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département de Mathématiques
14032 CAEN CEDEX, FRANCE

ABSTRACT.

We define in this paper a certain notion of completeness for a wide class of commutative (pre)ordered

monoids (from now on P.O.M.’s). This class seems to be the natural context for studying structures like mea-

surable function spaces, equidecomposability types of spaces, partially ordered abelian groups and cardinal al-

gebras. Then, we can prove that roughly speaking, spaces of measures with values in complete P.O.M.’s are

complete P.O.M.’s. Furthermore, this notion of completeness yields us an ‘arithmetical’ characterization of in-

jective P.O.M.’s.

INTRODUCTION

A well-known result of A. Tarski states, for a given commutative monoid A and a given
element a of A, a criterion for the existence of a monoid homomorphism from A to the
extended positive real line P sending a to 1: the condition is (∀n ∈ N)(¬∃x)((n+1)a+x =
na) (see [34], [36]). In fact, his proof shows slightly more: it is a Hahn-Banach like
property, stating the injectivity of P - not in the category of commutative monoids, where,
as it is well-known, there are no nontrivial injective objects, but in a certain category
of preordered monoids, which we will call ‘positively ordered monoids’ - from now on
P.O.M.’s; by definition, a P.O.M. is a commutative monoid equipped with a preordering
which is compatible with the addition and which makes every element positive (see 1.1).
This theorem of Tarski is fundamental in decomposition theory, where it allows one to
connect existence of invariant measures and non existence of paradoxical decompositions.

The proof of the injectivity of P appears as rather ‘arithmetical’, which brings the
expectation that Tarski’s argument could be reproduced in more general (and interesting
on their own) structures. We choose here this property of injectivity to initiate a study
of spaces which, basically, are P.O.M.’s, but in fact are equipped with some additional
structure. Particular cases of these spaces have been considered in the study of different
theories, as e.g. the theory of abelian groups, the theory of Boolean algebras (see [25]),
or the theory of ordered groups (see [1], [9]). In these examples, all the elements are
‘cancellable’ (the terminology ‘finite’ is used in [35], definition 4.10); sometimes, one infinite
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element is adjoined. Needless to say, in the latter case, proofs about these structures often
have to separate the finite and the infinite case.

An important exception to the latter rule is the theory of cardinal algebras, initiated by
A. Tarski in [35]. A cardinal algebra is by definition a commutative monoid equipped with
an infinite operation, defined on all countable sequences, satisfying some simple attributes
of what an infinite addition ‘should be’. Isomorphism types of structures which are, in
some sense, countably complete form a cardinal algebra; also spaces of positive real-valued
(possibly infinite) functions are also often cardinal algebras — see e.g. [6], [7], [10], [15],
and of course [35]. In cardinal algebras, there are many infinite elements, which, except
in representation theorems (see [8], [15]), do not really play any special arithmetical role.
Furthermore, these structures seem to offer a convenient arithmetical environment, much
explored in the first chapters of [35] (but not all about this had been said at that time, see
[3], [14], [32]).

Still, the definition of cardinal algebras is purely arithmetical, and moreover, it de-
pends on the artificial introduction of an infinite addition and several axioms about it,
even for the mere study of first-order properties — as for example the famous multiplica-
tive cancellation property

(∀x, y)(mx = my ⇒ x = y) (all m in N\{0}),

valid in any cardinal algebra ([35], 2.31). This suggests an enrichment of the environ-
ment of cardinal algebras. Actually, Tarski’s book itself calls for such an enrichment —
several weakenings of the definition of cardinal algebras are proposed, as for example refine-
ment algebras or generalized cardinal algebras. We propose here an algebraic enrichment
(as opposed to arithmetical), based on the possibility to extend P.O.M.-homomorphisms.
The strongest of all these possibilities is of course injectivity; this one we characterize
arithmetically (theorem 3.11), where it turns out that injectivity is a form of complete-
ness: surprisingly, this characterization bears very close similarities with the definition
of cardinal algebras. There comes another surprise: although in most aspects, injective
P.O.M.’s enjoy a much stronger completeness character than cardinal algebras, they often
do not satisfy the refinement postulate ([35], axiom VI of definition of cardinal algebras).
Is this loss important? It turns out no, at least as far as most first-order properties are
concerned. The corresponding weakening of the definition of cardinal algebra (the notion
of weak cardinal algebra), obtained by replacing the refinement postulate by the finite re-
finement postulate, has been introduced independently in [32] and here (definition 2.2).
Note finally that many mathematical structures yield natural definitions of P.O.M.’s which
do not necessarily satisfy the finite refinement property (see examples in 1.5).
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We now summarize the organization of our paper.

— In chapter 1, we recall the definition of the very important finite refinement pro-
perty, which has already been studied in many places (e.g. [12], [31], [37]), and then the
pseudo-cancellation property (definition 1.12), which will be the substitute of the classical
cancellation property throughout this work. The combination of these two axioms will
yield strong refinement P.O.M.’s, which will be substitutes for [positive cones of] ordered
groups with the finite refinement property, and the refinement �-P.O.M.’s, which will be
substitutes for [positive cones of] �-groups; furthermore, the latter will provide us with a
simple way to derive the finite refinement property, e.g. in ‘dual spaces’ of P.O.M.’s (see
example 1.24).

— In chapter 2, we introduce complete P.O.M.’s, which are designed to concentrate the
‘ordered structures-part’ of the characterization of injective P.O.M.’s. These are roughly
speaking substitutes for [positive cones of] complete �-groups. This allows us to generalize
in a non-trivial way (divisibility is not used) the main results of [31], [33] — see theorems
2.33, 2.38, 2.42. These results can also be viewed as results of ‘algebraization of real
analysis (or measure theory)’.

— Chapter 3 is mainly devoted to give a complete arithmetical characterization of
injective P.O.M.’s (theorem 3.11). This characterization would be useless without any
proper arithmetical study of the corresponding structures; this is also one of the goals of
chapters 1 and 2. Other more algebraic characterizations will appear in [39].

Chapter 1 has been to some extent designed to provide computational facility in
stating and proving the results of chapters 2 and 3. Its results will also be essential in the
forthcoming [39].

To avoid repeating proofs, Tarski’s monograph [35] will be often referred to throughout
our work.

The desire to keep this paper down to a reasonable size has forced us to omit entirely
some closely related subjects, as for example the study of injective closures, or an algebraic
theory of P.O.M.’s, although there is a lot of non trivial information which can already be
said about these (resulting e.g. in the fact, mentioned in remark 3.15, that divisible weak
cardinal algebras are countably injective).

We will use basic set-theoretical notation and terminology. If (xi)i∈I is a family and
there is no ambiguity on I, then we will denote it by (xi)i; similar conventions apply to∑

i xi,
⋃

i xi, etc. . If X, Y are two preordered sets and f is a map from X to Y , then
we say that f is increasing (resp. decreasing) when for all x, y in X such that x ≤ y, we
have f(x) ≤ f(y) (resp. f(y) ≤ f(x)). Homomorphisms, unless specified otherwise, will
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be P.O.M.-homomorphisms, i.e. increasing monoid homomorphisms. The class of natural
numbers will sometimes be denoted by N when it is considered as a monoid (or a P.O.M.),
and by ω when it is considered as an ordinal (of course, as the reader might suspect, there
will be cases where a dilemma will arise around this...). Finally, most of the objects we will
consider in this work will be sets, but proper classes (as e.g. the class ON of all ordinals,
or the class CARD of all — non necessarily well-ordered — cardinals considered e.g. as
a monoid) will sometimes be considered; no paradoxes will arise here from this. Finally,
most of our results will be proved in set theory plus axiom of choice (even if many of them
have ‘choiceless’ versions).

For convenience of the reader, we show on next page a picture of the different principal
classes of P.O.M.’s used throughout this paper and its continuation, [39]. If A and B are
two classes of P.O.M.’s, then an arrow from A to B indicates strict inclusion of B into
A. This diagram is complete, in the sense that its transitive closure shows exactly all the
inclusion relations between the classes considered (see in particular example 1.20).
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1. POSITIVELY ORDERED MONOIDS. STRONG REFINEMENT P.O.M.’s,

REFINEMENT �-P.O.M.’s.

1.1. Definition. A positively ordered monoid (from now on a P.O.M.) is a structure
A = (A,+, 0,≤) where (A,+, 0) is a commutative monoid and ≤ is a (partial) preordering
of A satisfying the following conditions:
(i) (∀a)(0 ≤ a);
(ii) (∀a, b, c)(a ≤ b ⇒ a + c ≤ b + c)(i.e. ≤ is compatible with the addition).

We say that (A,+, 0) is the underlying monoid of A.

From now on, we will often make the usual convention of identifying a structure and
its underlying set when there is no ambiguity. We shall denote by +A, 0A, ≤A respectively
the addition, the zero, and the preordering of A if A is its underlying set. We put

a ≡A b ⇐⇒ a ≤A b and b ≤A a

If A is a commutative monoid, we can define two preorderings on A: the coarse
preordering ≤c= A × A, and the minimal preordering ≤ defined by

a ≤ b ⇐⇒ (∃c ∈ A)(a + c = b)

Both preorderings defined above define P.O.M.’s.
A P.O.M. A will be called antisymmetric when its preordering is antisymmetric, and

similarly for coarse, minimal, etc. . If ρ is either = or ≤, we will say that A satisfies the
additive ρ-cancellation property when it satisfies the statement

(∀a, b, c)(a + c ρ b + c ⇒ a ρ b).

Say that A is cancellative when it satisfies the additive =-cancellation property and
the additive ≤-cancellation property.

For all m in N\{0}, A satisfies the m-ρ-cancellation property when it satisfies the
statement

(∀a, b)(ma ρ mb ⇒ a ρ b).

A satisfies the multiplicative ρ -cancellation property when it satisfies the m-ρ- can-
cellation property for all m in N\{0}. We will often identify a minimal P.O.M. with its
underlying monoid.

We now introduce some further notation and terminology which will be useful in the
sequel.
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If a, b are elements of some P.O.M. A, a � b will always be the statement a + b = b.
Note that � is transitive but not necessarily irreflexive; when a � a, i.e. a + a = a, we
say, as in [35], that a is idem-multiple. If X, Y are two subsets of A, we write X ≤ Y

instead of (∀x ∈ X)(∀y ∈ Y )(x ≤ y). When X(resp. Y ) is {a}, we simply write a ≤ Y

(resp. X ≤ a). If X = {a1, . . . , am} and Y = {b1, . . . , bn}, we write

a1, . . . , am ≤ b1, . . . , bn

Of course, the same conventions apply to � or any other binary relation on A.
The following lemma will be used very often in the sequel:

1.2. Lemma. Let A be a P.O.M., let a, b be in A. Then

(i) If A is minimal, then a � b and b ≤ c implies a � c;

(ii) If A is antisymmetric, then a ≤ b and b � c implies a � c. Furthermore, if A is

minimal, then this last property characterizes antisymmetry.

Proof. Easy.

We now turn to a very important property, the finite refinement property. It has been
studied in many places (see e.g. [12], [18], [31], [32], [33], [35], [37]).

