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Metric monoids

METRIC PROPERTIES OF POSITIVELY ORDERED MONOIDS.

Friedrich WEHRUNG, Université de CAEN, FRANCE

ABSTRACT

We introduce here an intrinsic (quasi-) metric on each positively ordered monoid
(P.O.M.), which is defined in terms of the evaluation map from the given P.O.M. to its
bidual and for which P.O.M. homomorphisms are continuous. Moreover, we find a class of
refinement P.O.M.’s which, equipped with the canonical metric, are complete metric spaces;
this class includes the class of weak cardinal algebras, but also most cases of completions
of a certain kind (we will call it ‘strongly reduced products’) of P.O.M.’s, and of which
a prototype has been used in a previous paper for the description of the evaluation map
of a given refinement P.O.M.. This result can also be viewed as a wide generalization
to the non-linearly ordered case (for example weak cardinal algebras) of the (Cauchy-)
completeness of the real line.

AMS subject classification: primary 06F05, 06F30; secondary 28B10.
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METRIC PROPERTIES OF POSITIVELY
ORDERED MONOIDS.

Friedrich WEHRUNG
Université de CAEN

Département de Mathématiques
14032 CAEN CEDEX,

FRANCE.

0. INTRODUCTION; BASIC DEFINITIONS AND NOTATIONS.

We recall here the definition of positively ordered monoids, as it appears in [15].

Definition. A positively ordered monoid (from now on a P.O.M.) is a structure

(A,+, 0,≤) where (A,+, 0) is a commutative monoid and ≤ is a preordering of A such

that (A,+, 0,≤) satisfies the following:

(i) (∀a, b, c)(a ≤ b ⇒ a + c ≤ b + c),

(ii) (∀a)(a ≥ 0).

In particular, when (A,+, 0,≤) is a commutative monoid, then we can define a pre-
ordering (not always antisymmetric) ≤ on A by

(∀x, y ∈ A)
(
x ≤ y ⇔ (∃z ∈ A)(x + z = y)

)
.

Such P.O.M.’s will be called, as in [15], minimal. Tarski’s monograph [12] is essentially
devoted to the study of certain minimal P.O.M.’s called cardinal algebras, and also to some
other weaker but still interesting structures called refinement algebras; it turns out that
these algebras appear naturally in very many forms, as for example algebras of isomorphism
types of certain structures (as countably complete Boolean algebras), or algebras of positive
(possibly infinite) real-valued functions (see [4], [14], [15]), countably distributive lattices,
either finite or countable equidecomposability type monoids (see [12], [13]), etc... . Since
then, this subject has been studied by several authors (see [4], [5], [8], [9], [10], [11], [15]),
and the notion of weak cardinal algebra has been introduced (see [9], [15]). It is very
interesting to note that all P.O.M.’s mentioned so far have the so-called finite refinement
property, which is the statement

(∀a0, a1, b0, b1)(a0 + a1 = b0 + b1 ⇒ (∃(cij)i,j<2)(∀i < 2)(ai = ci0 + ci1 and bi = c0i + c1i)).
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We will say that a P.O.M. is a refinement P.O.M. when it is minimal and satisfies the
finite refinement property.

In [15], we try to unify these concepts around an algebraic notion which is exempt,
unlike (weak) cardinal algebras, of any presupposed infinite addition; in [15], we chose
the notion of injectivity (from the categorical point of view). The fundamental injective
object in the category of P.O.M.’s equipped with its natural notion of embedding is the
extended positive real line, IP = [0 ∞] equipped with its natural notions of addition, zero
and ordering (its injectivity is a result of Tarski, and it is not difficult to prove that it is
equivalent - in set theory without choice - to the Hahn-Banach extension theorem): every
injective P.O.M. embeds into a power of IP. Thus IP is the pivot around which can be
built a duality theory of P.O.M.’s, as with 2 in the case of Boolean algebras (via Stone’s
representation theorem), IR/ZZ in the case of abelian groups, or IR in the case of normed
linear spaces (via the Hahn-Banach extension theorem).

If A and B are two P.O.M.’s, then Hom(A, B) denotes the P.O.M. of all homomor-
phisms from A to B (for both the monoid structure and the preordered set structure),
equipped with its componentwise preordering. If A is a P.O.M., then the dual of A is
A∗ = Hom(A, IP), and the natural evaluation map eA : x 	→ x∗∗ from A to its bidual
A∗∗, which is an embedding if and only if A embeds into an injective P.O.M. - (we will
say that A is regular) and this last possibility does not always occur. K.P.S. Bhaskara
Rao and R.M. Shortt proved in [9] that if (A,+, 0,

∑
) is a weak cardinal algebra, then

(A,+, 0,≤) (≤ minimal) is a regular P.O.M., while in [15], we described in a convenient
way the evaluation map of any refinement P.O.M., which implied easily the previous result.

Unfortunately, A∗∗ is in general a very unwieldy object (essentially too big), and so is
eA; for example, if A is a cardinal algebra, eA is not in general countably additive for the
natural structure of cardinal algebra on both sides (see [11]). In this paper, we will show
some positive results of preservation of properties of countable character by eA. In fact,
eA will yield us a natural, intrinsic quasi-metric δ on A, which will be a metric if eA is
an embedding (throughout this paper, a quasi-distance is allowed to take infinite values) -
see paragraph 1. It will allow us to construct some new regular (see 2.1 and 2.2) P.O.M.’s,
which are generalisations of the K(A) introduced in [15], which we will call strongly reduced
products. These, in turn, will be very useful by giving us some new information about the
map eA mentioned above (see 2.3 and the example following). Also, the natural metric will
turn out to be complete in several natural cases (see 4.7), including weak cardinal algebras
and some of the strongly reduced products mentioned above (including the K(A)’s). This
last result seems to us to be especially worth mentioning, because there are actually very
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few examples where some algebraic (most often ordered) structure carries an intrinsic
metric which turns out to be complete. Moreover, our metric seems to have nothing to
do with (complete or not) lattices, where it trivializes; it rather seems to generalize to a
large number of cases (including weak cardinal algebras) where the interval topology is
not suitable for study (the ordering is not linear) the well-known and essentially isolated
fact that the real line IR, equipped with its intrinsic uniform (metrizable) structure, is
complete. It seems in fact that those spaces which we consider can be rather often used
as image spaces of finitely additive measures, and thus, in order to satisfy non trivial
properties of infinite character, they must satisfy some completeness properties, of which
metric completeness might be only one particular aspect. See e.g. [10] for more precise
details about this.

