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Fast Flat-Histogram Method for Generalized Spin Models

S. Reynal∗ and H.T.Diep
Laboratoire de Physique Théorique et Modélisation,
CNRS-Université de Cergy-Pontoise (UMR 8089),

2 avenue A. Chauvin, F-95302 Cergy-Pontoise Cedex, France
(Dated: April 14, 2005)

We present a Monte Carlo method that efficiently computes the density of states for spin models
having any number of interaction per spin. By combining a random-walk in the energy space
with collective updates controlled by the microcanonical temperature, our method yields dynamic
exponents close to their ideal random-walk values, reduced equilibrium times, and very low statistical
error on the density of states. The method can host any density of states estimation scheme,
including the Wang-Landau algorithm and the transition matrix method. Our approach proves
remarkably powerful in the numerical study of models governed by long-range interactions, where
it is shown to reduce the algorithm complexity to that of a short-range model with the same
number of spins. We apply the method to the q-state Potts chains (3 ≤ q ≤ 12) with power-law
decaying interactions in their first-order regime; we find that conventional local-update algorithms
are outperformed already for sizes above a few hundred spins. By considering chains containing
up to 216 spins, which we simulated in fairly reasonable time, we obtain estimates of transition
temperatures correct to five-figure accuracy. Finally, we propose several efficient schemes aimed at
estimating the microcanonical temperature.

PACS numbers: 05.10.Ln, 64.60.Cn, 75.10.Hk

I. INTRODUCTION

Long-range spin models have drawn increasing inter-
est in the last decade, both in the microscopic model-
ing of a variety of systems ranging from model alloys [1]
to spin glasses [2] to neural networks [3], and as power-
ful laboratory frame to investigate fundamental issues in
the physics of critical phenomena. These include, e.g.,
the effect of dimensionality [4], the crossover from short-
range to long-range behavior [5, 6, 7], mean-field driven
phase transitions [8], and possible connections with Tsal-
lis’s non-extensive thermodynamics [9, 10, 11]. Monte
Carlo (MC) methods have now gained a prominent role
in the investigation of phase transitions in these models
[12, 13, 14, 15, 16, 17, 18]. In particular, a major break-
through was recently initiated by the introduction of a
(canonical) cluster algorithm able to overcome the algo-
rithm complexity inherent to long-range (LR) models,
namely, the need to take a huge number of interactions
into account at each Monte Carlo step (MCS) [12]. In a
recent article, we proposed a generalization of this algo-
rithm to simulations in the multicanonical ensemble [19].
It is the goal of the present work to introduce a general
and versatile method aimed at embedding any cluster up-
date scheme in a flat histogram algorithm, with special
emphasis given to LR spin models.

Whether short- or long-range interactions are consid-
ered, canonical MC simulations of long-range spin models
suffer indeed from severe shortcomings, the use of clus-
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ter updates notwithstanding. First and foremost, mod-
els exhibiting first order phase transitions or complicated
energy landscapes experience supercritical slowing down
[20]: the time needed for the dynamics to tunnel through
free energy barriers grows exponentially with the lattice
size, leading to quasi ergodicity breaking and unreliable
statistics. Second, the computation of free energies and
related thermodynamic quantities is highly involved, and
a precise determination of the order of the transition is
often intractable. In practice, these shortcomings pre-
clude the use of canonical MC algorithms at first-order
transitions except at modest lattice sizes and in the case
of weakly first-order transitions.

An efficient approach aimed at overcoming this limita-
tion is the simulation in generalized ensembles [21, 22],
in particular its multicanonical flavor initially proposed
by Berg [20, 23, 24], reconsidered in the context of tran-
sition matrix dynamics [25, 26] and recently revisited by
Wang and Landau [27, 28]. The key-idea here is to arti-
ficially enhance rare events corresponding to local max-
ima in the free energy, by feeding the Markov chain with
an appropriate distribution w(E). In the multicanoni-

cal ensemble, w(E) is set to the inverse of the density of
states, so that the resulting dynamics is a random walk
in the energy space that yields a flat histogram of the
energy. Other ensembles have been proposed in the last
decade, including the 1/k ensemble, which enhances low-
energy states [29], and very recently, the optimal ensem-
ble, which aims at optimizing the distribution w(E) with
respect to the local diffusivity of the random walker, so
that tunneling times are minimized [30, 31]. While still
broad, histograms engendered by these last ensembles are
no longer flat; in the optimal ensemble for instance, the
histogram is slightly peaked around the critical region,
so that the larger time spent by the random walker in-

mailto:reynal@ensea.fr
http://www-reynal.ensea.fr
http://www-reynal.ensea.fr


2

side the critical region compensates the lower diffusivity
in this region.

When implemented through local (i.e., single-spin) up-
dates [7], simulations in the multicanonical ensemble suf-
fer, however, from two serious hurdles. First, while tun-
neling times — measured in Monte Carlo steps (MCS) —
are reduced from an exponential to a power law τ ∼ Lz of
the lattice size, the dynamic exponents z are still substan-
tially higher than the ideal value z ∼ D that should be
expected from the dynamics of a random walker [32, 33].
This observation, as we will witness in this article, ap-
plies equally well to effective autocorrelation times and
to equilibrium times; this represents a serious hindrance
in terms of scalability, in particular whenever a higher
precision is desired and large amounts of decorrelated
data need to be gathered. In this respect, it is important
to mention that correlations between successive measure-
ments do not only have an impact on the statistical effi-
ciency of multicanonical production runs, yet also repre-
sent a source of systematic error regarding the estimation
of the density of states [34]. A second impediment to the
scalability of local-update implementations specifically
relates to long-range models. Here, the very presence of
long-range interactions makes the computation of the en-
ergy — an essential ingredient of multicanonical methods
— a very time consuming operation, namely, one associ-
ated with an O(L2D) algorithm complexity. As a result,
the demand on CPU time needed to generate perfectly
decorrelated statistics grows as Lz+2D, with z > D.

In this article, we present a Monte Carlo method which
successfully tackles these issues by performing simula-
tions in the multicanonical ensemble using collective up-
dates. Our methods combines the fast-decorrelating ca-
pabilities of cluster algorithms with the versatility of flat-
histogram methods in an efficient and straightforward
way, and with wide applicability in view. In particu-
lar, it can be readily combined with any iteration scheme
dedicated to the estimation of the density of states, e.g.,
Wang-Landau’s method [27] or transition matrix algo-
rithms [25]. Additionally, while our method is presented
here in the context of long-range spin models, where it
gives drastic improvements over commonly used meth-
ods, it is perfectly applicable to any class of models for
which a cluster algorithm exists in the canonical ensem-
ble.

