
HAL Id: hal-00004752
https://hal.science/hal-00004752v1

Preprint submitted on 19 Apr 2005 (v1), last revised 18 Nov 2005 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topological expansion of the 2-matrix model correlation
functions: diagrammatic rules for a residue formula

Bertrand Eynard, Nicolas Orantin

To cite this version:
Bertrand Eynard, Nicolas Orantin. Topological expansion of the 2-matrix model correlation functions:
diagrammatic rules for a residue formula. 2005. �hal-00004752v1�

https://hal.science/hal-00004752v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

04
75

2,
 v

er
si

on
 1

 -
 1

9 
A

pr
 2

00
5

SPhT-T05/045

Topological expansion of the 2-matrix model correlation
functions: diagrammatic rules for a residue formula
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Abstract:

We rewrite the loop equations of the hermitian 2-matrix model, in a way which

allows to compute all the correlation functions, to all orders in the topological 1/N2

expansion, as residues on an algebraic curve. Those residues, can be represented dia-

grammatically as Feynman graphs of a cubic interaction field theory on the curve.

1 Introduction

The purpose of this article, is to generalize the method invented in [12], for the 2-matrix

model. The method of [12] is a diagrammatic technique for computing correlation

functions of the 1-matrix model in terms of residues on some algebraic curve.

Random matrix models play an important role in physics and mathematics [29],

and have a wealth of applications which are too long to list here. In this article, we

consider “formal” random matrix integrals, which are known to be generating functions

for counting some classes of discrete surfaces [9, 31, 6, 20, 21]. The basic idea, is to

consider a matrix integral, as a deformation of a gaussian matrix integral, and make a

formal expansion of the non-gaussian part. Each term of that formal expansion is an

expectation value of a gaussian integral, and using Wick’s theorem, each term can be

represented by a Feynman graph. Because the integration variables are matrices, the

graphs are “fat graphs”, which have a 2-dimensional structure. The Hermitean matrix

1E-mail: eynard@spht.saclay.cea.fr
2E-mail: orantin@spht.saclay.cea.fr
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models enumerate oriented surfaces (whereas other matrix ensembles can enumerate

non-oriented surfaces). This Formal expansion equivalent to an enumerating function

of Feynman graphs is a standard tool in physics. Random matrices have thus played a

role in all theories where one need to sum over surfaces, i.e. string theory and quantum

gravity (which would better be called statistical physics on a random lattice).

The partition function, free energy and correlation functions are all generating

functions enumerating some kinds of graphs (respectively closed graphs, connected

closed graphs, open graphs). There exist several methods for computing the free energy

and correlation function, the one we consider here is the “loop equation” method,

which is nothing but Schwinger-Dyson, or Ward identities [9, 30]. They implement

the Virasoro (W) constraints on the partition function, i.e. the fact that the matrix

integral is left unchanged under a change of variable. The loop equations are valid in

the formal model, order by order in the expansion parameters.

In the formal model, the size N of matrices, is just a complex parameter, it needs

not be an integer, and all observables (free energy, correlation functions) always have

a 1/N expansion, because for each power of the expansion parameters, there is only a

finite number of graphs with a given power of N . The power of N in a graph is its Euler

characteristic, and thus the 1/N expansion is known as the “topological expansion”

[31]. In the formal model, N is thus an expansion parameter, and working order by

order in N enumerates only discrete surfaces of a given topology [6].

To large N limit, (i.e. planar topologies), the solution of loop equations is known

to be related to Toda hierarchy [8, 33, 32]. For this reason, the large N expansion

of matrix models, play an important role in integrable systems, and in many areas

of physics [27]. It was suggested by [10] that the low energy effective of some string

theory models is also described by matrix models.

In the beginning, the formal matrix models were considered in their 1-cut phase,

because a potential which is a small deformation of a quadratic one, must have only one

well, i.e. the variable perturbatively explore only one well. However, a N × N matrix

has N eigenvalues, and even though each of them can explore perturbatively only one

well, they do not need explore all the same well. That gives “multicut” solutions of

matrix models, where the number of eigenvalues near each extremum of the potential

is fixed (fixed filling fractions). Multicut solutions play an important role in string

theory, as they describe multi-particle states [10, 11]. Multicut solutions correspond

to enumerating surfaces with contact terms, which can be called “foam of surfaces” as

described in [5, 21].

The link between formal matrix models (which always have a 1/N expansion) and

convergent matrix integrals (which have a 1/N expansion only in the 1-cut case under
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certain assumptions), has been better understood after the work of [5]. We emphasize

again, that the results developed in this article concern the formal matrix model with

fixed filling fractions, and should not be applied to convergent matrix model directly.

Recently, it has progressively become clear that large N expansion of random matrix

models has a strong link with algebraic geometry. The free energy and correlation

functions have been computed in terms of properties of an algebraic curve. The large

N limit of the 1-point correlation function (called the resolvent) is solution of an

algebraic equation, which thus defines an algebraic curve. There has been many works

which computed free energy and correlation functions in terms of that algebraic curve.

The leading order resolvent and free energy were computed in the 1-cut case (algebraic

curve of genus zero) in the pioneering work of [6], then some recursive method for

computing other correlation functions to leading order were invented by Akemann [1],

then some recursive method for computing correlation functions and free energy to all

orders in 1/N were invented by [3]. Those methods were first limited to 1-matrix case

and 1-cut.

Then, for 1-matrix, several works have dealt with multicut: Akeman found the first

subleading term for the multicut resolvent and the 2-cut free energy [1, 2], Chekhov

found the first subleading term for the multi-cut free energy [7]. Then a (non-recursive)

diagrammatic method was invented in [12] to find all correlation functions to all orders,

in the multicut case.

The 1-matrix model, corresponds to hyperelliptical curves only. In order to have

more general algebraic curves, one needs at least a 2-matrix model. For the 2-matrix

models, the loop equations have been known since [30], and have been written in a

concise form in [17, 18, 19]. They have been used to find the subleading term of the

free energy, first in the genus zero case in [14], then in the genus 1 case in [15], and with

arbitrary genus in [16]. The purpose of this article is to generalize the diagrammatic

method of [12] to the 2-matrix case.

Outline of the article:

• In sections 2,3 and 4, we introduce the notations and some basic tools of algebraic

geometry needed all along the article.

• In section 5, we consider the leading order of the correlation functions, corre-

sponding to the genus zero case. We introduce some Feynman rules giving rise

to graphs whose tree level describes the genus zero correlation functions.

• Section 6 is dedicated to the computation of the full 1
N2 -expansion. We show that

the 1
N2h term corresponds to the sum over all h-loop graphs described earlier.
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• In section 7, we build an effective non cubic theory generating the same correlation

functions.

• In section 8, we study the gaussian case corresponding to the 1-matrix model

limit.

2 Definition of the model

In this article, we are interested in the study of the formal-two-matrix-model and

the computation of a whole family of some observables of this model. The partition

function Z is the formal matrix integral:

Z :=

∫

Hn×Hn

dM1dM2 e−NTr(V1(M1)+V2(M2)−M1M2) (2.1)

where M1 and M2 are two N × N hermitian matrices, dM1 and dM2 the products of

Lebesgue measures of the real components of M1 and M2 respectively, and V1 and V2

two polynomial potentials of degree d1 + 1 and d2 + 1 respectively :

V1(x) =

d1+1
∑

k=1

gk

k
xk , V2(y) =

d2+1
∑

k=1

g̃k

k
yk (2.2)

Formal integral means it is computed order by order in powers of the gk’s (see section

4 or [21]).

In [12], one of the authors solved an analogous problem for the one matrix model,

(i.e. the model where V2 is quadratic). In the large N limit, he computed the full 1
N2

expansion of the formal expectation values related to the partition function Z :

Nk−2

〈

Tr
1

x1 − M
Tr

1

x2 − M
. . . Tr

1

xk − M

〉

c

(2.3)

where c denotes the connected part. This expansion was represented as Feynman

graphs of an effective cubic field theory.

The purpose of this article is to extend this description to the two matrix model.

Let us consider the expectation values :

wk,l(xK ;yL) := Nk+l−2

〈

k
∏

i=1

tr
1

xi − M1

l
∏

i=1

tr
1

yi − M2

〉

c

(2.4)

where xK = (x1, . . . , xk) and yL = (y1, . . . , yl), and the formal average 〈.〉 is computed

with the measure in Eq. (2.1). Those correlation functions can be expanded as formal

series in 1
N2 in the large N limit:

wk,l(xK ;yL) :=

∞
∑

h=0

N−2hw
(h)
k,l (xK ;yL) (2.5)
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We compute here the full expansion terms w
(h)
k,0(xK) and w

(h)
0,l (yL) as residues on

an algebraic curve. Eventually, we represent them as Feynman graphs of a cubic field

theory on this curve.

The 1
N2 expansion of such correlation functions is known to enumerate discrete

surfaces of a given topology, whose polygons carry a spin + or - (Ising model on a

random surface [25, 27]), see [21] for the multicut case i.e. foam of Ising surfaces.

The w
(h)
k,l are generating functions enumerating genus h discrete surfaces with k

boundaries of spin + and l boundaries of spin −.

w
(3)
2,0 = (2.6)

Notice that the question of boundaries with non uniform spin, i.e. with changes of

boundary conditions has been solved to the leading order only in [13].

3 Some algebraic geometry and notations

In this section, we first introduce some notations used all along this article. We then

recall the link existing between matrix models and algebraic geometry through the

master loop equation. We end this part by recalling some basics in algebraic geometry

necessary to lead our computations to their end.

3.1 Notation for sets of variables

We will consider functions of many variables x1, x2, x3, . . ., or of a subset of those

variables. In that purpose we introduce the following notations:

Let K be a k−upple of integers:

K = (i1, i2, . . . , ik) (3.7)

We denote k = |K| the length (or cardinal) of K. for any j ≤ |K|, we denote Kj the

set of all j−upples (i.e. subsets of length j) contained in K:

Kj := {J ⊂ K , |J | = j} (3.8)
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We define the following k−upple of complex numbers:

xK := (xi1 , xi2 , . . . , xik) (3.9)

3.2 Correlation functions

For a given k, we define the correlation function:

wk(x1, . . . , xk) := Nk−2

〈

k
∏

i=1

tr
1

xi − M1

〉

c

, (3.10)

i.e., with the previous notations:

w|K|(xK) := N |K|−2

〈

|K|
∏

r=1

tr
1

xir − M1

〉

c

, (3.11)

And we consider its 1/N2 expansion:

wk(xK) =

∞
∑

h=0

1

N2h
w

(h)
k (xK) (3.12)

We also define the following auxiliary functions:

uk(x, y;xK) := N |K|−1

〈

tr
1

x − M1

V ′
2(y) − V ′

2(M2)

y − M2

|K|
∏

r=1

tr
1

xir − M1

〉

c

(3.13)

pk(x, y;xK) := N |K|−1

〈

tr
V ′

1(x) − V ′
1(M1)

x − M1

V ′
2(y) − V ′

2(M2)

y − M2

|K|
∏

r=1

tr
1

xir − M1

〉

c

(3.14)

ak(x;xK) := N |K|−1

〈

tr
1

x − M1

V ′
2(M2)

|K|
∏

r=1

tr
1

xir − M1

〉

c

(3.15)

Notice that uk,(x, y;xK) is a polynomial in y of degree d2 − 1, and pk(x, y;xK) is a

polynomial in x of degree d1 − 1 and in y of degree d2 − 1.

