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Symmetry results for viscosity
solutions of fully nonlinear uniformly

elliptic equations

Francesca Da Lio(1)& Boyan Sirakov(2)

1 Introduction

In this note we establish symmetry results of Gidas-Ni-Nirenberg type for
viscosity solutions of the equation







F (D2u,Du, u, x) = 0 in O
u > 0 in O
u = 0 on ∂O,

(1.1)

where O is a domain of R
n, F is a continuous function defined on Sn(R) ×

R
n × R × O with values in R and Sn(R) denotes the space of real, n × n,

symmetric matrices. More precise assumptions on F are given later on. The
solution u of this nonlinear problem is scalar and Du, D2u denote respectively
the gradient and the Hessian matrix of u.

A model problem for (1.1) will be the equations

M+
λ,Λ(D2u) + f(u) = 0, M−

λ,Λ(D2u) + f(u) = 0, (1.2)

where f is a locally Lipschitz continuous function and M+
λ,Λ,M−

λ,Λ are the
extremal Pucci operators ([17], [10]), with parameters 0 < λ ≤ Λ, defined by

M+
λ,Λ(M) = Λ

∑

ei>0

ei + λ
∑

ei<0

ei, M−
λ,Λ(M) = λ

∑

ei>0

ei + Λ
∑

ei<0

ei,

for any symmetric N × N matrix M . Here ei = ei(M), i = 1, ..., N, de-
note the eigenvalues of M . Pucci’s operators are extremal in the sense that
M+

λ,Λ(M) = sup
A∈Aλ,Λ

tr(AM) , M−
λ,Λ(M) = inf

A∈Aλ,Λ

tr(AM), where Aλ,Λ denotes

the set of all symmetric matrices whose eigenvalues lie in the interval [λ, Λ].

1Dipartimento di Matematica, Università di Padova, Via Belzoni,7, 35131 Padova,
Italy; e-mail: dalio@math.unipd.it
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Let us recall the classical result of Gidas, Ni and Nirenberg [15], which
states that positive C2-solutions of the Dirichlet problem for the equation

∆u + f(u) = 0, f ∈ C0,1(R), (1.3)

(this is equation (1.2) corresponding to λ = Λ = 1) in a ball are necessarily
radial, or more generally, if the domain is symmetric with respect to a hyper-
plane then the solutions have the same symmetry. Related results for (1.3)
in the whole space and exterior domains were obtained by C. Li [16], W.
Reichel [21], and B.Sirakov [23], under the supplementary hypothesis that f
is nonincreasing in a right neighbourhood of zero.

Symmetry results in the spirit of Gidas, Ni and Nirenberg for classical
solutions of fully nonlinear equations of type (1.1) were obtained by C. Li
[16]. Extensions and simple proofs of these results are due to Berestycki and
Nirenberg [7].

An essential hypothesis in [7] is that the operator F is C1 in the matrix
of the second derivatives of u ∈ C2(O)∩C(O). This prevents applying these
results to important classes of equations, such as equations involving Pucci’s
operators, Bellman or Isaacs equations. On the other hand, symmetry result
was proved for viscosity solutions of (1.1), without differentiability assump-
tion on F , by Badiale [2] (see also Badiale-Bardi [3] for results on general
first-order equations), under the hypothesis that the operator F satisfies a
comparison principle. This is a quite strong assumption, which essentially
requires that the operator F is nonincreasing with respect to u or at least
convex in the (Du, D2u) variables, (cf. Section 5 in [13]).

It is our purpose here to join together and extend the above quoted results.
We are going to show that the moving planes method of Alexandrov [1] and
Serrin [22], in its version developed in [7], can actually be adapted to work
in the setting of viscosity solutions and general equations (1.1).

Before proceeding to the precise statements, let us recall that existence
and uniqueness of viscosity solutions of boundary-value problems of type
(1.1) has been very extensively studied for proper operators, see for example
[13], [11], [12]. Quite recently existence of solutions of non-proper equations
of type (1.2) was established by Felmer-Quaas [14] and Quaas-Sirakov [19].
In particular, in [14] it was shown that the Dirichlet problem for (1.2) in a
ball has a positive radial solution when f has some power growth at infinity.
It follows from our result that actually any positive solution is radial. It is
well-known that proving symmetry for solutions is an important step towards
proving uniqueness in the non-proper case.

Next we list our assumptions on the nonlinearity F .

