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France

Abstract

We propose improvements and extensions to an analytical model of magnetization
reversal in ultrathin flat dots and stripes with in-plane uniaxial anisotropy. Owing to
the localized character of nucleation volumes in hard magnetic materials, we use the
concept of edge demagnetizing torque, where all demagnetizing effects are applied at
the dot’s edge. The magnetization state and the reversal field h̃r are predicted as a
function of magnetization, dot thickness and in-plane edge orientation. An excellent
agreement is found with numerical simulations. An approximate but accurate scaling
law is proposed for an easy computation of h̃r. The model is shown to be valid for
dots thinner than both exchange length and wall width, and lateral size well above
each of these lengths.

Key words: Magnetization reversal, Micromagnetic modelling, Magnetic dot,
Coercivity.
PACS: 75.60.Jk; 75.75.+a

1 Introduction

Over the last ten years many experimental studies have reported magnetiza-
tion reversal processes of micron- or sub-micron-scale flat dots [1]. These stud-
ies are motivated by the development of devices requiring the use of such dots,
like magnetic field sensors and magnetic random access memories (MRAMs)
[2]. This has led to the outlining of the influence of parameters such as dot
shape and size[3,4], edge roughness[5,6], magneto-crystalline anisotropy[7,8],
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and dot thickness[3,9]. Although numerical calculations can nowadays be per-
formed with desktop computers, analytical modelling is still desirable for its
capacity to predict rapidly general trends, in the form of power laws for exam-
ple. Analytical models are mostly available for soft magnetic materials [10–13].
In a previous paper we proposed an analytical model making use of suitable
approximations to describe the magnetization reversal of thin flat rectangular
dots with in-plane magneto-crystalline uniaxial anisotropy, and ith applied
field and edges parallel to the anisotropy axis [14]. The model is suited to
investigate the ultrathin range (typically below 5 nm), making it a tool to pre-
dict the impact of future scaling-down of the size of devices. In the present
article we propose an improved version of this model. The first improvement
consists of a more accurate evaluation of the strength of dipolar fields, reduc-
ing the discrepancy with numerical calculations by about 30%. The second
improvement consists of the ability to consider dots with an arbitrary orien-
tation of the edges with the anisotropy axis and external field direction, the
latter two still being assumed to be parallel.

The outline of the article is as follows. We first briefly remind the reader of the
principle and results of the existing model[14], that are required to understand
the new calculations. We then update the existing analytical results following
the more accurate estimation of dipolar fields, and propose extended results
for the new dot geometry tackled by the model. Numerical evaluation of the
predicted reversal field is then given as a function of edge orientation and dot
thickness. In addition to the analytical results, we propose an approximate
although accurate scaling law to assist the reader in estimating without long
calculations the reversal field value as a function of magnetization, exchange,
dot thickness and magnetic anisotropy. Finally, we discuss the results against
numerical simulations, estimate its range of validity in terms of anisotropy
and thickness values, and finally describe consequences for experiments.

2 Preliminary

Most of this section has been explained in detail in [14]. A summary is given
here to ease the independent reading of the present article.

2.1 Principle and approximations of the model

We wish to address dots of lateral size much larger than characteristic mag-
netic length scales. Thus magnetization reversal is not expected to be uniform
and follow the Stoner-Wohlfarth model[15,16]. Besides, we do not consider
dots made of soft magnetic material, but instead made of material with a
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non-negligible magnetic anisotropy energy of microscopic origin, like magne-
tocrystalline anisotropy energy. Thus, the reversal is nor expected to be collec-
tive (i.e. not involving all the spins like, e.g., for curling mode[17]). It should
instead proceed via nucleation and propagation of a domain wall, like in hard
magnetic materials. If we exclude the occurrence of defects, nucleation volumes
are expected to be located close to some dot edge, where demagnetizing fields
are the highest. It is the purpose of this paragraph to introduce physically-
relevant approximations that allow us to describe these nucleation volumes
analytically, and thus predict features of magnetization reversal. Three ap-
proximations are introduced:

(1) Magnetization lies in-plane and does not vary along the normal to the
surface, even close to edges. This should be valid for thicknesses smaller
than characteristic magnetic length scales, see below.