It is convenient to renormalize those functions, and define:

uk(x, y;xK) := uk(x, y;xK) − δk,0(V
′
2(y) − x) (3.16)

and

wk(xK) := wk(xK) +
δk,2

(x1 − x2)2
(3.17)
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Let us remark that all those functions have the same kind of topological expansion

as wk(xK) and one defines p
(h)
k (x, y;xK) and u

(h)
k (x, y;xK) as well like in Eq. (3.12).

For the sake of simplicity, we will often omit the exponent (h) for the leading term

h = 0.

We define the two functions:

Y (x) := V ′
1(x) − w1(x) (3.18)

X(y) := V ′
2(y) − w0;1(y) (3.19)

which we see below, describe the algebraic curve.

3.3 The master loop equation

Loop equations (also called Schwinger–Dyson equations), proceed from the invariance

of the matrix integral Eq. (2.1) under changes of variables, they imply a set of rela-

tionships between correlation functions. For the 2-matrix model, loop equations have

been known since [30], and written in a more systematic way in [17, 18, 19, 26]. It is

well known that in the large N limit, loop equations imply an algebraic equation for

the functions w1 (resp. w0,1), i.e. for the function Y (x) (resp. X(y)), called the master

loop equation. Let us briefly recall how to derive it (see [19]):

• the change of variables M2 → M2 + ǫ 1
x−M1

implies:

0 = a0(x) − xw1(x) + 1 (3.20)

• the change of variables M1 → M1 + ǫ 1
x−M1

V ′
2(y)−V ′

2 (M2)

y−M2
implies:

w1(x)u0(x, y)+
1

N2
u1(x, y; x) = V ′

1(x)u0(x, y)−p0(x, y)−yu0(x, y)+V ′
2(y)w1(x)−a0(x)

(3.21)

i.e., putting everything together:

(y − Y (x))u0(x, y) +
1

N2
u1(x, y; x) = (V ′

2(y) − x)(V ′
1(x) − y) − p0(x, y) + 1 (3.22)

We define:

E(x, y) = (V ′
2(y) − x)(V ′

1(x) − y) − p0(x, y) + 1 (3.23)

The master loop equation is thus:

(y − Y (x))u0(x, y) +
1

N2
u1(x, y; x) = E(x, y) (3.24)

To large N leading order, we have:

(y − Y (x))u0(x, y) = E(x, y) (3.25)
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Since u0(x, y) is a polynomial in y, it has no singularity for y finite and the LHS vanishes

for y = Y (x), i.e.:

E(x, Y (x)) = 0 (3.26)

This defines an algebraic curve E(x, y) = 0.

Notice that to leading order we have:

u0(x, y) =
E(x, y)

y − Y (x)
(3.27)

and

u0(x, Y (x)) = Ey(x, Y (x)) (3.28)

3.4 Introduction to some algebraic geometry

We use notations similar to [24] or [23].

Let us parameterize the curve E(x, y) = 0 with a running point p of a compact

Riemann surface E . It means that we define two analytical meromorphic functions x(p)

and y(p) on E such that:

E(x, y) = 0 ⇔ ∃p ∈ E x = x(p) , y = y(p) (3.29)

The functions x and y are not bijective. Indeed, since E(x, y) has a degree d2 + 1

in y, it has d2 +1 solutions, i.e. for a given x, there exist d2 +1 points p on E such that

x(p) = x. Thus, the Riemann surface is made of d2 + 1 x-sheets, respectively d1 + 1

y-sheets. Hence, from now on, we use these notations:

x(p) = x ⇔ p = p(j)(x) for j = 0, . . . , d2 (3.30)

y(p) = y ⇔ p = p̃(j)(x) for j = 0, . . . , d1 (3.31)

We will most often omit the exposant 0 corresponding to the physical sheet: p := p0.

For instance, one can write E(x, y) as:

E(x(p), y(q)) = −gd1+1 ×
d1
∏

i=0

(x(p) − x(q̃(i)(y)))

= −g̃d2+1 ×

d2
∏

i=0

(y(q) − y(p(i)(x))) (3.32)

Considering that the w
(h)
k ’s, u

(h)
k ’s and p

(h)
k ’s are multivalued functions in their

arguments x, we now work with differentials monovalued on the Riemann surface.
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Let us write the differentials :

Wk+1(p,pK) := wk+1(x(p),x(pK))dx(p)

k
∏

i=1

dx(pi) (3.33)

Uk(p, y;pK) := uk(x(p), y;x(pK))dx(p)

k
∏

i=1

dx(pi) (3.34)

Pk(x, y;pK) := pk(x, y;x(pK))

k
∏

i=1

dx(pi) (3.35)

Note: In the following, the arguments of a function will be called x(p) or y(r) if the

function is defined on the basis, and p or r if the function is defined on the Riemann

surface - and so multivalued on the basis-.

Let us now review some basic objects we need before going any further.

Behaviours at ∞. We see from Eq. (3.18), that at large x, we have Y (x) ∼

V ′
1(x)− 1

x
+ O(1/x2) in the x-physical sheet. And we see from Eq. (3.19), that at large

y, we have X(y) ∼ V ′
2(y) − 1

y
+ O(1/y2) in the y-physical sheet. This means that the

functions x(p) and y(p) have two poles, ∞+ and ∞− on E . The function x(p) has a

simple pole at ∞+ and a pole of degree d2 at ∞−, while the function y(p) has a simple

pole at ∞− and a pole of degree d1 at ∞+. We have:

y(p) ∼
p→∞+

V ′
1(x(p))−

1

x(p)
+O(1/x(p)2) , x(p) ∼

p→∞−

V ′
2(y(p))−

1

y(p)
+O(1/y(p)2)

(3.36)

In particular:

Res
∞+

ydx = Res
∞−

xdy = 1 (3.37)

Genus and cycles. The curve E is a compact Riemann-surface with a finite genus

g ≤ d1d2 − 1. If g = 0, E is simply connected, and if g 6= 0, there exist 2g linearly

independent irreducible cycles on E , such that by removing those 2g cycles we get a

simply connected domain. It is possible to choose cannonicaly the 2g cycles as Ai, Bi,

i = 1, . . . , g, such that:

Ai ∩ Aj = 0 , Bi ∩ Bj = 0 , Ai ∩ Bj = δij (3.38)

Branch points. The x-branch points ai, i = 1, . . . , d2 + 1 + 2g, are the zeroes of

the differential dx, respectively, the y-branch points bi, i = 1, . . . , d1 + 1 + 2g, are the

zeroes of dy. We assume here, that all branch points are simple and distinct. Notice
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also, that Ey(x(p), y(p)) vanishes (simple zeroes) at the branchpoints (it vanishes in

other points too).

Bergmann kernel. On the Riemann surface E , there exists a unique abelian

bilinear differential B(p, q), with one double pole at p = q, such that:

B(p, q) ∼
p→q

dx(p)dx(q)

(x(p) − x(q))2
+ finite and ∀i

∮

p∈Ai

B(p, q) = 0 (3.39)

It is symmetric:

B(p, q) = B(q, p) (3.40)

Its expression in terms of theta-functions can be found in [24, 23], it depends only on

the complex structure of E .

Abelian differential of third kind.

On the Riemann surface E , there exists a unique abelian differential of the third

kind dSq,r(p), with two simple poles at p = q and at p = r, such that:

Res
p→q

dSq,r(p) = 1 = − Res
p→r

dSq,r(p) and ∀i

∮

Ai

dSq,r(p) = 0 (3.41)

We have:

dSq,r(p) =

∫ q

q′=r

B(p, q′) (3.42)

where the integration path does not intersect any Ai or Bi.

dSq,r(p) is a differential on E in terms of p, but it is a multivalued function of q

(and of r). After crossing a cycle Bi, it has no discontinuity, and after crossing a cycle

Ai, it has a discontinuity:

disc (dSq,r(p)) = dSq+,r(p) − dSq−,r(p) =

∮

q′∈Bi

B(p, q′) (3.43)

Note that the discontinuity is independent of q.

Riemann bilinear identity. If ω is a differential form on E , such that
∮

q∈Ai
ω(q) =

0, we have:

∑

i

Res
q→zi

ω(q)dSq,r(p) =

g
∑

i=1

∮

q∈Ai

discAi
(ω(q)dSq,r(p))

−

g
∑

i=1

∮

q∈Bi

discBi
(ω(q)dSq,r(p))

=

g
∑

i=1

∮

q∈Ai

ω(q) discAi
(dSq,r(p))
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=

g
∑

i=1

discAi
(dSq,r(p))

∮

q∈Ai

ω(q)

= 0 (3.44)

where the LHS is the sum over all residues on a fundamental domain, the poles zi are

all the poles of ω as well as the pole at q = p. This identity is obtained by moving the

integration contours on the surface, and taking carefully into account discontinuities

along the non-trivial cycles (see [24, 23]).

4 Loop equations and fixed filling fractions

To large N leading order, the loop equation Eq. (3.26) is an algebraic equation:

E(x, Y (x)) = 0 (4.45)

The coefficients of E are fixed by assumptions on the problem we are considering.

Here, we consider the problem of a formal matrix model, i.e. which is computed as

the formal power series expansion of a matrix integral, where the non-quadratic terms

in the potentials V1 and V2 are treated as perturbations near quadratic potentials. Such

a perturbative expansion can be performed only near local extrema of V1(x)+V2(y)−xy,

i.e. near points such that:

V ′
1(ξi) = ηi , V ′

2(ηi) = ξi (4.46)

which has d1d2 solutions. Therefore, if M 1 and M2 are diagonal matrices, whose

diagonal entries are some ξi’s (resp. ηi’s), (M 1, M2) is a local extremum of tr(V1(M1)+

V2(M2) − M1M2) around which we can perform the perturbative expansion.

The choice of such an extremum, around which the perturbative series is computed,

is equivalent to the choice of the number of eigenvalues near each pair (ξi, ηi), i =

1, . . . , d1d2, i.e. the data of d1d2 integers ni such that:

d1d2
∑

i=1

ni = N (4.47)

This means, that we can choose some contours Ci, i = 1, . . . , d1d2, such that:

1

2iπ

∮

Ci

tr
dx

x − M1
= −ni (4.48)

i.e.
1

2iπ

∮

Ci

w1(x)dx = −
ni

N
:= −ǫi (4.49)
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If w1(x) = V ′
1(x)−Y (x) is solution of an algebraic equation of genus g, it means that up

to a redefinition of contours, the filling fractions are the A-cycle integrals. We define:

1

2iπ

∮

Ai

ydx = −
1

2iπ

∮

Ai

xdy = ǫi (4.50)

The ǫi’s are called filling fractions, and they are given parameters (moduli) of the

model. They don’t depend on the potential or on any other parameter.

In particular, since all correlation functions wk(x1, . . . , xk) are obtained by deriva-

tion of w1 with respect to the potential V1, we have:

1

2iπ

∮

Ai

wk(x1, . . . , xk)dx1 = 0 (4.51)

Eq. (4.50) together with the large x and y behaviours Eq. (3.36), are sufficient

to determine completely all the coefficients of the polynomial E(x, y), and thus the

leading large N resolvents w1(x) and w0;1(y).

In this perturbative model, the free energy as well as all correlation functions always

have a formal 1/N2 expansion.

In what follows, we assume that the leading resolvent, i.e. the functions Y (x) and

X(y) are known, and we refer the reader to the existing literature on that topic, for

instance [4, 19, 26, 28].