1.3. Definition. Let A be a commutative monoid, let R, S be binary relations on
A, let m, n be in ω, let ai (i < m) , bj (j < n) be in A.
(i) A (R, S)-refinement of (ai)i, (bj)j is a finite sequence (cij)ij such that

(∀i < m)(ai R
∑
j<n

cij) and (∀j < n)(
∑
i<m

cij S bj)

(as usual, the sum of the empty sequence is 0). Equivalently, we say that the following is
a refinement matrix:

S b0 S b1 . . . S bn−1

a0 R c00 c01 . . . c0,n−1

a1 R c10 c11 . . . c1,n−1

...
...

...
. . .

...

am−1 R cm−1,0 cm−1,1 . . . cm−1,n−1

(ii) A has the (mR, Sn)-refinement property when any two finite sequences (ai)i<m

and (bj)j<n such that ∑
i

ai S ◦ R
∑

j

bj
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have a (R, S)-refinement;
(iii) A has the finite (R, S)-refinement property when it has the (mR, Sn)-refinement pro-
perty for all m, n in ω \ {0} .

Usually, when R, S are the equality, we will drop them from the notations above.

1.4. Examples. There are many examples of P.O.M.’s with the finite refinement
property. Let us mention the following ones:

(1) Abelian groups (we see on this example that the mention m, n 
= 0 in the (iii) of
previous definition is relevant).

(2) Let A be an abelian �-group (see [9]). Then the positive cone A+ of A satisfies
the finite refinement property (for a generalisation see [35], 13.21). For example, for any
topological space X, the space C(X, R+) of all continuous maps from X to R+ satisfies
the finite refinement property.

(3) The P.O.M. P = ([0, ∞],+, 0,≤) of all positive (possibly infinite) reals; + and
≤ are respectively its natural sum and (linear) ordering. This is in a sense the most
fundamental example, as we will see in [39]. Note also the sub-P.O.M. N = N∪{∞} of P .

(4) The P.O.M.’s 1 = ({0},+, 0,≤) equipped with trivial + and ≤, and
2 = ({0, 1},+, 0,≤) equipped with the addition with neutral element 0 and such that
1+1 = 1. Both of them are (isomorphic to) sub-P.O.M.’s of P (example (3)) - respectively
{0} and {0,∞} - and even retracts of P (if A ⊆ B are P.O.M.’s, we say that A is a retract
of B when there is a homomorphism r from B onto A such that r|A = id). In fact, 2 plays
a similar role for the idem-multiple P.O.M.’s (i.e. satisfying (∀x)(2x = x)) as P does for
general P.O.M.’s.

(5) The (proper) class CARD of all (non-necessarily well-ordered) cardinals; addition
is the ordinary cardinal sum, i.e. it is defined by a+ b = |A∪B| whenever a = |A|, b = |B|
and A ∩ B = ∅, and the preordering is the minimal one; the classical Cantor-Bernstein
theorem states that this preordering is an ordering.

(6) The (proper) class of isomorphism types of Boolean algebras, equipped with the
sum defined by type(A)+type(B) =type(A × B) and the minimal preordering defined by
type(A) ≤type(B) if and only if there is a Boolean algebra C such that A × C ∼= B. It
turns out that ≤ is not antisymmetric (even when restricted to countable Boolean algebras,
see [24]).

(7) Let E be a preordered vector space of dimension at most 2, let P be a convex cone
of E such that P ⊆ E+. Then it can be shown that (P,+, 0) equipped with the restriction
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of the preordering of E satisfies the finite (≤,≤), (≤,=), (=,≤) and (=,=)-refinement
properties. Note that the corresponding property in dimension ≥ 3 fails, as easy examples
show it.

(8) The space D1
+(R) of all real-valued positive differentiable functions on R satisfies

the finite refinement property.

We will see several less elementary examples of P.O.M.’s with the finite refinement
property in the sequel.

1.5. Examples. Let us mention the following natural examples of P.O.M.’s, which
do not necessarily enjoy minimality or the finite refinement property:

(1) Let A be a module over a ring R. Then the space of R-submodules of A, equipped
with the “Minkowski sum” U + V = {u + v : u ∈ U, v ∈ V } and the inclusion relation is
a minimal, idem-multiple P.O.M..

(2) Let A be a commutative ring. Then the space of all ideals of A, equipped with the
“addition” defined by the ideal product I + J=ideal generated by all products x · y, x ∈ I

and y ∈ J , and the inverse inclusion, is a P.O.M.. If A is a Dedekind domain, it is minimal
and satisfies the finite refinement property (it is even isomorphic to a power of N).

(3) Let L be a first-order language, let T be a theory written in L whose class of
models is closed under finite direct products (see [4]). Let M be the class of isomorphism
types of models of T , equipped with the embeddability preordering (defined by [A] ≤ [B]
if and only if there exists a L-embedding from A into B), to which we adjoin an extra
element 0. Then M, equipped with the addition defined by [A] + [B] = [A × B] and
neutral 0, is a P.O.M. (see also the Prologue of [18] for connected matters). Compare with
examples (5) and (6) of 1.4.

1.6. Definition A refinement P.O.M. is a minimal P.O.M. satisfying the finite re-
finement property.

Note that it is sufficient to check the (2, 2)-refinement property, and that then, the
finite (R, S)-refinement property holds whenever R and S are either = or ≤.

Note also that it can be shown that every minimal P.O.M. can be embedded into a
refinement P.O.M (which seems to indicate that the finite refinement property is not a
very drastic condition to satisfy for a given minimal P.O.M.). Details about this will be
given in a forthcoming paper.

Note finally that a submonoid of a refinement P.O.M is not necessarily a refinement
P.O.M . This brings us to a classical definition.
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1.7. Definition. Let A be a P.O.M.. A subset I of A is an ideal of A when it is a
submonoid of A which is convex, i.e. satisfies the statement

(∀a ∈ I)(∀b ∈ A)(b ≤ a ⇒ b ∈ I).

For all a in A, we denote by A|a the ideal generated by a, i.e. {x ∈ A : (∃n ∈ N)(x ≤ na)}.

1.8. Lemma Any ideal of a refinement P.O.M is a refinement P.O.M.

Proof. Obvious.

A very useful consequence of the definition of refinement P.O.M is the following lemma
1.9. Note that it is just a simple generalisation of [35], corollary 2.5.

1.9. Lemma. Let n in N\{0}, let A be a refinement P.O.M, let a, b, c in A. Then

the following are equivalent:

(i) a + b = nc;
(ii) There are xk(k ≤ n) in A such that the following holds:



a =
∑

k≤n kxk

b =
∑

k≤n(n − k)xk

c =
∑

k≤n xk

Proof. (ii)⇒(i) is obvious. We prove (i)⇒(ii) by induction on n. For n = 1 it is
trivial, so assume it is true for n, and let a+ b = (n+1)c, i.e. a+ b = nc+ c. By the finite
refinement property, there are u, v, u′, v′ such that a = u + u′, b = v + v′, nc = u + v

and c = u′ + v′. By the induction hypothesis, there are tk(k ≤ n) such that the following
holds:

u =
∑
k≤n

ktk, v =
∑
k≤n

(n − k)tk, and c =
∑
k≤n

tk (1)

Hence u′ + v′ =
∑

k≤n tk, thus there are uk, vk (k ≤ n) such that

u′ =
∑
k≤n

uk, v′ =
∑
k≤n

vk, and (∀k ≤ n)(uk + vk = tk) (2)

Then, using a = u + u′, b = v + v′ and (1), (2), it is easy to see that

a =
∑

k≤n+1

kxk, b =
∑

k≤n+1

(n + 1 − k)xk, c =
∑

k≤n+1

xk

where xk is equal to v0 for k = 0, un for k = n, and uk−1 + vk for 1 ≤ k ≤ n.
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Now, if A is a P.O.M. and a ∈ A, we define a preordering ≤ (mod a) and an equivalence
relation ≡ (mod a) by putting

x ≤ y (mod a) ⇔ x + a ≤ y + a

and
x ≡ y (mod a) ⇔ x + a = y + a.

It is easy to see that ≡ (mod a) is compatible with both the addition and ≤ (mod a).

1.10. Definition. We denote by
A

a
the quotient structure of (A,+, 0,≤ (mod a)) by

≡ (mod a).

Now, let us return back to refinement P.O.M’s. Most of the refinement P.O.M’s we
shall consider are not cancellative — among the examples in 1.4, only (1), (2), (7), (8)
do satisfy it, and then their study is rather related to other research areas, as e.g. group
theory. The best approximation we can give to additive cancellation and which holds in
the general case seems to be the following:

1.11. Lemma. Let A be a refinement P.O.M, let a, b, c in A, let n in N.

(i) If a + c = b + c, then there are d, u, v such that nu, nv ≤ c and a = d + u, b = d + v;

(ii) If a + c ≤ b + c, then there is d such that a ≤ b + d and nd ≤ c.

Proof. (This is a finite version of theorem 2.6 of [35]).
(i) Using the finite refinement property, define inductively ak, bk, ck, dk, (k ∈ ω) by
a0 = a, b0 = b, c0 = c, and if ak + ck = bk + ck, then the following is a refinement matrix:

bk ck

ak dk ak+1

ck bk+1 ck+1

thus ak+1+ck+1 = bk+1+ck+1 and the induction hypothesis is satisfied. An easy induction
yields a = (

∑
k<n dk)+an, b = (

∑
k<n dk) + bn, c = (

∑
k<n ak+1)+cn = (

∑
k<n bk+1)+cn;

take d =
∑

k<n dk, u = an, v = bn.
(ii) Immediate from (i) and minimality.

Now, we shall define the refinement P.O.M’s where an ‘optimal’ version of 1.11 holds.

1.12. Definition. Let A be an antisymmetric refinement P.O.M. We say that A is a
strong refinement P.O.M. when it satisfies the following ‘pseudo - cancellation property’:

(∀a, b, c)
(
a + c ≤ b + c ⇒ (∃d � c)(a ≤ b + d)

)
.
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Note that since A is minimal, we could replace a + c ≤ b + c by a + c = b + c in
the formulation of the pseudo-cancellation property. Note also that there are refinement
algebras (see [35], definition 11.25) which are not strong refinement P.O.M.’s, although we
do not know any simple example.

1.13. Lemma. Any strong refinement P.O.M. satisfies the finite (=,�) -refinement

property.

Proof. As in [35], theorem 2.19.

1.14. Proposition. Let A be an antisymmetric refinement P.O.M. Then A is a

strong refinement P.O.M. if and only if it satisfies the following statement:

(∀a, b, c)
(
a + c = b + c ⇒ (∃d)(∃u � c)(∃v � c)(a = d + u and b = d + v)

)
;

Proof. Suppose first that A is a strong refinement P.O.M., and let a, b, c in A such
that a + c = b + c. Thus a + c ≤ b + c, thus, by the pseudo-cancellation property and then
the (1 =,≤ 2)-refinement property, there are d and u in A such that a = d + u and d ≤ b

and u � c. Let e such that b = d + e. Then a + c = b + c yields e � d + c, whence, by
previous lemma, e = h + v for some h � d and v � c. Thus b = d + v and d, u, v satisfy
the required condition. The converse is trivial.