(H1) (Regularity) For all R > 0 there exists a constant KR > 0 and a
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function ωR : R
+ → R

+, ωR(0+) = 0, such that, for any x, y ∈ O,
p, q ∈ R

n, M,N ∈ Sn(R), u1, u2 ∈ [−R, R]

|F (M, p, u1, x) − F (N, q, u2, y)| ≤ KR {|p − q| + ||M − N ||
+ |u1 − u2| + |x − y|(||M || + ||N ||)}
+ ωR(|x − y|(1 + |p| + |q|)) .

(H2) (Uniform ellipticity) There exists κ > 0 such that, for any x ∈ O
u ∈ R, p ∈ R

n, M, N ∈ Sn(R) with N ≥ 0

F (M + N, p, u, x) − F (M, p, u, x) ≥ κTr(N) .

It is standard to show that (H1) and (H2) imply the following assump-
tion. Actually, (H1)-(H2) reduce to (H3) when F is independent of x.

(H3) for any R > 0 there exists a constant KR > 0 such that for each
M,N ∈ Sn(R), p, q ∈ R

n, x ∈ O, u, v ∈ [−R,R], we have

F (M, p, u, x) − F (N, q, v, x) ≥ M−
λ,Λ(M − N) − KR|p − q| − KR|u − v|,

F (M, p, u, x) − F (N, q, v, x) ≤ M+
λ,Λ(M − N) + KR|p − q| + KR|u − v|,

with λ, Λ depending on KR and κ.
Another example we have in mind is the standard quasilinear equation

Tr[B(x)D2u] + H(x, u, Du) = 0 in O, (1.4)

where B is a n × n real symmetric matrix and H a continuous function. In
this case (H2) is satisfied if B(x) ≥ κId for all x ∈ O and (H1) is satisfied if

(i) B is a bounded and locally Lipschitz continuous function of x ;
(ii) The function H satisfies : for any R > 0, there are a constant KR > 0

and a function ωR : R
+ → R

+, ωR(0+) = 0 such that, for any x, y ∈ O,
p, q ∈ R

n, u, v ∈ [−R,R]

|H(x, u1, p)−H(y, u2, q)| ≤ ωR(|x− y|(1 + |p|+ |q|)) + KR(|p− q|+ |u− v|) .

For any matrix M = (mij) ∈ Sn(R) we denote with M (k) the matrix
obtained from M by replacing mik and mkj by −mik and −mkj respectively,
for any i 6= k, j 6= k. Note that M and M (k) always have the same eigenvalues.

For any vector p ∈ R
n we denote p(k) = (p1, . . . , pk−1,−pk, pk+1, . . . , pN).

We consider the following hypothesis.
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(Ok) O is convex in the direction xk, symmetric with respect to the hyper-
plane {xk = 0}, and for all M ∈ Sn(R), p ∈ R

n, u ∈ (0,∞), x ∈ O,

F (M, p, u, x) = F (M (k), p(k), u, x(k)),

and F is nonincreasing in xk for xk > 0.

Then we have the following theorem.

Theorem 1.1 Suppose O ⊂ R
n is bounded, and assume (H1), (H2), and

(Ok), for some k ∈ {1, . . . , N}. Let u ∈ C(O) be a viscosity solution of (1.1).
Then u is symmetric in xk, that is, u(x) = u(x(k)) for all x ∈ O. In addition,
u is strictly decreasing in xk > 0.

Corollary 1.1 Suppose O is a ball centered at the origin, F is radial in
x and nonincreasing in |x|, and satisfies (H1), (H2), and (Ok), for all
k ∈ {1, . . . , N}. Then every viscosity solution of (1.1) is radial and strictly
decreasing in |x|.

Next, we turn to symmetry in unbounded domains for autonomous equa-
tions.

In [4] Badiale and Bardi showed that positive solutions of a large class
of (not necessarily uniformly) elliptic equations in R

n or exterior domains
are asymptotically radial, that is, level sets of the solutions approach spheres
as |x| goes to infinity. The following theorems can be seen as completion
of these results for uniformly elliptic equations and symmetric domains, for
which we can show that all level sets are spheres.

Theorem 1.2 Suppose F does not depend on x, satisfies (H1) − (H2) and
(Ok), for all k ∈ {1, . . . , N}, and F is nonincreasing in u ∈ [0, δ), for some
δ > 0. Let u ∈ C(Rn) be a viscosity solution of







F (D2u,Du, u) = 0 in R
n

u > 0 in R
n

u → 0 as |x| → ∞.
(1.5)

Then u is radial and strictly decreasing in |x|.

The proof of Theorem 1.2 is a particular case of the proof of the following
more general result on symmetry in exterior domains.