In this paper, we will use basic set-theoretical notation and terminology; if f is a map
from a set X to a set Y and Z is a subset of X, then fZ will denote the image of Z under
f ; if Z is a subset of Y , then f−1Z will denote the inverse image of Z under f ; XY will
denote the set of all maps from Y to X. Families will be denoted by (ai)i∈I , or (ai)i when
there is no ambiguity about the index set. The set of all natural numbers will be denoted
by ω or by IN whether it will be considered as an ordinal or as, say, a P.O.M.. If F is a
filter on some set I and ϕ(x) is some statement with x as free variable, then the statement
(∀Fx)ϕ(x) means that {x ∈ I : ϕ(x)} ∈ F . In the case where F is the Fréchet filter over
ω, we will write ∀∞ for ∀F . If X and Y are two preordered sets, then a map f from X

to Y is increasing (resp. decreasing) when for all x, y in X such that x ≤ y, we have
f(x) ≤ f(y) (resp. f(y) ≤ f(x)). A preordered set X is left (resp. right) directed when
any two elements of X have a lower (resp. upper) bound. If X and Y are two subsets
of some preordered set P , then we write X ≤ Y for (∀(x, y) ∈ X × Y )(x ≤ y); when X

(resp. Y ) is a singleton, {a}, we write a ≤ Y (resp. X ≤ a). If α and β are two cardinals,
then P satisfies the (α, β)-interpolation property when for any nonempty sets X and Y of
size respectively ≤ α and ≤ β such that X ≤ Y , there is a in P such that X ≤ a ≤ Y ;
if X is a subset of P , then we denote by

∧
X (resp.

∨
X) the g.l.b. (resp. the l.u.b.) of

X when it exists. Furthermore, suppose that P = IP, let F be a filter on a set I and let
(ai)i∈I be a I-indexed family of elements of IP; we define limF (ai)i∈I =

∧
X∈F

∨
i∈X ai and

limF (ai)i∈I =
∨

X∈F
∧

i∈X ai; when both are equal, we shall denote them by limF (ai)i∈I

(it is the usual notion of limit for IP equipped with its natural topology). Furthermore, we
shall drop the index set I in the notations above where there is no ambiguity.

If E is a set and d is a map from E × E to IP, we shall say that d is a quasi-distance
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when for all x, y, z in E, we have:

d(x, x) = 0; d(x, y) = d(y, x); d(x, z) ≤ d(x, y) + d(y, z).

Furthermore, if we have in addition (∀x, y ∈ E)
(
d(x, y) = 0 ⇒ x = y

)
, then we will say

that d is a distance. The only difference between the notions of quasi-distance or distance
presented here and the usual notions lies in the fact that (quasi-) distances may assume
infinite values — since the quasi-distance considered in this paper has a simple ‘concrete’
signification, we chose not to alter it by replacing it by some uniformly equivalent bounded
distance.

Let us now give some more definitions about P.O.M.’s (some of which are already
known).

If a and b are in some P.O.M., we say that a � b when a + b = b, and that a is
idem-multiple when 2a = a. The pseudo-cancellation property (see [15]) is the statement

(∀a, b, c)(a + c ≤ b + c ⇒ (∃e � c)(a � b + e)).

A strong refinement P.O.M. is an antisymmetric refinement P.O.M. satisfying the
pseudo-cancellation property (see [15]). If κ is a cardinal, then A satisfies the κ-absorption
property when

(∀(ai)i ∈ Aκ)(∀b ∈ A)
(
(∀i < κ)(ai � b) ⇒ (∃a � b)(∀i < κ)(ai ≤ a)

)
.

Say that a P.O.M. is Archimedean (see also [15]) when it satisfies the statement

(∀a, b)
(
(∀n ∈ IN)(na ≤ b) ⇒ a � b

)
.

Finally, if m ∈ IN\{0}, say that the multiplicative m-≤-cancellation property is the
statement

(∀x, y)(mx ≤ my ⇒ x ≤ y),

and the multiplicative ≤-cancellation property is the conjunction of the multiplicative
m-≤-cancellation property for all m in IN\{0}.

Finally, we denote by (x 	→ ex) the exponential function on IP (with e∞ = ∞).
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1. THE CANONICAL QUASI-DISTANCE.

Definition. Let A be a P.O.M.. For all a, b in A, we put

ρA(a, b) =
∧

{r ∈ IR+ : a∗∗ ≤ erb∗∗},

and

δA(a, b) = ρA(a, b) ∨ ρA(b, a).

(As usual, we make the convention
∧ ∅ = ∞).

Lemma 1.1. Let A be a P.O.M., let a, b, c, a′, b′ in A. Then we have

(i) ρA(a, a) = δA(a, a) = 0,

(ii) δA(a, b) = δA(b, a),

(iii) ρA(a, c) ≤ ρA(a, b) + ρA(b, c),

(iv) δA(a, c) ≤ δA(a, b) + δA(b, c),

(v) ρA(a′, b′) ≤ ρA(a, b) + δA(a, a′) + δA(b, b′),

(vi) ρA(a + b, a′ + b′) ≤ ρA(a, a′) ∨ ρA(b, b′),

(vii) δA(a + b, a′ + b′) ≤ δA(a, a′) ∨ δA(b, b′),

(viii) ρA(a, b) = 0 ⇔ a∗∗ ≤ b∗∗,

(ix) δA(a, b) = 0 ⇔ a∗∗ = b∗∗.

Proof. A simple verification.

Note that ρA and δA trivialize on the set of idem-multiple elements of A. Thus,
we may say that their study is relevant only on those P.O.M.’s with non idem-multiple
elements.

