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Abstract

The work fluctuations of an oscillator in contact with a heat reservoir and driven out
of equilibrium by an external force are studied experimentally. The oscillator dynamics is
modeled by a Langevin equation. We find both experimentally and theoretically that, if
the driving force does not change the equilibrium properties of the thermal fluctuations of
this mechanical system, the free energy difference ∆F between two equilibrium states can be
exactly computed using the Jarzynski equality (JE) and the Crooks relation (CR) [1, 2, 3],
independently of the time scale and amplitude of the driving force. The applicability limits for
the JE and CR at very large driving forces are discussed. Finally, when the work fluctuations
are Gaussian, we propose an alternative empirical method to compute ∆F which can be safely
applied, even in cases where the JE and CR might not hold. The results of this paper are
useful to compute ∆F in complex systems such as the biological ones.

1 Introduction

A precise characterization of the dynamics of mesoscopic and macroscopic systems is a very impor-
tant problem for applications in nanotechnologies and biophysics. While fluctuations always play a
negligible role in large systems, their influence may become extremely important in small systems
driven out of equilibrium. Such is the case for nanoengines and biological processes, where the
characteristic amount of energy transferred by fluctuations can be of the same order as that which
operates the device. In these small out of equilibrium systems, dominated by thermal fluctuations,
a precise estimation of the free energy difference ∆F between two equilibrium states A and B
is extremely useful to increase our knowledge of the underlying physical processes which control
their dynamical behaviour. It is well known that ∆F can be estimated by perturbing a system
with an external parameter λ and by measuring the work W done to drive the system from A to
B. However this method gives in general an overestimation of ∆F because W ≥ ∆F , where the
equality holds if and only if the perturbation is infinitely slow. In other words the path γ to go
from A to B has to be a reversible one. In many systems, because of unavoidable experimental and
environmental constraints, the path γ is not a reversible one, that is the system cannot be driven
from A to B in a time much longer than its relaxation time. This may happen for example in
all of the systems where thermal fluctuations cannot be neglected and the external power injected
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into the system is comparable to the thermal energy. As a consequence, in such system W is a
strongly fluctuating quantity and ∆F may in principle be computed using the Jarzynski equality
(JE) and the Crooks relation (CR) (see section 2). Indeed the JE and CR take advantage of these
work fluctuations and relate the ∆F to the probability distribution function (pdf) of the work
performed on the system to drive it from A to B along any path γ in the system parameter space.
Numerous derivations of the JE and CR have been produced [7, 8, 9, 10, 11], but it seems from
the recent criticisms of Cohen and Mauzerall [12] that this result is still under debate. Thus it
is important to experimentally check the JE on a very simple and controlled system in order to
safely use it in more complex cases as the biological and chemical ones, where it is much more
difficult to verify the results with other methods. For this reason we experimentally probe a model
system: a mechanical oscillator driven out of equilibrium, between two equilibrium states A and
B, by a small external force. We show that the JE is experimentally accessible and valid, and does
not depend on the oscillator’s damping, on the driving force’s switching rate and on its amplitude.
Indeed these results can be derived exactly from a Langevin equation if one takes into account that
experimentally the properties of the thermal noise are not changed by the external driving force
and the work fluctuations are Gaussian. These conditions are close to those pointed out in Ref. [12]
for the validity of the JE, thus they do not fully alight the theoretical debate. However, when the
fluctuations of W are Gaussian we propose here an alternative empirical method to compute ∆F
even in cases where the JE and the CR could not hold. The purpose of this paper is to extend the
experimental results of Ref. [13] and to show that these are compatible with an exact solution of a
Langevin equation.

The paper is organized as follows. In section 2 we recall the JE and CR and we discuss the
Gaussian case. In section 3 we describe the experimental setup and in section 4 the experimental
results. In section 5 we show that for a Langevin equation the JE gives the exact value of the free
energy difference for any path. We conclude in section 6.

2 The Jarzynski equality and the Crooks relation

In 1997 [1] Jarzynski derived an equality which relates the free energy difference of a system in
contact with a heat reservoir to the pdf of the work performed on the system to drive it from A
to B along any path γ in the system parameter space.