(2) As nucleation volumes are expected to grow close to edges, only edges
need to be described to derive reversal field values. We also assume a
translation symmetry parallel to the dot’s edge, mimicking a slow vari-
ation along this direction. Thus, the geometry is simplified to a semi-
infinite dot with a one-dimensional degree of freedom (Figs. 1;3), the
in-plane magnetization direction ω(z) for z ≤ 0.

(3) The obstacle against solving general micromagnetic problems is to tackle
dipolar fields, that are non-local and non-linear. In our case we showed[14]
that for dots thinner than magnetic length scales the effect of demagne-
tizing fields can be assumed to result in a torque Γd applied exactly at
the edge of the dot (z = 0). The validity of this approximation is granted
by the fact that dipolar fields are short-ranged in two dimensions, with a
length scale similar to the thickness of the structure considered. Finally,
only surface charges Ms.n located at the edge are taken into account (no
volume charges).

These approximations allowed us to integrate micromagnetic equations and
predict the nucleation field h̃n (first deviation from strictly uniform magne-
tization), then the nucleation volume profile from the edge towards the dot
center, and finally the reversal field h̃r (irreversible magnetization jump). The
range of validity of the model arising from these approximations will be dis-
cussed in terms of thickness and anisotropy magnitude in section 7.3.

2.2 Dimensionless units

In most of the paper we make use of dimensionless units[14]. As a general
rule uppercase and lowercase letters stand for dimensional and dimensionless
units, respectively. We use the following relations, where A is the exchange
constant (J.m−1), K is the in-plane second-order anisotropy constant of the dot
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material (J.m−3), Ms the volume magnetization (A.m−1) and H the applied

magnetic field (A.m−1): lengths L = l
√

A/K, magnetization Ms =
√

K/µ0m,

magnetic field H =
√

K/µ0h = (2K/µ0Ms)h̃. Notice that we make use of

two ways to obtain dimensionless units for magnetic fields, h and h̃. The first
one, h, is more convenient when it is needed to express dipolar fields, because
then m and h play symmetrical roles [see Eq.(6)]. The second one, h̃, is more
convenient for discussing magnetization reversal because h̃ = −1 is the value
for the Stoner-Wohlfarth model. We call Bloch wall width and exchange length

the quantities ΛBl. = π
√

A/K and Λex. =
√

2A/µ0M2
s . ΛBl. and πΛex. are the

length scales over which one may expect a magnetization rotation of roughly π
under the influence of anisotropy versus exchange, or exchange versus dipolar
energy, respectively. Thus, in reduced units, λBl. = π and λex. =

√
2/m. Notice

that walls are of Néel type in the range of thickness considered. However for
the thinnest dots self-dipolar energy becomes negligibly small because of the
reduction of dimensionality, so that λBl. is adequate for describing the Néel
wall width, at least in the case of sufficiently large anisotropy. In the case
of in-plane uniaxial anisotropy the microscopic energy in the dot is written
(dipolar energy excluded, see above sub-section)

EV = K sin2 ω + A(∇ω)2 − µ0MsH cos ω (1)

or, in dimensionless units :

eV = sin2 ω + (∇ω)2 −mh cos ω (2)

= sin2 ω + (∇ω)2 − 2h̃ cos ω. (3)

Finally, the reduced variable for z will be written u. Numerical evaluation of
the model will often be made for m = 2.81, a value for which experimental
results are available[18].

2.3 Practical procedure

In practice our calculation proceeds in three steps:

(1) The micromagnetic configuration ω(u) inside the slab is determined by
the minimization of Eq.2 (Euler’s equation), provided that the magneti-
zation rotation at the edge is set to a value fixed a priori, ω0 = ω(u = 0).

(2) The density of edge magnetic pole is then m cos(ω0), from which the
dipolar field hd(u) is calculated everywhere in the dot, leading to the
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evaluation of the microscopic demagnetizing torque acting on magneti-
zation, γd(u). From this, the integral torque applied at the edge is eval-
uated: Γd =

∫ 0
−∞ γd(u)du. Notice that torque integrals converge rapidly,

contrary to energy integrals. Finally, Euler’s equation is applied at the
edge (Brown’s condition), so that magnetization at the edge is also under
equilibrium:

Γex. + Γd = 0 (4)

where Γex. is the exchange torque at the edge.
(3) The possible equilibrium values of ω0 are finally determined self-consistently,

by solving Eq. (4). Expanding Eq. (4) to the fifth order leads to a binomial
equation:

A
(

ω0

2

)4

+ B
(

ω0

2

)2

+ C = 0 (5)

The expressions of A, B and C are given in [14]. The predictions of the
existing model are reproduced in Fig.2b. h̃r increases in absolute value
with decreasing t, up to the Stoner-Wohlfarth prediction |h̃r| = 1 in the
mathematical limit of zero thickness, i.e. in the case of vanishing dipolar
fields. The model does not take into account thermal activation.