We introduce a bit of notation before going on. If A is an antisymmetric P.O.M.
and X ⊆ A, we denote by

∧
X (resp.

∨
X) the g.l.b. (resp. l.u.b.) of X if it exists. If

X = {a, b}, we just write a ∧ b (resp. a ∨ b). In the general case, we write
X + Y = {x + y : x ∈ X, y ∈ Y }, a + X = {a} + X, and similarly for ∧,∨, etc. .

We refer to [35] for the proofs of both following useful lemmas, which appeal only to
the structures of refinement P.O.M or strong refinement P.O.M.:

1.15. Lemma. Let A be a refinement P.O.M, let a, b in A such that a∧ b is defined.

Then a ∨ b is defined, and for every c in A, a ∧ b + c = a implies b + c = a ∨ b.

Proof. See [35], theorem 3.4.

1.16. Lemma. Let A be a strong refinement P.O.M.. Then the following holds:

(i) For all finite subsets X, Y of A such that X ≤ Y , there is c in A such that X ≤ c ≤ Y

(finite interpolation property).

(ii) Let a, b in A, let X ⊆ A finite nonempty such that a+X = {b}. Then there are c ≤ X

and d ≥ X in A such that a + c = a + d = b.

(iii) Let a ∈ A, X ⊆ A finite nonempty such that
∨

X is defined. Then
∨

(a+X) is defined

and equal to a +
∨

X.
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(iv) Let a, b in A, X ⊆ A finite nonempty such that b ≤ a + X. Then there is c ≤ X in A

such that b ≤ a + c.

(v) Let a ∈ A, X ⊆ A finite nonempty such that
∧

X is defined. Then
∧

(a+X) is defined

and equal to a +
∧

X.

(vi) Let a ∈ A, X ⊆ A finite nonempty such that a ∨ X and
∧

X are defined. Then each

of a ∨ ∧
X and

∧
(a ∨ X) is defined if and only if the other is defined, and then they are

equal.

(vii) Let a ∈ A, X ⊆ A finite nonempty such that a ∧ X and
∨

X are defined. Then each

of a ∧ ∨
X and

∨
(a ∧ X) is defined if and only if the other is defined, and then they are

equal.

Proof. As in [35], respectively theorems 2.28, 2.25, 3.26, 2.29, 3.25, 3.30, 3.32.

One of the interesting features of strong refinement P.O.M.’s is that their class is
closed under the quotient operation defined in 1.10:

1.17. Proposition. Let A be a strong refinement P.O.M., let a in A. Then
A

a
is

a strong refinement P.O.M.. Furthermore,
A|a
a

is the positive cone of an abelian ordered

group.

Proof. The only problem is for the proof of the finite refinement property. However,
using proposition 1.14, this is a straightforward exercise.

In 1.18 and 1.19, A is a fixed antisymmetric P.O.M. satisfying the pseudo- cancellation
property.

1.18. Definition. Let a in A. If
∨{na : n ∈ N} is defined, then we denote its value

by ∞a.

1.19. Lemma. Let a in A. If ∞a is defined, then a � ∞a and for all n in N\{0},
we have ∞(na) = ∞a.

Proof. The second part is obvious. Suppose ∞a = b. Then 2a ≤ b, thus there is
c ≥ a such that a + c = b. For all n in N, a + na ≤ a + c, thus, by pseudo-cancellation,
there is e � a such that na ≤ c + e, but a ≤ c, thus c + e = c; by definition of b, we get
b ≤ c. Since ≤ is antisymmetric, we get b = c.

1.20. Example. Let N[c] be the minimal P.O.M. generated by two elements 1 and
c such that 1 + c = c: so its elements are of the form n or nc, n ∈ N (with 0 · c = 0). It
is easy to see that N[c] is a strong refinement P.O.M.. If we take a = 1, we get ∞a = c.
Note that here, ∞a is not idem-multiple (because 2c 
= c). This strong refinement P.O.M.
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is also an example of weakly complete strong refinement P.O.M. which is not a refinement
algebra (see [35], definition 11.25).

The following lemma will be instrumental in the coming study of refinement �-
P.O.M.’s, and also in chapter 3.

1.21. Lemma. Let A be a minimal P.O.M. satisfying the pseudo-cancellation pro-

perty, let a, b, a′, b′ in A satisfying a′ + b ≤ a + b′ and a′ ≤ b′. Then there is c in A such

that b ≤ a + c and b′ = a′ + c.

Proof. Let d in A such that a′ + d = b′. Then we have a′ + b ≤ a′ + a + d, thus, by
pseudo-cancellation, b ≤ a + d + e for some e � a′. Put c = d + e.

1.22. Definition. A refinement �-P.O.M. is a minimal, antisymmetric P.O.M. satis-
fying the following properties:
(i) Pseudo -cancellation property;
(ii) (∀a, b) (a ∧ b is defined);
(iii) (∀a, b, c)(a ∧ b + c = (a + c) ∧ (b + c)) (distributivity of + on ∧).

Note that we do not put the finite refinement property among the hypotheses. The
reason is that it is redundant:

1.23. Proposition. Every refinement �-P.O.M. is a strong refinement P.O.M..

Proof. Let A be a refinement �-P.O.M.. We prove that it satisfies the (2, 2) -
refinement property. So let a + a′ = b + b′ in A. By distributivity of + on ∧, we have

a + a′ ∧ b′ = (a + a′) ∧ (a + b′) = (b + b′) ∧ (a + b′) = a ∧ b + b′.

Thus, by applying lemma 1.21 twice, we get u′, u′′ such that

a = a ∧ b + u′ and b′ ≤ a′ ∧ b′ + u′ (1)

and
b′ = a′ ∧ b′ + u′′and a ≤ a ∧ b + u′′ (2)

Now, let u = u′ ∧ u′′. It is immediate, using again distributivity of + on ∧ and (1), (2),
that a ∧ b + u = a and a′ ∧ b′ + u = b′. Similarly, there is v such that a ∧ b + v = b and
a′ ∧ b′ + v = a′, hence we have the following refinement matrix

b b′

a a ∧ b u

a′ v a′ ∧ b′

14



which concludes the proof.

1.24. Example. Let A be a refinement P.O.M. Consider the P.O.M. Hom(A, P)
of all P.O.M.-homomorphisms from A to P (equipped with componentwise addition and
preordering) — recall that P is [0, ∞] equipped with the canonical +, 0,≤. If u, v are in
Hom(A, P), then u ∧ v is simply defined by

u ∧ v(a) =
∧

{u(x) + v(y) : x + y = a} (all a in A)

and it is easy to check that we get a refinement �-P.O.M.. The fact that Hom(A, P) satisfies
the finite refinement property is the main result of [31], but the proof presented here is in
addition also valid for Hom(A, N) and actually in a much more general context, as we will
see in chapter 2.

Now, let us mention the next proposition, analogue to 1.17. Note that by 1.15, 1.16
and 1.23, if A is a refinement �-P.O.M., then a∨ b is defined for all a, b in A and (A,∧,∨)
is a distributive lattice.

1.25. Proposition. Let A be a refinement �-P.O.M., let a in A. Then
A

a
is a

refinement �-P.O.M., and the projection A → A

a
is a P.O.M. - and - lattice homomorphism.

Proof. Straightforward.

1.26. Corollary. Every refinement �-P.O.M. satisfies the multiplicative ≤-cancella-

tion property.

Proof. Let A be a refinement �-P.O.M., let m in N \ {0} , let a, b in A such that
ma ≤ mb. Let B = A|b; then a and b are in B. Let x �→ [x] be the canonical projection

from B to
B

b
. Thus, we get m[a] ≤ m[b]. But by 1.17,

B

b
is the positive cone of some

abelian ordered group C; furthermore, by 1.25, C is a �-group. But it is well-known (see
[1]) that C satisfies the statement

(∀x)(mx ≥ 0 ⇒ x ≥ 0),

thus it follows that [a] ≤ [b], i.e. a+b ≤ 2b. By the pseudo-cancellation property, it follows
that a ≤ b.

Finally, we will need in chapter 2 the following lemma:

1.27. Lemma. Let A be a refinement �-P.O.M., let a, b, c, u in A such that

a ∧ b + u = a. Then a ∧ (b + c) = a ∧ c + u ∧ c.

Proof. We just reproduce the usual argument for �-groups:
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a∧ (b + c) = a∧ (a + c)∧ (b + c) = a∧ (a∧ b + c) = (a∧ b + u)∧ (a∧ b + c) = a∧ b + u∧ c.

2. NOTIONS OF COMPLETENESS FOR P.O.M.’s.

The aim of this chapter is to define some ‘natural’ notion of completeness for P.O.M.’s
as close as possible in its consequences to the definition of completeness for Boolean algebras
— or ordered abelian groups, and satisfied by some ‘canonical’ examples as e.g. the P.O.M.
P

I
for any set I. For many reasons (some of them out of the scope of this paper), we are

convinced that our definition of completeness (definition 2.15) listed in this chapter is the
relevant one according to this goal. One of the consequences of this definition will be a
‘well-behaved’ arithmetic.

The motivation of the next definition is rather technical, and will appear wholly in
[39]; presently, we will just note that it implies the multiplicative ≤-cancellation property
(see 2.9).

2.1. Definition. Let E be a refinement P.O.M . We say that it is relatively σ-complete
when it satisfies both following conditions:

(i) Let a, b, cn (n ∈ ω) in E such that a ≤ b + cn for all n. Then there is c in E such that
for all n, c ≤ cn and a ≤ b + c;

(ii) E is Archimedean, i.e. for all a, b in E such that (∀n ∈ N)(na ≤ b), we have a � b.

Note that (ii) is not redundant in definition 2.1, as shows e.g. the example of positive
cones of non-Archimedean �-groups (see [1]).

An important class of relatively σ-complete P.O.M.’s is the class of cardinal algebras,
studied widely in [35]. For the convenience of the reader, we will recall here that a cardinal
algebra is a structure (E, +, 0,

∑
), where + is a two-placed operation on E, 0 ∈ E, and∑

is a map from Eω to E (we write as usual
∑

n∈ω an, or simply
∑

n an for
∑

(an)n∈ω)
satisfying the following axioms:

(CA 0) (E, +, 0) is a commutative monoid.

(CA 1) For all (an)n in Eω,
∑

n an = a0 +
∑

n an+1.

(CA 2) For all (an)n, (bn)n in Eω,
∑

n(an + bn) =
∑

n an +
∑

n bn.

(CA 3) (Refinement postulate) Let a, b in E, (cn)n in Eω such that a + b =
∑

n cn.
Then there are (an)n, (bn)n in Eω such that (∀n ∈ ω)(cn = an + bn) and a =

∑
n an,

b =
∑

n bn.

(CA 4) (Remainder postulate) Let (an)n, (bn)n in Eω such that (∀n ∈ ω)

(an = an+1 + bn). Then there is a in E such that (∀n ∈ ω)(an = a +
∑

i bn+i).
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2.2. Definition. A weak cardinal algebra is a structure (E, +, 0,
∑

) satisfying (CA
0), (CA 1), (CA 2), (CA 4) above and the finite refinement property.

