RN

|∇u|2 dx +

∫

RN

|x|au2 dx −

∫

RN

|x|bup+1 = 0. (38)

By putting together (37) and (38) we obtain
(

N − 2

2
−

N + b

p + 1

) ∫

RN

|∇u|2 dx +

(

N + a

2
−

N + b

p + 1

) ∫

RN

|x|au2 dx = 0.

We see that this implies u ≡ 0, provided p ∈ [p∗,∞), with

p∗ =
N + 2

N − 2
+

2b

N − 2
.

As we see, p# < N+2
N−2

< p∗ when b > 0. In other words, an unbounded nonlin-
earity diminishes both the range of p’s where variational methods ensure the
existence of a non-trivial solution and the range of p’s where the Pohozaev
identity says no such solutions exist. We do not know if non-trivial solutions
exist for p ∈ [p#, p∗).
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5 Proof of Theorem 1.5 and Theorem 1.6

The proofs of Theorems 1.5 and 1.6 will be carried out jointly.
As before, we consider the functional corresponding to (11)

Φλ(u) =
1

2

∫

RN

|∇u|2 + λbλ(x)u2 dx −

∫

RN

F (x, u) dx.

We introduce the space

Eλ =

{

u ∈ D1,2(RN) |

∫

RN

bλ(x)u2 dx < ∞

}

and the quantity

‖u‖2
λ =

∫

RN

|∇u|2 + λbλ(x)u2 dx,

for u ∈ Eλ.
The following lemma summarizes some easy preliminary facts.

Lemma 5.1 For every λ ≥ 1,

(a) there exists Cλ > 0 such that

‖u‖H1(RN ) ≤ Cλ‖u‖λ.

This implies that (Eλ, ‖.‖λ) is a Hilbert space, continuously embedded
into H1(RN).

(b) the functional Φλ is well-defined and C1 on Eλ.

(c) the functional Φλ has a “mountain-pass” geometry on Eλ.

(d) there exists a number cλ > 0 and a sequence {uλ
n}

∞
n=1 ⊂ Eλ such that

Φλ(u
λ
n) → cλ as n → ∞

Φ′
λ(u

λ
n) → 0 in E ′

λ as n → ∞.

(e) we have
lim sup

n→∞
‖uλ

n‖
2
λ ≤ ρcλ,

where ρ > 0 is a constant independent of λ.

(f) there exists a solution uλ
0 of (11) such that a subsequence of {uλ

n} con-
verges to uλ

0 weakly in Eλ.
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Proof. We have (we set Gc = R
N \ G, for any G ⊂ R

N)

∫

RN

|∇u|2 + bλ(x)u2 dx ≥
1

2

∫

RN

|∇u|2 +
1

2

∫

ΩM,λ

|∇u|2 +

∫

Ωc
M,λ

bλ(x)u2

≥ min

{

1

2
,
CM,λ

2
, M

}

‖u‖2
H1(RN ),

where CM,λ is the constant in the Poincaré’s inequality for the set ΩM,λ.
As in the proof of Lemma 3.1, we can show that

∫

RN

A(x)|u|s dx ≤ Cλ‖u‖
s
λ,

for some Cλ > 0 and all u ∈ Eλ, 2 ≤ s ≤ p + 1. Statement (b) follows
standardly.

To prove (c) it suffices to take a sufficiently small ε = ε(λ) in (25).
Statements (d), (e) and (f) are also trivial. ✷

Our goal is to show that uλ
0 6≡ 0, for sufficiently large λ. Let us suppose

the contrary, that is, there exists a sequence {λm}
∞
m=1, with λm → ∞, such

that uλm

0 ≡ 0. Then we obtain (dropping the subscript m)

cλ = lim
n→∞

(

Φλ(u
λ
n) −

1

2
< Φ′

λ(u
λ
n), uλ

n >

)

≤
1

2
lim inf
n→∞

∫

RN

uλ
nf(x, uλ

n) dx

≤ lim inf
n→∞

∫

RN

εA(x)|uλ
n|

2 + CεA(x)|uλ
n|

p+1 dx

≤ lim inf
n→∞

∫

BR

+ lim sup
n→∞

∫

Bc
R

≤ ε lim sup
n→∞

‖uλ
n‖

2
L2

A(x)
(Bc

R) + Cε lim sup
n→∞

‖uλ
n‖

p+1

L
p+1
A(x)

(Bc
R)

, (39)

where ε and R are arbitrary positive numbers.
We now need an estimate for the L2-norm of uλ

n outside “large” balls.