3 Improved accuracy

For both existing and present versions of the model m is assumed to be uniform
along the dot thickness, and hd is evaluated taking into account the surface
magnetic charges only, given by σ = m.n = m cos ω0 (n is the outward unit
vector normal to the dot edge), neglecting volume charges. For simplicity the
value of the dipolar field hd(x, u) in the previous model was taken equal to its
value at mid-height (x = 0). This induced an overestimation of the x-average
of hd, especially close to the dot edge that bears the magnetic poles. In the
present paper we calculate the exact x-averaged dipolar field acting on m. At
any u < 0 inside the dot the x-component of hd has a zero x-averaged value
and needs therefore not be calculated. For the u component one finds

hd(x, u) =
σ

2π

[
arctan

(
2x + t

2u

)
− arctan

(
2x− t

2u

)]
(6)

The x-averaged value of this u-component is:

hd(u) = 〈hd(x, u)〉 =
1

t

∫ t/2

−t/2
hd(x, u) dx. (7)

We then straightforwardly get
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hd(u) =
σ

π
f(u). (8)

In the first version of the model we had f(u) = arctan(t/2u), whereas here:

f(u) =

[
arctan

(
t

u

)
− u

2t
ln

(
1 +

t2

u2

)]
. (9)

The calculation scheme is then similar to the one reported in detail in Ref.[14].
The total demagnetizing torque is given by

Γd =
∫ 0

−∞
γd(u) du (10)

with

γd = −m2 cos ω0

π
sin(ω)f(u) (11)

After expanding γd(u) up to the fifth order in terms of ω0 and proceeding to
integration we find the same type of formula as in [14]:

Γd =
4m2

π
{J1

2

(
ω0

2

)
+

[
−1

6
(5J1 + 3J3) +

α2

8
(J1 − J3)

] (
ω0

2

)3

+

[
1

30
(2J1 + 15J3 + 15J5) +

α2

8
(−J1 − 2J3 + 3J5)

+
α4

32
(2J1 − 3J3 + J5)

] (
ω0

2

)5

+ O (ω0)
7} (12)

with

Jk = −
∫ 0

−∞
eµkuf(u) du (13)

and with µk = k
√

1 + h̃. The Jk integrals differ from the Ik of Ref.[14], due to
the new expression of f(u). After integration we find
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Jk =
1

µk

{
π

2
+

1

tµk

[ci(tµk) cos(tµk) + si(tµk) sin(tµk)− C− ln(tµk)]

}
(14)

where C is Euler’s constant, and ci and si are cosine and sine integral func-
tions respectively [19,14]. The equilibrium states are found by searching for
equilibrium positions of the edge magnetization. These are (in addition to the
trivial state ω0 = 0) solutions of Eq. (5) where A, B, and C are exactly the
same as in [14], replacing the Ik integrals by the new Jk. Equation (5) has two
roots

Ω±0 =

(
ω±0
2

)2

=
−B ±

√
∆

2A
. (15)

ω0 is arbitrarily chosen positive, so there will be at most three equilibrium
states in the non-reversed case:

• For ∆ > 0 and Ω−0 > 0 there are three equilibrium solutions: 0, ω−0 and ω+
0

with ω+
0 > ω−0 > 0. The only stable solution is ω−0 and the configuration of

the slab is non-uniform (NU) close to the edge.
• For ∆ > 0, Ω−0 < 0, Ω+

0 > 0 there are two equilibrium solutions: ω0 = 0 and
ω+

0 > 0. The stable solution is a single domain (SD): ωstable(u) = ω0 = 0 ∀u.
• For ∆ < 0, or (∆ > 0 and Ω±0 < 0) there is a single equilibrium solution

ω0 = 0, that is unstable, which means that the magnetization has already
reversed.