Among other things, it is proved in [35] that if E is a cardinal algebra, then the monoid
(E, +, 0), equipped with its minimal preordering (which turns out to be an ordering) is a
strong refinement P.O.M. (see [35], 1.30, 2.3, 2.6), that

∑
i ai is necessarily the l.u.b. of all

finite sums
∑

i<n ai for n ∈ ω ([35], 2.21 ), thus that
∑

is uniquely determined by (E, +).
Actually, one can verify that many theorems proved in [35] to be valid for cardinal algebras
are also valid for weak cardinal algebras, including those just listed above. For example,
every weak cardinal algebra is a relatively σ-complete P.O.M. (by naturally identifying
(E, +, 0,

∑
) with (E, +, 0,≤)) - see [35], 2.22 and 2.29.

2.3. Examples.

(1) The already defined P , N , 2, 1 (see 1.4, examples (3) and (4)); in these examples,∑
is defined by

∑
n an =

∨{a0 + a1 + . . . + an : n ∈ ω} (= ∞ if the sum is divergent).

(2) Let Ω be a set, let B be a sub-σ-algebra of P(Ω), let I be a σ-ideal of B. Let
MB/I(Ω) be the space of all equivalence classes of B-measurable functions from Ω to P

modulo the equivalence relation associated with I (defined by f ≡ g ⇔ {x : f(x) 
=
g(x)} ∈ I), equipped with its natural definition of (componentwise) infinite addition. The
origin of the following result goes back to R. Chuaqui (see [7]):

MB/I(Ω) is a cardinal algebra.

The non-trivial part of the proof is for the refinement postulate; to find a refinement of
(fm)m and (gn)n, the idea is to express the entries of the refinement matrix by ‘polynomials’
(with the operations +, −, ∧, ∨,

∧
,
∨

) in the fm and gn in the case where
∑

n fn has finite
values, and to write any function as a countably infinite sum of finite-valued functions in
the general case.

A more specialized example is the following one:

(3) Let Ω be a topological space; then the quotient B(Ω, P) of all maps from Ω to P

with the Baire property by equivalence on residual sets is a cardinal algebra.

(4) The space of all σ-additive P -valued (or N -valued) measures on any countably

complete Boolean algebra is a cardinal algebra. (see [33] and also theorem 2.42).

(5) Also some proper classes can be considered as cardinal algebras, as e.g. CARD

(we define
∑

n an to be the cardinal of
⋃

n An where |An| = an and the An are mutually
disjoint), or the class of isomorphism types of σ-complete Boolean algebras (we define∑

n an as the type of
∏

n An where the type of An is an).
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2.4. Examples. Some examples of weak cardinal algebras are the following:

(1) N
2 ∪ {∞} (where

∑
n an is defined to be ∞ when the sum is divergent).

(2) Hom(A, P) when A is a refinement P.O.M (see theorem 2.33). If A is e.g. the
P.O.M. of bounded positive maps from ω to P , then Hom(A, P) is not a cardinal algebra
(it does not satisfy the infinite refinement property).

For our purposes here, all relevant properties of (weak) cardinal algebras which we will
need will be consequences of 2.1. From 2.5 to 2.9, we work in a given relatively σ-complete
P.O.M. E.

2.5. Lemma. Let a, b, c in E such that a ≤ b and b � c. Then a � c.

Proof. For all n in N, na ≤ nb because a ≤ b, and nb ≤ c because b � c. So na ≤ c,
and we conclude by the Archimedean property of E.

2.6. Lemma. ≤ is antisymmetric.

Proof. Immediate from 1.2 and 2.5.

2.7. Proposition. E is a strong refinement P.O.M..

By hypothesis and 2.6, it suffices to prove the pseudo-cancellation property. So let
a, b, c in E such that a + c ≤ b + c. Using the finite refinement property and 1.11, for all
n in N, there is cn in E such that ncn ≤ c and a ≤ b + cn. By the hypothesis (i), there is
d in E such that (∀n ∈ ω)(d ≤ cn) and a ≤ b + d. But for all n, we have nd ≤ ncn ≤ c,
thus d � c by the Archimedean property of E.

Now, we will generalize the proof of the multiplicative cancellation property for cardi-
nal algebras ([35], 2.31 ). Despite the small number of (sometimes not completely trivial)
changes brought to the original proof, we shall present here for the convenience of the
reader a complete proof, simpler than (but very similar to) the one in [35].

2.8. Lemma. Let T ⊆ E ×E ×E such that for all (a, b, c) in T , there is (a′, b′, c′) in

T such that

a + c = 2a′ + c′ and b + c = a′ + b′ + c′.

Then for all a, b, c in T , a + c ≤ b + c.

Proof. Define inductively (an, bn, cn) (n ∈ ω) in T by a0 = a, b0 = b, c0 = c and
for all n,

an + cn = 2an+1 + cn+1 and bn + cn = an+1 + bn+1 + cn+1 (1)
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For all n in ω , we have, by (1), a + c ≤ b + c + a1+n. By the hypothesis (i), there is d

such that
(∀n ∈ ω)(d ≤ a1+n) (2)

and
a + c ≤ b + c + d (3)

But by (1), we have, for all n, b + c ≥ ∑
i<n a1+i, thus b + c ≥ nd by (2); therefore, by the

Archimedean property of E, d � b + c, thus, by (3), a + c ≤ b + c.

2.9. Proposition. E satisfies the multiplicative ≤-cancellation property (thus also

the =-cancellation property since ≤ is antisymmetric).

Proof. Let m in N\{0}, put Tm = {(a, b, c) ∈ E3 : ma + c ≤ mb + c}. To conclude,
it is clearly sufficient to prove that Tm satisfies the hypothesis of 2.8.

Suppose first that m = 2. If (a, b, c) ∈ T2, then there is d such that 2a+c+d = 2b+c,
thus (a + c) + (a + c + d) = 2(b + c). By 1.9 (for n = 2), there are a′, b′ such that

a + c = 2a′ + c′, a + c + d = 2b′ + c′, b + c = a′ + b′ + c′

Thus (a′, b′, c′) ∈ T2, and so we conclude for m = 2.

Now, suppose m ∈ N\{0} arbitrary, and let (a, b, c) in Tm. Let l in N such that
2l ≤ m < 2l+1. Then we get 2la + c ≤ 2l+1b + c, thus a + c ≤ 2b + c by the case m = 2,
thus there is d such that a + d + c = 2b + c. Let (x �→ [x]) the canonical projection from

E to
E

c
, so that we have [a] + [d] = 2[b]. But by 1.17,

E

c
is a strong refinement P.O.M.,

thus by 1.9 (for n = 2), there are u, v, w such that

[a] = 2[u] + [w], [d] = 2[v] + [w], [b] = [u] + [v] + [w] (1)

Since m[a] ≤ m[b], we get

2m[u] + m[w] ≤ m[u] + m[v] + m[w],

thus, since
E

c
satisfies the pseudo-cancellation property,

m[u] + [w] ≤ m[v] + [w] + [e] for some [e] � [u] (so e + u + c = u + c) (2)

Now, put a′ = u, b′ = v + e, c′ = c+w. Using (1) and (2), it is easy to check that we have

2a′ + c′ = a + c, a′ + b′ + c′ = b + c
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and
ma′ + c′ ≤ mb′ + c′ (thus (a′, b′, c′) ∈ Tm),

which concludes the proof.

Now, we shall explore various strengthenings of the notion of relative σ-completeness,
which will ultimately lead to the notions of complete P.O.M.’s (definition 2.15) and of
injective P.O.M.’s (definition 3.1).

2.10. Definition. Let E be a minimal, antisymmetric P.O.M.. We say that E is
weakly complete when it satisfies the following conditions:
(i) Every subset X of E has a g.l.b., denoted by

∧
X;

(ii) + is distributive on
∧

, i.e.:

(∀x ∈ E)(∀X ⊆ E)(
∧

(a + X) = a +
∧

X).

Note that then, E has always a largest element,
∧ ∅, which we will denote by ∞E , or

∞ if there is no ambiguity. So E satisfies (∀x)(∞ + x = ∞). Note also that for all x, ∞x

exists, and that more generally, every subset of E has a l.u.b. . This entitles us to define∑
i∈I xi for every family (xi)i∈I of elements of E, by putting

∑
i∈I

xi =
∨

{
∑
i∈J

xi : J ⊆ I finite}

Now, we shall extend our definition. From 2.11 to 2.14, we show that many possible
extensions are equivalent.

2.11. Lemma. Let E be a weakly complete P.O.M., let (an)n, (bn)n be in Eω such

that (∀n ∈ ω)(an ≤ an+1 + bn), let a =
∧

n∈ω an. Then a0 ≤ a +
∑

n bn.

Proof. For all n, we have a0 ≤ an +
∑

i<n bi ≤ an +
∑

i∈ω bi, thus, by taking the
g.l.b.’s of both sides, we get the result.

2.12. Proposition. Let E be a weakly complete P.O.M.. Then the following are

equivalent:

(i) E is relatively σ-complete;

(ii) E satisfies the pseudo-cancellation property;

(iii) E satisfies the finite refinement property;

(iv) E satisfies the finite (≤,≤)-refinement property.

Proof. (i)⇒(ii) is immediate by 2.7. (ii)⇒(i) Assume (ii). If a, b, cn (n ∈ ω) are in
E such that a ≤ b + cn for all n, let c =

∧
n∈ω cn. Then a ≤ b + c by distributivity of +
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on
∧

, and c ≤ cn for all n. On the other hand, if a, b are in E such that na ≤ b for all
n, then, since ∞a =

∨{na : n ∈ N} exists, we have ∞a ≤ b, but by 1.18, a � ∞a, hence
a � b. Thus E is relatively σ-complete. (ii)⇒(iii) Assume (ii). Then E is a refinement
�-P.O.M. (see 1.22), thus it satisfies the finite refinement property (see 1.23). (iii)⇒(iv)
is trivial because E is minimal. We conclude by showing that (iv)⇒(ii). Assume (iv).
Let a, b, c in E such that a + c ≤ b + c. Define inductively an, bn, cn, dn (n ∈ ω) by
a0 = a, b0 = b, c0 = c and if an + cn ≤ bn + cn, then we have the following refinement
matrix:

≤ bn ≤ cn

an ≤ dn an+1

cn ≤ bn+1 cn+1

so that the induction hypothesis is maintained. Now, let e =
∧

n∈ω an. Since an ≤
an+1+dn for all n, 2.11 implies that a ≤ e+

∑
n dn. Since bn ≥ bn+1+dn for all n, we have

b ≥ ∑
n dn. Hence, a ≤ b+e. Finally, if d =

∧
n cn, then, for all n, e+d ≤ an+1+cn+1 ≤ cn,

thus e + d ≤ d, hence e � d; but d ≤ c, thus e � c, which concludes the proof.

