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� Introduction and Main Results

In this paper we study the following elliptic system of Hamiltonian type�
�	u
 b�x�u  g�x� v�
�	v 
 b�x�v  f�x� u�� x � RN�

���

where N � � and f� g � RN � R � R� b � RN � R are given continuous
functions� We suppose that f and g are subcritical �see below��

Systems of this kind in a bounded domain� even with more general non�
linearities� were studied in a number of papers �see �CFM�� �CM�� �FF�� �HV�
and the references in these works � supercritical systems were treated in �SZ��
see the remarks at the end of this section�� The case of the whole space was
�rst considered in a recent paper by de Figueiredo and Yang �FY�� They
studied the system�

�	u
 u  g�x� v�
�	v 
 v  f�x� u�� x � RN�

���

proving under some conditions the existence of a strong radial solution �The�
orem ��� in �FY��� They also showed that strong solutions of ��� decay at
in�nity� together with their derivatives �Theorem ��� in �FY� � see below for
a de�nition of a strong solution��

Studying Theorems ��� and ��� in �FY�� it appeared to us that they
require a number of hypotheses which seem too strong� when compared to the
well�known conditions under which existence and regularity of solutions of a
scalar equation have been proved� One of the goals of this paper is to extend
the results of de Figueiredo and Yang �Theorems � and � below�� showing
that these results hold under the hypotheses which represent the natural
counterparts for ��� of the classical �mountain�pass� conditions� introduced
in �AR� for a scalar equation�

We shall use the following assumptions�

�



�i� there exist positive constants C and �� such that

jf�x� t�j � Cjtj and jg�x� t�j � Cjtj for all x � RN and jtj � � �

�ii� for all x � RN

f�x� ��  g�x� ��  ��

lim
t��

f�x� t�

t
 lim

t��

g�x� t�

t
 � �

�iii� there exist positive constants C� p and q� such that for all x � RN and
t � R

jf�x� t�j � C�� 
 jtjp��
jg�x� t�j � C�� 
 jtjq��

���

We suppose that p and q are both greater than one and satisfy the
inequality

�

p 
 �



�

q 
 �
� ��

�

N
� ���

�iv� there exists a number � � �� such that

tf�x� t� � �F �x� t� � ��
tg�x� t� � �G�x� t� � ��

���

for all x � RN and t � R n f�g� here� as usual� F �x� t� 
R t

� f�x� s� ds

and G�x� t� 
R t

�
g�x� s� ds�

In the literature� the following terminology is common� A pair �u� v� is
said to be a strong solution of ���� provided it satis�es ��� almost everywhere

and u � W �� p��
p � v � W �� q��

q �all function spaces are understood to be taken
over RN�� A pair �u� v� is called a weak solution of ��� if it satis�es the weak
formulation of ��� and �u� v� � Hs �H t� where s and t are suitably chosen
positive numbers �see Section ��� for a precise de�nition�� In particular� s
and t are chosen so that Hs is embedded into Lp�� and H t is embedded into
Lq���

We say a function is radial �in x�� provided it depends only on the distance
to a �xed point in RN�

In our �rst theorem we establish some regularity and decay properties of
the solutions of ����
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Theorem � �a� Suppose �i� and �iii� hold� Then strong solutions of ���

belong to W ��s�RN�
�
� for all � � s � �� In particular� the functions u and

v decay at in�nity� together with their derivatives�
�b� Suppose �i� and �iii� hold� Then weak solutions of ��� belong to

W ��s
loc �R

N�
�
� for all � � s ���

�c� Suppose �ii� and �iii� hold� Then weak radial solutions of ��� belong
to C��RN�� Furthermore� together with their derivatives of �rst and second
order� they converge exponentially to zero at in�nity�

The inequality ��� describes the region in the plane where the couple �p� q�
should be situated� so that variational techniques can be used for solving ����
This region is bounded from above by the so�called �critical� hyperbola� a
notion �rst introduced in �CFM� and �HV�� It expresses the fact that one of
the numbers p and q can be greater than the critical exponent N��

N��
� provided

the other is small enough to compensate �note that� when p  q� ��� reduces
to p � N��

N��
�� It is natural to expect that in Theorem ��� of �FY� the condition

that both p and q be smaller than N��
N�� can be avoided� as was conjectured by

de Figueiredo and Yang� This is the content of our Theorem � �a�� where the
condition �H�� of �FY� is also removed� We use a bootstrap technique� which
gives a simple proof and enables us to show that strong solutions belong to
W ��s�RN� for arbitrarily large s � a result which was not proved in �FY��

Theorem � �b� is actually the regularity result in �HV�� We give a simple
bootstrap proof of this result�

Theorem � �c�� an extension of Theorem ��� in �FY�� is inspired by the
famous result by Berestycki and Lions ��BL�� on scalar equations�

In view of well known results for scalar equations one may expect that
hypotheses �H�� and �H�� in Theorem ��� of �FY� are too strong and that
the hypothesis relating the parameters p� q� �� � can be removed� In our next
theorem the existence of a solution of ��� is proved only under the standard
�mountain pass� assumptions on the nonlinearities� Theorem � relies on
a critical point theorem for strongly inde�nite functionals� due to Li and
Willem ��LW��� and used in �FY��

Theorem � Suppose �ii�� �iii� and �iv� hold� If f and g are radial in x�
then there exists a non�trivial weak radial solution of ����

It should be stressed that� even though Theorem � and Theorem � are
extensions of the results of de Figueiredo and Yang� our proofs are di�erent
from theirs�

Next we discuss the existence of a ground state of ���� that is� a solution
which minimizes the energy functional over the set of all nontrivial weak
solutions �see Section ����� We have the following result�
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Theorem � Under the conditions of Theorem �

�a� if all weak solutions of the system ��� are radial� then this system has a
ground state �

�b� the system �
�	u
 u  g�v�
�	v
 v  f�u�

���

has a ground state� provided there exist positive constants c and C such
that� for all t in the range of u and v�

cjtjp�� � tf�t� � Cjtjp���
cjtjq�� � tg�t� � Cjtjq���

���

with p and q satisfying ����

In �FY� de Figueiredo and Yang showed that the system�
�	u
 u  �v��q

�	v 
 v  �u��p x � RN ���

has a ground state for p and q both smaller than N��
N�� � Their result depends

on the particular form of the nonlinearities in ���� De Figueiredo and Yang
used a restrictive symmetry theorem of Gidas�Ni�Nirenberg type� adapted to
����

In Theorem � �a� we show that� any time we are able to prove that all
solutions of ��� are radial� we can get as a consequence the existence of a
ground state of the whole system ���� Recently a general symmetry result
for decaying positive solutions of cooperative elliptic systems was established
in �BS�� Together with Theorem � �a� it yields the existence of a ground state
for a large class of systems ���� including ���� Let us note that the system
��� is cooperative when f and g are non�decreasing in u and v respectively�

Theorem � �b� is a result independent of the symmetry of solutions� We
permit non�homogeneous nonlinearities and allow p and q to be in the whole
region under the critical hyperbola ����

It is possible to produce conditions on the more general system ���� under
which it is solvable� It is known for single equations that compactness is
regained when b�x��� or jf�x� t�j � h�x�jujp� with h�x�� � as jxj � ��
The case when b�x��� and both p and q are smaller than N��

N�� has already
been considered by Ding and Li ��DL��� It is not di�cult to see that the
proof of Theorem � can be adapted to the system ���� under the above
�compactness� conditions on b and f � We can even show that� when b�x�
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is unbounded� we can admit nonlinearities which are unbounded in x� This
may require a strengthening of the condition ���� For a single equation
unbounded nonlinearities were recently considered in �S��

Theorem � Suppose �ii� and �iv� hold�

inf
x�RN

b�x� � �� ���

jf�x� t�j � h��x�juj
p and jg�x� t�j � h��x�jvj

q� ����

where h� and h� are continuous functions� with p�q satisfying ����

�a� If hi�x�� � as x��� then �	� has a non�trivial �weak� solution�

�b� If
b�x��� as jxj � � ����

and there exist numbers � � � �� and R� � �� such that

hi�x� � Cb�x�
�
� for jxj � R�� i  �� �� ����

and
� � �

��p 
 ��� �



� � �

��q 
 �� � �
� � �

�

N
� ����

then �	� has a non�trivial solution�

The condition ���� is in general stronger than ���� It reduces to ��� when
���� holds for all � � � with R�  R����� The simpliest case in which ����
is equivalent to ��� is when h� and h� are bounded�

The hypotheses ��������� and ���� can be weakened as in �S�� We shall
omit the details here�

We �nish this section with several remarks concerning supercritical sys�
tems� In �SZ� Serrin and Zou proved the existence of positive radial solutions
of the system �

�	u  Hv�u� v�
�	v  Hu�u� v�

����

in the supercritical case� for example� if Hv�u� v�  vq and Hu�u� v�  up�
where the numbers p and q are required to satisfy