Noteworthy enough, embedding a collective update
scheme in a multicanonical algorithm is not straightfor-
ward, however, due to the fundamentally non-local na-
ture of the multicanonical weight w(E). Indeed, clus-
ter algorithms depend heavily upon particular symme-
tries of the model Hamiltonian, which w(E) does not
keep track of; in particular, there is no longer a canon-
ical temperature. With simulations of spin models with
nearest-neighbors interactions in view, several attempts
have been made at combining cluster updates with mul-
ticanonical methods in some way or another during the
last decade: the multibond algorithm [32, 35, 36, 37]
or variants thereof targeting Wang-Landau’s algorithm

[31, 38] simulate the model in its spin-bond represen-
tation; Rummukainen’s hybrid-like two-step algorithm
lumps together a microcanonical cluster algorithm and a
multicanonical daemon refresh [39]. As opposed to these,
however, our method relies on a cluster-building pro-
cess which simply depends on the microcanonical tem-
perature of the current configuration — a quantity that
may be readily derived from the estimated density of
states — in order to determine appropriate bond prob-
abilities. In particular, it does not require prior knowl-
edge of the transition temperature, as is the case in the
multibond method. We further show that our approach
makes it particularly straightforward to incorporate two
optimization schemes dedicated to LR models [12, 40],
which cut down the algorithm complexity from O(L2D)
to O(LD lnLD). As a result, the total demand on CPU
time with respect to uncorrelated data is reduced to ap-
proximately L2D lnLD, since cluster updates also lower z
to around D; where LR models are concerned, the ben-
efit of cluster updates is thus clearly twofold. Let us
also mention that, as a by-product, using cluster updates
provides improved estimators for the statistical moments
of the order parameter [41] and for spin-spin correlation
functions; for instance, the last quantity can be better es-
timated by counting the fraction of time two given sites
belong to the same cluster [42, 43]. Further interesting
information, including information connected with frac-
tal geometry, may also be gleaned from cluster statistics
[44, 45].

Overall, the sharp reduction of the computer load
brought about by our method allowed us to study q-
state Potts chains with 1/r1+σ interactions containing up
to 216 spins in a few days on a modern Intel-based com-
puter. It must be noted that, with standard multicanoni-
cal methods based on single-spin updates, such huge sizes
are simply intractable, since the largest size of 216 investi-
gated in this work would demand several months of com-
putation. As regards dynamic performance, we obtain
a substantial reduction in the dynamic exponent, from
e.g., z ∼ 1.35(3) to z ∼ 1.05(1) for q = 6 and σ = 0.7.
We also show that our method produces faster equilibra-
tion, lower effective autocorrelation times, and — where
implementations based on the Wang-Landau algorithm
are concerned — lower statistical errors on the estimate
of the density of states, e.g., of nearly an order of mag-
nitude for q = 6, σ = 0.9 and L = 512 spins. As a result,
we obtain estimates of transition temperatures that have
a noticeably higher precision than those obtained using
local updates [7] or standard canonical methods [13, 14].
Finally, in order to check that our method did not pro-
duce systematic errors, we performed several simulations
of the two-dimensional seven- and ten-state Potts mod-
els with nearest-neighbor interactions and sizes up to
L = 256 × 256. We obtain dynamical exponents close
to the ideal random-walk value z ∼ 2. Although com-
puted from rather modest statistics, our estimate of the
interfacial free energy for the largest size reaches a preci-
sion of four digits. In this respect, our method compares
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perfectly well with other methods operating in the mul-
ticanonical ensemble, and represents an alternative way
for short-range spin models.

The layout of this article is as follows. In Sec. II, after
briefly reviewing some prominent features of multicanon-
ical methods, we explain how we combine a multicanon-
ical weighting with collective updates, with special em-
phasis given to the detailed balance equation. Section III
addresses optimizations dedicated to long-range models.
Numerical results regarding the dynamic characteristics
of our method are presented in Sec. IV. In Sec. V, we
compare our results for the two-dimensional Potts model
with nearest-neighbor interactions, with exactly known
results, and section VI is devoted to the investigation of
the precision of our method in the context of the long-
range Potts chain with power-law decaying interactions.
Overall, we pay particular attention to comparison with
other algorithms operating in the multicanonical ensem-
ble, especially in terms of tunneling rates, dynamical ex-
ponents and estimates of thermodynamical averages. Fi-
nally, we discuss several procedures aimed at estimating
the microcanonical temperature, and in particular, how
we can efficiently combine our method with the transition
matrix approach.

II. A METHOD TO EMBED CLUSTER

UPDATES IN A FLAT HISTOGRAM

ALGORITHM

Monte Carlo simulations are based on the generation
of a Markov chain of configurations {σi}, where each
configuration is assigned a weight w[E(σi)] correspond-
ing to the probability distribution one wishes to sam-
ple. In canonical simulations, i.e., carried out at a fixed
inverse temperature β, one chooses a Boltzman weight
w[E(σi)] = e−βE(σi), thus thermodynamical averages are
straightforwardly obtained by computing the appropriate
moments of the data accumulated at the given temper-
ature. On the other hand, reweighting methods based
on multihistogramming [46] are hampered at large lat-
tice sizes by the narrowness of the energy window that is
sampled, let alone additional supercritical slowing down.
In the multicanonical ensemble, one allows the dynamics
to jump across free energy barriers and, from a more gen-
eral standpoint, to sample wide energy windows, by pro-
ducing a flat energy distribution over the energy range of
interest for the problem at hand. This is formally carried
out by setting w(E) = e−S(E) ∝ 1/n(E), where n(E) is
the density of states and S(E) is the microcanonical en-
tropy. This in effect leads to N(E) ∝ n(E)w(E) = const.
for the number of visits to energy E. Since the density of
states is obviously a priori unknown, w(E) is estimated
using an iterative procedure initially fed from, e.g., a
canonical guess w(E) = e−β0E at a carefully chosen in-
verse temperature β0, a flat guess w(E) = 1, or — when-
ever feasible — a properly scaled estimate obtained at a
smaller lattice size. Thermodynamic quantities that de-

pend solely on the energy, like the specific heat or Binder
cumulants, can then be computed directly from the es-
timated density of states. Other quantities, e.g., those
depending on the order parameter, are obtained through
a reweighting procedure based on data gathered during
an additional production run.