Notice that there is at most one stable equilibrium state (Fig.2). We define
the reversal field h̃r as the field for which the stable state vanishes, trigger-
ing an irreversible magnetization jump. h̃r is determined by ω−0 (stable) =
ω+

0 (unstable) in the NU case, and by ω+
0 (unstable) = 0 (stable) in the SD

state. In the NU case we determine the nucleating field h̃n with ω−0 = 0.

Fig.2a shows the stable and unstable equilibrium states against applied field,
for several thicknesses t, predicted by the present model. The results are qual-
itatively similar for both versions. Below a critical thickness (tc ' 0.273) the
magnetization is uniform under any applied field, and the magnetization re-
versal is abrupt going directly from the SD state antiparallel to the applied
field, to the SD state parallel to the applied field. For thicker films (t > tc) the
magnetization experiences a stable NU state before the abrupt reversal. The
transition from the antiparallel SD state to the NU state is of second order. ω0

changes continuously and reversibly from zero to positive values at h̃n. Similar
results are obtained for all m values.

Fig.2b shows the values of h̃r and h̃n predicted by the existing model, by the
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present improved version, and by numerical calculation performed on a semi-
infinite dot without approximations, and so used as a reference. As expected,
the original model overestimates the dipolar field so that h̃r and h̃n have
greater values. The new model allows one to reduce the discrepancy with
micromagnetic simulations by about 30%.

4 Model’s extension to tilted edges

We now extend the model to the case where the semi-infinite dot edge is tilted
in-the-plane by an angle β with respect to the easy axis of magnetization
(Fig.3) (β = 90◦ previously). The field is still applied parallel to the in-plane
anisotropy axis and the dipolar field is calculated using the improved accuracy
formulas described above (Eq.8-9). The edge magnetic pole density is now
σ = m sin(β − ω0). We have

Γd =
m2 sin(β − ω0)

π
×
{
−
∫ 0

−∞
f(u) cos [β − ω(u)] du

}
(16)

where f is defined by equation (9). After some calculation we find:
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Γd =
m2

π

{
1

2
J0 sin(2β)

+
(

ω0

2

) [
2(J1 sin2 β − J0 cos2 β)

]
−
(

ω0

2

)2

sin(2β)[J2 + 2J1 + J0]

+
(

ω0

2

)3
[
2

(
1

3
+

α2

4

)
(J1 sin2 β − J0 cos2 β)

+
α2

2

(
1 +

4

α2

)
(−J3 sin2 β + J0 cos2 β) + 4(J2 cos2 β − J1 sin2 β)

]

+
(

ω0

2

)4

sin(2β)

[
−2

(
1

3
+

α2

4

)
(J2 + 2J1 + J0)+

+

(
α2

2
+ 1

)
(J4 + J0) +

(
α2

2
+ 2

)
(J3 + J1) + 2J2

]

+
(

ω0

2

)5
[
4

(
1

15
+

α2

8
+

α4

16

)
(J1 sin2 β − J0 cos2 β)+

+
α2

2

(
1 +

3α2

4

)(
1 +

4

α2

) (
−J3 sin2 β + J0 cos2 β

)
+

+ 4

(
1 +

3α2

4

)(
J2 cos2 β − J1 sin2 β

)
+

(
α2

8
+

3α2

2
+ 2

)(
J5 sin2 β − J0 cos2 β

)
+

2α2
(
1 +

2

α2

) (
−J4 cos2 β + J1 sin2 β

)
+ α2

(
1 +

4

α2

) (
J3 sin2 β − J2 cos2 β

)]}
(17)

The equilibrium states are roots of a fifth order polynomial equation

A0 + A1

(
ω0

2

)
+ A2

(
ω0

2

)2

+ A3

(
ω0

2

)3

+ A4

(
ω0

2

)4

+ A5

(
ω0

2

)5

= 0. (18)