�

p 
 �



�

q 
 �
� � �

�

N
�

System ���� has a more general Hamiltonian structure than ���� In this
situation conditions �i� and �ii� are not needed� Furthermore� Serrin and Zou
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obtained their existence result under a weaker �compared to ���� hypothesis
on the growth of Hu and Hv�

A basic hypothesis in �SZ� is that the derivatives of H are non�negative �
a case in which ���� turns out to have solutions for supercritical p and q�
In contrast� in our work� these derivatives are negative for small values of
u and v� and we obtain solutions for p and q in the subcritical range� The
remarkable di�erence between these two cases has long been known for a
single equation�

� Proof of Theorem �

First of all we remark that the theorem is trivial if p � �
N��

�or q � �
N��

��

since then p��
p
� N

� and by the Sobolev embedding theorem W �� p��
p embeds

into Ls� for all s �
h
p��
p
��

�
� Then standard elliptic regularity theory �see

�GT�� applied to ��� gives the conclusion of Theorem �� Therefore we may
suppose that p and q are both strictly larger than �

N��
� Another way of

writing hypothesis ��� is p � ��� p��� with

p� 
�q 
N 
 �

�N � ��q � �

and� respectively� q � ��� q��� with q�  �p�N��
�N���p���

Since �u� v� is a strong solution� the Sobolev embedding theorem implies

that u � Ls for all s �
h
p��
p
� p�

i
� where

p� 
N�p
 ��

Np � ��p 
 ��
�

and� respectively� v � Ls for all s �
h
q��
q
� q�

i
� q� 

N�q���
Nq���q����

Next� we observe that either p� � p
� or q� � q
�� Indeed� p� � p
� is
equivalent to p � N��

N�� � whereas ��� prevents p and q from being both greater

or equal to N��
N���

Let for example q� � q 
 �� Then� since �i� and �iii� imply

jf�x� t�j � C �jtj
 jtjp� and jg�x� t�j � C �jtj
 jtjq� � ����

we have g�x� v� � L
q�
q � Then standard elliptic regularity theory implies that

u � W ��
q�
q � By the Sobolev embedding theorem u � Lp� � with

p� 
Nq�

Nq � �q�
�

�



We are going to set up an iteration �bootstrap� process which will �nally give
Theorem �� We remark that if at any stage of this process a denominator
should be non�positive� then either u or v belongs to Ls for arbitrarily large
s� and we can then conclude the proof with the help of elliptic regularity
theory�

We have p� � p 
 �� Indeed� this is equivalent to

p �
�N 
 ��q� �Nq

Nq � �q�
� P�

and will hold if p� � P � After a computation� this last inequality turns out

to be equivalent to q� � q 
 �� Then f�x� u� � L
p�
p and again by standard

elliptic theory v � W ��
p�
p � a space which is embedded into Lq�� with

q� 
Np�

Np � �p�
�

Next we claim that q� � q�� This is equivalent to

q� �
N�pq � ��

�p 
 �
 hq�p��

Then� considering the function hq�p�� we see that it is increasing on ���p��� so
hq�p� achieves its maximum at p�� It is easy to compute that hq�p��  q
��
which proves the claim� since we have supposed q� � q 
 ��

Now we can carry out our bootstrap argument� We have g�x� v� � L
q�
q

and therefore u � Lp�� with

p� 
Nq�

Nq � �q�
�

Here p� � p� is equivalent to q� � q�� Then v � Lq�� with q� � q� equivalent
to p� � p��

In such a way we construct two sequences fpng�n�� and fqng
�
n��� such that

pn�� 
Nqn

Nq � �qn
and pn�� � pn for n � ��

qn�� 
Npn��

Np � �pn��
and qn�� � qn for n � ��

If one of those two sequences has a limit� then the other sequence will have
a limit too� Suppose that pn � l� and qn � l� as n��� Then we have

l� 
Nl�

Nq � �l�
and l� 

Nl�

Np � �l�
�

�



from which we get

l� 
N�pq � ��

�p 
 �
�

Above we showed that this implies l� � q
� � a contradiction with the fact
that qn�� � qn for all n�

We conclude that both sequences tend to in�nity� Standard elliptic theory
yields u� v � W ��s for all s � �� The decay at in�nity is a consequence of
the Morrey theorem� Let us remark that� in case we suppose �ii� instead
of �i�� this decay is exponential� as was proved by de Figueiredo and Yang
�Theorem ��� in �FY��� Part �a� is proved�

Next� we prove part �b�� Take a weak solution �u� v�� We recall that
u � Lp�� and v � Lq��� From the equations ��� and the hypotheses �ii� and

�iii� we have u � W
�� q��

q

loc and v � W
�� p��

p

loc � We need to be able to carry out
a bootstrap argument for such u and v� As in part �a� we get u � Lq�

loc and
v � Lp�

loc� If we set p�  q 
 � and q�  p 
 �� it is elementary to see that
each one of the inequalities p� � p� and q� � q� is equivalent to ���� Then
through a procedure similar to the one we employed in the proof of part �a�
we obtain u � L

qn
loc and v � L

pn
loc� where

pn�� 
Nqn

Np � �qn
and qn�� 

Npn

Nq � �pn
����

It is easy to see that the sequences pn and qn are increasing�
If we suppose that �u� v� is not a strong solution then at least one of these

two sequences will be bounded� Then it will have a limit and by ���� the
other sequence will have a limit too� Setting l�  limpn we get� as in the
proof of part �a� l� � q 
 �� which is a contradiction�

Finally� let us prove part �c�� Without loss of generality we suppose that
s � � �if s � � then necessarily t � ��� Then� by the Strauss radial lemma
�see for ex �BL��� u � Ls� for p 
 � � s � �� By elliptic theory v � W ��s�
for p 
 � � s � �� Then v � Ls� for q 
 � � s � �� so u � W ��s� for
q 
 � � s � �� By embedding theory the solutions belong to C���� for
� � � � �� and tend to zero at in�nity�

To prove that u� v � C� we can use the argument of Berestycki and Lions
��BL��� Let us sketch it here� applied to the function u� Since u is radial
�u  u�r�� r  jxj�� the �rst equation in ��� can be written as

d

dr
�rN��u��r��  rN��g��r�� ����

where g��r�  g�v�r��� u�r�� Integrating ���� from � to r� after a change of
variables we obtain

u��r�

r
��

g����

N
as r� ��

�



By ����� u � C�� The exponential decay of u and its �rst derivatives fol�
lows from Theorem ��� in �FY�� whence the exponential decay of the second
derivatives is a consequence of ����� Theorem � is proved� �

� Proofs of the Existence Results

��� Proof of Theorem �

In the proof of Theorem � we shall use the same variational setting as in
�FY�� We shall search for critical points of the functional

��z�  ��u� v� 

Z
RN

AsuAtv dx�

Z
RN

F �x� u� dx�

Z
RN

G�x� v� dx

de�ned on the space E  Hs
r �R

N� � H t
r�R

N�� Here Hs
r is the subspace of

all radial functions in the fractional Sobolev space Hs� s and t are positive
real numbers� such that s 
 t  �� and As � Hs �� L� denotes a canonical
isomorphism �see for example �FY� for a de�nition of As�� Let us note that
kukHs  kAsukL�� On E we consider the norm

k�u� v�k�E  kuk�Hs 
 kvk�Ht�

We choose � � s � �� such that

s �
N

�
� �� s �

N

�
�

N�p � ��

��p 
 ��
� s �

��q 
 �� �N�q � ��

��q 
 ��
�

and put t  � � s� Such a choice of s is possible because of ���� Then
p 
 � � �N

N��s and q 
 � � �N
N��t� which implies� by a result of Lions ��L����

that the embeddings Hs
r �� Lp�� and H t

r �� Lq�� exist and are compact�
The derivative of � is given by

� ���z�� 	 �

Z
RN

AsuAt

As�Atv dx�

Z
RN

f�x� u�� dx�

Z
RN

g�x� v�
 dx

for any z  �u� v� � E and any 	  ���
� � E� Taking 	  ��� �� and
	  ��� 
� we obtain the weak formulation of ���� In other words� critical
points of � are weak solutions of ����

As in �FY�� we shall use an in�nite dimensional linking theorem due to Li
and Willem �see �LW��� Let us recall this result for the reader�s convenience�

Let E� and E� be Hilbert spaces with bases feki g
�
i��� k  �� �� Let us

note E  E� � E� and En  E�
n � E�

n � where E�
n  spanf�e�i � e

�
i �g

n
i��

and E�
n  spanf�e�i ��e

�
i �g

n
i��� Putting E�  ��n��E

�
n �resp� E��� we have

E  E� � E��

�



Theorem � �Li�Willem� Suppose that � � C��E�R� satis�es the following
assumptions

�LW�� � has a local linking at zero� that is� for some r � �

��z� � � if z � E� 	 fz � E � kzkE � rg and
��z� � � if z � E� 	 fz � E � kzkE � rg �

�LW�� � is bounded on bounded subsets of E �

�LW�� for every n

��z���� as z belongs to E�
n � E� and kzkE �� �

�LW�� every sequence fzng�n�� 
 E such that

zn � En� ����

j��zn�j � const� ����

j � ���zn�� 	 � j � o���k	kE for 	 � En ����

is precompact in the strong topology of E�

Then � has a nontrivial critical point�

In our case we write E  E� � E� with

E�  f�u�A�tAsu� j u � Hs
rg �

E�  f�u��A�tAsu� j u � Hs
rg �

Indeed� for any �u� v� � E we have

�u� v�  �w�� A
�sAtw�� 
 �w���A

�tAsw���

where

w� 
u
A�sAtv

�
� Hs and w� 

u�A�sAtv

�
� Hs�

We now check that the hypotheses of the theorem of Li and Willem are
satis�ed�

Proof of �LW��� From �ii� and �iii� it follows that for every � � � there
exists C� � �� such that

jf�x� t�j � �jtj
 C�jtjp�

jF �x� t�j � �
jtj�

� 
 C�jtjp���
����

��



and the same for g and G� Let z  �u�A�tAsu� � E�� Then

��z�  kAsuk�L� �

Z
RN

F �x� u� dx�

Z
RN

G�x�A�tAsu� dx

� kuk�Hs �
�

�
kuk�L� �Ckukp��

Lp��
�

�

�
kuk�Hs�t � CkA�tAsuk

q��
Lq��

�
�

�
kuk�Hs � Ckukp��Hs �CkA�tAsukq��

Ht

�
�

�
kzk�E � Ckzkp��E � Ckzkq��E

� Ckzk�E

provided that kzkE is su�ciently small� Here� and in the sequel� C denotes
a constant whose value may change from line to line�

It is obvious that ��z� � ��
�kzk

�
E for z � E�� This proves �LW���

It is also straightforward to check �LW�� � we use ���� and the choice of
s and t�

Proof of �LW��� By integrating ��� and by using ��� we see that

F �x� t� � d��x�jtj
� and G�x� t� � d��x�jtj

��

where d��x� and d��x� are positive bounded functions�
Let z � E�

n � E�� Then z  �u� v�  z� 
 z�  �u�� A�tAsu�� 

�u���A�tAsu�� for some u�� u� � Hs� We have

��z�  ku�k�Hs � ku�k�Hs �

Z
RN

F �x� u� dx �

Z
RN

G�x� v� dx

� �
�

�
kz�k�E 


�

�
kz�k�E �

Z
RN

d��x�juj
� dx�

Z
RN

d��x�jvj
� dx�

For any z  �u� v� � E we set

�z� 

�Z
RN

d��x�juj
� dx

� �
�




�Z
RN

d��x�jvj
� dx

� �
�

�note that � � � � minfp
 �� q 
 �g�� It is easily checked that  is a norm
on E� We now use the following simple fact�

Proposition � Let E be a Hilbert space with E  E� � E�� and let  be a
norm on E� Then there exists a norm 
 on E�� such that for any z� � E�

we have

�z�� � �z��

for every z  z� 
 e�� with e� � E��

��



Proof� Indeed� one can take


�z��  inf
�
�z� � z  z� 
 e�� e� � E�

�
and check that 
 is a norm on E�� �

Hence

��z� � �
�

�
kz�k�E 


�

�
kz�k�E � ���� ��z���

� �
�

�
kz�k�E 


�

�
kz�k�E � ����

�

�z��

��
� ����

We see that �LW�� follows from ����� since 
 and k�kE are equivalent on the
�nite dimensional space E�

n �recall that � � �� �

Proof of �LW��� Take a sequence fzng� zn  �un� vn�� for which ����� ����
and ���� hold�

We recall that the derivative of � is given by

� ���z�� 	 �

Z
RN

AsuAt

As�Atv dx�

Z
RN

f�x� u�� dx�

Z
RN

g�x� v�
 dx

for any z  �u� v� � E and any 	  ���
� � E� We shall make two
special choices of 	 in ����� from which we shall derive the boundedness of
the sequence fzng�

Lemma � If z  �u� v� � En then �z  �A�sAtv�A�tAsu� � En�

Proof� Indeed

z  �u� v� 
�
u�� A�tAsu�

	


�
u���A�tAsu�

	


�
u� 
 u�� A�tAs�u� � u��

	
�

and hence

�z 
�
u� � u�� A�tAs�u� 
 u��

	