Theorem 1.3 Suppose O = R
n \ B for some ball B, F does not depend

on x, satisfies (H1) − (H2) and (Ok), for all k ∈ {1, . . . , N}, and F is
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nonincreasing in u ∈ [0, δ), for some δ > 0. Let u ∈ C(O) be a viscosity
solution of















F (D2u,Du, u) = 0 in O
u > 0 in O
u = a on ∂B
u → 0 as |x| → ∞,

(1.6)

for some a > 0. Suppose in addition that for all x ∈ ∂B and for all directions
ν ∈ R

n \ {0} such that ν · n(x) > 0, n(x) = x/|x|, we have

lim sup
tց0

u(x + tν) − u(x)

t
≤ 0 . (1.7)

Then u is radial and strictly decreasing in |x|.

2 Proofs

We first show that under (H1)-(H2) the difference of a lower semi-continuous
supersolution and an upper semi-continuous subsolution of (1.1) is a super-
solution of an equation involving a positively homogeneous uniformly elliptic
operator.

In the sequel we will denote by BUSC(O) and BLSC(O) respectively
the set of bounded upper and lower semi-continuous functions in O.

Proposition 2.1 Assume that F satisfies (H1)−(H2). Let u1 ∈ BUSC(O)
and u2 ∈ BLSC(O) be respectively a viscosity subsolution and a viscosity su-
persolution of F (D2u,Du, u, x) = 0 in O. Then there exist positive constants
λ, Λ, b (depending on the L∞-norms of u1 and u2) and a bounded function
c(x) (whose L∞-norm depends only on the L∞-norms of u1 and u2, and on
the local Lipschitz norm of F with respect to u on the ranges of u1, u2) such
that the function w = u2 − u1 is a viscosity supersolution of

M−
λ,Λ(D2w) − b|Dw| + c(x)w = 0 in O. (2.8)

If in addition F is nonincreasing with respect to u then c ≤ 0 in O.

We first make some comments. The strategy of the proof of Proposition 2.1
is similar to the one of the comparison principle for fully nonlinear opera-
tors (see [13]). A difficulty comes from (H1) − (H2) and can be seen on
a term like Tr(B(x)D2u) (in the case of quasilinear equations): in general,
one assumes that B has the form B = σσT for some Lipschitz continuous
matrix σ and the uniqueness proof uses σ in an essential way, both in the
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degenerate and nondegenerate case. Here we want just to assume B to be
elliptic and Lipschitz continuous and we do not want to use σ. To this end
we use Lemma 2.2 in Barles and Ramaswamy [6], which we recall within the
proof of Proposition 2.1 .
Proof of Proposition 2.1. Let φ ∈ C2(O) and x̄ ∈ O be a local minimum
of w − φ, say in B(x̄, r) for some r > 0.

For all ε > 0, we introduce the auxiliary function

Φε(x, y) = u2(x) − u1(y) − φ(x) +
|x − y|2

ε2
+ |x − x̄|4 . (2.9)

Let (xε, yε) be the minimum point of Φε(x, y) in B(x̄, r) × B(x̄, r). Since
x̄ is a strict local minimum point of x 7→ w(x) − φ(x) + |x − x̄|4, standard
arguments show that

(xε, yε) → (x̄, x̄) and
|xε − yε|2

ε2
→ 0 as ε → 0.

Moreover, if ζε(x, y) := φ(x) − |x − y|2
ε2

− |x − x̄|4, we know that (cf. [13]),

for every α > 0, there exist X, Y ∈ Sn(R) such that

(Dxζε(xε, yε), X ∈ J
2,−

O u2(xε) ,

(−Dyζε(xε, yε), Y ) ∈ J
2,+

O u1(yε) ,

−(
1

α
+||D2ζε(xε, yε)||)Id≤

(

−X 0
0 Y

)

≤−(Id−αD2ζε(xε, yε))D
2ζε(xε, yε) ,

and
F (X, Dxζε(xε, yε), u2(xε), xε) ≤ 0 ,

F (Y,−Dyζε(xε, yε), u1(yε), yε) ≥ 0 .

The key point is to estimate

F (X, Dxζε(xε, yε), u2(xε), xε) − F (Y,−Dyζε(xε, yε), u1(yε), yε).