The coefficients Ai are functions of m, h̃ and Jk as defined in Eq.(13-14). For
β 6= 90◦ hd is no more parallel to the easy axis of magnetization, so that even
far away from the edge hd is not mostly antiparallel to m. Consequently the
local demagnetizing torque γd(u) = m ∧ hd decays like 1/u far away from
the edge, so that the integrated demagnetizing torque defined mathematically
by Eq.(16) diverges. Looking at Eq. (13) it is readily seen that all Jk con-
verge rapidly for k > 0, whereas J0 diverges logarithmically. This problem is
not physical and stems from the edge-torque approximation. To lift the non-
physical divergence of Γd we introduce a cutoff length uc to evaluate J0. The
value of uc that one should use to yield physically sound results was estimated
the following way. In the case β = 90◦ the formula for Γd does not make use of
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J0, and therefore converges. The suitable value of uc was taken as the length
for which results integrated numerically with cutoff uc nearly coincide with ex-
act results [Eq. (5), i.e. with no cutoff]. This procedure yields approximately
uc = 15λex. nearly independently of the dot thickness. Notice that, due to the
slow logarithmic divergence of J0 the use of a slightly overestimated uc yields
nearly unchanged results. Therefore the results of the model do not critically
depend on the exact value of uc provided that uc > 15λex., a physically mean-
ingful order of magnitude. Let us finally note that numerical integration with
increasing values of uc until results become stationary is an alternative proce-
dure for the determination of uc. Contrary to the procedure described above,
this alternative procedure can be applied with arbitrary edge orientations β,
and revealed that uc is also nearly independent of β. Accordingly in all results
shown below we have used uc = 15λex. and evaluated J0 from expression

J0 = −
∫ 0

−uc

f(u) du = t

[
3

4
+

1

4
ln

(
1 +

u2
c

t2

)]
. (19)

The equilibrium states ω0 were determined by solving numerically Eq.(18).
The advantage of the analytical expansion is that numerical calculation is
reduced to solving a fifth-order equation, avoiding numerical evaluation of in-
tegrals or even full micromagnetic calculations using Landau-Lifschitz-Gilbert
equations.

5 Numerical evaluation

Fig.4 shows plots of the reversal field h̃r predicted by the model, as a function
of both edge orientation β and dot thickness t. We remind the reader that
the field is always applied along the anisotropy axis. As expected from the in-
creasing strength of dipolar fields for increasing thickness t, for any given edge
orientation |h̃r| decreases with increasing t. Let us examine the edge orienta-
tion dependence of |h̃r|. For any given t the reversal field |h̃r| is maximum for
β = 0◦ and equals 1 (the anisotropy field in dimensionless units). Let us give
a simple picture for this case. For β = 0◦ the anisotropy axis lies parallel to
the dot edge, so that uniform magnetization is favored and no magnetic poles
arise, yielding zero dipolar field. Thus only Zeeman and anisotropy energies
compete, explaining that the value h̃r = −1 expected for coherent rotation
with the field applied along the easy axis[15,16] is retrieved. The full edge
orientation dependence is more complex. For low thickness a local maximum
of |h̃r| associated with a cusp is observed at β = 90◦, while a smooth abso-
lute minimum is reached for a thickness-dependent intermediate angle. This
curve displays similarities with the well-known Stoner-Wohlfarth Astroid [20],
although in the present case only a fraction of the magnetic field is applies at

10



an angle with the easy axis direction (the dipolar field), whereas the external
field remains parallel to the easy axis direction. The similarity with the Stoner-
Wohlfarth Astroid is therefore only qualitative. For increasing thickness the
absolute minimum for |h̃r| is displaced towards β = 90◦, finally replacing the
cusped local maximum above a critical thickness around 0.35, slightly higher
than the critical thickness tc = 0.273. It is not clear whether the similarity
between these two figures is a coincidence or not.

Let us now examine the details of the nucleation volumes. Fig.5 shows the
direction of the edge magnetization just before the reversal, ωr

0 as a function
of the edge direction β. For low β the model predictions come close to the
line of slope 1 (ωr

0 = β), which means that the edge magnetization lies nearly
parallel to the edge. This can be understood as this significantly reduces Γd at
the moderate expense of exchange energy. For higher β the cost of exchange
energy is too high so that the magnetization never comes parallel to the edge.
Finally Fig.6 shows the magnetization profile inwards from the dot’s edge, as
a function of applied field.