2.1 The Jarzynski equality

Specifically, when λ is varied from time t = 0 to t = ts, Jarzynski defines for one realization of the
“switching process” from A to B the work performed on the system as

W =

∫ ts

0

λ̇
∂Hλ[z(t)]

∂λ
dt, (1)

where z denotes the phase-space point of the system and Hλ its λ-parametrized Hamiltonian (see
also [6] and section 2.4). One can consider an ensemble of realizations of this “switching process”
with initial conditions all starting in the same initial equilibrium state. Then W may be computed
for each trajectory in the ensemble. The JE states that [1]

∆F = − 1

β
log〈exp [−βW ]〉, (2)
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where 〈·〉 denotes the ensemble average, β−1 = kBT with kB the Boltzmann constant and T the
temperature. In other words 〈exp [−βWdiss]〉 = 1, since we can always write W = ∆F + Wdiss

where Wdiss is the dissipated work. Thus it is easy to see that there must exist some paths γ
such that Wdiss ≤ 0. Moreover, the inequality 〈expx〉 ≥ exp 〈x〉 allows us to recover the second
principle, namely 〈Wdiss〉 ≥ 0, i.e. 〈W 〉 ≥ ∆F . From an experimental point of view the JE is
quite useful because there is no restriction on the choice of the path γ and it overcomes the above
mentioned experimental difficulties.

2.2 The Crooks relation

In our experiment we can also check the CR which is somehow related to the JE and which gives
useful and complementary information on the dissipated work. Crooks considers the forward work
Wf to drive the system from A to B and the backward work Wb to drive it from B to A. If the
work pdfs during the forward and backward processes are Pf(W ) and Pb(W ), one has [2, 3]

Pf(W )

Pb(−W )
= exp (β[W − ∆F ]) = exp [βWdiss]. (3)

A simple calculation from Eq. (3) leads to Eq. (2). However, from an experimental point of view
this relation is extremely useful because one immediately sees that the crossing point of the two
pdfs, that is the point where Pf(W ) = Pb(−W ), is precisely ∆F . Thus one has another mean to
check the computed free energy by looking at the pdfs crossing point W×.

2.3 The Gaussian case

Let us examine in some detail the Gaussian case, that is P(W ) ∝ exp
(

− [W−〈W 〉]2

2σ2

W

)

. In this case

the JE leads to

∆F = 〈W 〉 − βσ2
W

2
, (4)

i.e. 〈Wdiss〉 =
βσ2

W

2 > 0. Furthermore, it is easy to see from Eq. (3) that if Pf(W ) and Pb(−W )
are Gaussian, then

∆F =
〈W 〉f − 〈W 〉b

2
, (5)

and
βσ2

W = 〈W 〉f + 〈W 〉b = 2 〈Wdiss〉. (6)

(We make the reasonable assumption that forward and backward work variances are equal.) Thus
in the case of Gaussian statistics ∆F and Wdiss can be computed by using just the mean values
and the variance of the work W .

2.4 The classical work and the ∆F computed by the JE

Before describing the experiment, we want to discuss several important points. The first is the
definition of the work given in Eq. (1), which is not the classical one. Let us consider, for example,
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that λ is a mechanical torque M applied to a mechanical system Ξ, and −∂Hλ/∂λ the associated
angular displacement θ. Then, from Eq. (1), one has

W = −
∫ ts

0

Ṁθ dt = −
[

Mθ
]ts

0
−W cl, (7)

where

W cl = −
∫ ts

0

Mθ̇ dt (8)

is the classical work (we define the classical work with minus sign to respect the standard convention
of thermodynamics). Thus W and W cl are related but they are not exactly the same and we will
show that this makes an important difference in the fluctuations of these two quantities. The
second point concerns the ∆F computed by the JE in the case of a driven system, composed by Ξ
plus the external driving. The total free energy difference is

∆F = ∆F0 −
[

Mθ
]B

A
= ∆F0 − Φ, (9)

where ∆F0 is the free energy of Ξ and Φ =
[

Mθ
]B

A
the energy difference of the forcing. The JE

computes the ∆F of the driven system and not that of the system alone which is ∆F0. This is
an important observation in view of all applications where an external parameter is added to Ξ in
order to measure ∆F0 [5]. Finally we point out that, in an isothermal process, ∆F0 can be easily
computed, without using the JE and the CR, if W cl is Gaussian distributed with variance σ2

W cl .
Indeed the crossing point W cl

× of the two Gaussian pdfs Pf(W
cl) and Pb(−W cl) is

W cl
× =

〈W cl〉f − 〈W cl〉b
2

, (10)

which by definition is just −∆F0, i.e. W cl
× = −∆F0. Furthermore the dissipated work can be

obtained from

〈Wdiss〉 = −〈W cl〉f + 〈W cl〉b
2

, (11)

by definition. It should be noted that the equality 2 〈Wdiss〉 = βσ2
W cl does not hold in the case of

the classical work.