5 The leading term : genus zero case.

Before considering the full 1
N2 expansion, let us focus on the structure of the leading

terms corresponding to genus zero surfaces. We establish a general loop-equation whose

solution gives a recursive definition of the wk’s and the uk’s that can be represented by

Feynman graphs.

In this section, we omit the subscript (0), i.e. w
(0)
k (xK) → wk(xK), and we omit

the 1/N2 terms in the loop equations.

We consider: K = (1, . . . , k).

5.1 The loop-equation

The wk’s are totally determined by only one generic loop equation considered to its

leading order. We build this equation in order to link wk and wk+1.

• The change of variable δM2 = 1
x−M1

∏k

i=1 tr 1
xi−M1

implies (see [19]):

ak(x;xK) = x wk+1(x,xK) (5.52)
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• The change of variable δM1 = 1
x−M1

V ′
2(y)−V ′

2 (M2)

y−M2

∏k

i=1 tr 1
xi−M1

implies to leading

order (see [19]):

w1(x) uk(x, y;xK) +
k−1
∑

j=0

∑

J∈Kj

uj(x, y;xJ) wk−j+1(x,xK−J)

+

k
∑

j=1

∂

∂xj

uk−1(x, y;xK−{j}) − uk−1(xj , y;xK−{j})

x − xj

= V ′
1(x)uk,0(x, y;xK) − pk,0(x, y;xK)

−yuk(x, y;xK) + V ′
2(y)wk+1(x,xK) − ak(x;xK)

(5.53)

i.e. for k ≥ 1:

(y − Y (x)) uk(x, y;xK) = −
k−1
∑

j=0

∑

J∈Kj

uj(x, y;xJ) wk−j+1(x,xK−J)

+

k
∑

j=1

∂

∂xj

uk−1(xj , y;xK−{j})

x − xj

− pk(x, y;xK)

(5.54)

Under this form, the loop equation is in terms of multivalued functions. It is more

appropriate to write it in terms of meromorphic differentials on the Riemann surface:

(y(r) − y(p))Uk(p, y(r);pK) = −
∑k−1

j=0

∑

J∈Kj

Uj(p,y(r);pJ ) Wk−j+1(p,pK−J )

dx(p)

+
∑k

j=1 dpj

(

Uk−1(pj ,y(r);pK−{j})

x(p)−x(pj)
dx(p)
dx(pj)

)

−Pk(x(p), y(r);pK)dx(p)

(5.55)

In particular, if one chooses r = p, one gets (using Eq. (3.27) and Eq. (3.28)):

Ey(x(p), y(p))Wk+1(p,pK) = −Pk(x(p), y(p);pK) dx(p)

−
∑k−1

j=1

∑

J∈Kj

Uj(p,y(p);pJ ) Wk−j+1(p,pK−J )

dx(p)

+
∑k

j=1 dpj

(

Uk−1(pj ,y(p);pK−{j})

x(p)−x(pj)
dx(p)
dx(pj)

)

(5.56)

Notice that these two equations Eq. (5.55) and Eq. (5.56) imply by recursion, that

Wk and Uk are indeed meromorphic differentials on the curve, in all their variables.

We define:

∀(i, j) Ri
k(p

(j), pK) :=
Uk(p

(j), y(p(i)); pK)

Ey(x(p(j)), y(p(i)))dx(p(j))
(5.57)
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We have already obtained (see Eq. (3.27)) that:

Ri
0(p

(l)) =
δi,l

dx(p)
(5.58)

5.2 k=1

We begin by this special case because it represents some initial condition for the fol-

lowing. In fact, the two correlation functions W2(p1, p2) and U1(p1, y; p2), are the basis

of the whole structure of the Wk’s. Moreover, it allows us to show through a simple

example the way we proceed further for the general case.

We first derive once again the well known result claiming that the two point function

is nothing else but the Bergmann Kernel (see [4] for instance).

Let o ∈ E be an arbitrary point on the Riemann surface. Since the abelian differ-

ential of the 3rd kind defined in Eq. (3.41) dSq,o(p) behaves as dx(p)
x(p)−x(q)

when q → p,

one can write the Cauchy formula under the form:

W2,0(p, p1) = − Res
q→p

dSq,o(p)W2,0(q; p1) (5.59)

One can see from Eq. (5.56) with k = 1, and from Eq. (4.51), that the integrand in

the RHS has poles only for q → p and q → p1, Since W2,0 has vanishing A-cycles due

to Eq. (4.51), we can use the Riemann bilinear identity Eq. (3.44), and get:

W2,0(p, p1) = Res
q→p1

dSq,o(p)W2,0(q; p1) (5.60)

For k = 1, Eq. (5.56) reads:

Ey(x(p), y(p)) W2(p, p1) = −P1(x(p), y(p); p1)dx(p)

+dp1

(

U0(p1, y(p))

x(p) − x(p1)

dx(p)

dx(p1)

)

(5.61)

and thus we have:

W2(p; p1) = Res
q→p1

dSq,o(p)W2(q; p1)

= − Res
q→p1

dSq,o(p)
P1(x(q), y(q); p1)dx(q)

Ey(x(q), y(q))

+ Res
q→p1

dSq,o(p)
dp1

(

U0(p1,y(q))
x(q)−x(p1)

dx(q)
dx(p1)

)

Ey(x(q), y(q))
(5.62)
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Since P1(x(q), y(q); p1) is a polynomial in x(q) and y(q), it has no pole at q = p1. For

the second term we use Eq. (3.27):

W2(p; p1) = Res
q→p1

dSq,o(p)W2(q; p1)

= dp1 Res
q→p1

dSq,o(p)
E(x(p1), y(q)) dx(q)

(x(q) − x(p1))(y(q) − y(p1))Ey(x(q), y(q))
= dp1 dSp1,o(p)

= B(p1, p)

(5.63)

We thus recover the well known result: the two-points function is equal to the

Bergmann kernel on the Riemann surface corresponding to the algebraic equation

E(x, y) = 0 (cf [4, 26, 19, 28]).

W2(p; p1) = B(p, p1)
(5.64)

Let us now compute U1(p, y; p1). For k = 1, Eq. (5.55) reads:

(y(r) − y(q))U1(q, y(r); p1)

dx(q)
= −

W2(q; p1)U0(q, y(r))

dx(q)2
− P1(x(q), y(r); p1)

+dp1

(

U0(p1, y(r))

(x(q) − x(p1)) dx(p1)

)

(5.65)

take it for q = r = p(i):

0 = −
W2(p

(i); p1)U0(p
(i), y(p(i)))

dx(p(i))2
− P1(x(p(i)), y(p(i)); p1)

+dp1

(

U0(p1, y(p(i)))

(x(p(i)) − x(p1)) dx(p1)

)

(5.66)

using that x(p) = x(p(i)), we have:

0 = −
W2(p

(i); p1)U0(p
(i), y(p(i)))

dx(p)2
− P1(x(p), y(p(i)); p1)

+dp1

(

U0(p1, y(p(i)))

(x(p) − x(p1)) dx(p1)

)

(5.67)

Now, write Eq. (5.65) with q = p and r = p(i):

(y(p(i)) − y(p))U1(p, y(p(i)); p1)

dx(p)
= −

W2(p; p1)U0(p, y(p(i)))

dx(p)2
− P1(x(p), y(p(i)); p1)

+dp1

(

U0(p1, y(p(i)))

(x(p) − x(p1)) dx(p1)

)

(5.68)

15



and insert Eq. (5.67), you get:

(y(p(i)) − y(p))U1(p, y(p(i)); p1) =
W2(p

(i); p1)U0(p
(i), y(p(i)))

dx(p)

−
W2(p; p1)U0(p, y(p(i)))

dx(p)
(5.69)

Using Eq. (3.27), i.e. U0(p, y) = E(x(p),y)
y−y(p)

dx(p) this implies:

(y(p(i)) − y(p))U1(p, y(p(i)); p1) = W2(p
(i); p1)Ey(x(p(i)), y(p(i))) (5.70)

Since U1(p, y; p1) is a polynomial of degree d2 − 1 in y, we can reconstruct it through

the interpolation formula:

U1(p, y; p1) =
E(x(p), y)

(y − y(p))

d2
∑

i=1

1

y − y(p(i))

(y(p(i)) − y(p))U1(p, y(p(i)); p1)

Ey(x(p(i)), y(p(i)))

(5.71)

i.e.

U1(p, y; p1) =
E(x(p), y)

(y − y(p))

d2
∑

i=1

W2(p
(i), p1)

y − y(p(i))
(5.72)

and in particular, at y = y(p), we have:

R0
1(p, p1)dx(p) =

U1(p, y(p); p1)

Ey(x(p), y(p))
=

d2
∑

i=1

W2(p
(i), p1)

y(p) − y(p(i))
(5.73)

and for i 6= 0, we have:

Ri
1(p, p1)dx(p) =

U1(p, y(p(i)); p1)

Ey(x(p), y(p(i)))
=

W2(p
(i), p1)

(y(p(i)) − y(p))
(5.74)

5.3 k ≥ 2.

In this section, one proceeds in a very similar fashion as in the previous one. Using the

same tricks, we are able to determine two relations defining recursively Wk+1(p,pK).

Let us suppose that one knows Wj(pJ) for j ≤ k and Ri
j(p,pJ) for j ≤ k − 1. The

first step consists in the determination of Wk+1(p,pK) as a function of the lower order

correlation functions. The second step leads us to the computation of Ri
k(p,pK). Once

this is done, one knows the correlation functions one order upper: one can then know

them for any k, considering that one knows W2(p, p1).
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5.3.1 Determination of Wk+1.

In this section, we derive a recursive formula for Wk+1(p,pK).

The Cauchy formula gives:

Wk+1(p,pK) = − Res
p′→p

Wk+1(p
′,pK)dSp′,o(p) (5.75)

The integrand has poles in p′ only at p and the branch points as. Using again

Riemann bilinear identity Eq. (3.44), we can then move the integration contour and

get:

Wk+1(p,pK) =
∑

s

Res
p′→as

Wk+1(p
′,pK)dSp′,o(p) (5.76)

We now introduce the loop equation Eq. (5.56) inside this expression and remark

that only one term has poles when p′ → as. Thus Wk+1(p,pK) can be written:

Wk+1(p,pK) = −
∑

s

Res
p′→as

k−1
∑

j=1

∑

J∈Kj

Uj(p
′, y(p′);pJ)

Ey(x(p′), y(p′))

Wk−j+1(p
′,pK−J)

dx(p′)
dSp′,o(p)

= −
∑

s

Res
p′→as

k−1
∑

j=1

∑

J∈Kj

R0
j (p

′,pJ)Wk−j+1(p
′,pK−J)dSp′,o(p)

(5.77)

However, Uk(p, y;pK) is a polynomial in y whose degree is equal to d2 − 1. Consid-

ering its d2 values for y = y(p(i)) with i ∈ [1, d2], the interpolation formula reads:

∀y
(y − y(p))Uk(p, y;pK)

E(x(p), y)
= −

d2
∑

i=1

Uk(p, y(p(i));pK)(y(p) − y(p(i)))

(y − y(p(i)))Ey(x(p), y(p(i)))
(5.78)

for y = y(p), this gives:

R0
k(p,pK) = −

d2
∑

i=1

Ri
k(p,pK) (5.79)

So, in Eq. (5.77), one obtains the recursive formula for Wk(pK):

Wk+1(p,pK) =

d2
∑

i=1

k−1
∑

j=1

∑

J∈Kj

∑

s

Res
p′→as

Ri
j(p

′;pJ)Wk−j+1(p
′,pK−J)dSp′,o(p)

(5.80)

The sum over j represents the summation over all partitions of K into two subsets

J and K − J .
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5.3.2 Determination of Ri
k.

