
HAL Id: hal-00004741
https://hal.science/hal-00004741

Submitted on 18 Apr 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coloring Artemis graphs
Benjamin Lévêque, Frédéric Maffray, Bruce Reed, Nicolas Trotignon

To cite this version:
Benjamin Lévêque, Frédéric Maffray, Bruce Reed, Nicolas Trotignon. Coloring Artemis graphs. The-
oretical Computer Science, 2009, 410, pp.2234-2240. �10.1016/j.tcs.2009.02.012�. �hal-00004741�

https://hal.science/hal-00004741
https://hal.archives-ouvertes.fr

cc
sd

-0
00

04
74

1,
 v

er
si

on
 1

 -
 1

8
A

pr
 2

00
5

Coloring Artemis graphs

Benjamin Lévêque∗ Frédéric Maffray† Bruce Reed‡

Nicolas Trotignon§

April 19, 2005

Abstract

We consider the class A of graphs that contain no odd hole, no antihole,
and no “prism” (a graph consisting of two disjoint triangles with three
disjoint paths between them). We show that the coloring algorithm found
by the second and fourth author can be implemented in time O(n2

m) for
any graph in A with n vertices and m edges, thereby improving on the
complexity proposed in the original paper.

1 Introduction

We denote by χ(G) the chromatic number of a graph G and by ω(G) the maxi-
mum clique size in G. An even pair in a graph G is a pair {x, y} of non-adjacent
vertices having the property that every chordless path between them has even
length (number of edges). Given two vertices x, y in a graph G, the operation
of contracting them means removing x and y and adding one vertex with edges
to every vertex of G \ {x, y} that is adjacent in G to at least one of x, y; and we
denote by G/xy the graph that results from this operation. Fonlupt and Uhry
[3] proved that if {x, y} is an even pair in a graph G, then χ(G/xy) = χ(G) and
ω(G/xy) = ω(G). In particular, given a χ(G/xy)-coloring c of the vertices of
G/xy, one can easily obtain a χ(G)-coloring of the vertices of G by assigning to
x and y the color assigned by c to the contracted vertex and keeping the color of
every vertex different from x, y. This idea is the basis of a conceptually simple
coloring algorithm: as long as the graph has an even pair, contract any such
pair; when there is no even pair find a coloring c of the contracted graph and,
applying the above procedure repeatedly, derive from c a coloring of the original

∗Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France. ben-

jamin.leveque@imag.fr. Supported by Ecole Normale Supérieure de Lyon.
†C.N.R.S., Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, 38031 Grenoble Cedex,

France. frederic.maffray@imag.fr
‡School of Computer Science, McGill University, 3480 University, Montreal, Quebec,

Canada H3A 2A7
§Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France. nico-

las.trotignon@imag.fr. Supported by Université Pierre Mendès France.

1

graph. In this perspective, a graph G is called even-contractile [1] if it can be
turned into a clique by a sequence of contractions of even pairs, and the graph
is called perfectly contractile if every induced subgraph of G is even-contractile.
We propose here a fast implementation of the above algorithm for a class of
perfectly contractile graphs studied in [7].

A hole is a chordless cycle with at least four vertices and an antihole is the
complement of a hole. A prism is a graph that consists of two vertex-disjoint
triangles (cliques of size three) with three vertex-disjoint paths between them,
and with no other edge than those in the two triangles and in the three paths.
Let A be the class of graphs that contain no odd hole, no antihole of length
at least 5, and no prism (such graphs have also been called “Artemis graphs”
[2]). Maffray and Trotignon [7] proved Everett and Reed’s conjecture [2, 8] that
every graph in class A is perfectly contractile. The proof contains an algorithm
which, given any graph G in class A with n vertices and m edges, finds an
optimal coloring of the vertices of G in time O(n4m). The point of this note is
to show that this coloring algorithm can be implemented in time O(n2m).

