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1 Introduction and Main Results

In this paper we study the following elliptic system of Hamiltonian type

{—Au—l—b(:z;)u = g(x,v) (1)
—Av+b(z)v = f(x,u), v e RN,

where N > 3 and f,g : R¥ xR — R, b : RY — R are given continuous
functions. We suppose that f and g are subcritical (see below).

Systems of this kind in a bounded domain, even with more general non-
linearities, were studied in a number of papers (see [CFM], [CM], [FF], [HV]
and the references in these works ; supercritical systems were treated in [SZ],
see the remarks at the end of this section). The case of the whole space was
first considered in a recent paper by de Figueiredo and Yang [FY]. They
studied the system

—Au+u = g(x,v)
{—Av—l—v = f(:z;,u), :L'E]RN, (2)

proving under some conditions the existence of a strong radial solution (The-
orem 5.1 in [FY]). They also showed that strong solutions of (2) decay at
infinity, together with their derivatives (Theorem 2.1 in [FY] ; see below for
a definition of a strong solution).

Studying Theorems 2.1 and 5.1 in [FY], it appeared to us that they
require a number of hypotheses which seem too strong, when compared to the
well-known conditions under which existence and regularity of solutions of a
scalar equation have been proved. One of the goals of this paper is to extend
the results of de Figueiredo and Yang (Theorems 1 and 2 below), showing
that these results hold under the hypotheses which represent the natural
counterparts for (1) of the classical “mountain-pass” conditions, introduced
in [AR] for a scalar equation.

We shall use the following assumptions.
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(1) there exist positive constants C' and 4, such that

|f(x,0)] < Clt|] and |g(z,t)] < CJt| forall x € RN and [¢t| <4 ;
(ii) for all z € RY

[(@,0) = g(x,0) =0,
PGS0 BT (GO N

t—0 t t—0 t

(iii) there exist positive constants C,p and ¢, such that for all + € RY and

telR
[z, )] < C(+][t), 3)
(2, t)] < C(L+[t]7).
We suppose that p and ¢ are both greater than one and satisfy the
inequality
1 N 1 51 2 )
p+1 qg+1 N’

for all z € RY and t € R\ {0}; here, as usual, F'(z,?) fo
and G(x,1) fo x,s)ds.

In the literature, the following terminology is common. A pair (u,v) is
said to be a strong solution of (2), provided it satisfies (2) almost everywhere

and u € WZ’%, v E W (all function spaces are understood to be taken
over RY). A pair (u,v) is called a weak solution of (2) if it satisfies the weak
formulation of (2) and (u,v) € H® x H', where s and ¢ are suitably chosen
positive numbers (see Section 3.1 for a precise definition). In particular, s
and ¢ are chosen so that H?® is embedded into LP*! and H' is embedded into
Lo+t

We say a function is radial (in «), provided it depends only on the distance
to a fixed point in RY.

In our first theorem we establish some regularity and decay properties of
the solutions of (2).



Theorem 1 (a) Suppose (i) and (iii) hold. Then strong solutions of (2)
belong to WQ’S(RN)Z, for all 2 < s < oco. In particular, the functions u and

v decay at infinity, together with their derivatives.
(b) Suppose (i) and (iii) hold. Then weak solutions of (2) belong to

VV;;(RN) for all 2 < s < 0.
(¢) Suppose (ii) and (iii) hold. Then weak radial solutions of (2) belong
to C*(RN). Furthermore, together with their derivatives of first and second

order, they converge exponentially to zero at infinity.

The inequality (4) describes the region in the plane where the couple (p, ¢)
should be situated, so that variational techniques can be used for solving (1).
This region is bounded from above by the so-called “critical” hyperbola, a
notion first introduced in [CFM] and [HV]. It expresses the fact that one of
the numbers p and g can be greater than the critical exponent 3 N+2 , provided
the other is small enough to compensate (note that, when p = ¢, ( ) reduces
to p < £2). It is natural to expect that in Theorem 2.1 of [FY] the condition

that both p and ¢ be smaller than N"'g can be avoided, as was conjectured by
de Figueiredo and Yang. This is the content of our Theorem 1 (a), where the
condition (H1) of [FY] is also removed. We use a bootstrap technique, which
gives a simple proof and enables us to show that strong solutions belong to
W2s(RYN) for arbitrarily large s — a result which was not proved in [FY].