�
u�� A�tAsu�

	

 �����

�
u���A�tAsu�

	
� �

We now put 	  �A�sAtvn� A
�tAsun� into ����� Then ���� becomes

� ���zn�� 	 �  kunk�Hs 
 kvnk�Ht �
R
RN

f�x� un�A�sAtvn dx

�
R
RN

g�x� vn�A
�tAsun dx

� o���k	kE  o���kznkE�

��



The hypothesis �ii� permits us to �x � � � such that

jf�x� t�j �
�

�
jtj and jg�x� t�j �

�

�
jtj�

for jtj � �� By �iii� we have

jf�x� t�j � Cjtjp and jg�x� t�j � Cjtjq�

for jtj � ��
With our choice of s and t� we obtain from �����

kznk
�
E � o���kznkE 


Z
junj��

jf�x� un�jjA
�sAtvnj dx




Z
jvnj��

jg�x� vn�jjA
�tAsunj dx


Z
junj��

jf�x� un�jjA
�sAtvnj dx




Z
jvnj��

jg�x� vn�jjA
�tAsunj dx

� o���kznkE 

�

�

�
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�
L� 
 kvnk

�
Ht�s

	



�

�

�
kvnk

�
L� 
 kunk

�
Hs�t

	



�Z
junj��

jf�x� un�j
�� �

p dx

� p

p��

kA�sAtvnkLp��




�Z
jvnj��

jg�x� vn�j
�� �

q dx

� q

q��

kA�tAsunkLq��

� o���kznkE 

�

�
kznk

�
E 
 C

�Z
RN

unf�x� un� dx

� p

p��

kvnkHt


C

�Z
RN

vng�x� vn� dx

� q

q��

kunkHs

� o���kznkE 

�

�
kznk

�
E 
 CA

p

p��
n kznkE 
 CB

q

q��
n kznkE�

where we have set

An 

Z
RN

unf�x� un� dx and Bn 

Z
RN

vng�x� vn� dx�

Hence

kznkE � o��� 
 CA
p

p��
n 
 CB

q

q��
n � ����

The second choice of 	 we make in ���� is 	  zn� Then� by ���� and ����
we obtain�

��
�

�

�
An 


�
� �

�

�

�
Bn � ���zn�� � ���zn�� zn �

� C 
 o���kznkE�

��



Combining this with ����� we get

An 
Bn � C 
 o��� 
 o���


A

p

p��
n 
B

q

q��
n

�
�

from which it follows that the sequences fAng and fBng are bounded� Then�
by ����� fzng is bounded in E�

We can now extract a weakly convergent subsequence of fzng �from now
on� any time we extract a subsequence we shall keep the notation of the
original sequence�� Let un �� u weakly in Hs and vn �� v weakly in H t�
It follows that fung �resp� fvng� converges almost everywhere in RN and
strongly in Lr

loc� for � � r � �N
N��s

�resp� for � � r � �N
N��t

��
Now it is easy to see that � ���zn�� �	 � converges to � ���z�� �	 �� for all

�	 � C�
c �C�

c � Then� by density� � ���zn�� 	 � converges to � ���z�� 	 � for
all 	 � E� We �x m � � and take 	 � Em� Then� passing to the limit in ����
�note that ���� holds for all n � m�� we obtainZ

RN

AsuAt
 
As�Atv dx�

Z
RN

f�x� u�� dx�

Z
RN

g�x� v�
 dx  �� ����

and this inequality holds for all 	 � Em and all m � �� Since ��m��Em is
dense in E� ���� holds for all 	 � E� Putting 	  �A�sAtv�A�tAsu� into
����� we get

kzk�E �

Z
RN

f�x� u�A�sAtv dx�

Z
RN

g�x� v�A�tAsu dx  �� ����

On the other hand� putting 	  �A�sAtvn� A
�tAsun� into ���� yields

kznk
�
E �

Z
RN

f�x� un�A
�sAtvn dx�

Z
RN

g�x� vn�A
�tAsun dx  o���� ����

so �LW�� will follow from ���� and ����� provided we show that the second
and the third terms of ���� converge to the second and the third terms of
���� respectively� For instance� let us prove the convergence of the second
term�
Claim�Z

RN

f�x� un�A
�sAtvn dx ��

Z
RN

f�x� u�A�sAtv dx as n���

Proof� First we note thatZ
RN

jf�x� u�jjA�sAt�vn � v�j dx �� � as n���

��



This can be seen easily by using ����� the Holder inequality and the fact
that vn �� v weakly in H t implies A�sAtvn �� A�sAtv weakly in Hs and
strongly in Lp�� �recall that we restricted ourselves to radial functions�� Next�
splitting the integral inside and outside a ball BR  B��� R�� we see that