In a graph G = (V, E), we say that a vertex u sees a vertex v when u, v are
adjacent, else we say that u misses v. For any X ⊆ V , the subgraph induced by
X is denoted by G[X], and N(X) denotes the set of vertices of V \X that see
at least one vertex of X . A vertex of V \X is called X-complete if it sees every
vertex of X ; and C(X) denotes the set of X-complete vertices of V \X . The
complementary graph of G is denoted by G. The length of a path is the number
of its edges. An edge between two vertices that are not consecutive along the
path is a chord, and a path that has no chord is chordless. A vertex is simplicial
if its neighbours are pairwise adjacent.

2 The method

We recall the method from [7]. An even pair {a, b} in a graph G is called special
if the graph G/ab contains no prism.

Lemma 2.1 ([2, 7]) If G is in class A and {a, b} is a special even pair of G,
then G/ab is in class A.

The proof from [7] consists in finding a special even pair and contracting it.
Since Lemma 2.1 ensures that the contracted graph is still in A, the algorithm
can be iterated until the graph is a clique. Actually we will stop when the
graph is a dsjoint union of cliques, which can be colored optimally by the greedy
method. Let us now recall how a special even pair is found when the graph is
not a disjoint union of cliques.

A non-empty subset T ⊆ V is called interesting if G[T] is connected (in short
we will say that T is co-connected) and G[C(T)] is not a clique (so |C(T)| ≥ 2
since we view the empty set as a clique). An interesting set is maximal if it is
not strictly included in another interesting set. A T -outer path is a chordless
path whose two endvertices are in C(T) and whose interior vertices are all in
V \ (T ∪C(T)). A T -outer path P is minimal if there is no T -outer path whose

2

interior is strictly contained in the interior of P . The search for a special even
pair considers three cases: (1) when the graph has no interesting set; (2) when
a maximal interesting set T of G has no T -outer path; (3) when a maximal
interesting set T of G has a T -outer path. These three cases correspond to the
following three lemmas.

Lemma 2.2 ([7]) For any graph G the following conditions are equivalent:
(1) G has no interesting set,
(2) Every vertex of G is simplicial,
(3) G is a disjoint union of cliques.
Moreover, if G is not a disjoint union of cliques then every non-simplicial vertex
forms an interesting set.

Lemma 2.3 ([7]) Let G be a graph in A that contains an interesting set, and
let T be any maximal interesting set in G. If T has no T -outer path, then every
special even pair of the subgraph G[C(T)] is a special even pair of G.

When a maximal interesting set T has a T -outer path, we let αz1 · · · zpβ be
a minimal T -outer path and we define sets:

A = {v ∈ C(T) | vz1 ∈ E, vzi 6∈ E (i = 2, . . . , p)},

B = {v ∈ C(T) | vzp ∈ E, vzi 6∈ E (i = 1, . . . , p− 1)}.

Define a relation <A on A by setting u <A u′ if and only if u, u′ ∈ A and there
exists an odd chordless path from u to a vertex of B such that u′ is the second
vertex of that path (where u is the first vertex). Likewise define a relation <B

on B by setting v <B v′ if and only if v, v′ ∈ B and there exists an odd chordless
path from v to a vertex of A such that v′ is the second vertex of that path.

Lemma 2.4 ([7]) When A, B and <A, <B are defined as above they satisfy:
(1) The sets A and B are non-empty cliques with no edge between them.
(2) If P = uu′ · · · v′v is a chordless odd path with u ∈ A and v ∈ B, then either
u′ ∈ A or v′ ∈ B holds.
(3) The relation <A is a strict partial order on A. The relation <B is a strict
partial order on B.
(4) If a is any maximal vertex of <A and b is any maximal vertex of <B, then
{a, b} is a special even pair of G.

Lemma 2.5 Let T be a maximal interesting set in a graph G and a, b be any
two non-adjacent vertices in C(T). Let C′(T) be the set of T -complete vertices
in G/ab. If C′(T) is not a clique then T is a maximal interesting set in G/ab.