Historically, Berg’s recursion scheme [47, 48] was the
first iteration procedure specifically dedicated to multi-
canonical simulations. It consists in accumulating his-
togram entries of the energy during each iteration run,
and updating w(E) from the histogram of the energy ob-
tained in a previous iteration run, until eventually the
histogram becomes flat up to a given tolerance. Entropic
sampling [49] more or less boils down to the same key
principle. Both methods suffer, however, from poor scal-
ability. Looking at this issue from a slightly different
angle, the recently proposed Wang-Landau acceleration
method [27, 28] updates w(E) in real-time during the
course of the simulation, performing independent ran-
dom walks in distinct energy ranges. Since modifying the
weight of the Markov chain during a simulation breaks
detailed balance, the amount by which w(E) is modified
during a given iteration is decreased from one iteration to
the other until it reaches a negligible value; hence detailed
balance is approximately restored in the last step of the
iteration scheme. In this respect, an original approach
aimed at reducing the statistical error on the estimate of
the density of states was recently proposed by Yan and
de Pablo [50], whereby the density of states is obtained
by integrating an instantaneous temperature computed
from configurational information or from a so-called mul-
timicrocanonical ensemble. Finally, a large class of it-
eration schemes have been proposed that are based on
matrices of transition probabilities [25, 26, 51, 52, 53]
or a combination thereof with Wang-Landau’s algorithm
[54, 55]. Here, the density of states is computed through
a so-called broad histogram equation involving infinite
temperature transition matrices, where transition ma-
trices keep track of the microcanonical average of the
number of potential moves from one energy levels to an-
other (Sec. VII gives more details on how our method
can efficiently capitalize on transition matrices). His-
torically, procedures based on transition matrices were
termed flat histogram methods in order to distinguish
them from Berg’s multicanonical method, although both
approaches in effect yield a flat, broad histogram. To
sum up, the main benefit of multicanonical methods is
twofold: first, a wide energy range is sampled, irrespec-
tive of the presence of free energy barriers; second, the
methods yield a direct estimate of the density of states.

A local-update implementation of a multicanonical
algorithm may consist in updating a single spin at a
time and accepting the attempted move from state a
to state b with a probability given by W (a → b) =
min[1, eS(Ea)−S(Eb)]. We now show that the microcanon-
ical temperature β(E) defined as dS(E)/dE is a relevant
quantity for the acceptance rate of this process. Denot-
ing Eb = Ea + ǫ, we expand the probability W (a → b)
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for small ǫ, and obtain W (a → b) ∼ min[1, e−β(Ea)ǫ].
This shows that, for small enough energy changes, the
dynamics is equivalent to that of a canonical simulation
at an inverse temperature β(E). Our departure point for
a collective-update implementation in the multicanonical
ensemble is thus to build clusters of spins with the same
bond probabilities as would be given by a canonical sim-
ulation at inverse temperature β(E).

Although our algorithm may be equally well applied
to other spin models, e.g., models incorporating disor-
der or exhibiting a continuous symmetry, we now con-
sider, for the sake of clarity, a generalized ferromag-
netic spin model with a Zq symmetry, whose Hamilto-
nian reads H = −∑

i<j Jijδσi,σj
. Here Jij > 0 and

the σi variables can take on integer values between 1
and q. Taking guidance from Swendsen-Wang’s cluster
algorithm [56], we start from an empty bond set, con-
sider each pair of spins {σi, σj} in turn, and activate
a bond between them with a bond probability given by
πij(Ea) = δσi,σj

[
1− e−Jijβ(Ea)

]
, where Ea is the current

lattice energy and β(Ea) the inverse microcanonical tem-
perature at energy Ea. Efficient ways of estimating β(E)
are considered later on in Sec. VII. Then, we identify
clusters of connected spins using, e.g., a multiple-labeling
scheme [57], draw a new spin value at random for each
cluster, and accept the attempted move with an accep-
tance probability A(a → b) which ensures that detailed
balance is satisfied. The derivation of this probability
may be carried out in the following way. First, the total
acceptance probability W (a→ b), i.e., the quantity that
enters detailed balance in such a way that e−S(Ea)W (a→
b) = e−S(Eb)W (b → a), is split into two terms P (a → b)
and Aflip(a→ b) representing a proposed update probabil-

ity and an acceptance probability for the proposed update,
respectively. It is straightforward to show that the choice

Aflip(a → b) = min
[

1, P (b→a)
P (a→b)e

S(Ea)−S(Eb)
]

satisfies the

detailed balance equation. Let us denote B the set of ac-
tive bonds over the complete graph G engendered by all
possible interactions: the proposed update probability is
given by the probability to construct a given set B from
an empty bond set, i.e.,

P (a→ b) =
∏

bij∈B

πij(Ea)
∏

bij∈G\B

[1− πij(Ea)].

After simplification, we obtain for P (b→a)
P (a→b) ,

eβ(Eb)Eb−β(Ea)Ea

∏

bij∈B

eJijβ(Eb) − 1

eJijβ(Ea) − 1
;

whence

Aflip(a→ b) = min



1,
eα(Ea)

eα(Eb)

∏

bij∈B

pij(Eb)

pij(Eb)



 , (1)

where α(E) = S(E)− β(E)E and pij(E) = eJijβ(E) − 1.
This expression can be further simplified if we consider

long-range models whose coupling constant depends only
on the distance between spins, i.e., Jij = J(l), where
l = dist(i, j). We have for Aflip(a→ b):

Aflip(a→ b) = min

[

1,
eα(Ea)

eα(Eb)

∏

l>0

[
pl(Eb)

pl(Ea)

]B(l)
]

, (2)

where B(l) stands for the number of bonds of length l.
It is worth mentioning that, if one looks at this equation
from the standpoint of canonical simulations at inverse
temperature β0, we have w(E) = e−β0E ; whence β(E) =
β0 and α(E) does no longer depend on E. As a result,
the acceptance rate Aflip(a→ b) is equal to 1 and we are

back to the original Swendsen-Wang algorithm.
It is also crucial to underline that it is the micro-

canonical temperature, i.e., the lattice energy in the first
place, which entirely governs the construction of clus-
ters; indeed, for a given lattice configuration at energy
E, bonds are placed as if the model were simulated at
its microcanonical temperature using a Swendsen-Wang
algorithm. As a result, cluster bond probabilities change
continuously as the lattice configuration walks along the
available energy range of the random walk, so that, e.g.,
small clusters are built in the upper energy range and
conversely large clusters in the lower energy range.

III. OPTIMIZATION FOR LONG-RANGE

MODELS

A. Computing the lattice energy through FFT

acceleration

As is apparent in Eq. (1), determining the acceptance
rate of a cluster flip demands that we compute the energy
of the new (attempted) lattice configuration, which for
long-range models is an O(L2D) operation. This is sim-
ilar to the local-update case, where performing one MC
step, i.e., updating LD spins subsequently, takes a CPU
time proportional to the square of the number of spins,
seeing that LD operations are needed after each single
spin update to compute the new partial energy between
the updated spin and the rest of the lattice. Recently,
Krech and Luijten proposed an algorithm that is able
to compute the energy of a model governed by trans-
lation invariant interactions in O(LD ln LD) operations
[40]. This method leans on the convolution theorem and
the Fast Fourier Transform (FFT), for which numerous
efficient radix-based implementations are available. As a
result, updating the lattice configuration globally rather
than a single spin at a time allows us to cut the O(L2D)
complexity down to an O(LD lnLD) one. A crucial point
to be noted here is that this reduction is absolutely in-
tractable with single-spin updates, owing to the very rea-
son that the energy would have to be computed anew af-
ter each single-spin update; this requires LD operations,
and an FFT algorithm would output no gain at all.
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Let us assume that we can write down the model
Hamiltonian as a sum of dot products, i.e., H =

− 1
2

∑

i6=j Jij
~S(i) · ~S(j), with Jij invariant by translation.