Theorem 1 (b) is actually the regularity result in [HV]. We give a simple
bootstrap proof of this result.

Theorem 1 (c), an extension of Theorem 2.3 in [FY], is inspired by the
famous result by Berestycki and Lions ([BL]) on scalar equations.

In view of well known results for scalar equations one may expect that
hypotheses (H3) and (H4) in Theorem 5.1 of [FY] are too strong and that
the hypothesis relating the parameters p, ¢, a, 3 can be removed. In our next
theorem the existence of a solution of (2) is proved only under the standard
“mountain pass” assumptions on the nonlinearities. Theorem 2 relies on
a critical point theorem for strongly indefinite functionals, due to Li and

Willem ([LW]), and used in [FY].
Theorem 2 Suppose (ii), (iii) and (iv) hold. If f and g are radial in x,

then there exists a non-trivial weak radial solution of (2).

It should be stressed that, even though Theorem 1 and Theorem 2 are
extensions of the results of de Figueiredo and Yang, our proofs are different
from theirs.

Next we discuss the existence of a ground state of (2), that is, a solution
which minimizes the energy functional over the set of all nontrivial weak
solutions (see Section 3.2). We have the following result.
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Theorem 3 Under the conditions of Theorem 2

(a) if all weak solutions of the system (2) are radial, then this system has a
ground state ;

(b) the system

—Au+u = g(v)
{—Av—l—v = f(u) (6)

has a ground state, provided there exist positive constants ¢ and C' such
that, for all t in the range of u and v,

ottt < (1) < Ot (1)
ottt < tg(t) < O,

with p and q satisfying (4).
In [FY] de Figueiredo and Yang showed that the system

—Autu = (vF) (8)
~Av+ov = (ut)  zeRY
has a ground state for p and ¢ both smaller than % Their result depends

on the particular form of the nonlinearities in (8). De Figueiredo and Yang
used a restrictive symmetry theorem of Gidas-Ni-Nirenberg type, adapted to
(8).
In Theorem 3 (a) we show that, any time we are able to prove that all
solutions of (2) are radial, we can get as a consequence the existence of a
ground state of the whole system (2). Recently a general symmetry result
for decaying positive solutions of cooperative elliptic systems was established
in [BS]. Together with Theorem 3 (a) it yields the existence of a ground state
for a large class of systems (2), including (8). Let us note that the system
(2) is cooperative when f and g are non-decreasing in u and v respectively.

Theorem 3 (b) is a result independent of the symmetry of solutions. We
permit non-homogeneous nonlinearities and allow p and ¢ to be in the whole
region under the critical hyperbola (4).

It is possible to produce conditions on the more general system (1), under
which it is solvable. It is known for single equations that compactness is
regained when b(x) — oo or |f(x,t)] < h(x)|ul?, with h(z) — 0 as || — oo.
The case when b(x) — oo and both p and ¢ are smaller than % has already
been considered by Ding and Li ([DL]). It is not difficult to see that the
proof of Theorem 2 can be adapted to the system (1), under the above
“compactness” conditions on b and f . We can even show that, when b(x)



is unbounded, we can admit nonlinearities which are unbounded in x. This
may require a strengthening of the condition (4). For a single equation
unbounded nonlinearities were recently considered in [S].

Theorem 4 Suppose (ii) and (iv) hold,

ierﬂleN b(x) > 0, (9)
|f(z, )] < hy(a)|ul? and lg(x, )| < ha(2)|v]?, (10)

where hy and hy are continuous functions, with p,q satisfying (4).

(a) If hi(z) = 0 as & — oo, then (1) has a non-trivial (weak) solution.
(6) If
b(x) > 00 as || — o0 (11)
and there exist numbers 1 < a < oo and Rq > 0, such that
hi(z) < Cbx)=  for |2| > Ro,  i=1,2, (12)
and
a—1 n a—1 o1 z
alp+1)—2 alg+1)-2 N’

then (1) has a non-trivial solution.

(13)

The condition (13) is in general stronger than (4). It reduces to (4) when
(12) holds for all & > 1 with Ry = Ro(a). The simpliest case in which (13)
is equivalent to (4) is when h; and hs are bounded.