The proof is easy and we omit it.
We find a special even pair as follows: first an algorithm finds a maximal

interesting set T in G. Then a second algorithm finds a special even pair in C(T),
on the basis of Lemmas 2.3 and 2.4, and contracts it; this second algorithm is
iterated as long as the set C(T) is not a clique, which is possible by Lemmas 2.1

3

and 2.5. When the set C(T) becomes a clique, the first algorithm is called again
to find another maximal interesting set. Since the contraction of an even pair
reduces the number of vertices by 1, there will be at most n contractions. So
the total complexity is n times the complexity of finding a special even pair.
We will see in the next sections that a special even pair can be found in time
O(nm), so the total complexity of the coloring algorithm is O(n2m).

3 Finding a maximal interesting set

Lemma 3.1 Let T be an interesting set in a graph G. If there is a vertex
u ∈ V \ (T ∪ C(T)) such that N(u) ∩ C(T) is not a clique then T ∪ {u} is an
interesting set. If there is no such vertex then T is a maximal interesting set.

The proof is easy and we omit it.

Algorithm Find Interesting

Input: A graph G.

Output: Either a maximal interesting set T of G or the answer “G
is a disjoint union of cliques”.

Method:

Step 1: Looking for a non-simplicial vertex t.

Compute the components of G. If every vertex has degree equal to
the size of its component minus 1, return the answer “G is a disjoint
union of cliques” and stop. Else, consider a vertex u whose degree
is strictly less than the size of its component minus 1. Perform a
breadth-first search from u, let v be any vertex at distance 2 from
u, and let t be the parent of v in the search.

Step 2: Building T from t.

Set T := {t}, C := N(t), U := V \ (T ∪ C), Z := ∅.

While there exists a vertex u ∈ U do:
If N(u) ∩C is a clique, move u from U to Z.
If N(u) ∩ C is not a clique, move u from U to T and move every
vertex of C \N(u) from C to U .

Return the set T and stop.

Lemma 3.2 Algorithm Find Interesting is correct.

Proof. Clearly, Step 1 of the algorithm is correct. At the beginning of Step 2
the set T is interesting and C is equal to the set of T -complete vertices and is
not a clique. The definition of Step 2 implies that these properties remain true
throughout, and Lemma 3.1 ensures that when Step 2 terminates the set T is a
maximal interesting set.

4

Lemma 3.3 The complexity of Algorithm Find Interesting is O(max{n + m,
m(n − k)}) where k is the number of vertices in C(T) for the output set T (if
no set T is output, we consider k = n and the complexity is O(n + m)).

Proof. Step 1 takes time O(n+m) steps. In Step 2, a vertex can only move from
C to U or from U to Z or to T . So the sets T and Z can only increase and the
sets U and C can only decrease. Deciding whether N(u) ∩ C is a clique takes
time O(m), and updating C takes time O(deg(t)) since C can only decrease
from its initial value N(t). Thus, each iteration of the while loop takes time
O(m). A vertex plays the role of u at most once, and the k vertices that are in
C when the algorithm stops have never played such a role. So there are at most
n− k iterations of the while loop.

4 Looking for an outer path

Lemma 4.1 An interesting set T has an outer path if and only if there exists
a component R of V \ (T ∪C(T)) such that N(R) ∩ C(T) is not a clique.

The proof is easy and we omit it.

Lemma 4.2 ([7]) Let G be a graph in A that contains an interesting set, and
let T be any maximal interesting set in G. Then every T -outer path has length
even and at least 4.

Given two disjoints subsets X, Y ⊆ V of a graph G, we call breadth first
search (BFS) from X to Y in G any breadth first search such that (a) the
vertices of X form the root level, and (b) the vertices of Y may only appear as
leaves in the search tree. Points (a) and (b) can be implemented as in the usual
form of BFS by using a queue from which we get the next vertex to be scanned,
the only modification being that we put all vertices of X in the queue at the
start of the search and we never put any vertex of Y in the queue.

Algorithm Find Outer Path

Input: A graph G and a maximal interesting set T of G.

Output: Either a minimal T -outer path or the answer “G has no
T -outer path”.