In 

Z
RN

jf�x� un�� f�x� u�jjA�sAtvnj dx

� kf�x� un� � f�x� u�kp��

L
p��
p �BR�

kA�sAtvnkLp��


 �

Z
jxj�R

�junj
 juj�jA
�sAtvnj dx


C

Z
jxj�R

junj
pjA�sAtvnj dx
 C

Z
jxj�R

jujpjA�sAtvnj dx

� o��� 
 C�
 Ckun � ukpLp�� 
 Ckukp
Lp���RNnBR�

�

It follows that In � �� since the last expression can be made arbitrarily
small� by taking � su�ciently small and n� R su�ciently large� Theorem �
is proved�

Remark �� It is clear from the above proof that the usual Palais�Smale
sequences for �� de�ned on the whole space Hs � H t �without restriction
to radial functions�� are bounded in E� We shall use this fact in the next
section�

��� Proof of Theorem �

We have to show that

inf f��z� j z � E� z � ��� �� is a solution of ���g

is attained�
Let us �rst show that the above in�mum is �nite �and actually non�

negative�� We use the weak formulation of ���� that isZ
RN

AsuAt
 dx�

Z
RN

g�x� v�
 dx  � for all 
 � H t ����

Z
RN

AtvAs� dx�

Z
RN

f�x� u�� dx  � for all � � Hs� ����

If z  �u� v� is a nontrivial solution of ���� by taking 
  v and �  u in ����
and ����� we immediately see that

��z� 

Z
RN

�
�

�
uf�x� u�� F �x� u� 


�

�
vg�x� v��G�x� v�

�
dx ����

��



�

�
�
� �

�Z
RN

�F �x� u� 
G�x� v�� dx � ��

for any �u� v� � ��� ���
The next step in the proof is to derive a positive lower bound for the

norms of the nontrivial solutions of ���� Let z  �u� v� be one such solution�
Putting �  A�sAtv into ���� and 
  A�tAsu into ����� we obtain

kzk�E 

Z
RN

f�x� u�A�sAtv dx


Z
RN

g�x� v�A�tAsu dx

�
�

�

Z
RN
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 jvjjA�tAsuj

	
dx
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�
�
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�
kuk�L� 
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 kuk

�
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 kvk�Ht�s

	

Ckukp

Lp��kA
�sAtvkLp�� 
 Ckvkq

Lq��
kA�tAsukLq��

�
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�
kzk�E 
 CkukpHskvkHt 
 CkukHskvkq

Ht

�
�

�
kzk�E 
 Ckzkp��E 
 Ckzkq��E �

which implies
kzkE � const � �� ����

Next we take a sequence of nontrivial solutions fzng� such that

��zn� �� inf f��z� j z � E� z � ��� �� is a solution of ���g �

Obviously fzng is a Palais�Smale sequence� Hence it is bounded in E �see
Remark � at the end of the previous section��

In case �a� the sequence fzng is a Palais�Smale sequence in Hs
r � H t

r�
Then the proof of Theorem � implies this sequence has a strongly convergent
subsequence� Hence� by ����� its limit is a nontrivial solution and therefore
a ground state�

In case �b� we extract a weakly convergent subsequence of fzng� Let fung
converges to a function u weakly in Hs and fvng converges to a function v

weakly in H t� Then fung and fvng converge almost everywhere in RN and
strongly in Lr

loc for � � r � �N
N��s �respectively for � � r � �N

N��t�� We use
the fact that un and vn are exact solutions� that is�R

RN
AsunA

t
 dx �
R
RN

g�vn�
 dx  � for all 
 � H tR
RN

AtvnA
s� dx�

R
RN

f�un�� dx  � for all � � Hs�
����

��



By taking � and 
 smooth with compact supports in ����� we see that z 
�u� v� is also a solution of ����

Since
�
�tf�t� � �

�tf�t�� F �t� �


�
� �

�
�

�
tf�t��

�
�
tg�t� � �

�
tg�t��G�t� �



�
�
� �

�

�
tg�t��

����

by putting z  zn in ���� we see that

��zn�  jjjunjjj
p��
Lp��


 jjjvnjjj
q��
Lq��

where� by ��� and ����� jjj�jjjLp�� and jjj�jjjLq�� are equivalent to the standard
norms in Lp�� and Lq��� Hence