The hypotheses (10),(11) and (12) can be weakened as in [S]. We shall
omit the details here.

We finish this section with several remarks concerning supercritical sys-
tems. In [SZ] Serrin and Zou proved the existence of positive radial solutions
of the system

(14)

S

in the supercritical case, for example, if H,(u,v) = v? and H,(u,v) = u®,
where the numbers p and ¢ are required to satisfy

1 1 2
- < _
g+1 — N

S _I_

p+1
System (14) has a more general Hamiltonian structure than (1). In this
situation conditions (i) and (ii) are not needed. Furthermore, Serrin and Zou
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obtained their existence result under a weaker (compared to (5)) hypothesis
on the growth of H, and H,.

A basic hypothesis in [SZ] is that the derivatives of H are non-negative —
a case in which (14) turns out to have solutions for supercritical p and g.
In contrast, in our work, these derivatives are negative for small values of
u and v, and we obtain solutions for p and ¢ in the subcritical range. The
remarkable difference between these two cases has long been known for a
single equation.

2 Proof of Theorem 1

First of all we remark that the theorem is trivial if p < 25 (or ¢ < 7%5),

N-2
since then % > % and by the Sobolev embedding theorem W25 embeds

into L*, for all s € {%, oo> Then standard elliptic regularity theory (see

[GT]) applied to (2) gives the conclusion of Theorem 1. Therefore we may

suppose that p and ¢ are both strictly larger than —2-. Another way of

N-2
writing hypothesis (4) is p € (1,p), with
o 2q+N+2
(N =2)g—2

and, respectively, ¢ € (1,¢"), with ¢° = %.

Since (u,v) is a strong solution, the Sobolev embedding theorem implies
that w € L* for all s € {%,pl}, where

N+
 Np—2(p+1)

1

_ _N(g+1)
v = Ng=2(g+1)
Next, we observe that either py > p4+1 or ¢; > g+ 1. Indeed, p; > p+1 is

equivalent to p < Y2 whereas (4) prevents p and q from being both greater

N-2>
or equal to %

Let for example ¢; > g + 1. Then, since (i) and (iii) imply
[f(z, )] < C([H+[t]7)  and  [g(z,£)] < O[]+ [1]), (15)

and, respectively, v € L* for all s € {%7 ¢

we have g(x,v) € L¢. Then standard elliptic regularity theory implies that
we W, By the Sobolev embedding theorem w € LP?, with
Naqi

b2 = Nq—Q%'
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We are going to set up an iteration (bootstrap) process which will finally give
Theorem 1. We remark that if at any stage of this process a denominator
should be non-positive, then either u or v belongs to L* for arbitrarily large
s, and we can then conclude the proof with the help of elliptic regularity

theory.
We have py > p 4+ 1. Indeed, this is equivalent to
N+2)py — N
< (N +2)q q_. P,
Nqg—2q

and will hold if p® < P. After a computation, this last inequality turns out
b
to be equivalent to ¢1 > ¢+ 1. Then f(z,u) € L% and again by standard
b
elliptic theory v € W2’72, a space which is embedded into L%, with

Np,

= Np—sz'

Next we claim that ¢z > ¢;. This is equivalent to

N(pg—1
0> TP ),
Then, considering the function h,(p), we see that it is increasing on [1,p"], so
h,(p) achieves its maximum at p°. It is easy to compute that h,(p") = ¢+1,
which proves the claim, since we have supposed ¢; > ¢ + 1.
Now we can carry out our bootstrap argument. We have g(x,v) € L'
and therefore u € LP? with

Ngy

b= Nq—Q%'

Here p3 > p, is equivalent to ¢ > ¢;. Then v € L%, with g3 > g2 equivalent

to p3 > pa.
In such a way we construct two sequences {p, }°, and {g,}>2,, such that

Naq,
ht] = ———— and w1 > P for > 2
Pn+1 Nq_Qqn Pr+1 P 4y
Npp
qn_H:A and  @uy1 > g, for n > 1.
Np = 2ppta

If one of those two sequences has a limit, then the other sequence will have
a limit too. Suppose that p, — [; and ¢, — I3 as n — co. Then we have
NZQ Nll

h=—"" " and lp=-——"_
! Nq—2l2 a 2 ]\/vp—Qll7



from which we get

9 =

N(pg—1)

2p+ 2 '
Above we showed that this implies [, < g+ 1 — a contradiction with the fact
that ¢,11 > ¢, for all n.