Method: Initially all vertices of V (G) \ (T ∪ C(T)) are unmarked.
while there is an unmarked vertex r in V (G) \ (T ∪ C(T)) do:
Start a Breadth-First Search S from r to C(T) in G \ T , mark each
vertex of V (S) \ C(T), and maintain the set M = V (S) ∩ C(T).
When a vertex x is added to M , if the new M is not a clique, do:
Let Mx := M ∩ N(x). Perform a BFS from x in the subgraph
G[S \Mx]. Let y be the first vertex of M \Mx that is reached by
this search, and let x-v-· · ·-w-y be the path from x to y given by this
search. Return this path and stop. endif
endwhile
Return the answer “G has no T -outer path” and stop.

5

Lemma 4.3 Algorithm Find Outer Path is correct.

Proof. Let R be the component of V (G) \ (T ∪ C(T)) that contains r. The
search from r potentially reaches all vertices of R and of N(R) ∩ C(T) and
puts the latter into M . If N(R) ∩ C(T) is a clique, the search will mark all
vertices of R and continue with a new vertex r from another component of
V (G) \ (T ∪C(T)), if any. Lemma 4.1 ensures that the algorithm will correctly
return the answer “G has no T -outer path” if and only if G has no outer path.
There remains to show that when the algorithm returns a path, it is a minimal
T -outer path. So let us examine the situation in this case. For some component
R of V (G) \ (T ∪ C(T)) the set N(R) ∩ C(T) is not a clique, and the search
from a vertex r ∈ R finds the vertex x on the first time M is no longer clique.
The set M \Mx is not empty. The only neighbours of x in S \M are either its
parent in the search or vertices that are still in the queue, for otherwise x would
have been added to S earlier. So every vertex of S \M that is not adjacent to
x has been scanned before the neighbours of x in S \M .

The search from x in G[S \Mx] will potentially reach all vertices of M \Mx.
So the vertex y and the path x-v-· · ·-w-y exist. Let us rewrite this path as
P = x-z1-· · ·-zp-y, with z1 = v and zp = w, and write Z = {z1, . . . , zp}. To
show that P is a T -outer path, suppose on the contrary that some element zi

of Z is in C(T) and let i be the smallest such integer (1 ≤ i ≤ p). We have
i ≥ 2 because z1 = v which is in R; but then zi contradicts the definition of y.
So all of z1, . . . , zp are in R, which means that P is a T -outer path. To prove
the minimality of P , suppose on the contrary that there exists a T -outer path
x′-zi-· · ·-zj-y

′ with 1 ≤ i ≤ j ≤ p and j − i < p − 1. By Lemma 4.2, j − i is
even and at least 2, so j > 2. Vertex y′ is in M \ {x} since zj has been added
to S before z1. If i > 1 then x′ too is in M \ {x}, since zi has been added to S
before z1; but then M \ {x} is not a clique, which contradicts the definition of
x. So i = 1. If x is adjacent to y′ then x-z1-· · ·-zj-y

′-x is a hole of odd length
j− 1+3 ≥ 5, a contradiction. So x is not adjacent to y′, but then x-z1-· · ·-zj-y

′

is a chordless path and y′ contradicts the definition of y. So P is a minimal
T -outer path.

Lemma 4.4 The complexity of Algorithm Find Outer Path is O(lm), where l
is the number of components of G \ (T ∪ C(T)).

Proof. The search from a vertex r reaches all the vertices of the component
R of V (G) \ (T ∪ C(T)) that contains r and the vertices of N(R) ∩ C(T), and
only them. Moreover these vertices are scanned only once during this search.
The search from x reaches vertices of R a second time. Thus vertices of R are
scanned at most twice. In order to check whether M is a clique, we use a counter
for each vertex u of C(T), which counts the number of neighbours of u in M .
Whenever a new vertex u is added to M , we check if the counter of u is equal to
|M |, and we scan u to increase by 1 the counter of its neighbours in C(T). Thus
the complexity for one component R is O(m(R)), where m(R) is the number
of edges in the subgraph induced by R ∪ (N(R) ∩ C(T)). However, a vertex u

6

of C(T) may be scanned several times, depending on the number of sets of the
type N(R) ∩ C(T) that contain it. So the total complexity is O(lm).