To this end we first choose α = ε2 and we are use Lemma 2.2 in [6] which
says the following : if the matrices X,Y satisfy

−K̃

ε2
Id ≤

(

−X 0
0 Y

)

≤ K̃

ε2

(

Id −Id
−Id Id

)

(2.10)

then

Y − X ≤ −K̃ε2

6
(tX + (1 − t)Y )2, for all t ∈ [0, 1].
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A slight modification of the arguments in [6] allows to take into account the
D2φ and D2(|x − x̄|4) terms and yields

Y − X ′ ≤ −K̃ε2

6
(tX ′ + (1 − t)Y )2 + O(ε) as ε → 0, (2.11)

for all t ∈ [0, 1], where X ′ = X + ||D2φ||Id + O(|x − x̄|2) .
Now we are ready to estimate F (X, p, u2, x) − F (Y, q, u1, y) with p =

Dxζε(xε, yε) and q = −Dyζε(xε, yε) . By using (H1)− (H2) together with the
inequality (2.11) for t = 0, we get

0 ≥ F (X, p, u2, x) − F (Y, q, u1, y)

≥ F (X ′, p, u1, x) − F (Y, p, u1, x)

−KR(|p − q| + |x − y|(|p| + |q| + ||Y ||)) + ωR(|x − y|(1 + |p| + |q|))
+M−

λ,Λ(D2φ + O(|x − x̄|2)) + F (X, p, u2, x) − F (X, p, u1, x)

≥ κ(
K̃ε2

6
Tr(Y 2)) + O(ε) + M−

λ,Λ(D2φ + O(|x − x̄|2))
−KR(|p − q| + |x − y|(|p| + |q| + ||Y ||)) + ωR(|x − y|(1 + |p| + |q|))
+F (X, p, u2, x) − F (X, p, u1, x) ,

where R = max(||u1||∞, ||u2||∞) . In the last inequality, the “bad” term is
KR|x − y|||Y || since the estimates on the test-function φ does not ensure
that this term converges to 0. However, this term is controlled by the “good”
term Tr(Y 2) in the following way: by Cauchy-Schwarz’s inequality

K|x − y|||Y || ≥ −κ
K̃ε2

6
Tr(Y 2) − O

( |x − y|2
ε2

)

.

And this estimate is now sufficient since we know that
|x − y|2

ε2
→ 0 as ε → 0.

Thus by letting ε → 0 we are lead to

M−(D2φ(x̄)) − b|Dφ(x̄)| + c(x̄)w(x̄) ≤ 0 ,

where b = KR and

c(x̄) =







F (X, p, u2(x̄), x̄) − F (X, p, u1(x̄), x̄)

u2(x̄) − u1(x̄)
if u2(x̄) 6= u1(x̄)

0 otherwise,

so the conclusion follows.

A fundamental tool in the theory of strong and viscosity solutions of ellip-
tic equations is the Alexandrov-Bakelman-Pucci (ABP) estimate, a version
of which we quote next.

7



Proposition 2.2 Let O ⊂ R
n be a bounded domain and let w ∈ C(O) be a

viscosity solution of

M−
λ,Λ(D2w) − b|Dw| + c(x)w ≤ f(x). (2.12)

where b ∈ R, c , f ∈ L∞(O). Suppose c(x) ≤ 0 in O. Then there exists a
constant C∗ depending only on λ, Λ, |b|, and diam(O), such that

sup
O

(−w) ≤ sup
∂O

w− + C∗‖f‖LN (O).

Proof. This is a consequence of Proposition 2.12 in [11] (the proof of which
is due to Trudinger). To link the notations in this paper with those in [11]
we note that M+

λ,Λ(X) = −P−(X) and M−
λ,Λ(X) = −P+(X), with

P−(X) = −ΛTr(X+) + λTr(X−)

and
P+(X) = −λTr(X+) + λTr(X−) ,

where X+, X− denote the positive and negative parts of X ∈ Sn(R) .
It is trivial to deduce a maximum principle in small domains from the

ABP inequality.

Proposition 2.3 Let O ⊂ R
n be a bounded domain and suppose b ≥ 0,

c(x) ∈ L∞(O). There exists a constant r > 0, depending on λ, Λ, b, diam(O),
‖c‖L∞(O), such that any viscosity solution w ∈ C(O) of

{

M−
λ,Λ(D2w) − b|Dw| + c(x)w ≤ 0 in O

w ≥ 0 on ∂O,
(2.13)

is nonnegative in O, provided |O| ≤ r.

Proof. We apply Proposition 2.2 to

M−
λ,Λ(D2w) − b|Dw| − c−(x)w ≤ −c+w ≤ c+w−

and get
sup
O

w− ≤ C∗‖c+‖L∞(O)‖w−‖L∞(O)|O|1/N ,

from which the result follows.
The following regularity result is a variation of the C1,α-regularity result

proven by Caffarelli [9] in the case when F depends only on D2u and by
Swiech [24] and Wang [25] in the general case of a proper equation.
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Proposition 2.4 Let O ⊂ R
n be a bounded domain and assume that F

satisfies (H3). Let u ∈ C(O) be a viscosity solution of

F (D2u,Du, u, x) = 0 in O,

Then u ∈ C1,α
loc (O) for some α ∈ (0, 1).