We conclude that both sequences tend to infinity. Standard elliptic theory
yields u,v € W2 for all s < co. The decay at infinity is a consequence of
the Morrey theorem. Let us remark that, in case we suppose (ii) instead
of (i), this decay is exponential, as was proved by de Figueiredo and Yang
(Theorem 3.1 in [FY]). Part (a) is proved.

Next, we prove part (b). Take a weak solution (u,v). We recall that
u € [Pt and v € L. From the equations (2) and the hypotheses (ii) and

g+l ptl

27 27
(iii) we have u € W, _? and v € W, " . We need to be able to carry out

C

a bootstrap argument for such u and v. As in part (a) we get u € L' and

ve L] If weset pp=¢+1 and go = p+ 1, it is elementary to see that
each one of the inequalities p; > py and ¢; > o is equivalent to (4). Then
through a procedure similar to the one we employed in the proof of part (a)

we obtain u € L]" and v € L} where

_ Ngq, Np,
Pt = Np — 24, Nq —2p,

It is easy to see that the sequences p, and g, are increasing.

and  quy = (16)

If we suppose that (u,v) is not a strong solution then at least one of these
two sequences will be bounded. Then it will have a limit and by (16) the
other sequence will have a limit too. Setting [y = limp, we get, as in the
proof of part (a) 4 < ¢+ 1, which is a contradiction.

Finally, let us prove part (c¢). Without loss of generality we suppose that
s > 1 (if s < 1 then necessarily t > 1). Then, by the Strauss radial lemma
(see for ex [BL]), u € L*, for p+ 1 < s < co. By elliptic theory v € W2,
forp+1<s<oo. Thenv € L* for g+ 1 < s < oo, so u € W%*, for
g+ 1 < s < co. By embedding theory the solutions belong to C':*, for
0 < a <1, and tend to zero at infinity.

To prove that u,v € C? we can use the argument of Berestycki and Lions
([BL]). Let us sketch it here, applied to the function w. Since u is radial
U =

(

u(r),r = |x|), the first equation in (2) can be written as

LV () = ), (17)

where g1(r) = g(v(r)) — u(r). Integrating (17) from 0 to r, after a change of
variables we obtain

!
0
u(?“)_>_g1j(v) as r — 0.
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By (17), w € C*. The exponential decay of u and its first derivatives fol-
lows from Theorem 3.1 in [FY], whence the exponential decay of the second
derivatives is a consequence of (17). Theorem 1 is proved. O

3 Proofs of the Existence Results

3.1 Proof of Theorem 2

In the proof of Theorem 2 we shall use the same variational setting as in
[FY]. We shall search for critical points of the functional

B(z) = Bu,v) = /RN F(au)de _/RN G(z,v) da

defined on the space £ = H*(RY) x H!(RY). Here H? is the subspace of
all radial functions in the fractional Sobolev space H*, s and t are positive
real numbers, such that s +¢ = 2, and A* : H® — L? denotes a canonical
isomorphism (see for example [FY] for a definition of A*). Let us note that
|||z = ||A®u||zz. On E we consider the norm

G )15 = Tl + ol

We choose 0 < s < 2, such that

AfuAdlv doe — /
R

N _ _ _
sV 2—5<E, Np—1) _ _Het+1—Nig 1)7
2 27 2(p+1) 2(q+1)
and put t = 2 — s. Such a choice of s is possible because of (4). Then

p+1< Nziv% and ¢+ 1< NziVQt, which implies, by a result of Lions ([L2]),

that the embeddings H® — LP™! and H! — LT exist and are compact.
The derivative of ® is given by

< ®'(z),n >= /

BN

for any z = (u,v) € F and any n = (¢,¢) € E. Taking n = (¢,0) and

n = (0,v) we obtain the weak formulation of (2). In other words, critical
points of ® are weak solutions of (2).

As in [FY], we shall use an infinite dimensional linking theorem due to Li

N

APuAp + ASp Al da — /RN flz,u)p d —/R g(x,v) da

and Willem (see [LW]). Let us recall this result for the reader’s convenience.