When the set T has no T -outer path, Lemma 2.3 says that we need to
continue the search recursively in the subgraph G[C(T)]. Thus we may have
to find a maximal interesting set T1 of G, then (putting C1 = C(T1)) find a
maximal interesting set T2 of G[C1], then (putting C2 = C(T2) ∩ C1) find a
maximal interesting set T3 of G[C2], up to (putting Cq−1 = C(Tq−1) ∩ Cq−2) a
maximal interesting set Tq of G[Cq−1] such that either there is a Tq-outer path
in G[Cq−1] or G[C(Tq)∩Cq−1] is a disjoint union of cliques. Let us analyze the
complexity of this procedure.

For i = 1, . . . , q, put ni = |Ci| and mi = |E(G[Ci])|, and put n0 = n and
m0 = m. By Lemma 3.3, the total complexity of finding interesting sets over all
the recursive calls is O(Σq−1

i=1 mi−1(ni−1−ni)+max{nq−1 +mq−1, mq−1(nq−1−
nq)}) = O(max{n + m, mn)}.

For i = 1, . . . , q, let li be the number of components of G[Ci−1 \(Ti∪C(Ti))].
Observe that all these components (over all i = 1, . . . , q) are pairwise disjoint,
so l1 + · · ·+ lq ≤ n. By Lemma 4.4, the total complexity, over all recursive calls,
of finding outer paths is O(Σq

i=1lim) = O(nm).
So the total complexity of this recursive procedure is O(nm).

5 Finding a special even pair

Algorithm Find Even Pair

Input: A graph G, a maximal interesting set T and the minimal
T -outer path x-v-· · ·-w-y given by Algorithm Find Outer Path.

Output: A special even pair of G

Method:
1. Set A := (N(v) ∩C(T)) \N(y) and B := (N(w) ∩C(T)) \N(x).
2. Perform a BFS from B to N(A) in G \ (T ∪ A) and call K the
set of vertices of N(A) that are reached by this search.
3. Perform a BFS from A to N(B) in G \ (T ∪B) and call L the set
of vertices of N(B) that are reached by this search.
4. Let a be a vertex of A that sees all of K.
5. Let b be a vertex of B that sees all of L.
6. Return the pair {a, b}.

Lemma 5.1 The preceding algorithm returns a pair of vertices {a, b} that is a
special even pair of G.

Proof. Let us rewrite the path x-v-· · ·-w-y as P = x-z1-· · ·-zp-y, with z1 = v
and zp = w, and write Z = {z1, . . . , zp}. Define sets A′ = {u ∈ C(T) | uz1 ∈
E(G), uzi /∈ E(G)(i = 2, . . . , n)} and B′ = {u ∈ C(T) | uzn ∈ E(G), uzi /∈
E(G)(i = 1, . . . , n−1)}. These are the sets mentioned in Lemma 2.4. We claim
that the sets A, B defined in the algorithm satisfy A = A′ and B = B′. First

7

observe that x ∈ A′ and y ∈ B′ and that there is no edge a′b′ with a′ ∈ A′ and
b′ ∈ B′, for otherwise Z ∪ {a′, b′} would induce an odd hole of length p + 2 ≥ 5.
This implies A′ ⊆ A and B′ ⊆ B. Now let a be any vertex of A. Suppose that
a has a neighbour zi in Z with i ≥ 2, and let i be the largest such integer. By
the definition of A, vertices a and y are non-neighbours. Then a-zi-· · ·-zp-y is a
T -outer path, which contradicts the minimality of P . So a has no neighbour in
Z \ {z1}. So A ⊆ A′. Similarly B ⊆ B′. So A = A′ and B = B′ as claimed.