3 Experimental setup

To study the JE and the CR we measure the out-of-equilibrium fluctuations of a macroscopic
mechanical torsion pendulum made of a brass wire, whose damping is given either by the vis-
coelasticity of the torsion wire or by the viscosity of a surrounding fluid. This system is enclosed
in a cell which can be filled with a viscous fluid, which acts as a heat bath. A brass wire of
length 10 mm, width 0.75 mm, thickness 50 µm, mass 5.91 × 10−3 g, is clamped at both ends,
hence its elastic torsional stiffness is C = 7.50× 10−4 Nmrad−1. A small mirror of effective mass
4.02 × 10−2 g, length 2.25 mm, width b1 = 7 mm, thickness a1 = 1.04 mm, is glued in the middle
of the wire, see Fig. 1(i), so that the moment of inertia of the wire plus the mirror in vacuum
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Figure 1: (i) Schematic drawing of the oscillator; (ii) FDT check in oil: the circles (◦) correspond

to the direct measurement of the noise and the dashed curve is
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Figure 2: Oscillator immersed in oil [case (a)]: (i) Applied external torque, (ii) Induced angular
displacement, (iii) its psd, (iv) its pdf, (v) Injected power computed from the Jarzynski definition
Ẇ = −Ṁθ, (vi) Injected power computed from the standard definition Ẇ cl = −Mθ̇
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is I = 1.79 × 10−10 kg m2 (whose main contribution comes from the mirror). Thus the resonant
frequency of the pendulum in vacuum is f0 = 326.25 Hz. When the cell is filled with a viscous
fluid, the total moment of inertia is Ieff = I+Ifluid, where Ifluid is the extra moment of inertia given
by the fluid displaced by the mirror [14]. Specifically, for the oil used in the experiment (which
is a mineral oil of optical indice n = 1.65, viscosity ν = 121.3 mPa s and density ρ = 0.9 ρwater

at T = 21.3 ◦C) the resonant frequency becomes f0 = 213 Hz. To apply an external torque M
to the torsion pendulum, a small electric coil connected to the brass wire is glued in the back of
the mirror. Two fixed magnets on the cell facing each other with opposite poles generate a static
magnetic field. We apply a torque by varying a very small current J flowing through the electric
coil, hence M ∝ J . The measurement of the angular displacement of the mirror θ is done using a
Nomarski interferometer [15, 16] whose noise is about 6.25 × 10−12 rad/

√
Hz, which is two orders

of magnitude smaller than the oscillator thermal fluctuations. An optical window lets the laser
beams to go inside and outside cell. Much care has been taken in order to isolate the apparatus
from the external mechanical and acoustic noise, see [17] for details.

The motion of the torsion pendulum can be assimilated to that of a harmonic oscillator damped
by the viscoelasticity of the torsion wire and the viscosity of the surrounding fluid, whose motion
equation reads in the temporal domain

Ieff θ̈ +

∫ t

−∞

G(t− t′) θ̇(t′) dt′ + Cθ = M, (12)

where G is the memory kernel. In Fourier space (in the frequency range of our interest) this

equation takes the simple form [−Ieff ω2 + Ĉ] θ̂ = M̂ , where ·̂ denotes the Fourier transform and
Ĉ = C + i[C′′

1 + ωC′′
2 ] is the complex frequency-dependent elastic stiffness of the system. C′′

1 and
C′′

2 are the viscoelastic and viscous components of the damping term. The response function of

the system χ̂ = θ̂/M̂ can be measured by applying a torque with a white spectrum. When M = 0,
the amplitude of the thermal vibrations of the oscillator is related to its response function via
the fluctuation-dissipation theorem (FDT) [6]. Therefore, the thermal fluctuation power spectral
density (psd) of the torsion pendulum reads for positive frequencies

〈|θ̂|2〉 =
4kBT

ω
Im χ̂ =

4kBT

ω

C′′
1 + ωC′′

2

[−Ieff ω2 + C]
2

+ [C′′
1 + ω C′′

2 ]2
. (13)