It follows immediately that δA is a quasi-distance on A, which we will call the canonical
quasi-distance on A, and that if A is regular, then δA is a distance. As the following example
shows, the converse of the latter statement is false.

Example 1. Let IR+ = {x ∈ IR : x ≥ 0}, and let A be the submonoid of IR+ × IR+

defined by
A = {(x, y) ∈ IR+ × IR+ : y > 0} ∪ {(0, 0)}.

We equip A with its minimal ordering ≤A (note that ≤A is strictly contained in the
ordering induced by the natural ordering of IR+ × IR+). Let p and q be the projections
from A on respectively the first and the second coordinate. If a and b are any two elements
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of A such that a∗∗ = b∗∗, then p(a) = p(b) and q(a) = q(b), whence a = b. Thus δA is a
distance. On the other hand, let a = (1, 1) and b = (2, 1). Then a �≤A b, but for all n in
IN, we have na ≤A (n + 1)b whence a∗∗ ≤ b∗∗. Thus A is not regular.

Note that this example satisfies the finite refinement property. One can show with
more work that there such an example realized as some submonoid of the set Q+I of all
positive rationals, equipped with its minimal ordering.

Proposition 1.2. Let A, B be two P.O.M.’s, let f in Hom(A, B). Then for all a, b

in A, we have

ρB(f(a), f(b)) ≤ ρA(a, b) and δB(f(a), f(b)) ≤ δA(a, b).

Moreover, if f∗∗ is an embedding from A∗∗ into B∗∗, then the inequality above can be

replaced by an equality.

Proof. We just show the proof for ρA. Let r = ρA(a, b). The first inequality is trivial
if r = ∞; if r < ∞, then we have a∗∗ ≤ erb∗∗, thus

f(a)∗∗ = f∗∗(a∗∗) ≤ f∗∗(erb∗∗) = erf∗∗(b∗∗) = erf(b)∗∗,

so that the first inequality follows. Now let us suppose that f∗∗ is an embedding; put
r′ = ρB(f(a), f(b)); to conclude, it suffices to prove that r ≤ r′. It is true if r′ = ∞;
otherwise, we have f(a)∗∗ ≤ er′

f(b)∗∗, thus f∗∗(a∗∗) ≤ f∗∗(er′
b∗∗), hence a∗∗ ≤ er′

b∗∗;
hence r ≤ r′, and the conclusion follows.

It follows that P.O.M. homomorphisms are continuous with respect to the quasi-
distance topology induced by δ.

Corollary 1.3. ρ and δ are intrinsic, which means that if A is a sub-P.O.M. of a

P.O.M. B and if a, b are in A, then we have

ρA(a, b) = ρB(a, b) and δA(a, b) = δB(a, b).

Consequently, we will just write ρ(a, b) (resp. δ(a, b)) instead of ρA(a, b) (resp. δA(a, b)).

Tarski was the first one to notice the injectivity of IP (see [13]); in fact, his proof applies
to the following lemma, which we will thus state without proof (and which is another way
to prove 1.3):
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Lemma 1.4. Let A be a P.O.M., let r in IP, let a, b in A. Then the following are

equivalent:

(i) a∗∗ ≤ r.b∗∗,

(ii) (∀ε > 0)(∃p, q ∈ IN\{0})(p/q ≤ r + ε and qa ≤ pb).

2. STRONGLY REDUCED PRODUCTS OF P.O.M.’s.

Let (Ai)i∈I be a family of P.O.M.’s, let F be a [proper] filter over I. We equip
the product

∏
i∈I Ai with componentwise addition and the binary relations respectively

defined by

(ai)i ≡ (bi)i ⇔ lim
F

δ(ai, bi) = 0,

and

(ai)i ≤ (bi)i ⇔ lim
F

ρ(ai, bi) = 0.

Using 1.1, it is immediate to see that ≡ is an equivalence on
∏

i∈I Ai, compatible
with the addition and that ≤ is a preordering containing ≡. The quotient structure of∏

i∈I(Ai,+, 0,≤) by ≡ is obviously a P.O.M., which we will denote by
∏

F (Ai)i∈I , or just∏
FAi, and we will call it the strongly reduced product of (Ai)i modulo F . If a = (ai)i is

an element of
∏

i∈I Ai, then we will denote its equivalence class modulo ≡ by [a] = [ai]i.
Obviously,

∏
FAi is a quotient structure of the usual reduced product of (Ai)i∈I by F (see

[3], chapter 4 for basic facts about reduced products).

The following theorem gives a convenient expression of ρ and δ in a strongly reduced
product.

Theorem 2.1. Let (Ai)i∈I be a family of P.O.M.’s, let F be a filter over I, let

a = [ai]i and b = [bi]i in
∏

FAi. Then we have

ρ(a, b) = lim
F

ρ(ai, bi),

and

δ(a, b) = lim
F

δ(ai, bi).

Proof. Since lim commutes with ∨, it suffices to prove the equality for ρ. Put
A =

∏
FAi, r = ρ(a, b), ri = ρ(ai, bi), r = limFri. We first prove that r ≤ r; if r = ∞
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then this is obvious, so suppose that r < ∞. We have a∗∗ ≤ erb∗∗ in A∗∗, thus, using 1.4,
for all ε > 0 there are m, n in IN such that 0 < m < (er + ε)n and na ≤ mb. Let η > 0
such that (eη − 1)m ≤ εn. By definition of the canonical preordering of A, there is X in
F such that (∀i ∈ X)

(
ρ(nai, mbi) ≤ η

)
. So for all i in X, A∗∗

i satisfies na∗∗
i ≤ eηmb∗∗i ,

thus na∗∗
i ≤ (m + εn)b∗∗i ≤ n(er + 2ε)b∗∗i , so that ρ(ai, bi) ≤ ln(er + 2ε) ≤ r + 2ε; thus

r ≤ r + 2ε. Letting ε evaporate yields r ≤ r.