There remains to show that lines 2–5 of the algorithm correctly produce
maximal elements of (A, <A) and (B, <B). Let K be as defined by the algo-
rithm. Let a∗ be a maximal vertex for the relation <A. Suppose a∗ is not
adjacent to a vertex u of K. Let a′ ∈ A \ {a∗} be a neighbour of u (a′ exists by
the definition of K), and let Q = q1-· · ·-qk be the chordless path from q1 ∈ B to
u = qk given by the search tree of line 2 of the algorithm. Since A is a clique,
a∗ and a′ are adjacent. Suppose a vertex of A is adjacent to a vertex qi with
1 ≤ i ≤ k− 1. Then qi is a vertex of N(A) and the search should not have been
continued from qi; but this contradicts the existence of qi+1. So a′ and a∗ are
not adjacent to any of q1, . . . , qk−1. Let Q′ = q1-· · ·-qk-a′ and Q∗ = q1-· · ·-qk-a′-
a∗. Then Q′ and Q∗ are chordless paths. Lemma 2.4 implies that Q′ has even
length since none of its interior vertices are in A∪B. It follows that Q∗ is odd,
which implies that a∗ <A a′, which contradicts the choice of a∗. This proves
that every maximal vertex of <A is adjacent to all of K, and consequently that
the vertex a of the algorithm exists. Conversely, let us prove that any such a is
maximal for the relation <A. Suppose the contrary. Then, by the definition of
<A, there exists an odd chordless path Q′′ = a-a′′-q-· · ·-b′′ from a to a vertex
b′′ ∈ B with a′′ ∈ A. Then q is in N(A) and on a chordless path from B, so
q has been reached by the BFS defined on line 2, so q is in K. But then a is
adjacent to q, which contradicts the fact that Q′′ is chordless. So a is maximal
for the relation <A. The proof is similar for B: a vertex of B is maximal for
the relation <B if and only if it is adjacent to all of L. Now Lemma 2.4 implies
that the pair {a, b} returned by the algorithm is a special even pair of G and
the proof of correctness is complete.

Lemma 5.2 The complexity of Algorithm Find Even Pair is O(m).

Proof. Determining the sets A and B takes time O(d(v) + d(y)) and O(d(w) +
d(x)) respectively. Performing the breadth-first search from B to N(A) and
determining the set K takes time O(m), and similarly for determining the set
L. Moreover, each time a vertex is put into K we add +1 to a counter associated
to each of its neighbours in A. And we do similarly for L and B. So finding
vertices a and b takes time O(|A|) and O(|B|) respectively.

6 Analogy between interesting sets and handles

Recall that a graph is weakly chordal if G and its complementary graph contain
no hole of length at least 5. A handle [4, 5] in a graph G = (V, E) is a subset
H ⊂ V , of size at least 2, such that G[H] is connected, some component J 6= H

8

of G \N(H) satisfies N(J) = N(H), and each vertex of N(H) sees at least one
vertex of each edge of G[H]. Any such J is called a cohandle of H . Hayward,
Spinrad and Sritharan [6] use handles to obtain a recognition algorithm for
weakly chordal graphs with complexity O(m2) and a coloring algorithm for those
graphs with complexity O(n3). We observe that there is an analogy between
handles and interesting sets.

Lemma 6.1 Let H be a handle of G and J a co-handle of H. Then J is an
interesting set of G.

Proof. By the definition of a handle, G[J] is connected. Moreover, in the graph
G we have H ⊆ C(J), and H is connected and |H | ≥ 2. So J is an interesting
set in G.

Lemma 6.2 Let T be a maximal interesting set in G, and let H be a co-
connected component of G[C(T)] of size at least 2. Then H is a handle of
G and T is a co-handle of H.

Proof. Since C(T) is not a clique in G, there exists a component H of G[C(T)] of
size at least 2. Let X = N

G
(H). Since T is connected in G, there is a component

T ′ of G \X that contains T . If T 6= T ′, there is a vertex u ∈ V \ (X ∪ T) such
that (in G) u has a neighbour in T . Then (in G) T ∪ {u} is an interesting set
because T ∪ {u} is co-connected and H ⊆ C(T ∪ {u}). This contradicts the
maximality of T . So T is a component of G \X . Now let Y = N

G
(T). Clearly

Y ⊆ X . In G every vertex x of X has a non-neighbour in H and thus is not
in T ∪ C(T), and so x ∈ Y . Therefore Y = X . Finally, suppose that (in G)
some vertex x ∈ X misses both vertices of an edge of G(H). Then (in G) the
set T ∪ {x} is an interesting set strictly larger than T , a contradiction. So H is
a handle and T is a co-handle of H in G.