Let B! and E? be Hilbert spaces with bases {ef}%2  k = 1,2. Let us
note £ = E' x E* and E, = Ef & E_, where Ef = span{(e},e?)}™,
and E- = span{(e;, —e?)}7,. Putting £t = U2, Ef (resp. E7), we have
E=Eta E.



Theorem 5 (Li-Willem) Suppose that ® € C'(E,R) satisfies the following

assumptions

(LW1) & has a local linking at zero, that is, for some r > 0

O(z)>0 if zeEtN{zeFE : |zlg<r} and
Q(z)<0 if ze E-N{ze L :|z||g <r};

(LW2) & is bounded on bounded subsets of F ;
(LW3) for every n

®(2) = —oo as z belongs to EX & B~ and ||z||p — o0 ;

(LW4) every sequence {z,}>>, C E such that

z, € K, (18)
|®(z,)] < const, (19)
| <@ (z0)sn > < oW)lnlle for n€E, (20)

is precompact in the strong topology of K.
Then ® has a nontrivial critical point.
In our case we write £ = ET @ E~ with

B* = {(u A7) [ue HYY,
E= = {(u,—A'A%) |u € HE}.

Indeed, for any (u,v) € F we have
(u,v) = (wy, A Alwy ) + (w_, =A™ A*w_),

where Ao 4t Ao 4t
w+:¥€[—]5 andw_:%EHs.
We now check that the hypotheses of the theorem of Li and Willem are

satisfied.

Proof of (LW1). From (ii) and (iii) it follows that for every ¢ > 0 there
exists C. > 0, such that

elt] + Ce[t,

I+ Cefepr, 2

<
<

10



and the same for ¢ and G. Let z = (u, A7 A%u) € E*. Then

d(z) = HASUH%Q—/ F(a,u) d:z;—/ Gz, A" A%u) da
RN RN
1 1 —t a5 pagtl
> ulliye = gllullze = Cllullzzs = Zlull- — ClIAT A%l g,
1 —t As
> Slullie = Cllullit = ClA= Al

Y

1 1 1
Z21E = CllzE = Cli=lE
> Ol
provided that ||z||g is sufficiently small. Here, and in the sequel, C' denotes
a constant whose value may change from line to line.
It is obvious that ®(z) < —1||z||f; for = € E~. This proves (LW1).

It is also straightforward to check (LW2) - we use (21) and the choice of
s and .

Proof of (LW3). By integrating (5) and by using (3) we see that
Flet) 2 d@ll and - Glaot) > (o)l

where dy(x) and dz(x) are positive bounded functions.
Let z € EXY @ E~. Then z = (u,v) = 27 4+ 27 = (ut, A7"A%uT) +
(u™,—A7"A%u™) for some ut,u™ € H*. We have

o) = (bl — e — / Fe,u) de — / Ga,v) do
RN RN

1

1
< L L - / &y (2)|ul* de — / daf2)|o]* de.
2 2 RN RN

For any z = (u,v) € F we set

o(z) = (/RN di () ]ul” dx)i + (/RN dy () 0] m)i

(note that 2 < p < min{p+ 1,¢ + 1}). It is easily checked that ¢ is a norm
on . We now use the following simple fact.

Proposition 1 Let E be a Hilbert space with E = E* & E~, and let ¢ be a
norm on E. Then there exists a norm 1 on E*, such thatl for any z* € E*
we have

Y(z7) < p(2),
for every z = zt +e7, with e~ € E~.
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Proof. Indeed, one can take
Pzt = inf{c,o(z) =z 4e e € E_}

and check that v is a norm on E¥. a

Hence

1, _ 1 _
o) < =5l + Sl — 2 o)

1, _ 1 _
< —SlEIE Sl =2 (=) (22

We see that (LW3) follows from (22), since ¢ and ||.||z are equivalent on the
finite dimensional space ET (recall that p > 2) .

Proof of (LW4). Take a sequence {z,}, z, = (uy, v,), for which (18), (19)
and (20) hold.
We recall that the derivative of ® is given by

< ®'(z),n >= /

BN

APuAp + ASp Al da — /RN flz,u)p d —/R g(x,v) da

N

for any z = (u,v) € £ and any n = (¢,¢0) € E. We shall make two
special choices of 1 in (20), from which we shall derive the boundedness of
the sequence {z,}.