6 Approximate scaling law for the reversal field

Although the computation of the results does not require special skills, typing
Eq. (17) and solving Eq. (18) might rebuke some readers. We therefore propose
an approximate polynomial scaling law that empirically fits the variation of
h̃r(m, t, β):

log(1 + h̃r) = a(m,β) + b(m, β) log(t) + c(m, β) log2(t) (20)

where a(m, β), b(m, β) and c(m, β) are polynomial functions of m and β:

a(m,β) = a0(m) + a1(m)β + a2(m)β2 (21)

b(m,β) = b0(m) + b1(m)β + b2(m)β2 (22)

c(m,β) = c0(m) + c1(m)β + c2(m)β2 (23)

and in turn ai(m), bi(m) and ci(m) (i ∈ {0, 1, 2}) are polynomial functions of
m:

ai(m) = ai0 + ai1m + ai2m
2 (24)

11



Coefficients aij, bij and cij (i, j ∈ {0, 1, 2}) are summarized in the three fol-
lowing matrices, respectively, with β in degrees.

[aij] =


−1.156840 −0.886400 0.094000

0.019510 0.018440 −0.002300

−0.000027 −0.000135 0.000017

 (25)

[bij] =


1.161640 −1.159410 0.152820

−0.025000 0.022940 −0.003410

0.000561 −0.000298 0.000036

 (26)

[cij] =


0.005700 −0.270650 0.046350

−0.008360 0.007290 −0.001180

0.000190 −0.000114 0.000014

 (27)

These figures yield the best fit to the model’s exact result in the range 2.4 ≤
m ≤ 6.0, t < 0.4 and any inclination β. The accuracy of the scaling law is in
most cases better than 1%, except for β values close to 90◦ where the error
reaches 4% at most.

7 Comparison with LLG numerical calculation and discussion

7.1 Numerical protocol

In the following we use the results of simulations as a reference for assessing the
validity of the model. Numerical calculations were performed by integrating
the Landau-Lifschitz-Gilbert equation in the framework of finite volumes with
prismatic cells[21], with a mesh size of 5 Å, under quasi-static conditions from
positive saturation to negative fields and finally magnetization reversal. We
used periodic boundary conditions along the y direction to simulate a laterally
infinite stripe. The width w of the stripe (i.e. along u) was varied from 100 nm
to 500 nm. A 1/w2 scaling law was then found to be suitable to extrapolate the
results to infinite w, for comparison with the model describing a half-infinite
stripe. Finally the values of h̃r and edge magnetization direction at h̃r, ωr

0, were

refined using an inverse squared susceptibility scaling law: χ ∼ 1/
√

h̃− h̃r

[22,14]. This allowed us to reduce effects of the finite field step used in the
simulation.
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7.2 Comparison of reversal field values

For all β we find a good agreement for |h̃r| values predicted by the model and
the simulations (Fig.7). The agreement is better for lower thickness. As the
geometry of the model (approximation 2) is identical to that of the simulation
this good agreement proves that approximations 1) and 3) used in the model
are physically sound. In particular this shows that concentrating all demag-
netizing effects at the dot’s edge (edge torque, approximation 3) is physically
relevant in the case of thin flat dots made of a magnetically-hard material,
whatever the edge orientation is. This extends the conclusion of [14], and fur-
ther confirms the relevance of the concept of edge torque first discussed in
[22].

7.3 Range of validity of the model

We noticed above that the agreement of simulations with the model is better
for thinner structures. This was expected from the model’s three approxima-
tions proposed in section 2.1, that were justified by the small thickness. In this
paragraph we propose quantitative arguments to assess the range of validity
of these approximations, in terms of thickness and anisotropy magnitude.

In order to satisfy approximation 1 the magnetization shall not be free to
vary over a distance t along the normal to the dot surface. t must therefore
be reasonably smaller than ΛBl. and πΛex.. Thus two necessary relationships

are: t .
√

A/K and t .
√

2A/µ0M2
s .

In order to satisfy approximation 2 the length of the edge considered must be
significantly greater than ΛBl. and πΛex..

Approximation 3 holds two aspects. The first aspect is that nucleation vol-
umes must be large compared to the close-to-the-edge area where demagne-
tizing fields are non-negligible. Thus, viewing nucleation volumes as a portion

of wall, the required condition is again
√

A/K & t. The second aspect is
to neglect volume charges, so that the shape of nucleation volumes can be
approximated by a portion of wall. Neglecting the influence of the applied
field on the internal rigidity of the wall, this requirement is equivalent to the
anisotropy field 2K/µ0Ms being large compared to demagnetizing fields Hd

arising from volume charges. The lateral range of dipolar fields is t, so that
Hd at a given point P is roughly the sum of dipolar fields Hd,i and Hd,i+1 aris-
ing from two horizontal cylinders of square section t× t located on either side
of P, labelled i and i + 1 on Fig.9. The density of volume charges scales like

div(Ms) ∼ Ms
∂ω
∂z
∼ Ms

√
K/A, so that Hd,i ∼ Mst

√
K/A. Due to the opposite
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signs of Hd,i and Hd,i+1, for their sum one shall not consider div(Ms) but

instead its variation over distance t, i.e. t ∂
∂z

(
Ms

∂ω
∂z

)
∼ Ms

∂2ω
∂z2 t ∼ Mst(K/A).