We plot in Fig. 1(ii) the measured thermal square root psd of the oscillator. The measured noise
spectrum [circles in Fig. 1(ii)] is compared with the one estimated [dotted line in Fig. 1(ii)] by
inserting the measured χ̂ in the FDT, Eq. (13). The two measurements are in perfect agreement
and obviously the FDT is fully satisfied because the system is at equilibrium in the state A where
M = 0 (see below). Although this result is expected, this test is very useful to show that the
experimental apparatus can measure with a good accuracy and resolution the thermal noise of the
macroscopic pendulum.

4 Experimental results

Now we drive the oscillator out of equilibrium between two states A (where M = 0) and B
(where M = Mm = const 6= 0). The path γ may be changed by modifying the time evolution
of M between A and B. We have chosen either linear ramps with different rising times τ , see
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Fig. 2(i), or half-sinusoids with half-period τ . In the specific case of our harmonic oscillator,
as the temperature is the same in states A and B, the free energy difference of the oscillator

alone is ∆F0 = ∆U =
[

1
2Cθ

2
]B

A
=

[

M2

2C

]B

A
, whereas ∆F = ∆F0 −

[

M2

C

]B

A
, i.e. for an harmonic

potential ∆F = −∆F0. Let us first consider the situation where the cell is filled with oil. The
oscillator’s relaxation time is given by the inverse of the line width of the equilibrium fluctuation
spectrum, see Fig. 1(ii), that is τrelax = 23.5 ms. We apply a torque which is a sequence of linear
increasing /decreasing ramps and plateaux, as represented in Fig. 2(i). We chose different values
of the amplitude of the torque M [22.1 11.9, 6.1, 4.2 and 1.2 pNm] and of the rising time τ [199.5,
20.2, 65.6, 99.6, 2.5 ms], as indicated in Table 1 [cases a). . . g)] (for the case f) and g) also C has
been changed). Thus we can probe either the reversible (or quasi-static) paths (τ ≫ τrelax) or the
irreversible ones (τ ≪ τrelax). We tune the duration of the plateaux (which is at least 4 τrelax)
so that the system always reaches equilibrium in the middle of each of them, which defines the
equilibrium states A and B. We see in Fig. 2(ii), where the angular displacement θ is plotted as a
function of time [case a)], that the response of the oscillator to the applied torque is comparable
to the thermal noise spectrum. The psd of θ is shown in Fig. 2(iii). Comparing this measure with
the FDT prediction obtained in Fig. 1(ii), one observes that the driver does not affect the thermal
noise spectrum which remains equal to the equilibrium one. Moreover we plot in Fig. 2(iv) the pdf
of the driven displacement θ shown on Fig. 2(ii), which is, roughly speaking, the superposition of
two Gaussian pdfs. From the measure of M and θ, the power injected into the system Ẇ can be
computed from the definition given in Eq. (1), that in this case is Ẇ = −Ṁθ. Its time evolution,
shown in Fig. 2(v), is quite different from that of the classical power Ẇ cl = −Mθ̇, whose time
evolution is plotted in Fig. 2(vi): Ẇ is non-zero only for Ṁ 6= 0 and vice-versa Ẇ cl 6= 0 only for
M 6= 0. From the time series of Ẇ we can compute from Eq. (1) the forward and the backward
works, Wf and Wb, corresponding to the paths A → B and B → A, respectively. We also do the
same for the classical work. We then compute their respective pdfs Pf(W ) and Pb(−W ). These
are plotted on Figs. 3(i,iv) where the bullets are the experimental data and the continuous lines
their fitted Gaussian pdfs. In Fig. 3, the pdfs of W and W cl cross in the case a) at βW ≃ −23.5,

and in the case c) βW ≃ −6.1. These values correspond to ∆F = −M2

m

2C
= −∆F0. We find that

this result is true independently of the ratio τ/τrelax and of the maximum amplitude of |M |, Mm.
This has been checked at the largest Mm and the shortest rising time τ allowed by our apparatus.
Indeed torques with amplitudes larger than 25 pNm and rising time shorter than 2 ms introduce
mechanical noises which can be higher than thermal fluctuations and the check of the JE becomes
impossible (see discussion in the next section). The measurement at very large Mm and very short
τ is shown in Fig. 4. Also in this case we see that the shape of the thermal noise spectrum is not
perturbed by the driving. The pdfs remain Gaussian but the distance between 〈W 〉f and 〈W 〉b is
larger and the relative variance much smaller than at low amplitude. The crossing point of the
pdfs of W occurs at a value where the statistics is very poor. However the two Gaussian fits crosses
at ∆F . The pdfs of W cl also crosses at the right values. The experimental results are summarized