Lemma 1 [fz = (u,v) € E, then z = (A7 Alv, A7"A%u) € E,,.
Proof. Indeed

z = (u,v)= (u"’,A_tAsu"') + (u_, —A_tAsu_>
= (vt +um, ATA(ut —uT)),

and hence

z o= (ut —u, ATA (v +uT))
= (u"', A_tAsu"') + (=1). (u_, —A_tAsu_> . O

We now put n = (A7*A'v,,, A~"A%u,,) into (20). Then (20) becomes
CW(n > = Nuallye + loallye = fyw S un) A= Ale, de
— fRNg(:L', v, ) AT AP, do
< o(DInllz = o(1)||zule-
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The hypothesis (ii) permits us to fix § > 0 such that
1 1
Pl < 5w Jgten) <

for [t| < 4. By (iii) we have
F ) < Clip - and

glz, ) < O,

for |t| > ¢.
With our choice of s and ¢, we obtain from (3.1)

2 Soummm+/ <uummmﬂm%wx

—I—/ (2, 0,)||A A%, | d:z;—l—/ |f(z,u,)||A™* Alv,| da
|vn|<5

Jun| >5

—I—/ (2, 0,)||A7 A%, | da
Un|>5

1
< ozl + 3 (hwalle + loelBres) + 5 (lonll + i)
+ (/ (2, up,) +%’ dl’) " HA_SAtUnHLpH
[ |>6
-9
-|—l at —1t 48
+ (x,v,)] 77 da | AT AUy || g1
|vn|>5
T
< oWlale+ gl 4 ([ wnfton) do) ™ ol

AT
+C (/ vng(,v,,) d:z;) ||| £
RN

1 _p_ _q_
< o(Dllznlle + S llzallz + CAT 1zalle + OB |20l 5,

where we have set

An:/ un f(x,u,) de  and Bn:/ vng(x,v,) d.
RN RN

Hence . .
|znlle < o(1) + CAZY + OB (23)
The second choice of n we make in (20) is n = z,. Then, by (19) and (20)

we obtain

(a2 < <o
H H
C+ o)zl

IA
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Combining this with (23), we get
A, + B, < C+o(1)+o(1) <A£+_1 +B;’?> ,

from which it follows that the sequences {A,} and {B, } are bounded. Then,
by (23), {z.} is bounded in FE.

We can now extract a weakly convergent subsequence of {z,} (from now
on, any time we extract a subsequence we shall keep the notation of the
original sequence). Let w, — u weakly in H® and v, — v weakly in H".
It follows that {u,} (resp. {v,}) converges almost everywhere in R" and
strongly in L], for 2 <r < ]\?i\;s (resp. for 2 <r < Nzi\;t)

Now it is easy to see that < ®'(z,),n > converges to < ®'(z),n >, for all
n € CX x C®. Then, by density, < ®'(z,),n > converges to < ®'(z),n > for
all n € E. We fix m > 1 and take n € E,,. Then, passing to the limit in (20)
(note that (20) holds for all n > m), we obtain

/ ASuAlp + ASpAlv dx — fla,u)p de — / gz, ) de =0, (24)
RN RN R

N

and this inequality holds for all n € E,, and all m > 1. Since UZX_, E,, is
dense in E, (24) holds for all n € E. Putting n = (A7°A'v, A" A%u) into
(24), we get

o= [ seaatvde= [ gemataa =0 @)

On the other hand, putting n = (A7*A'v,,, A" A%u,,) into (20) yields

Han% — / f(:z;,un)A_sAtvn dr — / g(:z;,vn)A_tAsun de =o(1), (26)
RN RN

so (LW4) will follow from (25) and (26), provided we show that the second
and the third terms of (26) converge to the second and the third terms of
(25) respectively. For instance, let us prove the convergence of the second
term.