Thus, Hd,tot ∼ Mst
2(K/A). When compared to the anisotropy field, this again

yields criterium t . Λex..

To conclude, the conditions for confident validity of the model are twofold:

(1) The size of the dot or stripe and that of its edges must be much larger

than both ΛBl. = π
√

A/K and πΛex. = π
√

2A/µ0M2
s .

(2) The thickness t of the dot or stripe must be equal or smaller than
√

A/K

and
√

2A/µ0M2
s .

Notice that the model shall however not be applicable to very soft materials.
This does not show explicitly in the above criteria because we did not consider
logarithmic tails of Néel walls, that become important for soft materials.

7.4 Consequences of the approximation of the edge torque

We have seen in the previous subsections that the approximation of the edge
torque is physically relevant to predict global quantities like the value of the
reversal field. In this paragraph we show that microscopic details of the mag-
netization state might differ, however not preventing the correct prediction
of global quantities. This finding confirms suggestions of Rave et al. about
the concept of edge torque[23]. Fig.8 shows calculated and simulated curves
for ωr

0(β), as well as magnetization profiles ω(u) just before magnetization
reversal. Regarding the angular variation of ωr

0(β), we find a satisfactory qual-
itative agreement between model and simulations. However, ωr

0(β) predicted
by the model is always larger than that given by simulation (see Fig.8). This
presumably results from the torque approximation that concentrates all de-
magnetizing effects at the edge. A further consequence of this approximation
is revealed by examining magnetization profilesé ω(u). Again, we observe a
reasonable qualitative agreement between model and simulations. However
the characteristic length scale (e.g. the half-width of the non-uniform region)
is slightly larger in simulations. This is related to the volume charges being
neglected in the model, and all demagnetizing effects being rejected at the
edge. This confirms that it is not necessary for micromagnetics to describe the
details of the magnetization state close to edges and corners on a length scale
much smaller than Λex. and ΛBl. to yield correct values for reversal fields[23].
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7.5 Implications for experiments

The model is suitable for describing dots and stripes of various orientations of
the edges. From Fig.4 we infer that if a dot has edges of different orientations,
each having a sufficient length (see previous sub-section), then magnetization
reversal will occurbe initiated along an edge whose associated reversal field is
the lowest available among all edges. Whereas this means edges perpendicular
to the axis of magnetocrystalline anisotropy for significant thickness t & 0.35,
for t . 0.35, the reversal is not necessarily triggered at edges perpendicular
to the easy magnetization axis, but might occur at edges slightly tilted in the
range of low thickness. This results from the fact that what triggers the reversal
is not directly the strength of magnetic field (external plus demagnetizing),
but its torque with magnetization, which implies a compromise on the angle,
more precisely between the magnitude of the dipolar field scaling roughly with
sin(β−ω0), and cos[β−ω(u)] arising in the torque calculation due and related
to the angle between magnetization and hd(u). Thus, the behavior of stripes
and dots made of hard magnetic material is expected to be different from the
case of dots made of very soft material, were it is usually admitted that the
reversal is triggered along edges that display the highest angle with the mean
magnetization direction[13].

8 Conclusion

We have proposed an analytical model of magnetization reversal in thin flat
dots and stripes with in-plane uniaxial anisotropy, with the external field ap-
plied parallel to the anisotropy axis, and relying on suitable approximations.
Compared to a previously published article[14] we improved the accuracy by
about 30%, and extended the geometry of the dot to an arbitrary in-plane edge
orientation. The magnetization configuration and the reversal field h̃r are pre-
dicted as a function of magnetization, dot thickness and edge orientation. |h̃r|
decreases with increasing thickness, due to the increasing demagnetizing effect
of internal dipolar fields. For a given thickness the lowest value of |h̃r| is found
for edges perpendicular to the anisotropy axis (high thickness range), or at
an intermediate angle (low thickness range). |h̃r| reaches the value of coherent
rotation, for edges parallel to the anisotropy axis or in the limit of vanishing
thickness. An approximate although accurate scaling law is proposed, with a
view to allowing one to compute h̃r easily. The model is valid for dots and
stripes of lateral size much larger (resp. thickness lower) than both exchange
length and wall width, and with a non-vanishing uniaxial in-plane magne-
tocrystalline anisotropy. The reversal field values predicted by the model are
found to be in excellent agreement with numerical simulations.
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[15] L. Néel, C. R. Acad. Sci. 224, 1550 (1947).