In this section, one proceeds recursively, in order to find a recursion formula for Ri
k.

For this purpose, one needs to know an intermediate expression defining the different

Uk’s as well as a relation linking the value of
∑k−1

j=0 Uj(p
(i), y(p);pJ)Wk−j+1(p

(i),pK−J)

for different i’s.

Let us rewrite here Eq. (5.55):

(y(r) − y(q))Uk(q, y(r);pK) = −
k−1
∑

j=0

∑

J∈Kj

1

dx(q)
Uj(q, y(r);pJ) Wk−j+1(q,pK−J)

+

k
∑

j=1

dpj

(

Uk−1(pj, y(r);pK−{j})

x(q) − x(pj)

dx(q)

dx(pj)

)

−Pk(x(q), y(r);pK)dx(q) (5.81)

• We proceed here exactly as in the case k = 1. We use the properties of rational

functions defined on the basis and not the Riemann surface.

For r = q = p(i), Eq. (5.81) reads:

0 = −

k−1
∑

j=0

∑

J∈Kj

1

dx(p(i))
Uj(p

(i), y(p(i));pJ) Wk−j+1(p
(i),pK−J)

+
k

∑

j=1

dpj

(

Uk−1(pj, y(p(i));pK−{j})

x(p(i)) − x(pj)

dx(p(i))

dx(pj)

)

−Pk(x(p(i)), y(p(i));pK)dx(p(i))

= −

k−1
∑

j=0

∑

J∈Kj

1

dx(p)
Uj(p

(i), y(p(i));pJ) Wk−j+1(p
(i),pK−J)

+

k
∑

j=1

dpj

(

Uk−1(pj, y(p(i));pK−{j})

x(p) − x(pj)

dx(p)

dx(pj)

)

−Pk(x(p), y(p(i));pK)dx(p) (5.82)

where we have used that x(p) = x(p(i)).

Now, write Eq. (5.81) with r = p(i) and q = p:

(y(p(i)) − y(p))Uk(p, y(p(i));pK)

= −
k−1
∑

j=0

∑

J∈Kj

1

dx(p)
Uj(p, y(p(i));pJ) Wk−j+1(p,pK−J)

+

k
∑

j=1

dpj

(

Uk−1(pj, y(p(i));pK−{j})

x(p) − x(pj)

dx(p)

dx(pj)

)
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−Pk(x(p), y(p(i));pK)dx(p) (5.83)

and inserting Eq. (5.82) we get:

(y(p(i)) − y(p))Uk(p, y(p(i));pK)

= −
k−1
∑

j=0

∑

J∈Kj

1

dx(p)
Uj(p, y(p(i));pJ) Wk−j+1(p,pK−J)

+

k−1
∑

j=0

∑

J∈Kj

1

dx(p)
Uj(p

(i), y(p(i));pJ) Wk−j+1(p
(i),pK−J) (5.84)

This formula, is in principle sufficient to compute the Uk’s recursively, and then

one can compute the Ri
k’s. However, what we need in order to get Feynman

rules, is a closed recursion relation for the Ri
k’s themselves. In order to achieve

this aim, we show that:

Lemma: for any k ≥ 1, one has:

Uk(p, y;pK) =
E(x(p), y)dx(p)

y − y(p)

d2
∑

r=1

∑

K1∪...∪Kr=K

d2
∑

j1 6=j2 6=...6=jr=1
r

∏

t=1

W|Kt|+1(p
(jt),pKt

)

(y − y(p(jt))) dx(p)

(5.85)

where the sum over K1 ∪ . . . ∪ Kr = K is a sum over all partitions of K into r

subsets.

Proof: It can be proven easily by recursive action of ∂/∂V1, as in [3], however, in

order to have a self-contained method, we want to derive it here only from the

loop equations.

The proof works by recursion on k. It was proven in the previous section for

k = 1. Let us assume that, it holds for any l ≤ k − 1.

Notice, that since both sides of Eq. (5.85) are polynomials of y, from degree

d2−1, it is sufficient to prove that the equality holds for d2 values of y, namely, it

is sufficient to prove it for y = y(p(i)), i = 1, . . . , d2. Therefore, one has to prove

that:

Uk(p, y(p(i));pK)

dx(p)
=

Ey(x(p(i)), y(p(i)))

y(p(i)) − y(p)

d2
∑

r=1

∑

K1∪...∪Kr=K

∑

j1 6=j2 6=...6=jr−1 6=0,i

W|Kr|+1(p
(i),pKr

)

dx(p)

r−1
∏

t=1

W|Kt|+1(p
(jt),pKt

)

(y − y(p(jt))) dx(p)
(5.86)

19



where only the sums in which one of the jt’s is equal to i contribute.

The recursion hypothesis for j ≤ k − 1, and any J ∈ Kj gives:

Uj(p
(i), y(p(i));pJ)

dx(p)
= Ey(x(p(i)), y(p(i)))

d2
∑

r=1

∑

J1∪...∪Jr=J

∑

j1 6=j2 6=...6=jr 6=i
r

∏

t=1

W|Jt|+1(p
(jt),pJt

)

(y(p(i)) − y(p(jt))) dx(p)

(5.87)

In order to compute Uj(p, y(p(i));pJ), one has to keep only terms in the sum such

that there exists a t such that jt = i, i.e.

Uj(p, y(p(i));pJ)

dx(p)
= Ey(x(p(i)), y(p(i)))

d2
∑

r=1

∑

J1∪...∪Jr=J

∑

j1 6=j2 6=...6=jr−1 6=0,i

W|Jr|+1(p
(i),pJr

)

(y(p(i)) − y(p)) dx(p)

r−1
∏

t=1

W|Jt|+1(p
(jt),pJt

)

(y(p(i)) − y(p(jt))) dx(p)

(5.88)

Insert that into Eq. (5.84):

(y(p(i)) − y(p))Uk(p, y(p(i));pK)

= −Ey(x(p(i)), y(p(i)))
k−1
∑

j=0

∑

J∈Kj

d2
∑

r=1

∑

J1∪...∪Jr=J

∑

j1 6=j2 6=...6=jr−1 6=0,i

Wk−j+1(p,pK−J)
W|Jr|+1(p

(i),pJr
)

(y(p(i)) − y(p)) dx(p)

r−1
∏

t=1

W|Jt|+1(p
(jt),pJt

)

(y(p(i)) − y(p(jt))) dx(p)

+Ey(x(p(i)), y(p(i)))
k−1
∑

j=0

∑

J∈Kj

d2
∑

r=1

∑

J1∪...∪Jr=J

∑

j1 6=j2 6=...6=jr 6=i

Wk−j+1(p
(i),pK−J)

r
∏

t=1

W|Jt|+1(p
(jt),pJt

)

(y(p(i)) − y(p(jt))) dx(p)

(5.89)

The difference between these two summation, keeps only jt 6= 0, i, thus:

Uk(p, y(p(i));pK)

= Ey(x(p(i)), y(p(i))) dx(p)

k−1
∑

j=0

∑

J∈Kj

d2
∑

r=1

∑

J1∪...∪Jr=J

∑

j1 6=j2 6=...6=jr 6=i,0

Wk−j+1(p
(i),pK−J)

(y(p(i)) − y(p)) dx(p)

r
∏

t=1

W|Jt|+1(p
(jt),pJt

)

(y(p(i)) − y(p(jt))) dx(p)

(5.90)
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i.e. we have proven the lemma for k, for y = y(p(i)), and since both sides are

polynomials in y of degree d2 − 1, the equality holds for all y.

•

Remark that this lemma can easily be obtained by recursively applying the

∂/∂V1(x) loop insertion operator. We did not use that method here, in order

to have a self consistent method based only on loop equations.

Theorem: For all k ≥ 1, one has:

∑d2

i=1

∑k−1
j=0

∑

J∈Kj
Uj(p

(i), y(p);pJ)Wk−j+1(p
(i),pK−J)

=
∑k−1

j=1

∑

J∈Kj
Uj(p, y(p);pJ)Wk−j+1(p,pK−J)

(5.91)

Proof of the theorem: Let us simply perform some basic rearrangements:

d2
∑

i=1

k−1
∑

j=0

∑

J∈Kj

Uj(p
(i), y(p);pJ)Wk−j+1(p

(i),pK−J)

=
∑

K1
⋃

L=K

d2
∑

j1=1

W|K1|+1(p
(j1),pK1)U|L|+1(p

(j1), y(p);pL)

= Ey(x(p), y(p))dx(p)
∑

K1
⋃

L=K

d2
∑

j1=1

d2
∑

r=1

∑

K2∪...∪Kr+1=L

∑

j2 6=j3 6=...6=jr∈[1,d2]−{j1}

W|K1|+1(p
(j1),pK1)

W|Kr+1|+1(p,pKr+1)

(y(p) − y(p(j1)))

r
∏

a=2

W|Ka|+1(p
(ja),pKa

)

(y(p) − y(p(ja)))dx(p)

= Ey(x(p), y(p))dx(p)
d2

∑

r=1

∑

K1∪...∪Kr+1=K

d2
∑

j1 6=j2 6=...6=jr=1
r

∏

a=1

W|Ka|+1(p
(ja),pKa

)W|Kr+1|+1(p,pKr+1)

(y(p) − y(p(ja)))dx(p)

=
∑

Kr+1
⋃

J=K

W|Kr+1|+1(p,pKr+1)U|J |(p, y(p),pJ)

(5.92)

•

This identity simplifies Eq. (5.84) which becomes now:

(y(p(i)) − y(p))Ri
k(p,pK)dx(p) =
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Wk+1(p
(i),pK) +

k−1
∑

j=1

∑

J∈Kj

∑

l 6=0,i

Uj(p
(l), y(p(i));pJ)Wk−j+1(p

(l),pK−J)

Ey(x(p), y(p(i)))dx(p)
(5.93)

One can now write down the final recursion formula for Ri
k(p,pK) in these terms:

Ri
k(p,pK) =

Wk+1(p
(i),pK)

(y(p(i))−y(p))dx(p)

+
∑k−1

j=1

∑

J∈Kj

∑

l 6=0,i

Ri
j(p

(l),pJ)Wk−j+1(p(l),pK−J )

(y(p(i))−y(p))dx(p)

(5.94)

5.4 Diagrammatic solution

This section is the principal part of the article. We define a correspondence between the

correlation functions and a system of Feynman-like graphs. To every k-point function,

we associate a graph with k external legs and Eq. (5.80) and Eq. (5.94) become two

relations describing these graphs as functions of graphs with j ≤ k − 1 legs thank to

some rules we introduce in this part.