Conversely, let X in F ; put rX =
∨

i∈X ri, we will prove that r ≤ rX ; if rX = ∞
then this is trivial, so suppose that rX < ∞. Fix p, q in IN\{0} such that erX ≤ p/q. For
all i in X, we have a∗∗

i ≤ erX b∗∗i , thus qa∗∗
i ≤ pb∗∗i , thus ρ(qai, pbi) = 0; this holds for

all i in X, thus qa ≤ pb, thus a∗∗ ≤ (p/q)b∗∗. This holds for all possible values of p, q,
thus a∗∗ ≤ erX b∗∗; hence, r ≤ rX . This holds for all X in F , thus r ≤ r. The conclusion
follows.

Corollary 2.2. Every strongly reduced product of P.O.M.’s is a regular P.O.M..

Proof. Obvious from 2.1 and the definition of the preordering of a strongly reduced
product.

As an application, we will get a better understanding of the evaluation map of any
P.O.M.. If A is a P.O.M. and X is a subset of A, we will denote by

∧∗
X (resp.

∨∗
X)

the g.l.b. (resp. the l.u.b.) of eAX in IP
A∗

; so if X is left (resp. right) directed, then it is
the same to take the g.l.b. (resp. the l.u.b.) of eAX in A∗∗. Moreover, we will write X+

(resp. X−) the set of majorants (resp. minorants) of all elements of X in P .

Proposition 2.3. Let A be a P.O.M., let X, Y be two nonempty subsets of A. Then

the following are equivalent:

(i)
∧∗

X ≤ ∨∗
Y ;

(ii) For every homomorphism from A to a regular P.O.M. E, we have (fX)− ≤ (fY )+.

Moreover, if eAX (resp. eAY ) is left-directed (resp. right-directed), then each of the

conditions (i), (ii) is equivalent to the following third condition:

(iii) (∀ε > 0)(∃(x, y) ∈ X × Y )(ρ(x, y) ≤ ε).

Proof. (ii)⇒(i) is obvious (take E = IP
A∗

, f = eA). Now, assume (i), and let f be in
Hom(A, E) with E regular, let a in (fX)−, b in (fY )+. To prove that a ≤ b, it is sufficient,
since E is regular, to prove that for all u in E∗, we have u(a) ≤ u(b). Let v = u ◦ f . By
hypothesis (i), IP satisfies

∧
x∈X v(x) ≤ ∨

y∈Y v(y). Hence, we have
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u(a) ≤
∧

x∈X

u ◦ f(x) (because a ∈ (fX)− in E)

=
∧

x∈X

v(x)

≤
∨

y∈Y

v(y)

=
∨

y∈Y

u ◦ f(y)

≤ u(b) (because b ∈ (fY )+ in E),

which proves (ii). Hence (i)⇔(ii).

Now, put e = eA and suppose that eX and eY are respectively left-directed and right-
directed. It is easy to see that (iii) implies (i) (we do not use the directedness hypothesis).
Conversely, assume (ii). Let I = eX × eY , equipped with the filter F generated by the
sets Fx,y = {(x′, y′) ∈ I : x′ ≤ x and y ≤ y′} for (x, y) ∈ I. Then A =

∏
FeA is, by 2.1, a

regular P.O.M.. Let f be the natural map from A to A. Thus (fX)− ≤ (fY )+. But if we
put a = [x : (x, y) ∈ I] and b = [y : (x, y) ∈ I], then it is easy to see that a ∈ (fX)− and
b ∈ (fY )+; it follows that a ≤ b, which means by definition that limF ρ(x, y) = 0, which
implies immediately our conclusion.

For example, if a, an (n ∈ ω) are elements of some P.O.M. A with (an)n increasing,
then a ≤ ∨∗

n an if and only if (∀ε > 0)(∃n ∈ ω)(ρ(a, an) ≤ ε). In particular, if a, b are in
A, then a ≤ ∞b (in A∗∗) if and only if (∃n ∈ IN)(a ≤ nb). (We say that in this case, a is
b-bounded).

Another remarkable property of strongly reduced products is a countable saturation-
like property. If s and t are two terms of the first-order language (+, 0) and ε > 0, then
we define the ε-approximations of atomic formulas by

(s = t)|ε is δ(s, t) ≤ ε,

and

(s ≤ t)|ε is ρ(s, t) ≤ ε.

If 
a = (
an)n∈ω with 
an = (an
i )i∈I , we put 
ai = (an

i )n; moreover, if [−] is an operation
defined on I-sequences, then we write 
[a] = ([
an])n. Finally, a filter F will be said to be
anticomplete when it satisfies the following statement:
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(
∃(Xn)n∈ω ∈ Fω

)
(
⋂
n

Xn = ∅).

With these conventions, we can state in a convenient way the following

Proposition 2.4. Let F be an anticomplete filter over a set I, let (Ai)i∈I be a family

of P.O.M.’s; put A =
∏

i Ai. Let (ϕk(
x, 
y))k∈ω be a countable list of atomic formulas of

the language (+, 0,≤), let 
a = (
an)n in (Aω)ω. Put A =
∏

FAi. Then the following are

equivalent:

(i) (∃
x ∈ (Aω)ω)(∀k < ω)(A |= ϕk( 
[x], 
[a]));

(ii) (∀n ∈ ω)(∃
x ∈ (Aω)ω)(∀k < n)(A |= ϕk( 
[x], 
[a]));

(iii) (∀n ∈ ω \ {0})(∃
x ∈ (Aω)ω)(∀k < n)(∀F i)(Ai |= ϕk| 1
n
(
xi,
ai)).

Heuristically, the statement of proposition 2.4 says that a countable type of atomic
formulas is satisfiable in

∏
FAi if and only if it is ‘finitely approximately satisfiable’.