[16] E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Royal Soc. London A240, 599
(1948).

[17] A. Aharoni, Introduction to the Theory of Ferromagnetism, Vol. 93 of
International Series of Monographs on Physics (Oxford University Press,
Oxford, 1996).

[18] O. Fruchart, J.-P. Nozières, W. Wernsdorfer, D. Givord, F. Rousseaux, and D.
Decanini, Phys. Rev. Lett. 82, 1305 (1999).

[19] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th
ed. (Academic Press, London, 1994).

16



[20] J. C. Slonczewski, Research Memo RM 003.111.224, IBM Research Center,
Poughkeepsie, NY (unpublished).

[21] J. C. Toussaint, A. Marty, N. Vukadinovic, J. Ben Youssef, and M. Labrune,
Comput. Mater. Sci. 24, 175 (2002).

[22] A. Hubert and W. Rave, Phys. Stat.Sol. (b) 211, S815 (1999).
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Fig. 1. (a) Geometry of the model. The semi-infinite slab corresponds to z < 0, (b)
Top view of the dot. u is the dimensionless variable for z

Fig. 2. (a) Stables (◦) and unstable (•) equilibrium states predicted by the present
improved model for an edge perpendicular to the anisotropy axis and thicknesses
ranging from 0.05 up to 0.40. Inset: ωr

0 (ω0 just before reversal), as function of
thickness. The transition between SD to NU at the reversal is found for tc = 0.273.
(b) Nucleation field (full symbols) and reversal field (open symbols), predicted by
[14](squares), the present model (disks), and numerical simulations (triangles) [14].

Fig. 3. Top view of the extended geometry of the new model: the edge is tilted by
an arbitrary angle β 6= 90◦ with respect to the easy axis.
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Fig. 4. Reversal field |h̃r| predicted by the analytical model as a function of edge
orientation β for several thicknesses t. (a) Cartesian plot, (b) Polar plot: the angle
is the edge orientation β while the radius stands for |h̃r|. The outer diameter stands
for |h̃r| = 1. The orientation of the easy axis with respect to the edge is sketched
around the plot.

Fig. 5. Edge magnetization angle ωr
0 (ω0 just before reversal) as a function of edge

orientation β, for thicknesses t ranging from 0.05 up to 0.40
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Fig. 6. Magnetization angle ω(z) predicted by the model in a dot of thickness 27 Å for
several applied magnetic fields: In (a) the edge direction is β = 70◦ and h̃r = −0.75,
and in (b) β = 89◦ and h̃r = −0.66. Physical parameters are: A = 2× 10−11 J.m−1,
Ms = 1.73× 106 A.m−1, K = 4.76× 105 J.m−3.

Fig. 7. Reversal field |h̃r| predicted by the model (◦) and numerical simulations (4)
for two thicknesses t = 10 Å (a) and t = 27 Å (b). Insets: Same curves but with
full scale. Physical parameters are: A = 2 × 10−11 J.m−1, Ms = 1.73 × 106 A.m−1,
K = 4.76× 105 J.m−3.
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Fig. 8. Magnetization profile ω(u) close to the edge, just before magnetization re-
versal, predicted by the model (disks) and simulation (triangles) for two thicknesses
10 Å (a) and 27 Å (b) and two edge orientations 70◦ (open symbols) and 89◦ (full
symbols). Insets: edge spin angle just before reversal ωr

0 as a function of edge ori-
entation. Physical parameters are: A = 2 × 10−11 J.m−1, Ms = 1.73 × 106 A.m−1,
K = 4.76× 105 J.m−3.

Fig. 9. Schematic illustration of the two in-plane cylinders i and i+1 of section t× t
taken into account to estimate the strength of dipolar fields arising from volume
magnetic charges.
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