Let Ri
k and Wk be represented by:

Ri
k(p, pK) := p i

k
p

k-1
p

k-2
p

3
p

1
p 2

p

and Wk+1(p, pK) := p

k
p

k-1
p

k-2
p

3
p

1
p 2

p

(5.95)

Let us introduce also the following propagators and vertices:

non-arrowed propagator: p q := W2(p, q)

arrowed propagator: p q := dSq,o(p)

Residue cubic-vertex: q :=
∑

s Res q→as

colored cubic-vertices: p(l) i

p(m)

p(m)

:=
(1−δl,m)(1−δm,i)(1−δi,l)

(y(p(i))−y(p(l)))dx(p)

simple vertex: pp (i)(l) i
:= 1

(y(p(i))−y(p(l)))dx(p)
(1 − δi,l)

One can now simply interpret the recursion relations in terms of graphs:
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• Eq. (5.80) can be represented as:

p

k
p

k-1
p

k-2
p

3
p

1
p 2

p

=

d2
∑

i=1

k−1
∑

j=1

∑

J∈Kj i K-J

J

p q (5.96)

• Eq. (5.94) can be represented as:

p i

k
p

k-1
p

k-2
p

3
p

1
p 2

p

=
∑k−1

j=1

∑

J∈Kj

∑d2

l=0

(l)p

(l)p

ip

i K-J

J

+
∑k−1

j=1

∑

J∈Kj

∑d2

l=1

ip

l K-J

J

q(i)p

(5.97)

From these relations, it is easy to see that Wk+1(p,pK) is represented by all binary

trees with 1 root and k leaves following the rules:

• The vertices have valence 1, 2 or 3;

• the edges are arrowed or not; arrowed edges are oscillating or not;

• the arrows form a binary skeleton-tree;

• from each vertex comes one oscillating and one non-oscillating edge;

• two linked indices are different;

• the k leaves are non-arrowed propagators finishing at pj’s.

5.5 Examples.

Let us briefly review the diagrams induced for the first cases.

One has the following diagrammatic representations:

• k = 2 :
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W2(p, q) = p q (5.98)

and

Ri
1(p, p1) =

p(i)p p
1

i
(5.99)

These two diagrams represent the basis of the whole representation: they allow to

draw the k = 3 correlation functions:

• k = 3 :

W3(p, p1, p2) =
∑d2

i=1 ii
pp +

1
p

2
p

2
p

1
p

=
∑d2

i=1

∑

s Res p′→as

[

B(p′(i),p1)B(p′,p2)

(y(p′(i))−y(p′))dx(p′)
+ B(p′(i),p2)B(p′,p1)

(y(p′(i))−y(p′))dx(p′)

]

dSp′,o(p)

(5.100)

and

Ri
2(p, p1, p2) =

∑d2

j=1
+p p

i

j

i

j

p
2

p
1

p
2

p
1

+
∑

j 6=i + pp

j

i

j

i

p
2

p
1

p
1

p
2

(5.101)
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• k = 4 :

W4(p, p1, p2, p3) =
∑d2

i=1

∑d2

j=1 p

i

j

1
p

2
p

3
p

+
∑d2

i=1

∑d2

j=1

i
p

j

3
p

1
p

2
p

+
∑d2

i=1

∑d2

j 6=i=1

i

p

j

3
p

1
p

2
p

+( permutations of {p1, p2, p3} )

(5.102)

One has to consider all the permutations on the external legs. Thus, W4 is the sum

over 18 different diagrams.
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6 Genus expansion

In this section, one determines all the terms of the genus (i.e. 1
N2 ) expansion of the

correlation functions.

6.1 Loop equations.

In section (5.1), one has kept only leading terms when performing the changes of

variable. Let us now write the 1
N2 corrective term for the same changes of variable.

One obtains the loop equation :

(y(r) − y(p))Uk(p, y(r);pK)

= −Pk(x(p), y(r);pK)dx(p) −
∑k−1

j=0
1

dx(p)
Uj(p, y(r);pJ)Wk−j+1(p,pK−J)

− 1
N2

Uk+1(p,y(r);p,pk)

dx(p)
+

∑

j dpj

(

Uk−1(pj ,y(r);pK−{j})

x(p)−x(pj)
dx(p)
dx(pj)

)

(6.103)

For the following, one should remind the expression of the function Y (x(p)):

Y (x) := V ′
1(x) −

w1(x)

dx
(6.104)

Then, for h ≥ 1:

Y (h)(x(p)) = −
W

(h)
1 (p)

dx(p)
(6.105)

Consider now the 1
N2 expansion of this equation order by order. The genus h term

(corresponding to the 1
N2h term) gives:

(y(r) − y(p))U
(h)
k (p, y(r);pK) −

∑h

m=1 Y (m)(x(p))U
(h−m)
k (p, y(r);pK)

= −P
(h)
k (x(p), y(r);pK)dx(p)

−
∑h

m=0

∑k−1
j=0

1
dx(p)

U
(m)
j (p, y(r);pJ)W

(h−m)
k−j+1 (p,pK−J)

−
U

(h−1)
k+1 (p,y(r);p,pk)

dx(p)
+

∑

j dpj

(

U
(h)
k−1(pj ,y(r);pK−{j})

x(p)−x(pj)
dx(p)
dx(pj)

)

(6.106)

When y(r) = y(p):

∑h

m=1 Y (m)(x(p))U
(h−m)
k (p, y(p);pK)

= P
(h)
k (x(p), y(p);pK)dx(p) +

∑h

m=0

∑k−1
j=0

1
dx(p)

U
(m)
j (p, y(p);pJ)W

(h−m)
k−j+1 (p,pK−J)

+
U

(h−1)
k+1 (p,y(p);p,pk)

dx(p)
−

∑

j dpj

(

U
(h)
k−1(pj ,y(p);pK−{j})

x(p)−x(pj)
dx(p)
dx(pj)

)

(6.107)
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6.2 Case h=1:genus 1.

Let us consider Eq. (6.107) for h = 1 and k = 0:

Y (1)(x(p))U0(p, y(p)) = P
(1)
0 (x(p), y(p))dx(p) +

U1(p, y(p); p)

dx(p)
(6.108)

Using the Cauchy formula and considering the same arguments as in the preceding

parts for the integration along the cycles A and B and that
P

(1)
0 (x(p),y(p))

U0(p,y(p))
has no pole

when p is equal to any branch point ai, one obtains:

Y (1)(x(p))dx(p) = − Res
q→p

dSq,o(p)Y (1)(x(q))dx(q)

=
∑

s

Res
q→as

dSq,o(p)Y (1)(x(q))dx(q)

=
∑

s

Res
q→as

R0
1(q, q)dSq,o(p)

= −
∑

s

d2
∑

i=1

Res
q→as

Ri
1(q, q)dSq,o(p)

(6.109)

That is to say:

W
(1)
1 (p) =

∑

s

d2
∑

i=1

Res
q→as

Ri
1(q, q)dSq,o(p) (6.110)

Considering the graphical interpretation introduced in the preceding section, this

equation can be interpreted diagrammatically as a one-loop corrective term:

W
(1)
1 (x(p))dx(p) = p

=

d2
∑

i=1

p i

=

d2
∑

i=1

∑

s

Res
q→as

dSq,o(p)
B(q, q(i))

y(q(i)) − y(q)

(6.111)

6.3 Any genus h

In this section, we proceed in two steps to compute the correlation function W
(h)
k for

any k and any h, and represent it as a Feynman graph with h loops. The first step

consists in the determination of a recursive relation for W
(h)
k , whereas the second one

gives R
i,(h)
k considered the lower order terms known.
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For the following, let h and k be two given positive integers. Let us consider W
(m)
j

known for any j if m < h and any j ≤ k if m = h. One also assume that R
i,(m)
j is known

for any i and any j if m < h and any j < k if m = h. Starting from these assumptions,

one computes W
(h)
k+1 and R

i,(h)
k , what will allow us to know any term recursively.

6.3.1 A recursive formula for W
(h)
k+1

Let us remind Eq. (6.107) in a more suitable way to emphasize that it allows us to

compute W
(h)
k+1(p, pK) with our assumption:

W
(h)
k+1(p,pK)U0(p, y(p)) =

−
∑h−1

m=0 W
(h−m)
1 (p)U

(m)
k (p, y(p);pK)

−P
(h)
k (p, y(p);pK)dx(p)2

−
∑h

m=0

∑k−1
j=0,m+j 6=0 U

(m)
j (p, y(p);pJ)W

(h−m)
k−j+1 (p,pK−J)

−U
(h−1)
k+1 (p, y(p); p,pk) +

∑

j

∑

j dpj

(

U
(h)
k−1(pj ,y(p);pK−{j})

x(p)−x(pj)
dx(p)
dx(pj)

)

1
dx(p)

(6.112)

Remark that the RHS contains only known terms except P
(h)
k (p, y(p);pK). Fortu-

nately, it plays no role in Cauchy formula.

Indeed, we write the Cauchy formula, move the integration contour and vanish

integrals around the cycles thanks to the same arguments as in the preceding sections.

This gives:

W
(h)
k+1(p,pK) = − Res

p′→p
W

(h)
k+1(p

′,pK)dSp′,o(p)

=
∑

s

Res
p′→as

W
(h)
k+1(p

′,pK)dSp′,o(p) (6.113)

We now introduce Eq. (6.112) inside this formula and keep only terms which have

poles at the branch points:

W
(h)
k+1(p,pK) =

−
∑h−1

m=0

∑

s Res p′→as
W

(h−m)
1 (p′)R

(m)
k (p′;pK)dSp′,o(p)

−
∑h

m=0

∑k−1
j=0,m+j 6=0

∑

s Res p′→as
R

(m)
j (p′;pJ)W

(h−m)
k−j+1 (p′,pK−J)dSp′,o(p)

−
∑

s Res p′→as
R

(h−1)
k+1 (p′; p′,pk)dSp′,o(p)

(6.114)

For convenience, let us note:

W
(0)
1 (p) ≡ W

(1)
0 (p) ≡ 0 (6.115)
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Then, the recursive definition of W
(h)
k+1(p, pK) reads:

W
(h)
k+1(p,pK) =

∑d2

i=1

∑h

m=0

∑k

j=0,m+j 6=0

∑

s Res p′→as
R

i,(m)
j (p′;pJ)W

(h−m)
k−j+1 (p′,pK−J)dSp′,o(p)

+
∑d2

i=1

∑

s Res p′→as
R

i,(h−1)
k+1 (p′; p′,pK)dSp′,o(p)

(6.116)

6.3.2 A recursive formula for R
i,(h)
k

The second step consists in the derivation of an equivalent formula for R
i,(h)
k . We

process in the same way as for the genus 0 case: we use the rational properties of some

of the correlation functions to write the recursive formula, with the aid of a relation

similar to Eq. (5.91).