Lemma 5.2 For every λ ≥ 1 there exists R(λ) > 0 such that

lim sup
n→∞

‖uλ
n‖

2
L2(Bc

R(λ)
) ≤ ρ̄

cλ

λ
,

where ρ̄ is a constant independent of λ.
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Proof. By Lemma 5.1 (e) we obtain for all R > 0

ρcλ + o(1) ≥

∫

RN

|∇uλ
n|

2 + λbλ(x)|uλ
n|

2

≥

∫

RN

|∇uλ
n|

2 + λ

∫

ΩM,λ

bλ(x)|uλ
n|

2 + λM

∫

Ωc
M,λ

|uλ
n|

2

=

∫

RN

|∇uλ
n|

2 + λM

∫

RN

|uλ
n|

2 − λ

∫

ΩM,λ

(M − bλ(x))|uλ
n|

2

≥

∫

RN

|∇uλ
n|

2 + λM

∫

RN

|uλ
n|

2 − λM

∫

ΩM,λ∩BR

|uλ
n|

2

−λM

∫

ΩM,λ\BR

|uλ
n|

2

≥

∫

RN

|∇uλ
n|

2 + λM

∫

Bc
R

|uλ
n|

2 − λM

∫

ΩM,λ\BR

|uλ
n|

2.

Lemma 2.3 permits us to choose R = R(λ) such that

∫

ΩM,λ\BR

|uλ
n|

2 ≤
1

2λM

∫

RN

|∇uλ
n|

2.

Lemma 5.2 follows. ✷

We set G = R
N \ BR(λ) and fix s ∈ {2, p + 1}. With the help of the

Gagliardo-Nirenberg inequality we see that for all u ∈ Eλ

∫

G

A(x)|u|s dx ≤ C‖u‖s
Ls(G) +

∫

G

bλ(x)
1
α |u|s dx

≤ C‖∇u‖θs
L2(G)‖u‖

(1−θ)s

L2(G) + C

(∫

G

bλ(x)u2 dx

) 1
α

×

(∫

G

|u|
αs−2
α−1 dx

)
α−1

α

≤ C‖∇u‖θs
L2(G)‖u‖

(1−θ)s

L2(G) + C

(∫

G

bλ(x)u2 dx

) 1
α

×‖∇u‖
θ̄ αs−2

α

L2(G)‖u‖
(1−θ̄)αs−2

α

L2(G) , (40)

where θ = N(s−2)
2s

and θ̄ = Nα(s−2)
2(αs−2)

. It follows from Lemma 5.1 (e) that

lim sup
n→∞

‖∇uλ
n‖

2
L2(RN ) ≤ ρcλ and lim sup

n→∞

∫

RN

bλ(x)|uλ
n|

2 dx ≤ ρ
cλ

λ
.
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We obtain, by (40) and Lemma 5.2,

lim sup
n→∞

∫

G

A(x)|uλ
n|

s dx ≤ Cc
θs
2

λ

(cλ

λ

)
(1−θ)s

2

+C
(cλ

λ

) 1
α

c
θ̄ αs−2

2α

λ

(cλ

λ

)
(1−θ̄)(αs−2)

2α

≤ Cλ− (1−θ)s
2 c

s
2
λ .

By putting R = R(λ) and by taking ε sufficiently small in (39) we get

cλm
≤ Cλ

N(p−1)−2(p+1)
4

m c
p+1
2

λm
.

Hence
lim sup

λ→∞
λ

N
2
− p+1

p−1 cλ > 0.

The following lemma provides a contradiction, both for Theorem 1.5 and
Theorem 1.6. This is where we use assumptions (bl3) and (bl4).

Lemma 5.3 Suppose the assumptions of either Theorem 1.5 or Theorem 1.6
hold. Then

lim
λ→∞

λ
N
2
− p+1

p−1 cλ = 0.

Proof. We develop an idea which already appeared in an earlier work by
the author (see [S]). As in the proof of Theorem 3.1,

cλ ≤ inf
u∈Eλ\{0}

max
t≥0

Φλ(tu)

and

Φλ(u) ≤ Ψλ(u) =
1

2

∫

RN

|∇u|2 + λbλ(x)u2 dx −

∫

RN

d(x)|u|µ dx.