2.13. Example. This example shows the relevance of previous proposition: equip
E = {0, 1, 2} with the addition defined by x ⊕ y = (x + y) ∧ 2, and its natural (linear)
ordering. Then 2 ⊕ 1 = 1 ⊕ 1 = 2, but no x � 1 satisfies 2 ≤ 1 ⊕ x. Thus E is a weakly
complete P.O.M. without the pseudo-cancellation property.

The last obstacle towards our definition of completeness is the satisfaction of the
absorption property, formulated in the next definition (see also [35], 1.47).

2.14. Proposition Let E be a weakly complete P.O.M. satisfying the pseudo-

cancellation property. Then the following are equivalent:

(i) For all a ∈ E, X ⊆ E such that X � a, we have
∨

X � a (absorption property);

(ii) For all a ∈ E, X ⊆ E, X 
= ∅, we have a +
∨

X =
∨

(a + X) (property which we will

call ‘distributivity of + on
∨ 
= ∅’).

Proof. Similar argument as for the proof of 3.26 of [35], adapted to arbitrary l.u.b.’s.
We present it here.

(ii)⇒(i) Assume (ii) satisfied; let a ∈ E, X ⊆ E, X 
= ∅, X � a. If X 
= ∅, then we
have

a +
∨

X =
∨

(a + X) =
∨

{a} = a,
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which is still true if X = ∅.
(i)⇒(ii) Assume (i) satisfied; let a ∈ E, X ⊆ E, X 
= ∅, let b =

∨
X, c =

∨
(a + X). It is

obvious that c ≤ a+ b. Conversely, since X 
= ∅, a ≤ c, thus there is d such that a+ d = c.
For all x ∈ X, a + x ≤ a + d, thus there is y � a such that x ≤ d + y. Therefore, if
Y = {y ∈ E : y � a} and e =

∨
Y , then e � a by hypothesis and (∀x ∈ X)(x ≤ d + e),

thus b ≤ d + e. Hence a + b ≤ a + d + e = c.

2.15. Definition. A complete P.O.M. is a weakly complete P.O.M. satisfying the
pseudo-cancellation property and the absorption property.

2.16. Example. Let Ω be a set, let B be a countably complete Boolean subalgebra
of subsets of Ω, let I be a countably complete ideal of sets in B such that B = B/I is
countably saturated (thus complete). Then the P.O.M. of all equivalence classes modulo
I of B-measurable functions from Ω to P (or N ) is a complete P.O.M..

2.17. Proposition. Every complete P.O.M. satisfies the statement

(∀x)
(
2(∞x) = ∞x

)

Proof. Using the distributivity of + on
∨ 
= ∅ and 1.19, we have

∞x + ∞x = ∞x +
∨

{nx : n ∈ N} =
∨

{∞x + nx : n ∈ N} = ∞x.

2.18. Example. Let M = N[c] be the P.O.M. of example 1.20, let E = M ∪ {∞}.
It is easy to check that E is a weakly complete P.O.M. satisfying the pseudo-cancellation
property. However, N � c but

∨
N = c and 2c 
= c, so that E is not a complete P.O.M..

A remarkable feature of complete P.O.M.’s is given by next proposition and the fol-
lowing example.

2.19. Proposition. Let E be a complete P.O.M.. Then for all a ∈ E, X ⊆ E, we

have

a ∨
∧

X =
∧

(a ∨ X)

Proof. As in [35], theorem 2.30. We present it here:
Let b =

∧
X, c = a ∨ b, d =

∧
(a ∨ X). Clearly, c ≤ d. Conversely, there is some e

such that e + b = c, thus
∧

(e + X) = c since E is weakly complete, thus, for all x in X,
a ≤ e + x, hence d ≤ a ∨ x ≤ (e + x) ∨ x = e + x, hence d ≤ ∧

(e + X) = c.
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2.20. Example. N
2 ∪ {∞} is a complete P.O.M. where ∧ is not distributive on

∨
:

if a = (1, 0), b = (0, 1) and X = {nb : n ∈ N}, then a ∧ ∨
X = a but

∨
(a ∧ X) = 0.

Now we shall consider two important operations, the inf difference and the sup dif-
ference, and prove several identities involving them and the other operations. From 2.21
to 2.26, we work in a fixed complete P.O.M. E.

2.21. Definition. For all a, b in E, we put

a \ b =
∧

{x ∈ E : a ≤ b + x} (inf difference of a and b),

a − b =
∨

{x ∈ E : b + x ≤ a} (sup difference of a and b).

Note also that b 
≤ a implies a− b = 0. In fact, only the case b ≤ a will be considered
when the expression a − b will be used. Note that in that case, a \ b ≤ a − b.

Notational convention. When we write any term involving
∧

,
∨

,
∑

, ∧, ∨, \, −, +,
we put stress first on

∧
,
∨

,
∑

, ∧, ∨, then on \, −, then on +. For example,

a − b ∧
∨

X + c =
(
a − (b ∧

∨
X)

)
+ c.

2.22. Lemma. For all a, b, c, a′, b′ in E, we have

(i) b + (a \ b) = a ∨ b;

(ii) a \ b = a ∨ b \ b = a \ a ∧ b;

(iii) a ∧ b + a \ b = a;

(iv) a + (b − a) = b if a ≤ b;

(v) a ∧ (b + c) = a ∧ b + (a \ b) ∧ c = a ∧ b + (a − a ∧ b) + c;

(vi) a + (b − c) = (a + b) − c if c ≤ b. Thus, a � b implies a � b − c;

(vii) b + c ≤ a if and only if b ≤ a and c ≤ a − b, and then (a − b) − c = a − (b + c);

(viii) (a′ + b′) − (a + b) = (a′ − a) + (b′ − b) if a ≤ a′ and b ≤ b′.

Proof. Easy, using 1.27 for the proofs of (ii) and (v).

One of the most noticeable properties of complete P.O.M.’s is the following easily
proved

2.23. Proposition. Every complete P.O.M. is a weak cardinal algebra.

Note that by example 2.20, a complete P.O.M. is not necessarily a cardinal algebra.
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Using lemma 2.22, we can get a more precise picture of the problem of the distributivity
of ∧ on

∨
. First, we extend in the obvious way definition 1.3 to transfinite m and n. Then,

we set the

2.24. Definition. Let κ be a cardinal. We say that E is κ-distributive when for all
a ∈ E and X ⊆ E of cardinal ≤ κ, we have a ∧ ∨

X =
∨

(a ∧ X).

Note that E is always κ-distributive when κ is finite (see lemma 1.16, (vii)).

2.25. Proposition. Let κ be an infinite cardinal. Then the following are equivalent:

(i) For all a, bξ (ξ ≤ κ) in E with (bξ)ξ increasing, we have a ∧ ∨
ξ bξ =

∨
ξ(a ∧ bξ);

(ii) E is κ-distributive;

(iii) E satisfies the (1 =,≤ κ)-refinement property.

Proof. (i)⇔(ii) easy. (ii)⇒(iii) Assume (ii). Let a ≤ ∑
ξ<κ bξ in E. Put bξ =

∑
i<ξ bi

for all ξ ≤ κ, aξ = (a \ bξ) ∧ bξ for all ξ < κ. Using 2.22 (v) and κ-distributivity, it is
easy to prove by induction that

∑
i<ξ ai = a ∧ bξ for all ξ ≤ κ. Thus a =

∑
ξ<κ aξ with

(∀ξ < κ)(aξ ≤ bξ). Finally, the proof of (iii)⇒(ii) proceeds as in [35], lemma 3.31.

Note that in [15], it is shown that in weak cardinal algebras, the (1 =,≤ ω)-refinement
property is equivalent to the (ω, ω)-refinement property.

Many other arithmetical properties can be proved about complete P.O.M.’s (including
relations involving infinite meet and join and the sup - and - inf differences). Let us just
mention the following ones:

2.26. Lemma. Let X ⊆ E, m ∈ N. Then we have:

(i)
∨

(m · X) = m · ∨ X;

(ii) If m < ∞, then
∧

(m · X) = m · ∧ X.

Proof. Virtually the same as in [35], theorems 3.27 and 3.28 (where it is proved for
cardinal algebras, but works also for weak cardinal algebras and in our context); we do
not reproduce it here.

We shall now see how to construct new complete P.O.M.’s using old ones. Consider
first the following question:

(∗) If A is a P.O.M. and E is a complete P.O.M., is Hom(A, E) complete?

There are various counterexamples to (∗), e.g. when A is the P.O.M. of linear sub-
spaces of R

2 equipped with the usual sum and the inclusion, and E = 2. Here, A does
not satisfy the (1 =,≤ 2)-refinement property. But when A is {(x, y) ∈ R+ × R+ :
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x ≤ y}, equipped with componentwise +, 0 and ≤, then A is a convex cone of R
2 in-

cluded in the cone of positive elements, thus (see 1.4, example (7)) A satisfies the finite
(≤,≤), (≤,=), (=,≤) refinement properties. However, Hom(A, P) is not even minimal
(if u : (x, y) �→ x, v : (x, y) �→ y, then u ≤ v but there is no w in Hom(A, P) such that
u + w = v). So we have to make some stronger assumption on A in order to get a positive
answer.

From 2.27 to 2.32, let A be a refinement P.O.M. and E a complete P.O.M..

2.27. Lemma. Hom(A, E) has a largest element, ∞.

Proof. It is (∞ : x �→ (0 if x ≤ 0, ∞ if x > 0)). The verification is trivial.

Now, for any u, v in Hom(A, E) such that u ≤ v, define

v − u : A → E, x �→ v(x) − u(x).

2.28. Lemma. v − u ∈ Hom(A, E), and u + (v − u) = v. Thus, Hom(A, E) is

minimal.

Proof. By 2.22 (viii) and minimality of A, we have v − u ∈ Hom(A, E). The second
assertion comes from 2.22 (iv).

Now, for any X ⊆ Hom(A, E), define uX : A → E by

uX(a) =
∧

{
∑
i<n

ui(ai) : n ∈ ω \ {0},
∑
i<n

ai = a, ui ∈ X} if X 
= ∅, and u∅ = ∞.

2.29. Lemma. uX is the g.l.b. of X in Hom(A, E).

Proof. Put u = uX . For X = ∅, it is just 2.27; suppose X 
= ∅. Using distributivity
of + on

∧
, we get immediately (∀a, b ∈ A)(u(a + b) ≤ u(a) + u(b)), and using the finite

refinement property of A, we get immediately (∀a, b ∈ A)(u(a) + u(b) ≤ u(a + b)). Since
X 
= ∅, the definition of uX yields u(0) = 0. And A is minimal, thus u ∈ Hom(A, E). By
definition, if v ∈ Hom(A, E) and v ≤ X, then v ≤ u. Thus u is

∧
X in Hom(A, E).

2.30. Lemma. + is distributive on
∧

in Hom(A, E).

Proof. Immediate by definition of uX and the corresponding property in E.

2.31. Lemma. Hom(A, E) satisfies the pseudo-cancellation property.

Proof. Suppose u, v, w ∈ Hom(A, E) and u + w = v + w. Then, by 2.22, (viii),
u ≤ u + (w − w) = v + (w − w) and w − w ∈ Hom(A, E) by 2.28, hence the conclusion
holds.