in Table 1, where the computed ∆U =
M2

m

2C
is in good agreement with the values obtained by the

crossing points of the forward and backward pdfs, that is ∆F×+Φ for P(W ) and −∆W cl
× for P(W cl).

Finally inserting the values of Wf and Wb in Eq. (2) we directly compute ∆Ff and ∆Fb from the
JE. As it can be seen in Table 1, the values of ∆F0 obtained from the JE, that is either −(∆Ff +Φ)
or −(∆Fb + Φ), agree within experimental errors with the computed ∆U . Indeed the JE works
well either when τ ≫ τrelax or in the critical case f) and g) where τ ≪ τrelax. The other case we
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τ/τrelax Mm −β[∆Ff + Φ] β[∆Fb + Φ] −β[∆F× + Φ] −βW cl
× β∆U |β∆F	|

8.5 a) 11.9 23.5 23.1 23.5 23.4 23.8 1.0

0.85 b) 6.1 6.6 6.1 6.0 6.6 6.1 1.0

3.5 c) 6.1 6.1 5.9 6.5 6.1 6.1 0.4
2.8 d) 4.2 2.8 2.6 3.2 2.9 2.7 0.3

4.2 e) 1.2 0.21 0.20 0.22 0.21 0.22 0.04

0.11 f) 11.8 33 30.8 32.54 31.15 31.4 3.6

0.11 g) 22.1 117.6 110.5 114 110.1 111 15.1

0.07 h) 5.9 10.3 10.0 10.1 10.1 10.3 0.4

0.07 i) 9.4 67.4 65.5 66.8 66.4 67.5 2.4

Table 1: Free energies of cases a). . . g) defined in the text (the values of Mm are in pNm). ∆U =
M2

m

2C
is the computed expected value. Notice that C = 7.5 × 10−4 Nmrad−1 for cases a)-e),

C = 5.5 × 10−4 Nmrad−1 for cases f)-g) and C = 1.6 × 10−4 Nmrad−1 for cases h)-i)

have studied is a very pathological one. Specifically, the oscillator is in vacuum and has a resonant
frequency f0 = 353 Hz and a relaxation time τrelax = 666.7 ms. We applied a sinusoidal torque
whose amplitude is either 5.9× 10−12 or 9.4× 10−12 Nm [cases h) and i) in Table 1, respectively].
Half a period of the sinusoid is τ = 49.5 ms, much smaller than the relaxation time, so that we
never let the system equilibrate. However, we define the states A and B as the maxima and minima
of the driver. Surprisingly, despite of the pathological definition of the equilibrium states A and
B, the pdfs are Gaussian and the JE is satisfied as indicated in Table 1. Moreover, this happens
independently of Mm and of the critical value of the ratio τ/τrelax ≪ 1. Finally, we indicated in
Table 1 the value ∆F	 which is the free energy computed from the JE if one considers the “loop
process” from A to A (the same can be done from B to B and the results are quantitatively the
same). In principle this value should be zero, but in fact it is not since we have about 5% error in
the calibration of the torque M .

5 Jarzynski equality and the Langevin equation

In the previous section we have seen that even at very large driving torque, two properties of the
systems remain unchanged, specifically

a) the work fluctuations are Gaussian,

b) the thermal noise amplitude and statistics are not modified by the presence of the large
forcing, that is FDT is still valid and the fluctuation pdf remains Gaussian.