Proof. (i)⇒(ii) and (ii)⇒(iii) are trivial. To prove (iii)⇒(i), we use a diagonal
argument. So assume (iii). Using anticompleteness of F , we get a decreasing sequence
(Xn)n of elements of F and a sequence (
xn)n∈ω of elements of (Aω)ω such that

⋂
n Xn = ∅

and

(∀n ∈ ω \ {0})(∀k < n)(∀i ∈ Xn)(Ai |= ϕk| 1
n
((
xn)i,
ai)). (1)

Let (h : X0 → ω, i 	→ largest n in ω such that i ∈ Xn). Since
⋂

n Xn = ∅, h is
everywhere defined on X0. Define now 
x in (Aω)ω by putting 
xi = (
xh(i))i when i ∈ X0,
0 otherwise. Let k in ω, let us prove that A |= ϕk( 
[x], 
[a]). By definition of equality and
preordering of A, it is sufficient to prove that for all n > k in ω, we have

(∀F i)(Ai |= ϕk| 1
n
(
xi,
ai)). (2)

Let i in Xn. Then k < n ≤ h(i) and i ∈ Xh(i), thus, by (1), Ai |= ϕk| 1
h(i)

((
xh(i))i,
ai).

But 1/h(i) ≤ 1/n, thus we also have Ai |= ϕk| 1
n
((
xh(i))i,
ai), which means that Ai |=

ϕk| 1
n
(
xi,
ai). This proves (2), and completes the proof.

Note that when F is not anticomplete,
∏

FQ+I does not satisfy the saturation property
above.
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3. CASE OF REFINEMENT P.O.M.’s.

In this paragraph, we will need the results of the last chapter of [15], essentially
the ‘first embedding theorem’, which will allow us to redefine the intrinsic quasi-metric
structure on refinement P.O.M.’s in a more convenient way. We will just recall without
proof the essential construction. Let A be a refinement P.O.M.. If a, b are in A and n in
IN, then we define the following relations:

a �n b ⇔ (∃m ∈ IN)(2m+na ≤ 2mb),

a ≤n b ⇔ (∃c �n b)(a ≤ b + c),

and

a ≡n b ⇔ (∃u �n a)(∃v �n b)(a + u = b + v).

Then we define two binary relations ≡ and ≤ on Aω by

(ai)i ≡ (bi)i ⇔ (∀m ∈ IN)(∀∞i)(ai ≡m bi),

and

(ai)i ≤ (bi)i ⇔ (∀m ∈ IN)(∀∞i)(ai ≤m bi).

As in the former case of strongly reduced products, the quotient Aω/ ≡ can be
equipped with a natural structure of P.O.M., which we will denote by K(A). One can
easily verify that K is a functor.

Heuristically, [the natural map from A to] K(A) has been introduced on purpose to
be able to define a ‘limit’ of every sequence (an)n of elements of A, namely by putting
Limn→∞an = [an]n, such that furthermore, this notion of limit is a homomorphism for the
monoid structure and both binary relations ≡ and ≤ defined above; in fact, by definition,
K(A) is universal with this property.

In [15] (first embedding theorem), we have proved several properties of K(A) implying
that K(A) is a regular P.O.M.. With the help of proposition 2.3, it is then easy to get the
following

12



Lemma 3.1. Let A be a refinement P.O.M., let a, b in A, n in IN. Then the following

holds:

(i) a ≤n b implies ρ(a, b) ≤ ln(1 + 2−n);

(ii) If n ≥ 2, then ρ(a, b) ≤ ln(1 + 2−n) implies a ≤n−2 b.

Proof. Assume first (i). If a ≤n b, then a∗∗ ≤ (1+2−n)b∗∗, thus ρ(a, b) ≤ ln(1+2−n).
Conversely, if ρ(a, b) ≤ ln(1 + 2−n) holds, then we have 2na∗∗ ≤ (2n + 1)b∗∗. Let ε be the
canonical homomorphism from A to K(A). Since K(A) is regular, it follows from 2.3 that
2nε(a) ≤ (2n+1)ε(b); since K(A) is a strong refinement P.O.M. satisfying the multiplicative
≤-cancellation property, it follows from results in chapter 6 of [15] that there is γ in K(A)
such that ε(a) ≤ ε(b) + γ and 2nγ ≤ ε(b). Write γ = [ci]i∈ω; it follows that there is i in ω

such that a ≤n+1 b + ci and 2nci ≤0 b. Hence ([15], ch. 6) there are u �n b and v �n ci

such that a ≤ b + ci + u + v. If c = ci + u + v, it follows that c �n−2 b and a ≤ b + c,
which concludes the proof.

As an immediate corollary, we see immediately that the notion of strongly reduced
product is a generalization of the notion K(A):

Corollary 3.2. Let A be a refinement P.O.M.. Then K(A) is exactly the strongly

reduced power of A by the Fréchet filter over ω.

We mention here another fact, whose proof relies heavily on 3.1.

Corollary 3.3. Any strongly reduced product of refinement P.O.M.’s relatively to

an anticomplete filter is a refinement P.O.M..

Proof. Let (Ai)i∈I be a family of refinement P.O.M.’s, let F be an anticomplete filter
over I; put A =

∏
FAi, let a = (ai)i, b = (bi)i, a′ = (a′

i)i, b′ = (b′i)i in A. Using 3.1 and
the anticompleteness of F , we see easily that there are X in F and a map h : X → ω such
that limF h = ∞ and

(∀i ∈ X)
(
ai + a′

i ≡h(i)+1 bi + b′i
)
.

(We use the fact that in a refinement P.O.M., a ≤n+2 b and b ≤n+2 a implies a ≡n b).
Thus, using results in chapter 6 of [15], for all i in X, there are ui �h(i) ai, u′

i �h(i) a′
i,

vi �h(i) bi, v′i �h(i) b′i such that (ai + ui) + (a′
i + u′

i) = (bi + vi) + (b′i + v′i) (and we put
e.g. ui = vi = u′

i = v′i = 0 for all i in I \ X). If pi, qi, ri, si refine (in the obvious
sense) (ai + ui, a

′
i + u′

i), (bi + vi, b
′
i + v′i), then the corresponding elements [p], [q], [r], [s]

of A refine ([a] + [u], [a′] + [u′]), ([b] + [v], [b′] + [v′]); but since limF h = ∞, we have
[a] + [u] = [a], [a′] + [u′] = [a′], [b] + [v] = [b], [b′] + [v′] = [b′]. So we have proved that
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A satisfies the finite refinement property; the proof of minimality of A is similar (in fact
simpler). The conclusion follows.