25



2.32. Lemma. Hom(A, E) satisfies the absorption property.

Proof. Let X ⊆ Hom(A, E) nonempty, let u ∈ Hom(A, E) such that X � u. Let
(w : A → E, x �→ ∑

v∈X v(x)). Then w ∈ Hom(A, E),
∨

X ≤ w, and w � u.

Thus
∨

X � u.

Now, from 2.28 to 2.32 (and definition 2.15), we immediately get the

2.33. Theorem. Let A be a refinement P.O.M, let E be a complete P.O.M.. Then

Hom(A, E) is a complete P.O.M..

2.34. Remark. 2.33 admits an easy generalization to what we could call ‘partial
P.O.M.’s’ (the addition is not defined everywhere). This yields for example the following
result:

If B is a Boolean algebra and E is a complete P.O.M., then the P.O.M. of all E-valued

measures on B is a complete P.O.M..

(u : B → E is a measure when u(0) = 0 and u(x∨y) = u(x)+u(y) whenever x∧y = 0).

The following proposition will allow us to extend theorem 2.33, and has also some
independent interest:

2.35. Proposition. Any retract of a complete P.O.M. is a complete P.O.M..

Proof. Let E be a retract of a complete P.O.M. F ; this means that E is a sub-P.O.M.
of F and there is a P.O.M.-homomorphism π from F to E such that π|F = id. For every
subset X of E, denote by

∧
F X its g.l.b. in F ; then it is easy to check that π(

∧
F X) is

the g.l.b. of X in E. The rest of the verifications are straightforward.

Now, we shall extend theorem 2.33 to countably additive homomorphisms instead of
just homomorphisms. The natural context is when A is a cardinal algebra and E is a
complete P.O.M.; we denote by Homσ(A, E) the P.O.M. of σ-additive homomorphisms
A → E, i.e. of those homomorphisms u such that u(

∑
n xn) =

∑
n u(xn) for all (xn)n in

Aω.

In 2.36 and 2.37, let A be a cardinal algebra, let E be a complete P.O.M.. We denote
by H the P.O.M. Hom(A, E), and Hσ the P.O.M. Homσ(A, E). For each u in H, define
u′ : A → E by u′(a) =

∧{∑i<ω u(ai) : (ai)i ∈ Aω,
∑

i ai = a}.

2.36. Lemma. Let u in H. Then u′ ∈ H, u′ ≤ u, and u′ = u if and only if u is

σ-additive. Furthermore, the map (u �→ u′) is a P.O.M.-homomorphism from H to H.

Proof. Easy, using the (ω, ω)-refinement property.
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Now, for each u in H, define a ON - sequence (uξ)ξ by u0 = u, uξ+1 = (uξ)
′, and

uλ =
∧

ξ<λ uξ if λ is a limit ordinal (the fact that uλ ∈ H is immediate by distributivity
of + on

∧
). There is an ordinal θ such that uθ = uθ+1. Define π(u) = uθ.

2.37. Lemma. Let u in H. Then π(u) is the largest v in Hσ such that v ≤ u.

Furthermore, π is a retraction from H onto Hσ.

Proof. Put w = π(u). Then w = w′ by definition. The rest follows immediately from
2.36.

Now, 2.35 and 2.37 imply immediately our result:

2.38. Theorem. Let A be a cardinal algebra, let E be a complete P.O.M.. Then

Homσ(A, E) is a complete P.O.M..

Note that this implies in particular that Homσ(A, E) satisfies the finite refinement
property.

2.39. Remark. It is easy to generalize theorem 2.38 to generalized cardinal algebras.
As a possible application, we get e.g. the following:

Let B be a σ-complete Boolean algebra and E a complete P.O.M., then the P.O.M.

of σ-additive E-valued measures on B is a complete P.O.M..

Finally, we shall give some more information in the context of 2.38 in the case where
E is linearly ordered. Say that an element α of E is isolated when α <

∧{x ∈ E : α < x}.
In 2.40 and 2.41, let A be a cardinal algebra, let E be a linearly ordered complete

P.O.M.; put H = Hom(A, E), Hσ = Homσ(A, E).

2.40. Lemma. Let u, v in Hσ. Then u∧ v calculated in H and in Hσ are the same.

Proof. Let w be u ∧ v calculated in H. We have seen in 2.29 that w is given by the
formula

w(a) =
∧

{u(x) + v(y) : x + y = a}.

Let a =
∑

n an in A, let α =
∑

n w(an), let ε in E such that α < α + ε, with ε

minimum with that property if α is isolated. By lemma 2.26, for each n, there are xn, yn

such that xn + yn = an and 2n+1
(
u(xn) + v(yn)

)
< 2n+1w(an) + ε. Thus, using 2.9, it

follows easily that u(
∑

i<n xi) + v(
∑

i<n yi) ≤ α + ε and furthermore, that the inequality
is strict if α is isolated. Put x =

∑
n xn, y =

∑
n yn, so that w(a) ≤ u(x) + v(y). Since u

and v are in Hσ, it follows easily that w(a) ≤ α; since w is finitely additive, the converse
is true.
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2.41. Lemma. Let X ⊆ Hσ be directed (i.e. such that (∀x, y ∈ X)(∃z ∈ X)(x, y ≤
z). Then

∨
X is the same calculated in H and in Hσ.

Proof. Let u =
∨

X calculated in H. Since X is directed, we have

(∀a ∈ A)(u(a) =
∨

{v(a) : v ∈ X}).

We prove that u is σ-additive. So, let a =
∑

n∈ω an in A; for all v in X, we have, since v

is σ-additive,
v(a) ≤

∑
n

v(an) ≤
∑

n

u(an),

thus, taking l.u.b. of both sides in v, we get u(a) ≤ ∑
n u(an); the converse inequality

holds because u is finitely additive.

2.42. Theorem. Let A be a cardinal algebra, let E be a linearly ordered complete

P.O.M.. Then Homσ(A, E) is a ω-distributive complete P.O.M.. In particular, it is a

cardinal algebra.

Proof. Put H = Hom(A, E), Hσ = Homσ(A, E). By 2.25, 2.40 and 2.41, it is
sufficient to prove that if u ∈ Hσ and (vn)n∈ω is an increasing sequence of elements of Hσ,
then u ∧ ∨

n vn =
∨

n(u ∧ vn) in H; actually, our proof will not use the fact that the vn

are countably additive.

Let u =
∨

n(u∧ vn), v =
∨

n vn. Obviously, we have u ≤ u∧ v. Conversely, let a in A;
put α = u(a), let ε in E such that α < α + ε, and ε minimum with this property if α is
isolated. We construct sequences (xn)n and (yn)n of elements of A the following way. Let
x0 and y0 such that x0 + y0 = a and 2

(
u(x0) + v0(y0)

)
≤ 2 · u ∧ v0(a) + ε, the inequality

being strict if α is isolated. Now suppose that xn and yn are constructed such that

xn + yn = a and 2n+1
(
u(xn) + vn(yn)

)
≤ 2n+1 · u ∧ vn(a) + ε, (1)

the last inequality being strict if α is isolated. There are hn and yn+1 such that

yn = hn + yn+1 and 2n+3
(
u(hn) + vn+1(yn+1)

)
< 2n+3 · u ∧ vn+1(yn) + ε. (2)

Put xn+1 = xn + hn. Thus, it follows that

2n+1
(
u(xn) + u ∧ vn(yn)

)
≤ 2n+1

(
u(xn) + vn(yn)

)
≤ 2n+1 · u ∧ vn(a) + (2n+1 − 1)ε.

Writing a = xn + yn and u ∧ vn(yn) ≤ u ∧ vn+1(yn), we obtain that

2n+1
(
u(xn) + u ∧ vn+1(yn)

)
≤ 2n+1

(
u ∧ vn(xn) + u ∧ vn+1(yn)

)
+ (2n+1 − 1)ε. (3)
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It follows that

2n+3
(
u(xn+1) + vn+1(yn+1)

)
≤ 2n+3

(
u(xn) + u ∧ vn+1(yn)

)
+ ε (by (2))

≤ 2n+3
(
u ∧ vn(xn) + u ∧ vn+1(yn)

)
+ (2n+3 − 3)ε (by(3))

≤ 2n+3 · u ∧ vn+1(a) + (2n+3 − 3)ε

≤ 2n+3 · u ∧ vn+1(a) + (2n+3 − 2)ε,

the last inequality being strict when α is isolated and α + ε < α + 2ε. If α is isolated
and α + ε = α + 2ε, then ε is idem-multiple > α and the above calculation shows easily
that u(xn+1) + vn+1(yn+1) < ε (note that since E is linearly ordered and by 2.9, x < ε

and y < ε implies x+y < ε). Hence in every case, (1) is satisfied with n replaced by n+1,
the inequality being strict when α is isolated. So we have constructed our sequences (xn)n

and (yn)n. Since A is a cardinal algebra and (xn)n is increasing, x =
∨

n xn exists in A,
and for all n, x ≤ a ≤ x + yn. Since A is a cardinal algebra, there is y such that a = x + y

and (∀n ∈ ω)(y ≤ yn). Now, for all n, k in ω, we have, using (1),

2n+k+1
(
u(xn+k) + vn(y)

)
≤ 2n+k+1

(
u(xn+k) + vn+k(yn+k)

)
≤ 2n+k+1 · α + (2n+k+1 − 1)ε,

the last inequality being strict if α is isolated.

Thus, if α is isolated, then u(xn+k) + vn(y) ≤ α by assumption. Since u ∧ v(a) ≤
u(x) + v(y), we obtain, making k, then n go to infinity, u∧ v(a) ≤ α + ε, and u∧ v(a) ≤ α

if α is isolated. The conclusion follows.

2.43. Question. Does the conclusion of theorem 2.42 still hold for arbitrary σ-
distributive complete P.O.M.’s?

3. INJECTIVE P.O.M.’s.

The ultimate notion of completeness we will present in this work is a seemingly slight
strengthening of the notion of complete P.O.M.. The corresponding definition will be much
simplified, and it will furthermore admit a simple algebraic equivalent (theorem 3.11).

3.1. Definition. Let E be a P.O.M..

(i) For all m in N\{0}, E is m-divisible when mE = E; E is N-divisible when it is m-
divisible for all m in N \ {0}.
(ii) E is injective when for every sub-P.O.M. A of a P.O.M. B, every P.O.M.-homomorphism
from A to E extends to a P.O.M.-homomorphism from B to E.
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It is well-known that the definition corresponding to (ii) for abelian groups yields
exactly the N-divisible abelian groups. However, we will see that the situation is very
different in the case of P.O.M.’s; still, many similarities will appear.

From 3.2 to 3.9, we give ourselves a weakly complete P.O.M. E, satisfying 2-=-
cancellation and 2-divisibility (i.e. (∀x)(∃!y)(y = 2x)). We denote by (x �→ x

2n
) the

inverse automorphism of (x �→ 2nx) (all n in N).