Starting from these two experimental evidences, we can show that for the Langevin equation the
JE is always satisfied independently of Mm and τ . Let us consider the equation for the harmonic
oscillator, Eq. (12), which well describes our experimental system. In the case of a viscous damping
we rewrite Eq. (12) as

Ieff θ̈ + ν θ̇ + C θ = M + η, (14)
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where η is the thermal noise amplitude. For M(t) we consider the kind of waveform used in the
experiments:

M(t) =
Mm t

τ
for 0 < t < τ, (15)

= Mm for t > τ. (16)

5.1 The overdamped case

In order to compute ∆F using the JE when the system is driven from A (M = 0) to B (M = Mm 6=
0), we first consider the overdamped case when the inertial term is negligible, that is Ieff ≃ 0:

θ̇ + τ−1
0 θ = (C τ0)

−1(M + η), (17)

where τ0 = ν/C. If η is a white noise of variance 2kBT , then when M = 0 the spectrum of the
thermal fluctuations δθ of θ can be computed from FDT:

〈|θ̂|2〉 =
4kBT τ0

C(1 + τ2
0 ω

2)
(18)

As a consequence the autocorrelation function of δθ on a time interval δτ is

Rθ(δτ) =
kBT

C
exp

(

−|δτ |
τ0

)

. (19)

The pdf of θ is Gaussian. The work to drive the system from A to B computed using Eq. (1)
becomes in this case

W = −Mm

τ

∫ τ

0

θ dt (20)

Thus to compute W we need only the solution of Eq. (17) for 0 < t < τ . If we neglect the noise,
then the mean solution is

θ =
Mm

τ C

[

t+ τ0 exp
(

− t

τ0

)]

for 0 < t < τ. (21)

We now consider that in the experiment the statistical properties of the thermal fluctuations δθ
are not modified by the driving. Therefore θ can be decomposed in the sum of an average part θ
given by Eq. (21) plus the fluctuating part δθ, that is

θ = θ + δθ. (22)

As a consequence the work can also be decomposed in a similar manner

W = W + δW = −Mm

τ

[

∫ τ

0

θ dt+

∫ τ

0

δθ dt

]

. (23)

As the integral of a Gaussian variable is still Gaussian then the fluctuations of W remain Gaussian
too. As a consequence, to compute ∆F we can use Eq. (4), where 〈W 〉 is straightforward computed
using Eqs. (21) and (23)

〈W 〉 = W = −Mm

τ

∫ τ

0

θ dt = − 1

C

(

Mm

τ

)2
[ (τ − τ0)

2

2
− τ2

0 exp
(

− τ

τ0

)

+
τ0

2

2

]

. (24)
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We now have to compute σ2
W = 〈(δW )2〉 = (Mm/τ)

2 〈y2(τ)〉 where

y(τ) =

∫ τ

0

δθ dt. (25)

The variance of y can be computed [19] taking into account that

〈y2(τ)〉 =

∫ τ

0

∫ τ

0

Rθ(t1 − t2) dt1 dt2. (26)

Using this equation and Eq. (19) we get

σ2
W =

(

Mm

τ

)2

〈y2(τ)〉 =
2kBTτ0
C

(

Mm

τ

)2
[

τ − τ0 + τ0 exp
(

− τ

τ0

)]

. (27)

Taking into account that fluctuations of W are Gaussian, we replace the results of Eqs. (24) and
(27) in Eq. (4), and finally we get

∆F = 〈W 〉 − σ2
W

2kBT
= −M

2
m

2C
, (28)

that is the expected value. It is important to notice that this equation gives the exact result
independently of the rising time of the external applied torque. This is important because it
shows that the in cases where the conditions a) and b) are verified, the JE gives the right result
independently of the path to go from A to B, which can be a very irreversible one.

5.2 The harmonic oscillator

We may now repeat the calculation for the harmonic oscillator of Eq. (14). In such a case let us
introduce the following notations

α =
ν

2Ieff
, α2 + ψ2 =

C

Ieff
, (29)

and

cosϕ =
α

√

α2 + ψ2
, sinϕ =

ψ
√

α2 + ψ2
. (30)

With this notation the mean solution of Eq. (14) in absence of noise, with initial conditions θ(0) =
θ̇(0) = 0, is

θ̄ =
Mm

τψ

[

exp (−αt) sin (ψt+ 2ϕ) + ψ t− sin 2ϕ
]

for 0 < t < τ. (31)

The correlation function of the thermal fluctuations δθ become in this case

Rθ(δτ) =
kBT

C sinϕ
exp (−α|δτ |) sin (ψ|δτ | + ϕ). (32)
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We now proceed as in the overdamped case and we compute 〈W 〉 and σ2
W . Using Eq. (31) and