This is straightforwardly done when q = 2, since in this
case the dot product reduces to a product of scalar Ising
spins. As we will witness in a moment, the presence of
a delta Kronecker symbol in the Hamiltonian whenever
q > 2 requires, however, a minor transformation of the
Hamiltonian. For simplicity, we consider hereafter a one-
dimensional lattice with an interaction J(l) depending on
the distance l between spins. The line argument is similar
in higher dimensions, with the sole exception that multi-
dimensional Fourier transforms are then performed. The
Discrete Fourier Transform (DFT) of the spin sequence

{~S(l)}l=1...L reads

~̃S(k) =

l=L−1∑

l=0

~S(l)e−i2πkl/L,

and reciprocally,

~S(l) =
1

L

k=L−1∑

k=0

~̃S(k)ei2πkl/L.

Similarly, we define the DFT of the sequence of coupling
constants {J(l)} as

J̃(k) =

l=L−1∑

l=0

Jpbc(l)e
−i2πkl/L,

where Jpbc(l) incorporates the effect of Infinite Image
Periodic Boundary Conditions (IIPBC) [11], that is,

Jpbc(l) =
∑+∞

m=−∞ J(l + mL); for algebraically decay-
ing interactions, this sum can be exactly expressed in
terms of Hurwitz functions [7]. We diagonalize the orig-

inal Hamiltonian H by rewriting it in terms of the J̃(k)

and ~̃S(k),

H = − 1

2L

k=L−1∑

k=0

J̃(k) ~̃S(k) · ~̃S(−k),

where it should be emphasized that ~̃S(−k) and ~̃S(k) are

complex conjugates, since the original vectors ~S(l) have
real coordinates. By relying on an FFT radix-2 algo-
rithm, the task of computing the lattice energy is conse-
quently reduced to O(L ln L) operations.

For q > 2, the Kronecker delta symbol in the Hamil-
tonian unfortunately rules out the previous diagonaliza-
tion. One way to resolve this issue is to map the q-state
Potts model onto a (q−1)−dimensional vector model, so
that the Kronecker delta function in the original Hamil-
tonian is turned into a dot product. We define a one-to-
one mapping between each Potts spin σ = 1 . . . q and a

unit-length vector ~S(σ) belonging to a (q−1)-dimensional

hypersphere, so that ~S(σ) · ~S(σ′) =
qδσ,σ′−1

q−1 . It is straight-

forward to prove that
∑

σ
~S(σ) = 0, and that

H =
q − 1

2q

∑

i6=j

J(i− j)~S(σi) · ~S(σj) +
1

q

∑

i<j

J(i− j).

In the case of the three-state model, this transformation
is equivalent to mapping Potts variables onto the complex
plane, i.e., σ → S(σ) = ei2π(σ−1)/3, and writing the dot

product ~S(σi) · ~S(σj) as Re{S(σi)S(σj)∗}. In this case, the

term ~̃S(k) · ~̃S(−k) becomes |S(k)|2, where S(k) is the
DFT of the sequence of (complex) variables {S(σ)}. This
reduces by one the number of O(L) operations required,
since computing a dot product is no longer required.

For q > 3, spin vectors on the (q − 1)−dimensional
hypersphere may be determined by using hyperspherical
coordinates in D = q − 1 dimensions, i.e., for the ith

vector ~S(i) (with 1 ≤ i ≤ q),

x
(i)
1 = sin θ

(i)
1 sin θ

(i)
2 . . . sin θ

(i)
q−3 sin θ

(i)
q−2

x
(i)
2 = sin θ

(i)
1 sin θ

(i)
2 . . . sin θ

(i)
q−3 cos θ

(i)
q−2

x
(i)
3 = sin θ

(i)
1 sin θ

(i)
2 . . . cos θ

(i)
q−3

. . .

x
(i)
q−2 = sin θ

(i)
1 cos θ

(i)
2

x
(i)
q−1 = cos θ

(i)
1

We initially set θ
(i)
i = 0 for 1 ≤ i ≤ q − 2, θ

(i)
j = αj for

j < i ≤ q and 1 ≤ j ≤ q − 3, and θ
(q−1)
q−2 = −θ

(q)
q−2 =

αq−2. There remains q − 2 angles αj to be determined

from q − 2 equations ~S(i) · ~S(i+1) = −1/(q − 1) with
1 ≤ i ≤ q − 2, from where we obtain α1 = arccos −1

q−1 ,

cosαj+1 =
cos αj

1+cos αj
, and thus by induction cosαj = −1

q−j .

After a bit of algebra, we find ~S(1) = (0, . . . , 0, 1), and

~S(i) = ( 0, . . . , 0
︸ ︷︷ ︸

q−1−i terms

,

√

q(q − i)

(q − 1)(q − i + 1)
,

{x(i)
q−1−i+j}1<j<i,

−1

q − 1
)

for 1 < i < q, where the (q−1− i+ j)th coordinate reads

x
(i)
q−1−i+j = −

√
q

(q − 1)(q − 1− i + j)(q − i + j)
.

~S(q) and ~S(q−1) differ only in the sign of their first coor-
dinate x1. Once these vectors have been computed for a
given q, which may be done on start-up, determining the
lattice energy requires, first computing the DFT S̃j(k) of

each sequence of coordinates {~S(l)·~S(j)}l=1,...,L, and then

evaluating the double sum
∑k=L−1

k=0

∑q
j=1 J̃(k)|S̃j(k)|2.
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As a result, the whole operation is associated with a
O(qL lnL) complexity — or in general O(qLD lnLD) —,
provided the implementation relies on a FFT radix algo-
rithm. As a by-product, it should be noted that once the
Fourier components have been computed, it is straight-
forward to derive the Fourier transform of the spin-spin
correlation functions at any inverse temperature β from

g̃β(k) = 1/L
〈
∑q

j=1 |S̃j(k)|2
〉

β
, where the mean value

is obtained from a reweighting procedure. At large lat-
tice sizes, the requirement that L Fourier components be
stored at each MCS may constitute a significant challenge
in terms of computer memory; in this case, a practical
work-around consists in computing microcanonical aver-
ages for each energy level visited during the simulation,
and then to perform the reweighting procedure directly
from these microcanonical averages. In the case of long-
range interactions, careful attention must be paid, how-
ever, to the influence of the discretization of the energy
axis in terms of systematic error.