3.2. Lemma. For all a in E, 2(∞a) = ∞(2a) = ∞a.

Proof. The first equality comes from the fact that (x �→ 2x) is an automorphism of
E, the second one from the definition.

3.3. Lemma. E satisfies the pseudo-cancellation property.

Proof. Let a, b, c in E such that a + c ≤ b + c. Thus 2na + c ≤ 2nb + c for all n in
N, thus a +

c

2n
≤ b +

c

2n
. Let d =

∧{ c

2n
: n ∈ N}. Then, by distributivity of + on

∧
,

a + d ≤ b + d, and moreover, 2nd ≤ c for all n. Thus ∞d ≤ c, but ∞d is idem-multiple by
3.2, thus d � c.

3.4. Lemma. E is a complete P.O.M..

Proof. It suffices, by definition, to prove the absorption property. So let a in E,
X ⊆ E such that X � a; let b =

∨
X. Then 2nX ≤ a for all n in N, thus

∨
2nX ≤ a,

thus, since (x �→ 2nx) is an automorphism of E, 2nb ≤ a. Thus ∞b ≤ a, hence b � a by
3.2 .

By 2.9, we see in particular that E satisfies the multiplicative ≤-cancellation property.
The theory of real multiples in E follows, with methods whose origin goes back to [35] (end
of chapter 2); see also [6], chapter 1.

First, let D be the set of positive dyadic numbers, i.e. D = { p

2n
: p, n ∈ N}. If

p, n ∈ N and x ∈ E, we define
p

2n
x =

px

2n
. It is easy to see that this definition is coherent

(by 2-divisibility for ‘existence’, and 2-=-cancellation for ‘uniqueness’). Finally, for every
(α, x) in R+ × E, we define αx =

∨{rx : r ∈ D and r ≤ α}. All the relevant information
about real products that we will need is concentrated in the following

3.5. Lemma. The map α �→ hα (where hα : x �→ αx) is a homomorphism from

(R+,+, ·, 0, 1) to the space of P.O.M.-endomorphisms of E.

Proof. The proofs presented in [6], chapter 1 can easily be adapted to the present
context, after having replaced Q+ by D.
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Note that lemma 3.5 implies immediately that E is N-divisible. Now, we shall prove
that E is injective. The proof here will be similar to the proof of Tarski’s theorem (the
basic reference is [34]; see also [35] 14.13, or [36] 9.1), which actually shows injectivity of
P .

In 3.6 and 3.7, let B be a P.O.M., A a sub-P.O.M. of B, and u in Hom(A, E).

3.6. Definition. For all b in B, we define (using 3.5)

u∗(b) =
∨{u(y) \ u(x)

n
: x, y ∈ A and n ∈ N\{0} and y ≤ x + nb

}
,

u∗(b) =
∧{u(y) − u(x)

n
: x, y ∈ A and n ∈ N\{0} and x + nb ≤ y

}
.

In a measure-theoretic analogy, u∗(b) and u∗(b) correspond respectively to inner and
outer measure of b.

3.7. Lemma. For all b in B, the following holds:

(i) For all x, y in A, n in N, we have

y ≤ x + nb ⇒ u(y) ≤ u(x) + nu∗(b)

and

x + nb ≤ y ⇒ u(x) + nu∗(b) ≤ u(y);

(ii) u∗(b) ≤ u∗(b);

(iii) Let Ib be defined as follows:

Ib = {β ∈ E : (∀x, y ∈ A)(∀m, n ∈ N)(x + mb ≤ y + nb ⇒ u(x) + mβ ≤ u(y) + nβ)}

Then u∗(b) and u∗(b) are elements of Ib. In fact, u∗(b) = min(Ib), u∗(b) = max(Ib).

Proof. (i) is easy and uses distributivity of + on
∧

and
∨ 
= ∅. Let us prove (ii). It

is sufficient to prove that for all x, x′, y, y′ in E, m, n in N\{0} such that

x′ ≤ x + mb and y + nb ≤ y′, (1)

we have

u(x′) \ u(x)
m

≤ u(y′) − u(y)
n

, (2)

which can be written

31



u(nx′) \ u(nx) ≤ u(my′) − u(my). (3)

Using 1.21, with a = u(nx), b = u(nx′), a′ = u(my), b′ = u(my′) - note that by (1),
y ≤ y′ thus u(my) ≤ u(my′) - we see that it is sufficient to prove

u(my) + u(nx′) ≤ u(nx) + u(my′); (4)

but by (1), my + nx′ ≤ nx + my′, so (4) holds.

Now, we prove (iii); we do it for example for u∗(b), the proof would be similar for
u∗(b). (Note the similarity with the proof of 9.1 of [36]).

So let x, y in A, m, n in N such that

x + mb ≤ y + nb (5)

Putting β = u∗(b), we have to prove

u(x) + mβ ≤ u(y) + nβ (6)

We argue by cases.

Case 1. m = n = 0. Trivial since u is a homomorphism.

Case 2. m = 0, n > 0. Immediate by (i).

Case 3. m > 0, n = 0. Using successively (ii) and (i), we get u(x) + mβ ≤ u(x) +
mu∗(b) ≤ u(y).

Case 4. m > 0, n > 0. By distributivity of + on
∨ 
= ∅, it suffices to show that for

all c, d in A and p in N\{0} such that

d ≤ c + pb, (7)

we have

u(x) + m
u(d) \ u(c)

p
≤ u(y) + nβ (8)

By (5) and (7), we get immediately px + md ≤ (py + mc) + pnb, thus, by case 2,
pu(x) + mu(d) ≤ pu(y) + mu(c) + pnβ. Now, using again 1.21 (with a = mu(c), b =
mu(d), a′ = pu(x), b′ = pu(y) + pnβ - the fact that a′ ≤ b′ comes from x ≤ y + nb and
case 2), we get m(u(d) \ u(c)) ≤ p(u(y) + nβ) − pu(x).
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Hence, we get (8) by adding pu(x) on both sides and dividing by p. The fact that u∗(b) =∧
Ib and u∗(b) =

∨
Ib is immediate by definition.

Note that even in the case E = P, there are cases where u∗(b) < u∗(b) and
Ib = {u∗(b), u∗(b)} (so that it is not an interval).

3.8. Corollary. Every homomorphism from A to E extends to a homomorphism

from A + Nb to E.

Proof. This is because Ib 
= ∅.

Now, an easy application of Zorn’s lemma yields the

3.9. Proposition. E is an injective P.O.M..

3.10. Example. 1, 2 and P are injective P.O.M.’s (see 1.4, examples (3) and (4)).
Note that a direct proof is very easy for 1 and 2; on the other hand, one can prove that
injectivity of P is equivalent to the Hahn-Banach extension theorem (which can itself be
considered as an injectivity property of R in the category of normed linear spaces...).

Rather surprisingly, the converse of 3.9 is true, as the next theorem will show.

3.11. Theorem. Let E be a P.O.M.. Then the following are equivalent:

(i) E is injective;

(ii) E is weakly complete, 2-divisible and satisfies the pseudo-cancellation property;

(iii) E is weakly complete, 2-divisible and satisfies the 2-=-cancellation property;

(iv) E is complete and N-divisible.

Proof. (ii)⇒(iii) By 2.12 and 2.9, E satisfies the multiplicative ≤ -cancellation
property; (iii) follows. (iii)⇒(iv) follows from 3.4 and 3.5. (iv)⇒(iii) comes from 2.12 and
2.9. (iii)⇒(i) is 3.9. Now we prove (i)⇒(ii). So let E be an injective P.O.M..

Claim 1. E is 2-divisible.

Proof. For every a in E, (u : 2N → E, 2n �→ na) extends to some v ∈ Hom(N, E). If
b = v(1), then 2b = a. Claim 1.

Claim 2. E is minimal.

Proof. Let a ≤ b in E. Let M be the sub-P.O.M. of N
2 generated by α = (1, 0) and

β = (1, 1). Using the fact that a ≤ b, it is easy to see that there is a [unique] P.O.M.-
homomorphism u from M to E sending α on a and β on b. Since E is injective, there is v

in Hom(N2, E) extending u. Put c = v((0, 1)); then a + c = b. Claim 2.

Claim 3. Let a in E; then there is a in E such that 2a = a and a � a.
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Proof. Let u : N → E, n �→ na. Then u is a homomorphism from N to E, thus it
extends to some homomorphism v from N to E; put a = v(∞). It is immediate that a

satisfies the required conditions. Claim 3.

Actually, we could even have proved that E has a unique largest element, but the proof,
although not more difficult, could not have been generalized to some weaker definitions of
injectivity, as e.g. countable injectivity which we will use at the end of this chapter; also,
existence of a largest element will automatically follow later from completeness of E.

Claim 4. Let a in E such that 2a ≤ a. Then E|a is an injective P.O.M..

Proof. F = E|a is an ideal, thus a sub-P.O.M. of E. Let A be a sub-P.O.M. of
a P.O.M. B, let u in Hom(A, F ). Define the lexicographical product N ×lex A to be the
product N × A equipped with the preordering defined by

(m, x) ≤lex (n, y) ⇔
(
m < n or (m = n and x ≤A y)

)
.

It is easy to verify that N ×lex A is again a P.O.M.. Now, using the fact that 2a ≤ a,
it is easy to see that there is a [unique] P.O.M.-homomorphism u from N ×lex A to E

such that u(n, x) = na + u(x) for all n in N, x in A. Since E is injective, there is an
extension of u to a homomorphism v from N ×lex B to E. Put v(x) = v((0, x)) (all x in
A). Then v extends u, v ∈ Hom(B, E), and for all x in A, v(x) ≤ v((1, 0)) = a, so that
v ∈ Hom(B, F ). Claim 4.

Now, we shall prove that ≤ is antisymmetric.

Claim 5. Let a, b in E such that a � b. Then there is a in E such that 2a = a and

a ≤ a ≤ b.

Proof. Let M be the sub-P.O.M. of N × N generated by α = (1, 0) and β = (∞, 1).
Using the hypothesis, it is easy to verify that there is a [unique] P.O.M.-homomorphism
u from M to E sending α on a and β on b. Since E is injective, u has an extension to
some v in Hom(N×N, E). Put a = v((∞, 0)). It is immediate to check that a satisfies the
required conditions. Claim 5.

Claim 6. Let a, b, c in E such that a ≤ b and b � c. Then a � c.

Proof. By claim 5, there is b such that 2b = b and b ≤ b ≤ c. By claim 4, E|b is an
injective P.O.M.; since a ∈ E|b, claim 3 implies the existence of a in E|b such that 2a = a

and a � a. Since a ≤ b ≤ c and E is minimal (claim 2), we get a � c. Claim 6.

Claim 7. ≤ is antisymmetric.

Proof. Immediate from claim 6 and 1.2. Claim 7.
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Claim 8. E satisfies the finite refinement property.