��z� � lim inf
n��

��zn� ����

since un �� u in Lp�� and vn �� v in Lq���
We have not shown that z is a nontrivial solution� Assume that z  ��� ���

Without loss of generality we suppose that s � � �if s � � then necessarily
t � ��� We claim that ���� prevents fung from converging strongly to zero in
Lp��� Indeed� if un � � in Lp��� then since �un� vn� satisfy ���� the standard
elliptic theory implies vn � � in Lp� � with p� de�ned as in the proof of
Theorem � �b�� Then repeating the bootstrap argument we used in the proof
of Theorem � �b�� we obtain a contradiction with �����

Next we apply a standard concentration�compactness lemma due to Lions
�see �L��� Since un �� � in Lp�� we can �nd a sequence of points xn � R

N

and constants R�� � �� such thatZ
BR�xn�

junj
� dx � ��

Set ezn  �fun� evn�� with fun���  un�� 
 xn� and evn  vn�� 
 xn�� Then ezn is
itself a solution of ���� satisfying �� ezn�  ��zn�� Hence ezn �� ez in E� On
the other hand Z

BR���

jfunj� dx � �

preventsfun � � strongly in L�
loc� so ez � ��� ��� We can then repeat the proof

of ���� for the sequence f ezng� to conclude that ez is a nontrivial solution and
a ground state�

��



��� Proof of Theorem �

We sketch the proof of this theorem�
First let us adjust the variational setting� Let Hs

b�x�� � � s � �� be the
space of functions u� such that

b
�
� �x�u � L��RN� and

u�x�� u�y�

jx� yjs�
N
�

� L��RN �RN��

One can also de�ne Hs
b�x� by interpolation between the spaces

L�
b�x� 

�
u �

Z
RN

b�x�u� dx ��

�

and

H�
b�x� 

�
u �

Z
RN

jruj� 
 b�x�u� dx ��

�
�

The space H�
b�x� is the function space which was used for studying the case

of a single equation in �R���C�� �BW� and �S�� The space Hs
b�x� is its fractional

equivalent�
It is clear that Hs

b�x� is continuously embedded into Hs� It is not di�cult

to see that Hs
b�x� is compactly embedded into L� and therefore into Lr for all

� � r � �N
N��s � The proof of this fact is very much the same as in the case

s  � �see �C�� see also �S� for a more general result��
Let T  �	
b�x� � H�

b�x� 
 L� �� L� and put As  T
s
� � Hs

b�x� �� L�

�see �FY� for a detailed de�nition of As�� In this situation weak solutions of
��� will be critical points of � de�ned on Hs

b�x� �H t
b�x�� It is possible to use

the theorem of Li and Willem in this setting� We shall omit the details here
since similar computations can be found in �S�� When proving statement �b��
the point is that we have

Z
RN

h��x�juj
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�Z
RN

b�x�u� dx
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�
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RN
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����
�

�
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RN
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q�� dx � C

�Z
RN

b�x�v� dx
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�
�Z
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�

N
�

by �����
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Once we have the proof in Section ���� the statement �a� can be obtained
in the following way� We can repeat the proof of Theorem �� the only di�ering
point being the Claim at the end of Section ���� Here we use the fact that
the sequences fung and fvng are bounded which� combined with ����� implies
the existence of R � � such that the di�erence between the integrals in the
Claim� overRNnBR� is smaller than any given number� We can then conclude
by using the fact that Hs is compactly embedded into Lr

loc for � � r � �N
N��s

�

Remark �� If ���� holds with di�erent �� and ��� one can make ���� more
precise by replacing it with

�� � �

���p 
 ��� �



�� � �

���q 
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� ��

�

N
�

� Some Open Problems

As we already mentioned� the theory of scalar elliptic equations is far more
advanced than the theory of elliptic systems� Many interesting questions�
which have been answered for scalar equations� are still open for systems�
For example� the general radial case�

�	u  g�r� u� v�
�	v  f�r� u� v�� x � RN�

has not been studied� nor has the case�
�	u
 u  h��x�jvjq��v
�	v 
 v  h��x�jujp��u� x � RN�

with hi�x�� � as jxj � � and hi�x� � ��
One may also search for solutions of the �perturbed system��

���	u
 V �x�u  jvjq��v
���	v 
 V �x�v  jujp��u� x � RN�

for small �� In the case of a scalar equation this problem has been stud�
ied extensively during the last �fteen years �see for example �DF� and the
references therein��

We intend to pursue these questions in the future�
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