Proof. This theorem was proven in [24] under the supplementary assump-
tions that the constant LR in (H3) is independent of R and that F is nonin-
creasing in u.

In order to reduce to result of [24], suppose that the solution verifies
|u| ≤ K. We set F0 = F if |u| ≤ K, F0 = F (M, p,K, x) if u > K, and F0 =
F (M, p,−K, x) if u < −K. Then F0 is globally Lipschitz with respect to u.
We notice that u is a solution also of F0(D

2u,Du, u, x)− ku = −ku ∈ C(O).
If k is large enough the operator F0 − ku is proper, thus we can apply the
result in [24] and we can conclude.

The next proposition asserts the existence of a principal eigenvalue and
a principal eigenfunction for an operator without zero-order term. We shall
also use the fact that the principal eigenvalue goes to infinity as the measure
of the domain goes to zero.

Proposition 2.5 Suppose O is a bounded smooth domain. Then there exists
a number λ1 = λ1(O) > 0 and a function ϕ1 ∈ C2(O) ∩ C(O) which satisfy

M−
λ,Λ(D2ϕ1) − b|Dϕ1| + λ1ϕ1 = 0 in O

ϕ1 > 0 in O
ϕ1 = 0 on ∂O

In addition, we have λ1(O) → ∞ as |O| → 0.

Proof. In the case b = 0 this result was proved by Quaas in [18], see also [8].
Essentially the same proof works for any b, since, by the known existence,
uniqueness and regularity results (see [11], [24]) the operator M−

λ,Λ(D2·) −
b|D · | has the same properties as M−

λ,Λ(D2·), namely, its inverse exists and is
positivity preserving. Thus Krein-Rutman theory applies to the former just
like to the latter.

We note that in a very recent work [20], the authors established the
existence of principal eigenvalue and eigenfunction for any positively homo-
geneous operator, convex or concave in D2u and satisfying a condition of
type (H3). In addition, in [20] a multitude of properties of these objects are
proven, Proposition 2.5 being a very particular case of these.

We shall make use of a simple lemma, concerning products of viscosity
solutions and test functions.
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Lemma 2.1 Let u ∈ C(O), u ≥ 0 satisfy

M−
λ,Λ(D2u) − b(x)|Du| + c(x)u ≤ f(x) in O, (2.14)

where b, c, f ∈ L∞(O). Suppose ψ ∈ C2(O) ∩ C(O) is strictly positive in O.

Then u =
u

ψ
satisfies the inequality

M−
λ,Λ(D2u) − b(x)|Du| + c(x)u ≤ f(x), (2.15)

where

b = b + 2Λ
√

Nψ−1|Dψ|, c(x) =
M−

λ,Λ(D2ψ) − b|Dψ|
ψ

+ c(x), f =
f

ψ
.

Proof. Suppose u ∈ C2(O), so that M−
λ,Λ(D2u) − b(x)|Du| + c(x)u ≤ f(x)

is satisfied in the classical sense. We have

Du = ψDu + uDψ, D2u = ψD2u + 2Dψ ⊗ Du + uD2ψ. (2.16)

It is understood here and in the sequel that ⊗ denotes the symmetric tensorial

product, i.e. if p, q ∈ R
n then p ⊗ q =

1

2
(piqj + pjqi)i,j. By putting (2.16)

into (2.14) and by using

M−
λ,Λ(M + N) ≥ M−

λ,Λ(M) + M−
λ,Λ(N), M−

λ,Λ(ηM) = ηM−
λ,Λ(M),

for η ≥ 0, we obtain the statement of the lemma. Note that tr(A(p ⊗ q)) ≤
|A||p ⊗ q| ≤

√
NΛ|p||q|, where A is a matrix whose eigenvalues lie in [λ, Λ],

and |A| :=
√

tr(AtA).
Let u be only continuous. If (2.15) does not hold then there exists x0 ∈ O

and φ ∈ C2(O) such that φ(x0) = u(x0), φ ≤ u in O and

M−
λ,Λ(D2φ(x0)) − b(x0)|Dφ(x0)| + c(x0)φ(x0) > f(x0). (2.17)

An easy computation then shows that this implies

M−
λ,Λ(D2(φψ)(x0)) − b|D(φψ)(x0)| + c(x0)φ(x0)ψ(x0) > f(x0).