Proof. It suffices to check the (2,2)-refinement property. Let a, a′, b, b′ in E such that
a+a′ = b+b′. Let R be the sub-P.O.M. of N

4 generated by α = (1, 1, 0, 0), α′ = (0, 0, 1, 1),
β = (1, 0, 1, 0), β′ = (0, 1, 0, 1). Using the hypothesis and the easily proved fact that R

is minimal, it is easy to verify that there exists a [unique] P.O.M.-homomorphism u from
R to E sending α on a, α′ on a′, β on b, β′ on b′. Now, u admits an extension to a
P.O.M.-homomorphism v from N

4 to E. Then we have the following refinement matrix:

b b′

a v
(
(1, 0, 0, 0)

)
v
(
(0, 1, 0, 0)

)

a′ v
(
(0, 0, 1, 0)

)
v
(
(0, 0, 0, 1)

)

which concludes the proof. Claim 8.

Claim 9. E is a strong refinement P.O.M..

Proof. According to claims 2, 7 and 8, it suffices to prove the pseudo-cancellation
property. So let a, b, c in E such that a + c = b + c. Let S be the sub-P.O.M. of N

4

generated by α = (1, 1, 0, 0), β = (1, 0, 1, 0), γ = (0, 0, 0, 1) and γ′ = (0, 1, 0, 1). It is easy
to verify that there is a [unique] P.O.M.-homomorphism u from S to E sending α on a, β

on b and γ, γ′ on c. Since E is injective, u has an extension to some v in Hom(B, E). Put
e = v

(
(0, 1, 0, 0)

)
, then a ≤ b + e and e � c. Claim 9.

Hence, by 1.16 (i), E satisfies the interpolation theorem (for finite subsets). The next
claim is an infinite version of it:

Claim 10. Let U, V be two subsets of E such that U ≤ V . Then there is c in E

such that U ≤ c and c ≤ V .

Proof. Let I be the set of all i = (p, q, x) where p ⊆ U, q ⊆ V , p and q finite, x ∈ E,
and p ≤ x and x ≤ q; write p = pi, q = qi, x = xi. Let F be the (proper) filter on I

generated by the Fpq = {i ∈ I : p ⊆ pi and q ⊆ qi} for all finite p ⊆ U, q ⊆ V ; the fact that
Fpq 
= ∅ comes from the finite interpolation theorem. Let ∗E be the reduced power EI/F .
Since E is injective, there is a retraction ρ from ∗E onto E. Put c = ρ([xi : i ∈ I]). Then
for all u in U , we have u ≤ xi for F - almost all i (those in F{u}∅), thus u ≤ c. Similarly,
c ≤ v for all v in V . Claim 10.

Claim 11. Every subset of E has a g.l.b. .

Proof. If X ⊆ E, let Y = {y ∈ E : (∀x ∈ X)(y ≤ x)}. For any c in E such that
Y ≤ c and c ≤ X (given by claim 11), we have c =

∧
X. Claim 11.
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Claim 12. + is distributive on
∧

.

Proof. Let a in E, X ⊆ E. Put b =
∧

X, c =
∧

(a + X). Obviously, a + b ≤ c.
Conversely, let I be the set of finite subsets of X, let F be the filter on I generated by
{Fp : p ∈ I} where Fp = {q ∈ I : p ⊆ q}. Let ∗E be the reduced power EI/F . Since
E is injective, there is a retraction ρ from ∗E onto E. Let d = ρ([

∧
p : p ∈ I]). For all

p ∈ I, we have c ≤ ∧
(a + p) = a +

∧
p (by 1.16, (v)), thus c ≤ a + d since ρ|E = id.

Moreover, if x ∈ X, then for F - almost all p (those in F{x}),
∧

p ≤ x, thus d ≤ x. Hence
c ≤ a + d ≤ a +

∧
X = a + b. Claim 12.

By claims 11, 12, 1 and 9, (ii) is satisfied. This concludes the proof.

3.12. Remark. We see in the proofs of claims 2 and 3 how important it was in
the definition of injective P.O.M.’s (3.1) to say that the inclusion map from A into B is
not only an injective homomorphism (which is here the same as a monomorphism) but
an embedding: otherwise, the proof of claim 2 would have shown that E is a group, then
the proof of claim 3 would have allowed us to conclude E = {0} (thus we reprove the
well-known fact that the only injective object in the category of commutative monoids is
{0}).

3.13. Corollary. Let E be a complete P.O.M.. Then the P.O.M. E� with the same

underlying set as E where the addition is replaced by the meet ∨ (and the zero and the

ordering are the same) is an injective P.O.M., of which all elements are idem-multiple.

Proof. An immediate consequence of 2.19 and 3.11.

We show now briefly how an injectivity concept can be connected with a decomposition
problem.

It has been proved (see [26]) that the disc and the square with unit area of R
2 are

equidecomposable (with a very large number of pieces) using only translations. A still
open problem is whether these pieces can be measurable. An even more general problem
could be stated as follows:

Let an amenable group G act by isometries on R
n (n ∈ N\{0}); is it true that any

two measurable equidecomposable subsets of R
n are equidecomposable using measurable

pieces?

Note right now that every abelian group is amenable, in particular the group of trans-
lations of R

2.

We will not solve this problem here, but we will show how its analogue for ‘continuous’
equidecomposability is true. In fact, we will even show that under a mild set-theoretical hy-
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pothesis (weaker than the Continuum hypothesis), it even holds for universally measurable
sets.

Define as Mokobodzki does in [11] a medial measure to be a universally measurable
[finitely additive] probability measure µ on P(ω) vanishing on singletons. Are there any
medial measures? The answer is “yes, under some mild set-theoretical assumptions” (see
[5] or [11]); note that it is not the case when we replace universal measurability by the
Baire property (see [5]). The simplest of these assumptions is the Continuum hypothesis,
but Martin’s axiom (and even weakened forms of it, see [11]) work as well. Thus, if we
consider the following statement of set theory:

ML: “There are medial measures,”

then ML is consistent with the axioms of set theory.

It is now time to recall some basic facts about amenable groups (see [19]). If G is a
group, then a [finitely additive] probability measure µ on P(G) is a right-invariant (resp.
left-invariant) mean on G when for all g in G and all A in P(G), we have µ(Ag) = µ(A)
(resp. µ(gA) = µ(A)); G is amenable when there is a right-invariant (resp. left-invariant,
resp. right-and-left invariant - see [19]) mean on G. We shall now see the connection
between these preliminaries and injective structures and decompositions. We start with a
statement similar to 3.9; there are no essential modifications to bring to the proof.

3.14. Lemma. Let Ω be a set, let B a countably complete Boolean subalgebra of

P(Ω). Let E = M(B) be the set of all B-measurable functions from Ω to P . Then E is

‘countably injective’, i.e. for all countable P.O.M.’s A ⊆ B, every homomorphism from A

to E extends to a homomorphism from B to E.

3.15. Remark. There are other countably injective P.O.M.’s as the M(B) above. In
fact, we know a complete ‘arithmetical’ characterization of countably injective P.O.M.’s;
it is in particular noteworthy that divisible weak cardinal algebras are always countably
injective. These results need further technical tools, and will appear elsewhere.

Now, for any group G, let us define a G-P.O.M. to be a P.O.M. A equipped with an
action of G on A by automorphisms. We define countably injective G-P.O.M.’s just the
same way as we defined countably injective P.O.M.’s in 3.14 with G-homomorphisms (i.e.
satisfying u(g.x) = g.u(x) for all g in G and all x in X) instead of just homomorphisms.
In fact, we shall be interested in a special class of G-P.O.M.’s.

3.16. Definition. Let a group G act by Borel automorphisms on a Borel space Ω;
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equip the space of all universally measurable maps from Ω to P with the canonical action
of G by translations. We will denote by UM(Ω) the corresponding G-P.O.M..

Our essential tool, which seems in our opinion to have an independent interest, will
be the following:

3.17. Theorem. Assume that there exists a medial measure. Let a countable

amenable group G act by Borel automorphisms on a Borel space Ω. Then UM(Ω) is a

countably injective G-P.O.M..

Proof. Put E = UM(Ω). Let A ⊆ B be two countable G-P.O.M.’s, let u be a
G-homomorphism from A to E. Since E satisfies the conditions of 3.14, u extends to a
homomorphism v from B to E; the problem is that v may not be a G-homomorphism.
Using Følner’s condition for amenability (see [16], [28]), it is not difficult to prove that
there is a universally measurable right-invariant mean µ on G; define a map w from B to
E by

(∀b ∈ B)(∀t ∈ Ω)
(
w(b)(t) =

∫
v(gb)(gt)dµ(g)

)
.

(The definition of integral here is essentially the same as Lebesgue integration, except
that µ is only finitely additive so that the limit theorems of integration are not available).
The fact that w still extends u is immediate. Moreover, w has range in E since µ is univer-
sally measurable. Finally, it is straightforward to check that w is a P.O.M.-homomorphism
and, using G-invariance of µ, that w is in fact a G-homomorphism.

As a special case of G-injectivity, we will use the following

3.18. Corollary. In the context of 3.17, put E = UM(Ω), and let A be a countable

sub-G-P.O.M. of E, let B be a countable G-P.O.M. containing A. Then there is a G-

homomorphism ρ from B to E such that ρ|A is the inclusion map from A into E.

Now, we are ready to conclude about continuous decompositions. Define the equide-
composability relation ≡G on P

Ω
(which we will call ‘continuous equidecomposability’ since

the pieces we use in our decompositions are rather P -valued functions than the usual char-
acteristic functions, see [37]) by ϕ ≡G ψ (or: ϕ and ψ are G-equidecomposable) if and only
if there are n in ω \ {0}, ϕi (i < n) in P

Ω
and gi (i < n) in G such that ϕ =

∑
i<n ϕi

and ψ =
∑

i<n giϕi; moreover, if the ϕi are in UM(Ω), we say that ϕ ≡G ψ with pieces in
UM(Ω). Applying 3.18 after having replaced G by the subgroup H generated by the gi,
with A=H-P.O.M. generated by {ϕ, ψ} and B generated by the ϕi, we get immediately
the following statement:
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3.19. Corollary. Assume that there is a medial measure. Let an amenable group G

act by Borel automorphisms on a Borel space Ω. Then two universally measurable functions

from Ω to P are [continuously] G-equidecomposable if and only if they are [continuously]

G-equidecomposable with universally measurable pieces.

As an example, it follows easily that the square and the disc of unit area in R
2 are

‘continuously equidecomposable’ using translations and universally measurable pieces. In
particular, we get the weaker statement that the square and the disc of unit area in R

2 are
continuously equidecomposable using Lebesgue-measurable pieces, modulo Lebesgue-null
sets. Since this is an absolute statement of set theory (see [23]), it is also true in set theory
without the axiom of choice. We do not know any ‘direct’ proof of this fact.

Concerning a possible extension of these results to discrete equidecomposability, we
do not know the answer; but a negative counterexample in this direction is the following:
let Ω = S1 be the unit circle of R

2, and let g be a rotation (around the origin) with
irrational angle (in radians); consider the group G generated by g. Then an easy argument
(reasoning on each G-orbit) shows that there is a subset X of Ω such that Ω = X∪gX and
X ∩ gX = ∅. However, an easy measure-theoretic argument shows that such a set cannot
be measurable for the canonical Lebesgue measure on S1; thus, the analogue of 3.18 fails
for discrete equidecomposability.
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