B. Efficient cluster construction for long-range

interactions decaying with the distance

For long-range spin models, building a new cluster at
each MCS takes of order L2D operations, since LD(LD−
1)/2 pairs of spin are considered in turn for bond activa-
tion. When interactions decay with distance, the proba-
bility of adding a bond between two spins falls off quite
rapidly as the distance between them increases. A sig-
nificant amount of time during the construction of the
cluster is thus wasted because an overwhelming number
of bonds are considered for activation which have only a
negligible probability to be activated. Even in the case
of interactions decaying as 1/|i− j|1+σ with σ close to 0,
does the bond count never exceed a few percent of the
whole number of available bonds. In this respect, switch-
ing from a local- to a global- update scheme might well be
an ill-fated choice as the gain in terms of autocorrelation
time is spoiled by the exceedingly time consuming con-
struction of the cluster. However, an efficient construc-
tion method was proposed by Luijten and Blöte in recent
past [12], with an efficiency that is independent of the
number of interactions per spin, and a CPU demand that
scales roughly as LD. The rationale behind this method
is to use cumulative probabilities, whereby instead of con-
sidering each spin in turn for addition to a given cluster,
it is the index of the next spin to be added which is
drawn at random. We now give a sketchy outline of the
method in the context of long-range chains. Extensive
details may otherwise be found in [12, 58]. First of all,
the probability to add a bond is split up into two parts,
namely, (i) a provisional probability πl(E) (hereafter sim-
ply denoted πl) depending on the distance l = |i− j| be-
tween spins and on the lattice energy E, and (ii) a factor
f(σi, σj) controlled by the spin values, e.g., a Kronecker
delta symbol in the case of a Potts model. If 0 denotes the

index of the current spin to which we are adding bonds
(i.e., spin indices are considered to be relative to the cur-
rent spin), then the provisional probability of skipping
k − 1 spins and bonding the current spin with a spin at

position k > 0 is given by P0(k) =
∏k−1

m=1(1 − πm)πk.
From there, one builds a table of cumulative probabil-

ities C0(j1) =
∑j1

k=1 P0(k) for all j1 > 0, so that the
index j1 of the spin to be bound with current spin 0 is
obtained by first drawing a random number 0 < r < 1
and then reading out j1 from the table, i.e., j1 is such
that C0(j1 − 1) < r < C0(j1). Standard binary-search
algorithms may be used for this purpose. Last, a bond
is activated between spins 0 and j1 with a probability
f(σ0, σj1 ), and we proceed further with the computation
of the index j2 > j1 of the next spin to be bound with
current spin 0. The corresponding provisional probabil-

ity thus becomes Pj1(k) =
∏k−1

m=j1+1(1− πm)πk, and the

cumulative probabilities read Cj1(j2) =
∑j2

k=j1+1 Pj1 (k).

The same procedure is repeated for {j3, j4, . . .} until we
draw a jα > L, in which case we jump to the next
current spin, which in a one-dimensional model is the
nearest-neighbor of the previous current spin. In ad-
dition, there are two formulas which make it easier to
compute cumulative probabilities: first, one can show

that C0(j) = 1 − exp[−β(E)
∑j

k=1 J(k)], where E is
the energy of the current configuration, and second, the
cumulative probabilities Cjα

(jα+1) can be straightfor-
wardly derived from the C0(j) coefficients through the

relation Cjα
(jα+1) = C0(jα+1)−C0(jα)

1−C0(jα) . It follows from the

last relation that, instead of building a look-up table for
each Cjα

(jα+1), we may as well draw a random number
0 < r < 1, transform it to r′ = r[1 − C0(jα)] + C0(jα),
and choose the next spin to be added from the relation
C0(jα+1 − 1) < r′ < C0(jα+1). In practice, we thus sim-
ply need to compute a single look-up table filled with
∑j

k=1 J(k) for each j at the beginning of the simulation,
from where we will derive the C0(j) coefficients at each
new MCS corresponding to a lattice configuration with
a given energy E. This last task requires of order LD

operations. To sum up, the construction of each cluster
thus consists in choosing a ”current” spin amongst L− 1
possible spins in turn, e.g., starting from the leftmost
one, and then activating bonds between the current spin
and other spins located to its right by drawing a random
number, scaling it, and selecting the bond indices from a
look-up table containing the C0(j) coefficients at energy
E. Once each spin has been considered as a current spin,
a cluster multiple labeling technique can eventually be
used to identify every set of spins actually belonging to
the same cluster [57].

IV. NUMERICAL TESTS OF ALGORITHM

PERFORMANCE

In this section, we address the performance of our al-
gorithm in terms of dynamical behavior. Since our work
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focuses mainly on long-range spin models, we decided to
perform intensive numerical tests on the one-dimensional
q-state Potts chain with LR interactions 1/|i− j|1+σ de-
caying as a power law of the distance between spins.
The rich phase diagram of this model, and the fact that
several numerical studies have been carried out on this
model in recent past, makes it a perfect test-case. For the
sake of comparison with other numerical methods, and
in order to ensure that our algorithm did not produce
systematic errors, we also performed several tests on the
two-dimensional model with nearest-neighbor (NN) in-
teractions, for which exact results are known (see [59, 60];
also references in [61]). Both models are known to exhibit
a first-order transition for an appropriate set of parame-
ters, namely, q > 4 for the NN model [62], and σ < σc(q)
for the LR one, with for instance σ(3) = 0.72(1) [7]. We
chose a set of parameters that would allow us to observe
both weak and strong first-order transitions, and con-
centrated on several indicators of performance, reliabil-
ity, and scalability: these include tunneling, equilibrium
and effective autocorrelation times, and mean acceptance
rates. These indicators inform us on the efficiency with
which the Markov chain reaches the equilibrium distri-
bution and explores the phase space. They also tell us at
what rate successive measurements decorrelate from each
other; hence what amount of resources is needed to ob-
tain reliable statistics. Overall, they are therefore good
indicators as to whether CPU resources are efficiently
utilized or not. As regards scalability, we also computed
the dynamical exponents associated with tunneling and
equilibrium times; these indicate how fast needs in CPU
time grow with the lattice size.

All densities of states were calculated by means of the
Wang-Landau algorithm, whereby, starting from an ini-
tial guess of the density of states n(E), we update n(E)
after each visit to energy level E according to the rule
lnn(E) ← lnn(E) + ln f , where ln f is hereafter termed
Wang-Landau modification factor. In the case of LR
models, the unequal spacing of energy levels and the
existence of energy gaps in the vicinity of the ground
state required that we introduced a few changes over the
original version. In particular, using an interpolator for
lnn(E) turned out to be mandatory in order to compen-
sate for the finite width of histogram bins — as would
also be required for models having a continuous sym-
metry; indeed, we observed that using large bins tends
to strongly reduce the acceptance rate if no interpola-
tor is used. Bezier splines provide good interpolators,
although a linear interpolation with a slope given by the
microcanonical temperature β(E) also proved to be par-
ticularly efficient whenever this last quantity was made
available by other means, e.g., the transition matrix.