This is a contradiction with (2.14), since φψ ∈ C2(O) is a test function such
that φ(x0)ψ(x0) = u(x0) and φψ ≤ u in O.

Next, we state a strong maximum principle for nonproper operators. In
the literature there are more general results in the proper case, for example,
a weak Harnack inequality is proven in [25], while in [5] a strong maximum
principle is proven for degenerate operators.
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Proposition 2.6 Let O ⊂ R
n be a smooth domain and let b(x), c(x) ∈

L∞(O). Suppose w ∈ C(O) is a viscosity solution of

{

M−
λ,Λ(D2w) − b(x)|Dw| + c(x)w ≤ 0 in O

w ≥ 0 in O.
(2.18)

Then either w ≡ 0 in O or w > 0 in O and at any point x0 ∈ ∂O at which
w(x0) = 0 we have

lim inf
tց0

w(x0 + tν) − w(x0)

t
> 0,

where ν ∈ R
n \ 0 is such that ν · n(x) < 0 ; here n(x) denotes the exterior

normal to ∂O at x0.

Proof. If c(x) ≤ 0 in O this follows from Theorems 1 and 2 in [5]. Note
that in this paper the operator F is supposed to be continuous in x, but the
arguments in this paper are very easy to adapt to an operator like the one in
(2.18), in which the first and the zero order coefficients are only measurable
and bounded.

By using Proposition 2.5 and Lemma 2.1 we can show that we can always
reduce the problem to a proper one, that is, to a problem in which c(x) ≤ 0.
Indeed, suppose x0 ∈ O is a point at which w(x0) = 0. By Proposition 2.5
there exists a sufficiently small ball B around x0, such that the first eigenvalue
of M−

λ,Λ(D2·) − b|D · | in this ball is larger than the L∞-norm of c(x). By
setting ψ = ϕ1 – the first eigenfunction of this operator in B (see Proposition
2.5) and by applying Lemma 2.1 in a smaller concentric ball B1 ⊂ B we
obtain a proper equation for u/ψ in B1. Then it follows from the result in [5]
that u ≡ 0 in the small ball. This means each point in O at which u vanishes
has a neighbourhood in which u is identically zero, so u vanishes everywhere
in O. We argue in a similar way if x0 ∈ ∂O and we conclude.

We are now ready to show that the arguments of [7] adapt to our setting,
and permit to us to prove Theorem 1.1, and, in a similar manner, that the
arguments from [23] can be used to prove Theorems 1.2 and 1.3.
Proof of Theorem 1.1. The following argument, due to Berestycki and
Nirenberg, is given here for completeness. Suppose O is convex in the di-
rection of the vector e1 = (1, 0, . . . , 0) and is symmetric with respect to the
hyperplane T0 = {x | x1 = 0}. We want to show that

u(−x1, x2, . . . , xN) = u(x1, x2, . . . , xN) for any x ∈ O.
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For any λ ∈ R we define

Tλ = {x | x1 = λ} , Dλ = {x | x1 > λ} , Σλ = Dλ ∩ O,
xλ = (2λ − x1, x2, . . . , xn) − the reflexion of x with respect to Tλ,

vλ(x) = u(xλ), wλ(x) = u(xλ) − u(x) , provided x ∈ Σλ,
d = inf{λ ∈ R | Tµ ∩ O = ∅ for all µ > λ}.

With this notation, our goal is to show that w0 ≡ 0 in Σ0.
By hypothesis (O1) the function vλ satisfies the same equation as u.

Hence, by Proposition 2.1 wλ satisfies

Lλwλ := M−
λ,Λ(D2wλ) − b|Dwλ| + cλ(x)wλ ≤ 0 in Σλ, (2.19)

where cλ is some continuous function bounded independently of λ.
We say the hyperplane Tλ has reached a position λ < d provided wµ is

non-negative in Σµ, for all µ ∈ [λ, d). The plane Tλ “starts” at λ = d and
“moves” to the left as λ decreases. If we prove that Tλ reaches position zero
we are done, since then we can take a hyperplane coming from the other side,
that is, starting from -d and moving to the right. The situation is totally
symmetric so the second hyperplane would reach position zero too. This
means that w0 ≥ 0 and w0 ≤ 0 in Σ0, hence w0 ≡ 0 in Σ0.

We first show that the above procedure can begin, that is, there exists
λ < d such that wµ ≥ 0 in Σµ, for all µ ∈ [λ, d). By using Proposition 2.3
we can find a number r > 0 such that the operator Lλ defined above satisfies
the maximum principle in any subdomain O′ ⊂ O, with |O′| < r. We fix
λ < d so close to d that |Σλ| < r, for any λ ∈ [λ, d). Hence, by Proposition
2.3, equation (2.19) implies that wµ ≥ 0 in Σµ, for all µ ∈ [λ, d).