We obtain

max
t≥0

Ψλ(tu) =
µ − 2

2µ
µ

µ−2





∫

RN |∇u|2 + λbλ(x)u2 dx
(∫

RN d(x)|u|µ dx
) 2

µ





µ
µ−2

. (41)

Set

gµ(λ) = inf
u∈Eλ\{0}

∫

RN |∇u|2 + λbλ(x)u2 dx
(∫

RN d(x)|u|µ dx
) 2

µ

,
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so that
cλ ≤ C (gµ(λ))

µ
µ−2 . (42)

By making the change of variables y = λ
1
2 x we see that

gµ(λ) = λ
1−N

2
+N

µ inf
u∈Eλ\{0}

∫

RN |∇u|2 + bλ(λ
− 1

2 y)u2 dy
(

∫

RN d(λ− 1
2 y)|u|µ dy

) 2
µ

=: λ
1−N(µ−2)

2µ fµ(λ). (43)

First we consider the case µ = p + 1 (Theorem 1.5). From (42) and (43)
we obtain

cλ ≤ C (gp+1(λ))
p+1
p−1

≤ Cλ
p+1
p−1

−N
2 (fp+1(λ))

p+1
p−1 .

The statement of Lemma 5.3 follows from this, provided we show that

lim
λ→∞

fp+1(λ) = 0. (44)

Proof of (44). This was proved in [S], so we only outline the proof. We
shall prove (44) for any fµ, with µ ∈ (2, p# + 1).

Note that

fµ(λ) = inf
u∈Nλ

∫

RN

|∇u|2 + bλ(λ
− 1

2 y)u2 dy,

where Nλ =
{

u ∈ Eλ |
∫

RN d(λ− 1
2 y)|u|µ dy = 1

}

.

Let us assume, for some sequence λm → ∞, that fµ(λm) ≥ a0 > 0.
In what follows we drop the subscript m. We take a sequence {un}

∞
n=1 in

C∞
c (RN) such that

lim
n→∞

‖∇un‖L2(RN ) = 0 and ‖un‖Lµ(RN ) = 1.

Set
vn,λ =

un

(

∫

RN d(λ− 1
2 y)|un|µ dy

) 1
µ

,

so that vn,λ ∈ Nλ for all n and all λ.
Next we note that for every n there exists λn > 0 such that for λ > λn

∫

RN

d(λ− 1
2 y)|un|

µ dy >
d(0)

2
.
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Hence we can find n0 such that
∫

RN

|∇vn0,λ|
2 dy <

a0

2
,

for λ > λn0 . However

∫

RN

|∇vn0,λ|
2 + bλ(λ

− 1
2 y)|vn0,λ|

2 dy ≥ a0,

so hypothesis (bl3) leads to a contradiction, for λ sufficiently large and greater
than λn0 . ✷

Finally, suppose that (bl4) holds. Then we have, by setting δ = β

2(β+2)

and by making use of the change of variables z = λ−δy,

fµ(λ) ≤ inf
u∈H1

0 (B
ε0λδ )\{0}

∫

RN |∇u|2 + bλ(λ
− 1

2 y)u2 dy
(

∫

RN d(λ− 1
2 y)|u|µ dy

) 2
µ

≤ C inf
u∈H1

0 (B
ε0λδ )\{0}

∫

RN |∇u|2 + λ−β
2 |y|βu2 + λ

− β
β+2 u2 dy

(∫

RN d(x)|u|µ dy
) 2

µ

≤ Cλ
−2δ(1−N

2
+N

µ ) inf
u∈H1

0 (Bε0 )\{0}

∫

RN |∇u|2 +
(

1 + ε
β
0

)

u2 dz

C
(∫

RN |u|µ dz
) 2

µ

= const.λ−2δ(1−N
2

+N
µ ).

This implies that

gµ(λ) ≤ Cλ
2

β+2(1−N(µ−2)
2µ ).

Hence, by (42),

cλλ
N
2
− p+1

p−1 ≤ Cλ
2

β+2(
µ

µ−2
−N

2 )−( p+1
p−1

−N
2 ).

Lemma 5.3 follows, because of (bl4). ✷

The proof of Theorems 1.5 and 1.6 is complete.
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