So let us recall to mind Eq. (6.106), and present it in a slightly different way:

(y(r)− y(q))U
(h)
k (q, y(r);pK)

+
∑h

m=1
W

(m)
1 (q)U

(h−m)
k

(q,y(r);pK)

dx(q)
+

U
(h−1)
k+1 (q,y(r);q,pk)

dx(q)

= −P
(h)
k (x(q), y(r);pK)dx(q)

−
∑h

m=0

∑k−1
j=0

1
dx(q)

U
(m)
j (q, y(r);pJ)W

(h−m)
k−j+1 (q,pK−J)

+
∑

j dpj

(

U
(h)
k−1(pj ,y(r);pK−{j})

x(q)−x(pj)
dx(q)
dx(pj)

)

(6.117)

This equation taken for r = q = p(i) can be written:

∑h

m=1
W

(m)
1 (p(i))U

(h−m)
k

(p(i),y(p(i));pK)

dx(p(i))
+

U
(h−1)
k+1 (p(i),y(p(i));q,pk)

dx(p(i))

= −P
(h)
k (x(p(i)), y(p(i));pK)dx(p(i))

−
∑h

m=0

∑k−1
j=0

1
dx(p(i))

U
(m)
j (p(i), y(p(i));pJ)W

(h−m)
k−j+1 (p(i),pK−J)

+
∑

j dpj

(

U
(h)
k−1(pj ,y(p(i));pK−{j})

x(p(i))−x(pj)

dx(p(i))
dx(pj)

)

= −P
(h)
k (x(p), y(p(i));pK)dx(p)

−
∑h

m=0

∑k−1
j=0

1
dx(p)

U
(m)
j (p(i), y(p(i));pJ)W

(h−m)
k−j+1 (p(i),pK−J)

+
∑

j dpj

(

U
(h)
k−1(pj ,y(p(i));pK−{j})

x(p)−x(pj)
dx(p)
dx(pj)

)

(6.118)

where we have emphasized the equality x(p(i)) = x(p).
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Let us now write 6.117 for r = p(i) and q = p:

(y(p(i)) − y(p))U
(h)
k (p, y(p(i));pK)

+
∑h

m=1
W

(m)
1 (p)U

(h−m)
k

(p,y(p(i));pK)

dx(p)
+

U
(h−1)
k+1 (p,y(p(i));p,pk)

dx(p)

= −P
(h)
k (x(p), y(p(i));pK)dx(p)

−
∑h

m=0

∑k−1
j=0

1
dx(p)

U
(m)
j (p, y(p(i));pJ)W

(h−m)
k−j+1 (p,pK−J)

+
∑

j dpj

(

U
(h)
k−1(pj ,y(p(i));pK−{j})

x(p)−x(pj)
dx(p)
dx(pj)

)

(6.119)

That is to say, using 6.118:

(y(p(i)) − y(p))U
(h)
k (p, y(p(i));pK) =

∑h

m=0

∑k

j=0

W
(m)
j+1 (p(i),pJ )U

(h−m)
k−j

(p(i),y(p(i));pK−J )

dx(p)

+
U

(h−1)
k+1 (p(i),y(p(i));p(i),pk)

dx

−
∑h

m=0

∑k

j=0

W
(m)
j+1 (p,pJ )U

(h−m)
k−j

(p,y(p(i));pK−J )

dx(p)

−
U

(h−1)
k+1 (p,y(p(i));p,pk)

dx

(6.120)

We now establish a relation similar to Eq. (5.91) in order to present our recursive

formula in such a way that it can be graphically interpreted.

In order to achieve this aim, one has to determine an explicit intermediate formula

for U
(h)
k (p, y; pK). Let us assume that (for the proof, see appendix A):

U
(h)
k (p, y(p(i));pK) =

Ey(x,y(p(i)))

y(p(i))−y(p)

∑min(d2,k+h)
r=1

∑

K1
⋃

...
⋃

Kr=K

∑h

hα=0

∑k+h

kα=|Kα|

∑

jα,β 6=jα′,β′∈[1,d2]−{i}
1
Ω

W
(h1)
k1+1(p

(i),pK1
,p

(j1,1)
,...,p

(j1,k1−|K1|
)
)
(

∏r
α=2 W

(hα)
kα+1(p

(jα,0)
,pKα ,p

(jα,1)
,...,p

(jα,kα−|Kα|))
)

dx(p)r−k−1+
∑

kα
∏

α,β y(p(i))−y(p
(jα,β)

)

(6.121)

where Ω is some symmetry factor which does only depend on the kα − |Kα|’s and

one has the following constraints:

•
∑

o(hα + kα) = h + k;

• 0 ≤ |Kα| ≤ kα

One should note that the only external parameter entering these constraints is k+h.

It is now possible to derive an equality equivalent to Eq. (5.91). One shows – in

appendix B – that:

h
∑

m=0

k
∑

j=0;mj 6=kh

W
(m)
j+1 (p,pJ)U

(h−m)
k−j (p, y(p);pK−J) + U

(h−1)
k+1 (p, y(p); p,pk)

=

d2
∑

i=1

h
∑

m=0

k
∑

j=0;mj 6=kh

W
(m)
j+1 (p(i),pJ)U

(h−m)
k−j (p(i), y(p);pK−J)
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+

d2
∑

i=1

U
(h−1)
k+1 (p(i), y(p); p(i),pk)

(6.122)

This equality allows us to write:

(y(p(i)) − y(p))U
(h)
k (p, y(p(i));pK) =

∑h

m=0

∑k

j=0;mj 6=kh

∑

l 6=0,i

W
(m)
j+1 (p(l),pJ )U

(h−m)
k−j

(p(l),y(p(i));pK−J )

dx(p)

+
∑

l 6=0,i

U
(h−1)
k+1 (p(l),y(p(i));p(l),pk)

dx(p)
+ W

(h)
k+1(p

(i),pK)Ey(x, y(p(i)))

(6.123)

That is to say:

R
i,(h)
k (p,pK) =

∑h

m=0

∑k

j=0;mj 6=kh

∑

l 6=0,i

W
(m)
j+1 (p(l),pJ )R

i,(h−m)
k−j

(p(l);pK−J )

(y(p(i))−y(p))dx(p)

+
∑

l 6=0,i

R
i,(h−1)
k+1 (p(l);p(l),pk)

(y(p(i))−y(p))dx(p)
+

W
(h)
k+1(p

(i),pK)

(y(p(i))−y(p))dx(p)

(6.124)

6.3.3 Diagrammatic solution.

In this section, we express the functions W
(h)
k as diagrams, using the Feynman rules

defined for the genus 0 case. This way, we generalize the trees obtained in the preceding

case to any loop-order: we show that the 1
N2h correction can be seen as a h-loop

diagrammatic correction.

Let us represent R
i,(h)
k , and W

(h)
k respectively, as white and black disks with h holes:

W
(h)
k (p, pK) := p

(h)

k
p

k-1
p

1
p

2
p

(6.125)

R
i,(h)
k (p, pK) :=

(h)

p i

p
1

pk
p

k-1

p
2

(6.126)

One now can use the preceding Feynman rules in order to represent diagrammati-

cally the two recursive equations.
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• The recursive relation giving the W
(h)
k ’s is diagrammatically written as follows:

p

(h)

k
p

k-1
p

1
p

2
p

=

d2
∑

i=1

h
∑

m=0

k
∑

j=0,m+j 6=0

∑

J∈Kj

J

K-J

i

(h-m)

(m)

p p’

+

d2
∑

i=1

K
i

(h-1)

p’p

(6.127)

• Given lower order R
i,(m)
l ’s and W

(m)
l ’s, one can obtain R

i,(h)
k diagrammatically by

writing Eq. (6.124):

(h)

p i

p
1

pk
p

k-1

p
2

=
∑h

m=0

∑k

j=0,m+j 6=0

∑

J∈Kj















∑d2

l=0

K-J

i J

(h-m)

(m)

p i

p (l)

p (l)

+
∑d2

l=1

J

K-J

l

(h-m)

(m)

p
i

p’
p(i)













+
∑d2

l=0

(l)p

(l)p

i K
i

(h-1)

p

+
∑d2

l=1
p’

(h-1)

l
Kp i

p(i)

(6.128)

This means that W
(h)
k+1 is obtained by the summation over all Feynman graphs with k

external legs and h loops and following the same prescriptions as the trees corresponding

to Wk, i.e.:

• The vertices have valence 1,2 or 3, there are 2h + k − 1 tri-valent vertices;
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• The edges, are arrowed or not, the arrowed edges are colored or not;

• The subgraph made of arrowed edges forms a skeleton tree;

• from each tri-valent vertex comes one colored and one non-colored propagator;

• two linked colors are different;

• the k leaves are non-arrowed propagators finishing at pj’s.

A practical way to draw these graphs is to draw every skeleton tree of arrows, put

k non arrowed propagators as leaves and close it with h non arrowed propagators in

order to obtain h loops.

6.3.4 Examples.

Let us now carry out two simple examples of graphs obtained this way. We write W
(1)
2

and W
(2)
1 .

W
(1)
2 =

∑d2

i=1

∑

j∈[1,d2]−{i}





 i j +
i

j

+
j

i

]

+
∑d2

i=1

∑d2

j=1







i j +
j

i

+

j

i

+
j

i









(6.129)

Analytically, this reads:

W
(1)
2 (p, p1) =

∑d2

i=1

∑

j∈[1,d2]−{i}

∑

s Res p′→as

dSp′,o(p)

(y(p′(i))−y(p′))(y(p′(i))−y(p′(j)))dx2(p′)
[

B(p′, p1)B(p′(i), p′(j)) + B(p′(i), p1)B(p′, p′(j)) + B(p′, p′(i))B(p1, p
′(j))

]

+
∑d2

i=1

∑d2

j=1

∑

s,t Res p′→as
Res p′′→at

dSp′,o(p)

(y(p′(i))−y(p′))(y(p′′(j))−y(p′′))dx(p′)dx(p′′)
[

B(p′, p1)B(p′′, p′′(j))dSp′′,o(p
′(i)) + B(p′(i), p1)B(p′′, p′′(j))dSp′′,o(p

′)
+B(p′′, p′)B(p1, p

′′(j))dSp′′,o(p
′(i)) + B(p1, p

′′)B(p′, p′′(j))dSp′′,o(p
′(i))

]

(6.130)
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W
(2)
1 =

∑d2

i=1

∑d2

j=1

∑d2

k=1























k

j

i

+ kj

i

+ k
ji

+ k

i

j +

k

j

i








+
∑d2

i=1

∑

j∈[1,d2]−{i}

∑d2

k=1

[

k

j

i
+ k

j
i

+ k j
i

+
k

j
i







+
∑d2

i=1

∑d2

j=1

∑

k∈[1,d2]−{j}

























j

k

i

+ j k

i

+ k

j

i

+

k

j

i 







+
∑d2

i=1

∑

j∈[1,d2]−{i}

∑

k∈[1,d2]−{j}







kji + k
j

i

+
k

j

i









(6.131)

Note: In the 1-matrix limit, the only diagrams remaining are the five first ones,

i.e. the one where no colors are linked. Indeed, this limit is obtained diagrammatically

by taking the length of the oscillating propagator to zero. When two colors are linked,

this gives rise to a four legs vertex which can not exist.
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7 An effective non cubic theory

The Feynman graphs described up to now correspond to a cubic theory and then, have

the advantage to have only trivalent vertices. Nevertheless, some problems do not need

this property to be solved and one can build an effective theory with less propagators

but vertices with valence up to d2 − 1. Roughly, it consists in resumming the linked

waved vertices into one multivalent vertex:

∼ (7.132)

Let us present this effective theory in this section.

7.1 Leading order: Genus 0

Actually, we have already written the equations necessary to define this effective theory.