Eq. (23) we get

〈W 〉 =

(

Mm

τψ

)2
sinϕ

C

[

exp (−ατ) sin (ψτ + 3ϕ) − sin 3ϕ− (ψτ)2

2 sinϕ
+ 2ψτ cosϕ

]

(33)

To compute the variance of W , we insert Eq. (32) in Eq. (26) and we obtain

σ2
W =

(

Mm

τ

)2

〈y2(τ)〉

=

(

Mm

τ

)2
2kBT sinϕ

Cψ2
[exp (−ατ) sin (ψτ + 3ϕ) − sin 3ϕ+ 2ψτ cosϕ] . (34)

As the fluctuations of W are Gaussian, we insert Eqs. (33) and (34) in Eq. (4), and we obtain

∆F = 〈W 〉 − σ2
W

2kBT
= −M

2
m

2C
, (35)

which is the expected results. Notice that in this case too the result is independent on the path.
Thus the JE gives the right result of ∆F for the Langevin equation with an harmonic potential.

A few comments have to be done. From the values of 〈W 〉 and of σW , computed in the
overdamped case and in the harmonic oscillator case, we see that if τ is kept constant then 〈W 〉 ∝
M2

m whereas σW ∝ Mm. Furthermore as 2 ∆F = 〈W 〉f − 〈W 〉b is proportional to M2
m, this

means that the distance between the maxima of Pf(W ) ad Pb(−W ) increases with M2
m and the

relative width |σW /〈W 〉| of P(W ) decreases as 1/Mm. As a consequence, the probability of finding
experimental values of W close to the crossing points also decreases as 1/Mm. This effect has
been seen on the experimental P(W ) plotted in Fig. 4. From a practical point of view, this means
that when ∆F ≫ kBT the pdfs will never cross. Furthermore, for real (macroscopic) systems it
is reasonable to think that when the external noise becomes much larger than the thermal noise,
the JE cannot be used. However, if the pdfs of W cl remain Gaussian, then the crossing point W cl

×

gives the right result.

6 Conclusion

Let us first summarize the experimental results. Varying the amplitude and the rising time of
the driving torque of about one order of magnitude, we clearly demonstrate the validity and the
robustness of the JE and CR in an isothermal process, at least when the work fluctuations are
Gaussian and when the harmonic approximation is relevant for the system. We have checked the
generality of the results on a driven Langevin equation which well describes the dynamics of the
oscillator. Using the experimental observations that the equilibrium properties of the thermal
noise are not modified by the driving force and that the work fluctuations are Gaussian, we have
shown that the JE gives the right result independently of Mm and τ . Unfortunately these results
do not fully alight the theoretical debate, because our conditions are close to those pointed out in
Ref. [12] for the validity of the JE. Recently, Ritort and coworkers have used the JE to estimate
∆F in an experiment of RNA stretching where the oscillator’s coupling is non-linear and the
work fluctuations are non-Gaussian [20]. It would be interesting to check these results on a more
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simple and controlled system. We are currently working on the experimental realization of such a
non-linear coupling, for which ∆F 6= −∆F0.

We have also shown both analytically and experimentally that |σW /〈W 〉| decreases as 1/Mm.
This observation makes the practical use of the JE and CR rather unrealistic for very large Mm

as the statistics needed to get a reliable result will be very large. This means, as we have already
discussed at the end of the previous section, that the JE cannot be applied for macroscopic systems
when the external noise becomes much larger than the thermal noise.

Going back to the estimate of ∆F we have seen that the more accurate and reliable ∆F
estimator is given by the crossing points ∆F× and W cl

× , because they are less sensitive to the
extreme fluctuations which may perturb the convergence of the JE. Starting from this observation,
we propose a new empirical method to compute ∆F in the case of Gaussian fluctuations of W cl.
Indeed, for Gaussian pdfs W cl

× remains an excellent estimator even in cases where the JE and the
CR could not hold, for example when the environmental noise cannot be neglected.

Finally we want to stress that our results, although limited to the Gaussian case, show that
it is possible to measure tiny fluctuations of work in a macroscopic system. As a consequence it
opens a lot of perspective to use the JE, the CR and the recent theorems on dissipated work (see
for example [21]) to characterize the slow relaxation towards equilibrium in more complex systems,
for example aging materials such as glasses or gels [22].
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for useful discussions, and acknowledge P. Metz, M. Moulin, F. Vittoz, C. Lemonias and P.-E.
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