For small and medium lattice sizes, we systemati-
cally performed all simulations twice, first with standard
single-spin updates (SSU) and then with our method em-
bedding cluster updates (CU). We give an estimate of the
error on the density of states obtained from both types of
update schemes. For the largest lattice sizes we studied,
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FIG. 1: Mean acceptance rate as a function of the energy per
spin for the six-state long-range Potts chain with σ = 0.7,
and L = 1024 spins. The dashed line shows the estimated
inverse microcanonical temperature. The vertical dotted lines
indicate the position of the histogram peaks corresponding to
the ordered and disordered phases.

however, the SSU implementation simply turned out to
be impracticable, due to either exceedingly high tunnel-
ing times, and - for LR models - excessive CPU demands,
and we present results for the CU algorithm only.

A. Phase space exploration and mean acceptance

rates

As opposed to the (canonical) Swendsen-Wang clus-
ter algorithm, the acceptance rate of our algorithm —
Eq. (1) — is not trivially equal to unity. Still, it is
tightly related to the efficiency with which the Markov
chain wanders about the phase space, since a low accep-
tance rate would lead to very repetitive dynamics. In
this view, it is instructive to compute an approximate
analytical expression of this acceptance rate when the
initial and the final energies Ea and Eb differ only by
a small amount. Writing Eb = Ea + ǫ, and carrying
out a series development to first order in ǫ, one obtains
Wflip = min (1, 1 + ∆(Ea)dE), where

∆(Ea) = β′(Ea)




∑

bij∈B

Jij
1 + pij(Ea)

pij(Ea)
− |Ea|



 ,

with the same notation as in Sec. II. We wish to ob-
tain an estimate of the first statistical moments of ∆(E).
We hereafter consider the case of a model with nearest-
neighbor interactions (J = 1), for which we can carry out
an exact derivation. The last expression simplifies to

∆(Ea) = β′(Ea)

(

B
1 + p

p
− |Ea|

)

,

where B stands for the total number of bonds and p =
p(Ea). From the distribution of bond counts at a given
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energy Ea,

P (B) =

(|Ea|
B

)
pB

(1 + p)|Ea|
,

we can derive the average bond count, 〈B〉 = |Ea| p
1+p .

This allows us to rewrite ∆(Ea) as

∆(Ea) = β′(Ea)
1 + p

p
(B − 〈B〉);

hence 〈∆(Ea)〉 = 0. The variance of ∆(Ea) is thus pro-
portional to the variance of the bond count distribution,
i.e.,

〈
B2

〉
− 〈B〉2 = |Ea| p

(1+p)2 , which yields

√

〈∆(Ea)2〉 = δ∆(Ea) = |β′(Ea)|
√

|Ea|
exp β(Ea)− 1

For a given ǫ > 0, one half of all attempted cluster flips
thus leads to an acceptance rate which is lower than 1,
the other half saturating at unity. Assuming a gaussian
distribution for ∆(E), with the standard deviation com-
puted above (which is valid for large enough lattice sizes),
the mean acceptance rate is readily obtained from the
mean value of a gaussian distribution centered at unity
and truncated above 1, which yields

〈

Wflip

〉

(Ea) = 1− δ∆(Ea)

2
√

2π
ǫ

In the case of interactions depending on the distance
l between spins, one may observe that the average en-
ergy is related to the average number of bonds of length
l by −〈E〉 =

∑

l>0 J(l)1+pl

pl
〈B(l)〉, which shows that

〈∆(E)〉 = 0 also in this case.
At a first-order transition, β(E) varies smoothly be-

tween the energy peaks of the ordered and disordered
phases, which ensures that ∆(E) remains small. The
mean acceptance rate for the six-state LR Potts chain
with σ = 0.7 and L = 1024 spins is sketched in Fig. 1.
While the acceptance rate is close to 1 inside the range of
phase coexistence, the variance of ∆(E) increases when E
lies outside the range of phase coexistence, and therefore
leads to a reduction in the acceptance rate. We observe
that this diminution is less marked at low-energy levels,
for the energy cost associated with flipping a small num-
ber of big clusters is lower than that associated with ran-
domly updating a great deal of small clusters, and Eb−Ea

is consequently lower in the last case. It is worth under-
lining, however, that the energy range of interest in the
analysis of first-order phase transitions spans an interval
which is only moderately larger than that corresponding
to phase coexistence, the only requirement being that
metastability plateaus [7] and histogram peaks must be
clearly visible. As a result, the fact that the mean accep-
tance rate for cluster flips remains well above 90% inside
this range of energy represents already an improvement
of a factor 3 with respect to the standard multicanonical
approach, where we obtained acceptance rates oscillating
around 30%.
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FIG. 2: Tunneling times for the long-range Potts chain with
q = 3, σ = 0.4 (dashed lines) and 0.6 (dotted lines), and
q = 6, σ = 0.7 (solid lines). Triangles refer to the SSU imple-
mentation, while squares indicates estimates for our method
(CU). Dynamic exponents z were determined from a fit to the
power law τe ∼ Lz.

TABLE I: Dynamic exponents z for the q-state Potts
chain with power-law decaying interactions (a) and its two-
dimensional counterpart with nearest-neighbor interactions
(b). z(SSU) and z(CU) refer to single-spin and cluster up-
dates respectively, while zmuBo and zmuClus make reference
to the multibond method [32] and Rummukainen’s multi-
microcanonical cluster method [39] applied to the NN model.

q σ z(SSU) z(CU) zmuBo zmuClus

6a 0.7 1.35(3) 1.05(1)

3a 0.6 1.48(2) 1.11(1)

3a 0.4 1.13(2) 0.89(1)

7b 2.60(4) 1.82(2) 1.84 1.82(3)

10b 2.87(4) 2.23(1) 2.1

B. Dynamic properties

Where performance measurements at first-order tran-
sitions are concerned, tunneling times have thus far been
regarded as one of the most meaningful measurement pa-
rameters [32, 61, 63]. They are defined as one half of the
average number of MCS needed for the walk to travel
from one peak of the energy histogram to the other –
where peaks are defined with respect to the finite-size
transition temperature – and turn out to represent a
fairly good indicator of the interval between roughly in-
dependent samples.

Results for the LR chain with q = 3 and 6 are shown
in Fig. 2. Dynamic exponents z were determined from
a fit to the power law τe ∼ Lz, and are summarized
in Table I. We can witness a substantial reduction for
both the LR and the NN models, with exponents close to
and sometimes even below the ideal random-walk value
z = D. As regards the NN model, our values compare
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extremely well with those obtained with the multibond
method [32] and with Rummukainen’s hybrid-like two-
step algorithm [39], although these approaches and ours
differ markedly in the way clusters are constructed.