We know no direct proof of this fact without the help of 3.1; in fact, we do not even
know whether any strongly reduced product of minimal P.O.M.’s is minimal, although we
suspect it is not the case. Note that we could have proved a similar statement about e.g.
preservation of strong refinement P.O.M.’s, but it is actually redundant - more precisely,
any strongly reduced product relatively to an anticomplete filter of refinement P.O.M.’s is
a strong refinement P.O.M. (and it actually satisfies many more properties). The proof of
this proposition uses 2.4 and results in the last chapter of [15].

4. δ-COMPLETE P.O.M.’s.

First of all, we have to mention that if A is a regular P.O.M., which means that
its evaluation map is an embedding, then the closure A of [the image of] A in IP

A∗
is,

equipped with the canonical metric δ, a complete metric space, thus the metric completion
of A. Moreover, using 1.1 and 1.3, it is easy to see that A is closed under addition,
and if a = limn→∞ an and b = limn→∞ bn are elements of A, then a ≤ b if and only if
limn→∞ ρ(an, bn) = 0. It follows easily that A is itself a P.O.M.:

The metric completion of a regular P.O.M. is a regular P.O.M..
This result, however elegant, is a priori not very useful, since it does not give conve-

nient completeness criteria for some other known classes of P.O.M.’s which already enjoy
some kind of ‘completeness’ (intuitively rather stronger than δ-completeness), as for e-
xample [weak] cardinal algebras, or even the K(A)’s mentioned in previous paragraph.
We shall answer this question by giving a certain class of regular refinement P.O.M.’s,
including both classes above, and enjoying δ-completeness.

First, we need a lemma, which we already proved in [15], chapter 1.

Lemma 4.1. Let A be a refinement P.O.M., let m in IN\{0}, let a, b, c in A. Then

the following are equivalent:

(i) a + b = mc;

(ii) There are xk (k ≤ m) in A such that




a =
∑

k≤m kxk

b =
∑

k≤m(m − k)xk

c =
∑

k≤m xk
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a'

b

b+c

a=a'+d

Lemmas 4.2 to 4.6 will now lead us to our solution.

Lemma 4.2. (“Parallelogram lemma”) Let A be a refinement P.O.M. satisfying the

multiplicative 2− ≤-cancellation property, let n in IN, let a, b in A such that a ≤n b. Then

there are c, a′, d in A such that:

(i) a ≤ b + c and 2nc ≤ b;

(ii) a = a′ + d and 2nd ≤ a′ ≤ b and d ≤ c.

The picture is as follows (an arrowed line from x to y means that x ≤ y):

Proof. By definition of ≤n, there is c in A such that a ≤ b + c and c �n b; since
A satisfies the multiplicative 2-≤-cancellation property, we have 2nc ≤ b, so (i) follows.
Since A is minimal, there is e in A such that 2nc + e = b, so that a ≤ (2n + 1)c + e;
since A is a refinement P.O.M., there are u, v such that a = u + v and u ≤ (2n + 1)c and
v ≤ e. By 4.1, there are xk (k ≤ 2n +1) such that u =

∑
k≤2n+1 kxk and c =

∑
k≤2n+1 xk.

Let d = x2n+1 and a′ =
∑

k≤2n kxk + 2nx2n+1 + v. Then a′, d satisfy the required
conditions.

Lemma 4.3. Let A be an Archimedean strong refinement P.O.M. satisfying the (2,ℵ0)-
interpolation property. Then A is a regular P.O.M..

Proof. We start with a

Claim. A satisfies the multiplicative 2-≤-cancellation property.

Proof of claim. An adapted version of the proof of [12], 2.31 (see also [15], chapter 3).
We put T = {(a, b, c) ∈ A×A×A : 2a + c ≤ 2b + c}. If (a, b, c) is a fixed element of T , we
get, using the fact that A is a refinement P.O.M., a sequence

(
(an, bn, cn)

)
n∈ω

of elements
of T such that a0 = a, b0 = b, c0 = c and for all n,

an + cn = 2an+1 + cn+1 and bn + cn = an+1 + bn+1 + cn+1. (1)
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Thus, for all n, we have a + c ≤ b + c + an+1; it follows by the (2,ℵ0)-interpolation
property that there is e in A such that

{a + c, b + c} ≤ e ≤ {b + c + an+1 : n ∈ ω}. (2)

Let d such that e = (b + c) + d. But for all n, we have b + c ≥ ∑
i<n ai+1, so it

follows from (2) that 2(b + c) ≥ nd + (b + c), thus, using the pseudo-cancellation property,
nd ≤ b+c. Since A is Archimedean, it follows that d � b+c, so that a+c ≤ b+c+d = b+c.

Since 2a ≤ 2b means that (a, b, 0) ∈ T , we get the result. Claim.

Now, we can prove our lemma. For that purpose, it is very convenient to use the
‘second embedding theorem’ of [15] (whose version stated here is lemma 3.1). We first
have to check that ≤ is antisymmetric, which results immediately from the minimality and
Archimedean property of A. Now, let a, b in A such that for all n, we have a ≤n b. By
the claim, there is a sequence (cn)n such that for all n, we have 2ncn ≤ b and a ≤ b + cn.
Using again (2,ℵ0)-interpolation, there is d such that {a, b} ≤ d ≤ {b + cn : n ∈ ω}. Let c

such that b + c = d. For all n, we have b + 2nc ≤ b + 2ncn ≤ 2b, thus, using the pseudo-
cancellation property, 2nc ≤ b. Since A is Archimedean, we get c � b; hence a ≤ b+ c = b.
The conclusion follows.

Remark. The same conclusion could have been reached (with about the same proof)
if we had replaced among the assumptions about A the pseudo-cancellation property by
the following weaker assumption:

(∀a, b)(a � 2b ⇒ a � b).

(which itself results from the multiplicative 2-=-cancellation property).

Now, from 4.4 to 4.6, we fix a strong refinement P.O.M. A satisfying the ℵ0-absorption
property, the (ℵ0,ℵ0)-interpolation property and the multiplicative ≤-cancellation proper-
ty.