Note that, by the definition of wλ, we have wλ > 0 on ∂Σλ ∩ ∂O, for any
λ ∈ (0, d) (since u vanishes on ∂O and is strictly positive in O). Hence, by
Hopf’s lemma (Proposition 2.6), wλ > 0 in Σλ, for λ ∈ (λ, d).

We can define the number

λ0 = inf{λ ≥ 0 | wµ ≥ 0 in Σµ for all µ ≥ λ}.

Note that, by continuity with respect to λ, wλ0
≥ 0 in Σλ0

. By Hopf’s lemma,

if λ0 > 0 then wλ0
> 0 in Σλ0

. Further, we claim that
∂u

∂x1

< 0 in Σλ0
(recall

that u ∈ C1, by Proposition 2.4). Indeed, let x be an arbitrary point in Σλ0
,

with x1 = λ > λ0. Then, by the preceding remarks, wλ > 0 in Σλ. Since
wλ = 0 on Tλ, Proposition 2.6 implies

0 <
∂wλ

∂x1

(x) = −2
∂u

∂x1

(x)

12



(recall that wλ(x) = u(xλ) − u(x)).
Suppose for contradiction λ0 > 0. We are going to “push” the moving

plane to the left of λ0. Let K be a compact subset of Σλ0
such that |Σλ0

\K| <
r
2

(r is the number from Proposition 2.3). Since wλ0
is continuous and strictly

positive in Σλ0
, there exists a number ε > 0 such that wλ0

≥ ε in K. Fix
a number λ1, 0 < λ1 < λ0, such that |Σλ \ K| < δ, for λ ∈ [λ1, λ0).By
continuity, if λ1 is sufficiently close to λ0 we have wλ ≥ ε

2
> 0 in K, for

any λ ∈ [λ1, λ0). In the remaining part of Σλ the function wλ, λ ∈ [λ1, λ0),
satisfies the equation

{

L0wλ ≤ 0 in Σλ \ K
wλ1

≥ 0 on ∂(Σλ \ K).

By Proposition 2.3, wλ ≥ 0 in Σλ \ K. Hence wλ ≥ 0 in Σλ, for any
λ ∈ [λ1, λ0). This contradicts the definition of λ0.
Proof of Theorem 1.3. Now we define Σλ = {x1 > λ} \ Bλ, where Bλ is
the reflexion of B with respect to Tλ. As before the difference function wλ is
defined in Σλ and we need to show that w0 ≥ 0.

Let us prove that for sufficiently large λ we have wλ ≥ 0 in Σλ. Suppose
this is not true, that is there exist a sequence λm → ∞ such that wλm

takes
negative values in Σλm

. Let m be large enough so that 0 < u < a = u|∂B in
Dλm

. Take x(m) ∈ Σλm
to be such that

wλm
(x(m)) = min

Σλm

wλm
< 0

(the minimum is clearly attained for fixed m since wλm
≥ 0 on ∂Σλm

and
wλm

→ 0 as |x| → ∞, x ∈ Σλm
). Note that 0 < u(xλ) < u(x) whenever

wλ(x) < 0 so that for m large enough each point x(m) has a neighbourhood
Um, in which both u(x), u(xλ) ∈ (0, δ) (since u → 0 at infinity), where δ is
the number from Theorem 1.3. Hence in this neighbourhood cλm

≤ 0, by
Proposition 2.1, and

M−
λ,Λ(D2wλm

) − b|Dwλm
| ≤ 0 in Um.

Since wλm
attains an interior minimum in Um, we obtain a contradiction with

Proposition 2.6, applied to the last inequality.
This reasoning shows that we can define the critical position λ0 as before.

We again aim to show that λ0 = 0. Note that, as in the bounded domain
case, we have

∂u

∂x1

< 0 in Σλ0
. (2.20)

First, we claim that λ0 ≤ R, where R is the radius of B. Suppose this
is not true. Then there exists sequences λm and x(m) ∈ Σλm

such that

13



R < λm ≤ λ0, λm → λ0, and wλm
attains its negative minimum in Σλm

at
x(m).