Let us consider Eq. (5.77) and Eq. (5.85):

Wk+1(p,pK) = −
∑

s

Res
p′→as

k−1
∑

j=1

∑

J∈Kj

1

dx′

Uj(p
′, y(p′);pJ)

Ey(x(p′), y(p′))
Wk−j+1(p

′,pK−J)dSp′,o(p)

(7.133)

Uk(p, y;pK) =
E(x(p), y)dx(p)

y − y(p)

d2
∑

r=1

∑

K1∪...∪Kr=K

d2
∑

j1 6=j2 6=...6=jr=1

r
∏

t=1

W|Kt|+1(p
(jt),pKt

)

(y − y(p(jt))) dx(p)

(7.134)

This second equation taken for y = y(p) reads:

Uk(p, y(p);pK)

Ey(x(p), y(p))dx(p)
=

d2
∑

r=1

∑

K1∪...∪Kr=K

d2
∑

j1 6=j2 6=...6=jr=1

r
∏

t=1

W|Kt|+1(p
(jt),pKt

)

(y(p) − y(p(jt))) dx(p)
(7.135)

Introduce it in Eq. (7.133) and get a closed recursive formula for the Wk’s:

Wk+1(p,pK) = −
∑

s Res p′→as

∑d2

r=1

∑

K0∪K1∪...∪Kr=K

∑d2

j1 6=j2 6=...6=jr=1

W|K0|+1(p
′,pK0)

∏r

t=1

W|Kt|+1(p
′(jt),pKt

)

(y(p′)−y(p′(jt))) dx(p′)
dSp′,o(p)

(7.136)

Let us introduce the following Feynman rules:
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non-arrowed propagator: p q := W2(p, q)

arrowed propagator: p q := dSq,o(p)

r+2 - vertex
(1 ≤ r ≤ d2)

with one marked
edge:

q

q

r(j )q

3(j )
q

(j )1q
2(j )

q :=
−

∑

s

∑

j1 6=...6=jr 6=0 Res q→as
∏r

t=1
1

(y(q)−y(q(jt )))dx(q)

Remark that one leg of the multiple vertex is marked: on this leg, there is no

summation over the different sheets.

Using these rules, one can diagrammatically write the recursive relation as follows:

p

k
p

k-1
p

k-2
p

3
p

1
p 2

p

=

d2
∑

r=1

∑

K0∪K1∪...∪Kr=K

Kr

K3

K2

K1

q

q

K0

q
(j )1

q
(j )2

q
(j )3

q(j )r

(7.137)

From this relation, one can see that Wk+1(p,pK) is obtained as the summation over

all trees with k + 1 external legs and following the rules:

• The vertices have valence r such as 1 ≤ r ≤ min(k + 1, d2 + 1);

• The edges are arrowed;

• One of the legs of each vertex is marked

• The subgraph made of arrowed edges forms a skeleton tree;

• The k leaves are non arrowed propagators ending at pj’s.

The drawbacks of this effective theory induced by the existence of multivalent ver-

tices is balanced by the simplicity of these vertices and the lack of different propagators.
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7.2 Any genus h

Let us now study the extension of this theory to any genus.

Once again, the fundamental equations have already been written. Let us recall to

mind the following equations Eq. (6.116) and Eq. (6.121):

W
(h)
k+1(p,pK) =

−
∑h

m=0

∑k

j=0,m+j 6=0

∑

s Res p′→as

U
(m)
j (p′,y(p′);pJ )

Ey(x(p′),y(p′))
W

(h−m)
k−j+1 (p′,pK−J)dSp′,α(p)

−
∑

s Res p′→as

U
(h−1)
k+1 (p′,y(p′);p′,pK)

Ey(x(p′),y(p′))
dSp′,α(p)

(7.138)

and, for i 6= 0:

U
(h)
k (p, y(p(i));pK) =

Ey(x,y(p(i)))

y(p(i))−y(p)

∑min(d2,k+h)
r=1

∑

K1
⋃

...
⋃

Kr=K

∑h

hα=0

∑k+h

kα=|Kα|

∑

jα,β 6=jα′,β′∈[1,d2]−{i}
1
Ω

W
(h1)
k1+1(p

(i),pK1
,p

(j1,1)
,...,p

(j1,k1−|K1|
)
)
(

∏r
α=2 W

(hα)
kα+1(p

(jα,0)
,pKα ,p

(jα,1)
,...,p

(jα,kα−|Kα|))
)

dx(p)r−k−1+
∑

kα
∏

α,β y(p(i))−y(p
(jα,β)

)

(7.139)

In order to introduce this second formula inside the first one, one has to use the

interpolation formula to consider the case where i = 0 :

U
(m)
l

(p,y(p);pL)

Ey(x(p),y(p))
=

−
∑min(d2,l+m)

r=1

∑

L1
⋃

...
⋃

Lr=L

∑m

mα=0

∑l+m

lα=|Lα|

∑

j1 6=...6=jr∈[1,d2]
1
Ω

W
(m1)
l1+1 (p(j1,0)

,pL1
,p

(j1,1)
,...,p

(j1,l1−|L1|
)
)
∏r

α=2 W
(mα)
lα+1 (p(jα,0)

,pLα ,p
(jα,1)

,...,p
(jα,lα−|Lα|))

dx(p)r−l−1+
∑

lα (y(p(j1,0))−y(p))
∏

α,β(y(p(j1,0))−y(p
(jα,β )

)

(7.140)

Recursively, it is easy to check that it can be written:

U
(m)
l

(p,y(p);pL)

Ey(x(p),y(p))dx(p)
=

∑min(d2,l+m)
r=1

∑

L1
⋃

...
⋃

Lr=L

∑m

mα=0

∑l+m

lα=|Lα|

∑

jα,β 6=jα′,β′∈[1,d2]
1
Ω′

∏r

α=1

W
(mα)
lα+1 (p(jα,0)

,pLα ,p
(jα,1)

,...,p
(jα,lα−|Lα|))

dx(p)lα−|Lα|+1
∏lα−|Lα|

β=0 (y(p)−y(p
(jα,β )

))

(7.141)

where Ω′ is some other symmetry factor depending only on the same parameters as

Ω.

One is now able to write an explicit recursion formula for the W
(h)
k ’s that can be

graphically represented the Feynman rules introduced in this section. The introduction

of Eq. (7.141) in Eq. (7.138) gives:
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W
(h)
k+1(p,pK) =

−
∑

s Res p′→as

∑d2

r=1

∑

K0
⋃

K1
⋃

...
⋃

Kr=K

∑h

hα=0

∑k+h

kα=|Kα|

∑

jα,β 6=jα′,β′∈[1,d2]
1
Ω′

dSp′,o(p)W
(h0)
|K0|+1(p

′,pK0)
∏r

α=1

W
(hα)
kα+1(p

′(jα,0)
,pKα ,p

′(jα,1)
,...,p

′(jα,kα−|Kα|))

dx(p′)kα−|Kα|+1
∏kα−|Kα|

β=0 (y(p′)−y(p
′(jα,β)

))

−
∑

s Res p′→as

U
(h−1)
k+1 (p′,y(p′);p′,pK)

Ey(x(p′),y(p′))
dSp′,α(p)

(7.142)

That is to say:

p

(h)

k
p

k-1
p

1
p

2
p

=
d2

∑

r=1

∑

hα

∑

K0∪K1∪...∪Kr=K

r

1

0

K

K

K

(h )r

1

(h )

(h )

0

+

d2
∑

r=1

∑

hα

∑

K1∪...∪Kr=K

rK

1K

(h )r

1(h ) (7.143)

Remark that we have splitted the diagrams in the RHS in order to reproduce

the recursion relation. Nevertheless, the first term in the RHS is nothing else but a

particular case of the second term where the marked leg of the vertex is left alone inside

one of the W ’s.

Hence, the h’th order expansion term of the correlation function W
(h)
k is obtained

as the summation over all Feynman diagrams with k external legs and h loops following

the same rules as exposed in the genus 0 case, i.e.:

• The vertices have valence r such as 1 ≤ r ≤ d2 + 1;

• The edges are arrowed or not;
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• One of the legs of each vertex is marked;

• The subgraph made of arrowed edges forms a skeleton tree;

• the k leaves are non arrowed propagators ending at pj’s.

7.3 Examples

Let us review some simple examples of this description.

W3(p, p1, p2) = qq +

2 2

1
1

p

p

p

p

p

p

(7.144)

Analytically, this reads:

W3(p, p1, p2) =
∑d2

i=1

∑

s Res q→as

[

B(q(i), p1)B(q, p2) + B(q(i), p2)B(q, p1)
]

dSq,o(p)

(y(q(i))−y(q))dx(q)

(7.145)

W
(1)
1 (p) = p q

=
∑

s

d2
∑

i=1

Res
q→as

dSq,o(p)
B(q, q(i))

(y(q(i)) − y(q))dx(q)
(7.146)

W
(1)
2 (p, p1) =

p p’
p’’

p
1

+
p p’

p’’

p
1
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+
1

2

p p’ p
1

+

p p’ p
1

+

p p
p’ p’’

1

+

p
p’ p’’ p

1

(7.147)

8 The gaussian case: the 1-matrix model limit.

In this section, we are interested in the special case where d2 = 1, i.e. one has a

gaussian potential in M2. This situation is very important because it links our results

to the 1-matrix model studied in [12]. Indeed, when one of the potentials is gaussian –

V2 for example –, the integration over one of the variables – M2 in this case – is gaussian

and can be straightforwardly performed without giving any contribution to the formal

expansion. Then, the 2-matrix model with one gaussian potential is equivalent to the

1-matrix model with a potential V = V1 −
x2

2g2
. We check in this part that our results

coincide with the ones obtained directly from the 1-matrix model in [12]. Actually, it

is a good way to better understand the structure obtained in this case.

Let us note:

V2(y) =
g2

2
y2 (8.148)

In this case, the Riemann surface is an hyperelliptic surface with only two x-sheets.

The equation x(p) = x has only two solutions. Let us call them p and p, i.e. p(0) = p

and p(1) = p. They obey the following relations:

x(p) = x(p) and y(p) = −y(p) (8.149)

The algebraic equation generating the Riemann surface reads:

E(x(p), y(r)) = −g2(y(r) − y(p))(y(r)− y(p)) = −g2(y(r)2 − y(p)2) (8.150)

One can also remark that:

Uk(p, y;pK) = g2Wk+1(p,pK) (8.151)

That is to say:

R0
k(p,pK) =

Uk(p, y(p);pK)

Ey(x(p), y(p))
= −

Wk+1(p,pK)

2y(p)
(8.152)

So that:

R0
k(p,pK) = R1

k(p,pK) =
Wk+1(p,pK)

2y(p)
(8.153)
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Diagrammatic rules.

One can now study how the Feynman rules of the two theories introduced earlier behave

in this limit.

• The cubic field theory

Because V2 is gaussian, the Feynman rules become:

non-arrowed propagator: p q := W2(p, q)

arrowed propagator: p q := dSq,o(p)

Residue cubic-vertex: q :=
∑

s Resq→as

simple vertex: pp := − 1
2y(p)dx(p)

The last component of the Feynman diagrams, the colored cubic-vertex, implies

three different x-sheets. Because there exists only two such sheets in the gaussian

case, this vertex vanish:

p(l) i

p(m)

p(m)

:= 0 (8.154)

Considered that the bivalent vertices and trivalent vertices only appear together,

one can merge them into one whose value is equal to −
∑

s Res q→as

1
2y(q)dx(q)

, and

one recovers [12]:

q
→ q (8.155)

• The effective theory

The effect of the gaussian limit on the effective theory is to make it cubic. One

obtain the following rules:
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non-arrowed propagator: p q := W2(p, q)

arrowed propagator: p q := dSq,o(p)

cubic vertex
(only for r=1):

q

q

r(j )q

3(j )
q

(j )1q
2(j )

q := −
∑

s Res q→as

1
2y(q)dx(q)

Hence, the two theories turn into only one cubic theory in this limit which is the

one derived in [12]. Indeed, the corresponding recursive relation appears to be:

W
(h)
k+1(p, pK) = −

∑

l

Res
q→al

W
(h−1)
k+2 (q, q, pK)dSq,o(p)

2y(q)

−
h

∑

m=0

k
∑

j=0,j+m6=0

∑

l

Res
q→al

W
(m)
j+1 (q, pJ)W

(h−m)
k−j+1 (q, pK−J)dSq,o(p)

2y(q)
(8.156)

Remark:

Diagrammatically, this limit can be easily interpreted. Starting from the general

cubic theory, in order, to obtain the 1-matrix model graphs from the 2-matrix model

ones, one only has to take the length of the oscillating propagators to 0. In this case,

the graphs containing at least one colored vertex vanish.