The preceding two results show that any maximal interesting set of G gives
a handle of G, but a handle of G gives only an interesting set of G, which is
not necessarily maximal. This suggests the following new definition which will
strengthen the correspondence. A generalized handle is a subset H ⊂ V that
contains at least one edge, such that some component J 6= H of G \ N(H)
satisfies N(J) = N(H), and every vertex of N(H) sees at least one vertex of
each edge of G[H]. Any such J is called a generalized co-handle of H . This new
definition of handles still enables us to use ideas from [6], where the hypothesis
of connectedness of H does not seem to be necessary. A handle is a particular
type of generalized handle, and the algorithm find-handle of [6] can be modified
as follows:

Algorithm Find Generalized Handle

Search for a vertex v and an edge e such that v misses e
If no such v, e exist then return “no handle” and stop endif
J ← component of G \N(e) containing v
H ← V \ (J ∪N(J))

9

while some v in N(H) misses some e in H do:
J ← component of G \N(e) containing v
H ← V \ (J ∪N(J))
endwhile
return (H, J)

Lemma 6.3 The co-handle produced by this algorithm is a maximal interesting
set in G.

Proof. By Lemma 6.1, J is an interesting set of G. Suppose that J is not
maximal. So there exists j /∈ J such that J ′ = J ∪{j} is an interesting set of G.
Since G[J ′] is connected, j is in N(J). However, N(J) = N(H) so j sees at least
one vertex of each edge of H . Thus V \ (J ′ ∪N(J ′)) ⊂ V \ (J ∩N(J)) = H and
so V \(J ′∪N(J ′)) is a stable set and J ′ is not an interesting set, a contradiction.

Lemma 6.3 points to an alternative way to find a maximal interesting set.
However, algorithms to find a handle so far [6] have not broken the complexity
barrier that would make them better than the one we presented in Section 3.

References

[1] M.E. Bertschi, Perfectly contractile graphs. J. Comb. Th. B 50 (1990),
222–230.

[2] H. Everett, C.M.H. de Figueiredo, C. Linhares Sales, F. Maffray, O. Porto,
B.A. Reed. Even pairs. In: Perfect Graphs, J.L. Ramı́rez-Alfonśın and
B.A. Reed, eds., Wiley Interscience (2001), 67–92.

[3] J. Fonlupt, J.P. Uhry. Transformations which preserve perfectness and h-
perfectness of graphs. Ann. Disc. Math. 16 (1982), 83–85.

[4] R. Hayward. Meyniel weakly triangulated graphs I: co-perfect orderability.
Discrete Applied Mathematics 73 (1997), 199–210.

[5] R. Hayward. Meyniel weakly triangulated graphs II: A theorem of Dirac.
Discrete Applied Mathematics 78 (1997), 283–289.

[6] R.B. Hayward, J.P. Spinrad, R. Sritharan. Weakly chordal graph algo-
rithms via handles. Proc. 11th annual ACM-SIAM Symp. on Discrete Al-
gorithms, 2000, 42–49.

[7] F. Maffray, N. Trotignon. A class of perfectly contractile graphs. Leibniz
Research Report 67, Grenoble, France. Submitted for publication.
http://www-leibniz.imag.fr/NEWLEIBNIZ/LesCahiers/2002/Cahier67.

[8] B.A. Reed. Problem session on parity problems (Public communication).
DIMACS Workshop on Perfect Graphs, Princeton Univ., New Jersey, 1993.

[9] N. Trotignon. Graphes parfaits: structure et algorithmes. Doctoral Thesis,
University Joseph Fourier, Grenoble, France, 2004.

10