The point is that x(m) cannot be on the boundary of Σλm
. Indeed, note

that ∂Σλm
is regular, ∂Σλm

= Tλm
∪ ∂Bλm , and write ∂Bλm = Sl ∪Sr, where

Sl (the left part of ∂Bλm) contains the points on ∂Bλm which are such that
starting form these points and moving to the left along the direction −x1

one enters Σλm
. Each point z ∈ Sr has its counterpart z ∈ Sl, with z′ = z′,

where for all z ∈ R
n, z′ = (z2, · · · , zn). Note that, by (2.20),

wλm
(z) = a − u(z) > a − u(z) = wλm

(z), z ∈ Sr,

so wλm
does not attain its minimum on Sr. On the other hand, by (2.20)

and hypothesis (1.7), for any z ∈ Sl the difference wλm
decreases strictly to

the left of z, so that wλm
does not attain its minimum on Sl either.

Further, as above we can show that x(m) cannot tend to infinity, so x(m) →
x0 ∈ Σλ0

, where x0 is such that wλ0
(x0) = 0 and Dwλ0

(x0) = 0. This
contradicts Proposition 2.6, applied to wλ0

≥ 0.
We have shown that the moving plane ”enters” B. In particular, repeating

this argument for all directions, it follows from (2.20) that each point x ∈ ∂B
has a neighbourhood Ux such that u is strictly decreasing in Ux along all
directions which make an acute angle with x. This implies that if Tλ meets
∂B at x, then wλ is positive in Ux ∩ Σλ, for any λ > 0.

Suppose now 0 < λ0 ≤ R. We again take sequences λm → λ0 and x(m), at
which wλm

attains its negative minimum. In order to show that x(m) cannot
be on the boundary of Σλm

we now have to distinguish three types of points
on ∂Bλm – the two types considered above, which are treated in the same
way, and the points z ∈ ∂Bλm which are such that if one starts from z and
moves to the left along −x1 one enters Bλm and meets ∂B before meeting
Tλm

. Since u = a on ∂B for any such point z we have u(z) < a, by (2.20), so
wλm

(z) > 0.
Hence x(m) → x0 ∈ Σλ0

. If x0 belongs to the regular part of Σλ0
we

have a contradiction with Proposition 2.6. If x0 is on the singular part of
Σλ0

, that is x0 is a point at which Tλ0
meets ∂B, we have a contradiction

with the positivity of the comparison functions in a neighbourhood of ∂B,
for sufficiently large m.
Proof of Theorem 1.2. We use exactly the same argument as the one
we used to prove Theorem 1.3 (this argument is now considerably simpler)
replacing ∂B by a point of local maximum of u. It then follows that u is
radially symmetric with respect to this point.
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cosity solutions of fully nonlinear equations with measurable ingredients,
Comm. Pure Appl. Math 49 (1996), 365–397.

15



[12] Crandall, M. G.; Kocan, M.; Lions, P. L.; Swiech, A. Exis-
tence results for boundary problems for uniformly elliptic and parabolic
fully nonlinear equations. Electron. J. Diff. Eq. 24 (1999).

[13] Crandall M.G. , Ishii, H., P.L. Lions P.L. User’s guide to
viscosity solutions of second order partial differential equations, Bull.
Amer. Math. Soc. 27 (1992), 1–67.

[14] Felmer, P. , Quaas A. Positive solutions to “semilinear” equation
involving the Pucci’s operator, to appear in J. Diff Eq.

[15] Gidas B., Ni W.-M. and Nirenberg L. Symmetry and related
properties via the maximum principle. Comm. Math. Phys. 6 (1981),
883–901.

[16] Li C. Monotonicity and symmetry of solutions of fully nonlinear elliptic
equations. Comm. Part. Diff. Eq. 16 (1991), 491–526 and 585–615.

[17] Pucci, C. Operatori ellittici estremanti, Ann. Mat. Pure Appl. 72
(1966), 141–170.

[18] Quaas A. Existence of Positive Solutions to a “semilinear” equation
involving the Pucci’s operator in a convex domain, Diff. Int. Eq. 17
(2004), 481–494.

[19] Quaas A. , Sirakov B. Existence results for nonproper elliptic equa-
tions involving the Pucci operator, preprint.

[20] Quaas A. , Sirakov B. Existence and properties of a principal eigen-
value of fully nonlinear elliptic operators, in preparation.

[21] Reichel W. Radial symmetry for elliptic boundary-value problems on
exterior domains. Arch. Rat. Mech. Anal. 137 (1997), 381-394.

[22] Serrin J. A symmetry theorem in potential theory. Arch. Rat. Mech.
Anal. 43 (1971), 304-318.

[23] Sirakov B. Exterior elliptic problems and two conjectures in potential
theory. Ann. Inst. Henri Poincaré, 18 (2001), no. 2, 135–156.
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