It should be mentioned that the distance Ed − Eo the
random walker must travel, i.e., the energy gap between
the peaks of the histogram, does not scale linearly with
the number of spins. This feature is especially appar-
ent for long-range interactions, where Ed − Eo grows all
the more faster with increasing lattice size that σ comes
closer to 0. As a result, the power law τe ∼ Lz yields
dynamical exponents which are underestimated with re-
spect to the value given by a power law of the form
τe ∼ (Ed − Eo)

z (up to a dimensional factor 2 for the
NN model). For instance, we would obtain z = 1.40(3)
instead of z = 1.35(3) for q = 6 and σ = 0.7, and
z = 1.10(1) instead of z = 1.05(1). Where the perfor-
mance in terms of CPU demands is concerned (and in
particular if one is interested in how it grows with the
size of the system), we think however that the traditional
definition τe ∼ Lz is more meaningful.

While tunneling times represent a practical way to es-
timate the efficiency with which the random walker drifts
along the energy landscape, they are subject to two limi-
tations. First, they cannot be properly defined in the case
of second-order phase transitions, since the histogram of
the energy does no longer exhibit two peaks. Second,
there is no direct connection between tunneling times
and autocorrelation times, which makes it difficult to es-
timate the optimum interval between measurements that
will yield perfectly uncorrelated data, and thus minimum
statistical error on estimates of thermodynamic data. It
is worth mentioning here that computing integrated au-
tocorrelation times naively from the set of measurements,
i.e., just as is usually done in the canonical case, simply
makes no sense when simulating in the multicanonical en-
semble, because the quantities we are interested in are, in
the first place, reweighted averages of thermodynamical
data [61].

Therefore, alternate definitions have been proposed,
which try to circumvent these limitations. One approach
is to compute the so-called round-trip times [64], which
are computed from the number of MCS needed to get
across the whole energy axis, that is, from the ground
state to the upper energy level. Although round-trip
times may be determined for any order of phase tran-
sition, they present unfortunately no more connection
with statistical errors than do tunneling times. On the
contrary, multicanonical effective autocorrelation times,
which were first introduced in the framework of the multi-
bond algorithm [32], offer a direct comparison with expo-
nential or integrated autocorrelation times of traditional
use in canonical simulations. Mimicking the canonical
case, the effective autocorrelation time τeff can be de-
fined for any thermodynamic variable θ by inverting the
standard error formula ǫ2θ = σ2

θ2τeff/N , where N stands
for the total number of (possibly correlated) measure-
ments, σ2

θ denotes the variance of the (reweighted) ther-
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FIG. 3: Effective autocorrelation time τeff for q = 6, σ = 0.9
and L = 512 with (a) cluster updates (b) single-spin updates.
The effective transition temperature defined from the peak of
the specific heat is Tc(Cv) = 0.7163(2).

modynamic variable θ, e.g.,
〈
E2

〉
− 〈E〉2, and ǫ2θ is the

squared statistical error on the same variable. The error
may be estimated either from resampling or (jackknife)
blocking procedures, or by performing multiple indepen-
dent runs. Since both the variance and the error depend
on the reweighting temperature, the previous definition
obviously yields an effective autocorrelation time which
also depends on the temperature.

We now discuss our results for effective autocorrela-
tion times obtained for the six-state LR Potts chain with
σ = 0.9 and 128 ≤ L ≤ 1024 spins. For this value
of σ, the model exhibits a very weak first-order tran-
sitions with no clearly visible histogram peaks for sizes
below L ∼ 2000. The choice of medium lattice sizes was
dictated by the fact that we computed the error from
multiple independent runs (around 20 runs of 106 MCS
each), which we found a more reliable way of comput-
ing the statistical error than using a blocking procedure.
Figure 3 shows the dependence of τeff on the tempera-
ture for L = 512. For both algorithms, τeff exhibits a
peak in the vicinity of the effective transition temper-
ature Tc(Cv) = 0.7163(2). As expected, the reduction
brought about by cluster updates in terms of correlation
between measurements is marked, especially in the tran-
sition region, where single-spin update lead to a critical
slowing down similar to the one encountered in canoni-
cal simulations. This behavior is consistent with the very
general observation reported recently in [30] in the frame-
work of the optimal ensemble, and also in [65] in the con-
text of equilibration time for multicanonical algorithms
(see also the next paragraph for more details on this is-
sue), whereby the random walker diffuses at a slower pace
in the critical region. In this respect, cluster updates op-
timize the diffusive current of the random walker in the
critical region in much the same way as do the optimal
ensemble weighting proposed in [30], yet with a distinct
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TABLE II: Effective autocorrelation times at the transition
temperature defined from the location of the peak of the spe-
cific heat, for the six-state LR Potts chain with σ = 0.9

L τeff(SSU) τeff(CU)

128 475 155

256 1390 310

512 3960 635

1024 12700 1370

z 1.6(1) 1.0(1)
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FIG. 4: Fit of effective autocorrelation times τeff to the power
law τeff ∝ Lα for the six-state Potts chain (σ = 0.9 and
L = 512) with (a) cluster updates (b) single-spin updates.

strategy: in the latter, the error is reduced by allowing
the walker to spend more time in the critical region than
in the rest of the energy axis; in our approach, it is the
decorrelating capability of the move update itself which
reduces the statistical error in the transition region. As
is well known, however, cluster updates are especially ef-
ficient at the percolating threshold, and the reduction in
terms of correlation is large because bond probabilities
are governed by the microcanonical temperature. This
interpretation is clearly underpinned by our investiga-
tion of the effect of poor estimates of β(E) on tunneling
times, presented later in Sec. VII. Finally, we focus on
the scaling behavior of autocorrelation times. Table II
reports our results for L ranging from 128 to 1024 spins,
where τeff is evaluated at the effective transition temper-
ature determined from the peak of the specific heat. Our
method gives smaller autocorrelation times already for
L = 128 spins. From these values, we also determined
the associated scaling exponents by a fit to the power law
τeff ∝ Lz (Fig. 4), and obtained a highly satisfying value
of z ∼ 1.0(1) with cluster updates.