Lemma 4.4. Let a, b, ci (i ∈ ω) in A such that (∀i ∈ ω)(a + ci ≤ b). Then there is c

in A such that a + c ≤ b and (∀i ∈ ω)(ci ≤ c).

Proof. (Note the similarity with 2.25 of [12]). Since a ≤ b, there is d such that
a + d = b. For all i in ω, a + ci ≤ b = a + d, thus, by the pseudo-cancellation property,
there is ei � a such that ci ≤ d + ei. By the ℵ0-absorption property, there is e � a such
that (∀i ∈ ω)(ei ≤ e). Then c = d + e satisfies the required condition.
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Lemma 4.5. Let m in IN\{0}, let a, b, ci (i ∈ ω) in A such that (∀i ∈ ω)(mci+a ≤ b).
Then there is c in A such that (∀i ∈ ω)(ci ≤ c) and mc + a ≤ b.

Proof. As in [12], 2.39: the assumptions made on A here are sufficient to make the
proof work.

We turn now to a sort of infinite version of the ‘parallelogram lemma’ 4.2.

Lemma 4.6. Let a, ak (k ∈ ω) in A, let n in IN. Then the following holds:

(i) If (∀k ∈ ω)(ak ≤n a), then there is c in A such that 2nc ≤ a and (∀k ∈ ω)(ak ≤ a + c);

(ii) If (∀k ∈ ω)(a ≤n ak), then there are a′, d in A such that a = a′ + d and 2nd ≤ a′ and

(∀k ∈ ω)(a′ ≤ ak).

Proof. Assume first the hypotheses of (i). By the 2− ≤-cancellation property, for all
k in ω, there is ck in A such that ak ≤ a + ck and 2nck ≤ a. By 4.5, there is c such that
(∀k ∈ ω)(ck ≤ c) and 2nc ≤ a. Then c satisfies the required conditions for (i).

Assume now the hypotheses of (ii). By 4.2, for all k in ω, there are a′
k, dk such

that a = a′
k + dk and 2ndk ≤ a′

k ≤ ak. Thus (2n + 1)dk ≤ a, thus, by 4.5, there is d

in A such that (2n + 1)d ≤ a and (∀k ∈ ω)(dk ≤ d). Thus, there is a′ ≥ 2nd such that
a′ + d = a. Hence, for all k in ω, we have a′ + dk ≤ a′ + d = a = a′

k + dk, thus, by the
pseudo-cancellation property, a′ ≤ a′

k + ek for some ek � dk; but dk ≤ 2ndk ≤ a′
k, thus

ek � a′
k; it follows that in fact, a′ ≤ a′

k. Hence, a′ and d satisfy the required conditions
for (ii).

We can now state our theorem (see the introduction for the terminology used):

Theorem 4.7. Let A be an Archimedean strong refinement P.O.M. satisfying the ℵ0-

absorption property and the (ℵ0,ℵ0)-interpolation property. Then A is a regular P.O.M.,

and, equipped with its canonical distance, is a complete metric space.

Proof. First, 4.3 implies that A is regular. Let (an)n be a Cauchy sequence in A;
to prove that it is convergent, we can without loss of generality replace it by one of its
subsequences, and thus assume, using 3.1, that

(∀n ∈ ω)(∀k ≥ n)(an ≡n ak).

Let n in ω. Since (∀k ≥ n)(ak ≤n an), there is, by 4.6, cn in A such that

2ncn ≤ a and (∀k ≥ n)(ak ≤ an + cn). (1)
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Since (∀k ≥ n)(an ≤n ak), there are, by 4.6, a′
n and dn such that

an = a′
n + dn and 2ndn ≤ a′

n and (∀k ≥ n)(a′
n ≤ ak). (2)

Now, let p, q in ω, let k ≥ p, q; by (1) and (2), we have a′
p ≤ ak ≤ aq + cq, thus

a′
p ≤ aq + cq. By the (ℵ0,ℵ0)-interpolation property, there is a in A such that

(∀p, q ∈ ω)(a′
p ≤ a ≤ aq + cq).

It follows immediately that for all n in ω, we have an ≤n a and a ≤n an, which shows,
using 3.1, that a is the limit of (an)n.

We can now give four important classes of δ-complete regular P.O.M.’s:

Example 2. Positive cones of directed abelian ordered groups. An immediate appli-
cation of theorem 4.7 yields the following

Proposition 4.8. Let A be a directed abelian ordered group satisfying the (ℵ0,ℵ0)-
interpolation property and the statement

(∀a, b ≥ 0)
(
(∀n ∈ IN)(na ≤ b) ⇒ a = 0

)
. (∗)

Then A embeds into a complete 
-group and A+ is δ-complete.

Proof. By 4.7, A+ is regular; thus (see [15], chapter 6) A embeds into a complete

-group. Moreover, δ-completeness follows immediately from 4.7 .

Note that (∗) is strictly weaker than the definition of the Archimedean property ap-
pearing in [1]; for example, the P.O.M. of equidecomposability types of polyhedra of IR3

modulo isometries (with only polyhedral pieces allowed in the decompositions) is the pos-
itive cone of a directed abelian ordered group (by Zylev’s theorem) which satisfies (∗), but
which is not Archimedean in the sense of [1] (see [2] for more details). Still, in the context
of 4.8, it follows from the fact that A embeds into a complete 
-group that both definitions
of the Archimedean property are equivalent (see [15]).

Example 3. Weak cardinal algebras. If (A,+, 0,
∑

) is a weak cardinal algebra, then,
equipped with its minimal preordering, it satisfies the hypotheses of 4.7 (see [9], [15]).
Thus,

[The P.O.M. associated with] any weak cardinal algebra is δ-complete.
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In fact, in any weak cardinal algebra, one can even assign a limit to every ‘Cauchy-
increasing’ sequence, that is, a sequence (an)n such that lim(m,n)→∞, m≤n ρ(am, an) = 0.
The relevant notion of limit shows in both following propositions:

Lemma 4.9. Let A be a P.O.M. satisfying all the hypotheses of 4.7, let (an)n be a

sequence of elements of A such that

(∀n ∈ ω)(∀k ≥ n)(an ≤n ak). (∗)

Then there is an increasing sequence (bn)n of elements of A such that

(∀m, n ∈ ω)(m ≤ n ⇒ bm ≤ an ≤n bn).