Claim.

fla,u,) A Alv, do — flx,u)AAlv de as n — .
RN RN

Proof. First we note that

/ |f(z,u)||[A™° A% (v, —v)|dz — 0 as n — oo.
RN

14



This can be seen easily by using (21), the Holder inequality and the fact
that v, — v weakly in H' implies A~*A'v,, — A™5A' weakly in H* and
strongly in LP*! (recall that we restricted ourselves to radial functions). Next,
splitting the integral inside and outside a ball Bg = B(0, R), we see that

I, = T,uy) — flo,u)||[A*Alv,| d
[ 1) = el

< My un) = fla )l AT A g
L P (Bpg)

b [ Gl At | da
je|>R

lz|>R
< o(l)+ Ce+ Cllu, — uHipH + CHuHipH(RN\BR)'

+ C/ [, |P|A™° A, | do + C/ |u[P|A~* Ao, | dx
el >R

It follows that I, — oo, since the last expression can be made arbitrarily
small, by taking ¢ sufficiently small and n, R sufficiently large. Theorem 2
is proved.

Remark 1. It is clear from the above proof that the usual Palais-Smale
sequences for @, defined on the whole space H® x H* (without restriction
to radial functions), are bounded in E. We shall use this fact in the next
section.

3.2 Proof of Theorem 3
We have to show that
inf {®(z)]|z€ FE, z+#(0,0) is a solution of (2)}

is attained.
Let us first show that the above infimum is finite (and actually non-
negative). We use the weak formulation of (2), that is

/ APu AN dx — / gz, v)p de =0 for all v» € H* (27)
RN RN

/ AvA*p da — flz,u)pde =0 for all ¢ € H”. (28)
RN RN

If z = (u,v) is a nontrivial solution of (2), by taking ¢» = v and ¢ = u in (27)
and (28), we immediately see that

O(z) = /RN (%uf(:z;,u) — Flz,u)+ %vg(:p,v) - G(:z;,v)) dr  (29)
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> (g . 1) /RN(F(J;,U) + Glz,v)) dr > 0,

for any (u,v) # (0,0).
The next step in the proof is to derive a positive lower bound for the
norms of the nontrivial solutions of (2). Let z = (u,v) be one such solution.

Putting ¢ = A7*A’v into (28) and ¢y = A7"A%u into (27), we obtain
Izl = fla,u)A™* Alv da + / g(x,v) AT A% da
RN BN

< l/ (Jull A= A%o| + [o]| A A%u]) da
4 RN

—I—C/ (JulP|A~ A%| + [o|"| AT A%u]) da
BN

1
< 7 (lullze + 1ollze + llullzre—+ llollF--)
+ Ol AT A"l Loer + Cllvl| g 1A A%l on
1
< SlzllE + Cllelizellollae + Cllulleloll.
1
< Sl + Gl + Cll=lE

which implies
|z]|z > const > 0. (30)

Next we take a sequence of nontrivial solutions {z,}, such that
O(z,) — inf {®(2) |z € E,z#(0,0) is a solution of (2)}.

Obviously {z,} is a Palais-Smale sequence. Hence it is bounded in F (see
Remark 1 at the end of the previous section).

In case (a) the sequence {z,} is a Palais-Smale sequence in H? x H!.
Then the proof of Theorem 2 implies this sequence has a strongly convergent
subsequence. Hence, by (30), its limit is a nontrivial solution and therefore
a ground state.

In case (b) we extract a weakly convergent subsequence of {z,}. Let {u,}
converges to a function u weakly in H* and {v,} converges to a function v
weakly in H'. Then {u,} and {v,} converge almost everywhere in R¥ and
strongly in L] for 2 < r < 2NS (respectively for 2 < r < 22-). We use

loc N-=2 ! . N-=2t
the fact that u, and v, are exact solutions, that is,

Jon Afu, Al da — [o oy g(va) doe =0 for all € H*

[ox AW, A% d — [y Flun )b d = 0 forall oeps. O
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By taking ¢ and @ smooth with compact supports in (31), we see that z =
(u,v) is also a solution of (6).
Since

st (t) = (1)

IV
A~

>) 0! -

by putting z = z, in (29) we see that

(=) = [lfunll[754 + [loalll 750
where, by (7) and (32), |||.|||z#+: and |||.|||pe+1 are equivalent to the standard
norms in [P and L. Hence
¢(z) <liminf®(z,) (33)
n— 0o

since u, — w in LP*!" and v,, — v in L7t

We have not shown that z is a nontrivial solution. Assume that z = (0,0).
Without loss of generality we suppose that s > 1 (if s < 1 then necessarily
t > 1). We claim that (30) prevents {u, } from converging strongly to zero in
Lt Indeed, if w, — 0 in LP*! then since (u,,v,) satisfy (6), the standard
elliptic theory implies v, — 0 in LP', with p; defined as in the proof of
Theorem 1 (b). Then repeating the bootstrap argument we used in the proof
of Theorem 1 (b), we obtain a contradiction with (30).