Everything works as if the oscillating propagators of the 2-matrix model were unsta-

ble particles which decay into stable ones represented by non-oscillating propagators.

Then the 1-matrix limit is obtained by taking the life time of these particles to 0.

One shall also note that there is no symmetry factor in the 2-matrix model graphs of

the cubic theory whereas there are not well understood ones in the 1-matrix case. The

derivation of the 1-matrix model as a limit exhibits how these factors arise. They come

from the same contribution given by different diagrams in this limit. This observation

exhibits how the 2-matrix model seem more fundamental.
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9 Conclusion

In this article, we have generalized the diagrammatic technique of [12] to compute all

non-mixed correlation functions of the 2-matrix model, to all orders in the topological

expansion.

The result can be represented diagrammatically, with some cubic Feynman rules,

which are just convenient notations for writing residues on an algebraic curve.

This shows that the method discovered in [12] is very universal, i.e. it works for all

algebraic curves, not only hyperelliptical curves.

The future prospects of that work are to find the diagrammatic rules for computing

the free energy to all order in the topological expansion, and also all mixed correlation

functions (using the result of [13]). Another possible extension is to work out the

multimatrix model, i.e. the chain of matrices as in [19], and in particular the limit of

matrix quantum mechanics. We believe that this technique could apply to many other

integrable models.

Another question, is to understand the limit of critical points, i.e. when some

branchpoints and double points start to coalesce. It seems that the diagrammatic

technique should just reduce to consider only residues at branchpoints which become

critical. One may expect to recover some relation with the Kontsevich integral, in

relationship with KP integrable hierarchies.
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Appendix.

Appendix A: Computation of Eq. (6.121).

In this appendix one proves recursively Eq. (6.121) for any k and h.

Let us suppose that this formula is know for any U
(m)
l with m ≤ h − 1 and for any

U
(h)
l with l ≤ k − 1. One writes it:

U
(m)
l (p, y(p(i));pL) =

Ey(x,y(p(i)))

y(p(i))−y(p)

∑min(d2,k+h)
r=1

∑

L1
⋃

...
⋃

Lr=L

∑m

mα=0

∑l+m

lα=|Lα|

∑

jα,β 6=jα′,β′∈[1,d2]−{i}
1
Ω

W
(m1)
l1+1 (p(i),pL1

,p
(j1,1)

,...,p
(j1,l1−|L1|

)
)
(

∏r
α=2 W

(mα)
lα+1 (p(jα,0)

,pLα ,p
(jα,1)

,...,p
(jα,lα−|Lα|))

)

dx(p)r−l−1+
∑

Lα
∏

α,β y(p(i))−y(p
(jα,β )

)

(9.157)

Let us introduce some shortened notations so that one can write this proof in a few

pages.

Considering the sum on the RHS of Eq. (9.157), one can see that there are two

different kinds of terms:

• If l1 = |L1|, one can factorise the term W
(m1)
|L1|+1(p

(i),pL1). Let us note the sum of

these terms W (p(i), pL)W (pL, p(j)) where we have noted W instead of W
(m1)
|L1|+1 to

indicate that these are formal notations;

• the other terms correspond to the sum over all l1 6= |L1|. We note it

W (p(i), pL, p(j))W (pL, p(j)).

Using these notations, one can shortly write Eq. (9.157):

U
(m)
l (p, y(p(i));pL) = W (p(i), pL)W (pL, p(j)) + W (p(i), pL, p(j))W (pL, p(j)) (9.158)

Thus the interpolation formula gives:

U
(m)
l (p(i), y(p(i)); pL) = W (pL, p(j)) + W (p, pL)W (pL, p(j)) + W (p, pL, p(j))W (pL, p(j))

(9.159)

where the first term corresponds to the sum where all jβ’s are different from i and

0 and there is no Wli whose argument is p or p(i).

On the other hand, one knows the relation 6.120:

U
(h)
k (p, y(p(i));pK) =

∑h

m=0

∑k

j=0

W
(m)
j+1 (p(i),pJ )U

(h−m)
k−j

(p(i),y(p(i));pK−J )

(y(p(i))−y(p))dx(p)

−
∑h

m=0

∑k

j=0

W
(m)
j+1 (p,pJ)U

(h−m)
k−j

(p,y(p(i));pK−J )

(y(p(i))−y(p))dx(p)

−
U

(h−1)
k+1 (p,y(p(i));p,pk)

(y(p(i))−y(p))dx
+

U
(h−1)
k+1 (p(i),y(p(i));p(i),pk)

(y(p(i))−y(p))dx

(9.160)
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Remark that the terms in the RHS of this equation correspond to the criterion

of the hypothesis and one can then express them has a product of W ’s following the

notations introduced earlier. This reads:

U
(h)
k (p, y(p(i)); pK) =

W (p(i), pK)W (pK , p(j)) + W (p(i), pK)W (p, pK)W (pK , p(j))
+W (p(i), pK)W (p, pK , p(j))W (pK, p(j)) − W (p, pK)W (p(i), pK)W (pK , p(j))
−W (p, pK)W (p(i), pK , p(j))W (pK , p(j)) + W (p(i), pK , p(j))W (pK , p(j))
+W (p(i), p, pK)W (pK , p(j)) + W (p, pK)W (p(i), pK , p(j))W (pK , p(j))
+W (p(i), p, pK , p(j))W (pK , p(j)) + W (p, pK, p(j))W (p(i), pK , p(j))W (pK , p(j))
−W (p, p(i), pK)W (pK , p(j)) − W (p(i), pK)W (p, pK, p(j))W (pK , p(j))
−W (p, p(i), pK , p(j))W (pK , p(j)) − W (p(i), pK , p(j))W (p, pK, p(j))W (pK , p(j))
= W (p(i), pK)W (pK , p(j)) + W (p(i), pK , p(j))W (pK , p(j))

(9.161)

So one has proven the formula for U
(h)
k .

Because this formula is true for h=0, it is true for any k and h.
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9.1 Appendix B : Derivation of Eq. (6.122).

One wants to show that:

∑h

m=0

∑k

j=0;mj 6=kh W
(m)
j+1 (p, pJ)U

(h−m)
k−j (p, y(p); pK−J) +

U
(h−1)
k+1 (p,y(p);p,pk)

dx
=

∑d2

i=1

∑h

m=0

∑k

j=0;mj 6=kh W
(m)
j+1 (p(i), pJ)U

(h−m)
k−j (p(i), y(p); pK−J)

+
∑d2

i=1

U
(h−1)
k+1 (p(i),y(p);p(i),pk)

dx

(9.162)

Let us compute the difference D between the two sides of the equation by the

introduction of Eq. (6.121) written with some few different notations which are defined

as follows:

• l = r + h −
∑

α hα;

• uβ =
∑β

ǫ=1(kǫ − |Kǫ|) − β.

One can then write:

D =
∑h

m=0

∑k

j=0;mj 6=kh W
(m)
j+1 (p, pJ)Ey(x, y(p))

∑d2

i=1
1

y(p)−y(p(i))

×
∑d2

r=1

∑r

o=1

∑h−m

ho=0

∑k+h−j−m

ko=0

∑

j2 6=...6=jl∈[1,d2]−{i}

∑

K1
⋃

...
⋃

Kr=K
1
Ω

×
W

(h1)
k1+1(p

(i),pK1
,p(jr+1),...,p

(jr+u1
)
)

(

∏r
β=2 W

(hβ)

kβ+1(p
(jβ )

,pKβ
,p

(jr+uβ−1+1)
,...,p

(jr+uβ
)
)

)

∏l
γ=2 y(p(i))−y(p(jγ ))

−
∑d2

i=1

∑h

m=0

∑k

j=0;mj 6=kh W
(m)
j+1 (p(i), pJ) Ey(x,y(p))

y(p)−y(p(i))

×
∑d2

r=1

∑r

o=1

∑h−m

ho=0

∑k+h−j−m

ko=0

∑

j2 6=...6=jl∈[1,d2]−{i}

∑

K1
⋃

...
⋃

Kr=K
1
Ω

×
W

(h1)
k1+1(p,pK1

,p(jr+1),...,p
(jr+u1

)
)

(

∏r
β=2 W

(hβ)

kβ+1(p
(jβ )

,pKβ
,p

(jr+uβ−1+1)
,...,p

(jr+uβ
)
)

)

∏l
γ=2 y(p)−y(p(jγ ))

+Ey(x, y(p))
∑d2

i=1
1

y(p)−y(p(i))

×
∑d2

r=1

∑r

o=1

∑h−1
ho=0

∑k+h

ko=0

∑

j2 6=...6=jl∈[1,d2]−{i}

∑

K1
⋃

...
⋃

Kr=K
1
Ω

×

[

W
(h1)
k1+1(p

(i),p,pK1
,p(jr+1),...,p

(jr+u1
)
)

(

∏r
β=2 W

(hβ)

kβ+1(p
(jβ )

,pKβ
,p

(jr+uβ−1+1)
,...,p

(jr+uβ
)
)

)

∏l
γ=2 y(p(i))−y(p(jγ ))

+
W

(h1)
k1+1(p(i),pK1

,p(jr+1),...,p
(jr+u1

)
)W

(h2)
k2+1(p,p(j2),pK2

,p
(jr+u1+1)

,...,p
(jr+u2

)
)

∏l
γ=2 y(p(i))−y(p(jγ ))

×
∏r

β=3 W
(hβ)

kβ+1(p
(jβ), pKβ

, p(jr+uβ−1+1), . . . , p(jr+uβ
))

]

−
∑d2

i=1
Ey(x,y(p))

y(p)−y(p(i))

×
∑d2

r=1

∑r

o=1

∑h−1
ho=0

∑k+h

ko=0

∑

j2 6=...6=jl∈[1,d2]−{i}

∑

K1
⋃

...
⋃

Kr=K
1
Ω

×

[

W
(h1)
k1+1(p

(i),p,pK1
,p(jr+1),...,p

(jr+u1
)
)

(

∏r
β=2 W

(hβ)

kβ+1(p
(jβ )

,pKβ
,p

(jr+uβ−1+1)
,...,p

(jr+uβ
)
)

)

∏l
γ=2 y(p)−y(p(jγ ))

+
W

(h1)
k1+1(p,pK1

,p(jr+1),...,p
(jr+u1

)
)W

(h2)
k2+1(p

(i),p(j2),pK2
,p

(jr+u1+1)
,...,p

(jr+u2
)
)

∏l
γ=2 y(p(i))−y(p(jγ ))

×
∏r

β=3 W
(hβ)
kβ+1(p

(jβ), pKβ
, p(jr+uβ−1+1), . . . , p(jr+uβ

))
]

(9.163)

The difference between the two first terms leaves only the terms corresponding to

u1 6= 0 in the first one minus u1 6= 0 in the second one.
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The difference between two last terms will allow us to compensate the preceding

ones. Indeed, the terms with p(i) and p together in the same correlation function

straightforwardly vanish and one gets the exact opposite to the two first terms remain-

ing.

Thus D=0 and the equality 9.162 is proven.
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