Proof. Let a′
n, dn (n ∈ ω) be defined as in the proof of 4.7. We construct inductively

(bn)n the following way. First, b0 = a′
0. Suppose that bi have been defined for all i ≤ n

such that a′
i ≤ bi ≤ ai and (∀k ≥ i)(bi ≤ ak) and (bi)i≤n is increasing. Then we have

{bn, a′
n+1} ≤ {ak : k ≥ n + 1}, thus, using the (2,ℵ0)-interpolation property, there is bn+1

such that {bn, a′
n+1} ≤ bn+1 ≤ {ak : k ≥ n + 1}. Thus (bn)n is as desired.

Corollary 4.10. Let A be a weak cardinal algebra, let (an)n be a Cauchy-increasing

sequence of elements of A. Then the set of all x in A such that limn→∞ ρ(an, x) = 0 has

a least element, which is the limit of (an)n when (an)n is a δ-Cauchy sequence.

Proof. Without loss of generality, we may assume that (∀n ∈ ω)(∀k ≥ n)(an ≤n ak).
Let (bn)n as in 4.9; put a =

∨
n bn and S = {x ∈ A : limn→∞ ρ(x, an) = 0}. For all n in

ω, we have an ≤n bn ≤ a, thus a ∈ S. Moreover, for all x in S and all m, n in IN, there
is k ≥ n such that ak ≤m x; but bn ≤ ak, thus bn ≤m x; this holds for all m, thus bn ≤ x;
thus a ≤ x. This proves that a =

∧
S. Finally, if (an)n is a δ-Cauchy sequence, let (cn)n

be as in the proof of 4.7. Then for all n, we have (∀k ≥ n)(ak ≤ an +cn), thus an +cn ∈ S,
thus a ≤ an + cn, thus a ≤n an. Since an ≤n bn ≤ a, we have a = limn→∞ an.

By the last statement of 4.10, the least element of the set S above can be denoted by
limn→∞ an (since there is coherence with the notation for the limit of a Cauchy sequence).
Then it is easy to see that the addition is continuous with respect to this notion of limit,
which means that for all Cauchy-increasing sequences (an)n and (bn)n of the reference
weak cardinal algebra, the sequence (an + bn)n is Cauchy-increasing and we have

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.
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Let us finally make a remark concerning simple cardinal algebras (see [5], [12]). It is
not difficult to prove that any regular separable (with the canonical metric) P.O.M. has the
ccc (i.e. it has no strictly increasing ω1-sequences) — note that the converse is false, see
e.g. IP

ω
; from that and the fact that any simple cardinal algebra with the ccc is linearly

ordered, it is easy to see that any non-linearly ordered simple cardinal algebra (if it exists)
is, equipped with its canonical distance, a non-separable metric space. According to 4.7
above and the results of [5], it follows that if A is a non-linearly ordered simple cardinal
algebra, then the set of all finite elements of A is the positive cone of a complete vector
lattice which is also a non-separable Fréchet space.

Example 4. Preservation of completeness under products. We give this example only
in the context of regular P.O.M.’s, where it makes sense. Notice first that any product of
regular P.O.M.’s is regular: this is because a P.O.M. is regular if and only if it embeds
into a power of IP.

Proposition 4.11. Any product of regular δ-complete P.O.M.’s is regular δ-complete.

Proof. Let (Ei)i∈I be a family of regular δ-complete P.O.M.’s; we have seen that
the P.O.M. E =

∏
i∈I Ei is a regular P.O.M.. Now, let (an)n∈ω be a δ-Cauchy sequence

of E; put an = (an
i )i. Applying 1.2 to the projections from E to the Ei’s, we see that

each sequence (an
i )n∈ω is a δ-Cauchy sequence of Ei, thus converges to some ai in Ei;

let a = (ai)i, we prove that a = limn→∞ an. Let ε > 0, let N in IN\{0} such that
ln(1 + 1/N) ≤ ε; put η = ln(1 + 1/N). There is k in ω such that for all m, n ≥ k, we have
δ(am, an) ≤ η. Thus for all i in I, δ(am

i , an
i ) ≤ η (use 1.2); making m go to infinity yields

that for all n ≥ k, δ(ai, a
n
i ) ≤ η. Therefore, since Ei is regular, Nai ≤ (N + 1)an

i and
Nan

i ≤ (N + 1)ai; thus for all n ≥ k, δ(a, an) ≤ η ≤ ε, which concludes the proof.

As a corollary, in the context of 4.11 (and 1.3), any closed sub-P.O.M. of
∏

i Ei is
δ-complete. For example,

— The sub-P.O.M. of E whose elements are the elements of countable support of
∏

i Ei

is δ-complete;

— For any P.O.M. A and any δ-complete P.O.M. E, Hom(A, E) is δ-complete; for
example, if E is a weak cardinal algebra, then Hom(A, E) is always δ-complete. This is
interesting, because Hom(A, E) is not always itself a weak cardinal algebra — it may not
even satisfy the finite refinement property(see [15]).

Example 5. Strongly reduced products of P.O.M.’s with respect to an anticomplete
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filter. Recall that a filter is anticomplete when some sequence of its elements has empty
intersection.

Proposition 4.12. Let (Ai)i∈I be a family of P.O.M.’s, let F be an anticomplete

filter on I. Then
∏

FAi is δ-complete.

Proof. A diagonal argument (using theorem 2.1), similar to (and in fact easier than)
the one in the proof of 2.4 .

Note again that in the case where F is not anticomplete,
∏

FQ+I is not δ-complete.

Note also that in fact, any strongly reduced product of refinement P.O.M.’s satisfies
the hypotheses of theorem 4.7 (this can be proved using 2.4 and results in [15]). This
suggests that the hypotheses of 4.7 are in fact much stronger than δ-completeness, and serve
some other ‘algebraic’ property which implies δ-completeness; we suspect this (hypothetic)
algebraic property to be a homomorphism extension property (see also [10], [15] for the
study of some examples of this kind of property).
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