Next we apply a standard concentration-compactness lemma due to Lions
(see [L]). Since u, 4 0 in LPT! we can find a sequence of points z, € RY
and constants R,a > 0, such that

/ lu,|? doz > a.
Br(zn)

Set z, = (un, 0y,), with u,(.) = u,(. + 2,) and v, = v,(. + x,). Then Zz, is
itself a solution of (6), satisfying ®(z;,) = ®(z,). Hence z;, — Zin E. On

the other hand
/ [, |? dr > «
Br(0)

prevents u,, — 0 strongly in L? , so Z # (0,0). We can then repeat the proof
of (33) for the sequence {2}, to conclude that Z is a nontrivial solution and
a ground state.

17



3.3 Proof of Theorem 4

We sketch the proof of this theorem.
First let us adjust the variational setting. Let Hbs(x),() < s < 1, be the
space of functions u, such that

b?(z)u € L*(RY) and % e L*(RY x RY).
x—yl T2

One can also define Hg’(gc) by interpolation between the spaces

Lg(l,) = {u : / b(x)u? de < oo}
BN

Hbl(l,) = {u : / |Vul? + b(x)u? de < oo}
BN

The space Hj , is the function space which was used for studying the case
of a single equation in [R],[C], [BW] and [S]. The space H}, is its fractional
equivalent.

It is clear that Hg’(gc) is continuously embedded into H?. It is not difficult

to see that Hg’(w) is compactly embedded into L? and therefore into L” for all

and

2<r< Nziv% The proof of this fact is very much the same as in the case

s =1 (see [C]; see also [S] for a more general result).

Let T'= —A+b(x) : Hg(l,) C L* — L? and put A® = T - Hg’(w) — [?
(see [FY] for a detailed definition of A®). In this situation weak solutions of
(1) will be critical points of ® defined on Hg’(gc) X Hg(l,). It is possible to use
the theorem of Li and Willem in this setting. We shall omit the details here
since similar computations can be found in [S]. When proving statement (b),
the point is that we have

/ hy(2)ulPt de < C (/ b(x)u? d:z;) ) (/ |u|apa+—11_2 d:l:) ) )

RN RN RN

/ ho(z)|v]*™ dz < C (/ b(x)v? d:z;) ) (/ |U|Q—L%+—11_2 d:l:) )
RN RN RN

a—1 n a—1 o 2
alp+1)—2 alg+1)-2 N’

and

by (13).
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Once we have the proof in Section 3.1, the statement (a) can be obtained
in the following way. We can repeat the proof of Theorem 2, the only differing
point being the Claim at the end of Section 3.1. Here we use the fact that
the sequences {u, } and {v,} are bounded which, combined with (10), implies
the existence of R > 0 such that the difference between the integrals in the
Claim, over R\ Bg, is smaller than any given number. We can then conclude

by using the fact that H® is compactly embedded into L} . for 2 <r < Nzi\;s

Remark 2. If (12) holds with different oy and ay, one can make (13) more
precise by replacing it with

Oél—l Oéz—l 2

+ -
a(p+1)—2  as(qg+1)—2 N

4 Some Open Problems

As we already mentioned, the theory of scalar elliptic equations is far more
advanced than the theory of elliptic systems. Many interesting questions,
which have been answered for scalar equations, are still open for systems.
For example, the general radial case

—Au = g(r,u,v)
—Av = f(r,u,v), r e RN,

has not been studied, nor has the case

—Au+u = hy(x)v]

—Av+o = hy(z)|u]"y, v € RN,
with h;(z) — 1 as |¢| — oo and h;(z) > 1.

One may also search for solutions of the “perturbed system”

—?Au+ V(z)u = ||

—?Av+V(z)o = |u]f~tu, z € RY,
for small . In the case of a scalar equation this problem has been stud-
ied extensively during the last fifteen years (see for example [DF] and the

references therein).
We intend to pursue these questions in the future.
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