We conclude the discussion on the dynamic charac-
teristics of our algorithm with an investigation of equi-
librating properties. As opposed to canonical simula-
tion, estimating equilibrium times has been much less
common in the context of multicanonical simulations;
the non-linear relaxation function, while very informa-
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FIG. 5: Plot of χ2(t)/r for the six-state Potts chain (σ =
0.9, L = 512) using (a) cluster updates and (b) single-spin
updates. The regression was carried out over a histogram
containing 20 bins populated from 1000 runs, all starting in
ground state configuration but with distinct random seeds.

tive when the equilibrium distribution is driven by a
Boltzman weight [66], is of limited use indeed if the en-
gendered distribution is flat. Recently, however, an ef-
ficient procedure aimed at estimating equilibrium times
for any equilibrium distribution was proposed by Guerra
and Muñoz [65]. This procedure relies on a χ2 regres-
sion with respect to the (expected) flat equilibrium dis-
tribution P(E). Starting from the same initial lattice
configuration, n Markov processes are run with distinct
random seeds, and at each MC step t, a histogram of
the energy Vt(E) is filled with the value of the energy
of each process. Asymptotically, Vt(E) should approxi-
mate the expected flat distribution P(E) ∝ n(E)w(E).
In order to estimate the equilibrium time in a more quan-
titative way, a χ2(t) deviation of Vt(E) with respect to
the flat distribution is carried out at each MC step t,
i.e., χ2(t) =

∑

E(Vt(E) − nP(E))2/(nP(E)), where the
sum runs over histogram bins. For large n, and pro-
vided equilibrium has been reached, the distribution of
χ2(t) over m experiments obeys a χ2 law with a num-
ber r of degrees of freedom given by the number of his-
togram bins minus one, that is, with a mean equal to
r and a standard deviation given by

√

2r/m. Due to
the intensive demand in CPU required by this proce-
dure, we restricted our estimation of equilibrium times
to the single case q = 6 and σ = 0.9. We performed
n = 1000 Markov processes for sizes between L = 128
and L = 512, and estimated the equilibrium time from a
single experiment (that is, m = 1) by simply monitoring
the time needed for χ2(t)/r to reach unity and then stay
within the interval [1− 2σ/r, 1 + 2σ/r]. As illustrated in
Fig. 5, relying on a single experiment leads to quite large
error bars, yet this is sufficient for our purpose. From
the graphs of χ2(t) we read τeq = 4500 ± 500 MCS and
τeq = 23000± 2000 MCS for the cluster- and single-spin
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TABLE III: Equilibrium times for the six-state LR Potts
chain with σ = 0.9 obtained by monitoring the graph of
χ2(t)/r.

L τeq(SSU) τeq(CU)

128 1700(100) 800(120)

256 6000(750) 2000(200)

512 23000(2000) 4500(500)

1024 101000(8000) 10000(800)
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FIG. 6: Fit of equilibrium times to the power law τeq ∝ Lα

for the six-state Potts chain (σ = 0.9). (a) cluster updates
and (b) single-spin updates.

updates respectively; in spite of the large uncertainty, the
reduction in terms of equilibrium time brought about by
our method is clearly visible. Results for other lattice
sizes are summarized in Table III. A fit to the power
law τeq ∝ Lz

eq (see Fig. 6) yields the scaling exponents
zeq = 1.96(5) and zeq = 1.21(3) for the single-spin and
the cluster updates respectively. Here again, we think
that lower diffusion currents in the latest case account
for the higher pace at which the random walker reaches
the equilibrium distribution.

C. Overall CPU demand for LR models

We now discuss CPU demand in the case of LR models,
and concentrate on the gain in CPU resources brought
about by the optimization schemes proposed in Sec. III.
Assuming a decently efficient algorithm implementation,
this indicator yields a rough account of the real algo-
rithm complexity, although it should be mentioned that
it is usually an elaborate task to estimate this quantity
rigorously, partly because its value hinges heavily on a
variety of implementation, CPU architecture and com-
piler dependent properties. We decided to measure CPU
times over a series of one-hour long simulation runs on
a handful of distinct CPU architectures, including Intel
Pentium and Xeon at 2.4 and 3.2GHz. Figure 7 sketches
averages of the CPU (user) time per MCS and per spin,
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FIG. 7: CPU time per MCS and per spin for the long-
range Potts chain. Triangles indicate typical CPU times for
the local-update algorithm (SSU), irrespective of q and σ.
Squares refer to our algorithm (CU) with LR specific opti-
mizations included; for q = 3 and q = 6, estimates were
determined by averaging over the indicated σ values.

where small fluctuations might be attributed to the effect
of varying CPU cache sizes amidst our clutch of CPU’s.
While for the local-update implementation the demand in
CPU per spin grows linearly with the number of spin, it is
roughly constant over a fairly large range of lattice sizes
in the case of our cluster-update algorithm. Moreover,
our method already outperforms the local-update scheme
starting from several hundreds spins, with nonetheless an
increased footprint for higher q values which is accounted
for by the correspondingly higher number of FFT’s to
be computed. This, however, clearly demonstrates the
breakthrough that our method brings about for the study
of long-range models, paving the way for precise tests of
finite-size scaling.

V. TWO-DIMENSIONAL NN POTTS MODEL:

COMPARISON WITH EXACT RESULTS

In order to check that our algorithm did not produce
systematic errors, we computed transition temperatures
and interface tensions between coexisting phases for the
two-dimensional q-state Potts model (q = 7, 10) with
nearest-neighbor (NN) interactions and helical bound-
ary conditions. Results regarding the dynamic charac-
teristics of our algorithm for this model were reported in
Sec. IV; we will concentrate here on precision matters.
For q = 10, we obtained Tc(L) = 0.70699(5), 0.70491(5),
0.70300(2), 0.70278(1), 0.70164(1), 0.701328(4) and
0.701249(2) for L = 16, 20, 30, 32, 64, 128, and 256,
where Tc was determined from the location of peaks of
the specific heat. Cv was computed directly from the
estimated density of states, and then refined from an ad-
ditional production run of length 107 MCS. The error
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was estimated by means of the jackknife method. Fol-
lowing standard FSS theory at first-order phase tran-
sitions, we collapsed Cv(T )/L2 vs (T − Tc)L

2 over the
five highest lattice sizes and found an infinite size tem-
perature Tc(∞) = 0.701236(3) in very good agreement
with the exact value 0.70123157 . . . The same procedure
applied to q = 7 and L = 64, 128, and 256 yielded
Tc(∞) = 0.773059(1) which again matches perfectly the
exact value 0.7730589 . . . We estimated the interface ten-
sion Σ from the histogram of the energy, reweighted at
a temperature where energy peaks have the same height,
namely, 2Σ = −L−1 ln Pmin. Here, Pmin denotes the
minimum of the histogram between the two energy peaks
and the peak heights are normalized to unity. We com-
puted Σ directly from the density of states, and estimated
the error from the additional production run. In this re-
spect, it should be noted that estimating interface ten-
sions directly from the density of states generally yields
values that lie below those computed from histograms
collected during production runs. Our algorithm allowed
us to determine Σ with a four-digit precision for sizes
up to L = 256 and nonetheless rather modest statistics.
For the seven-state model, we obtained 2Σ = 0.0336(6),
0.0294(1), 0.02631(8), and 0.02384(9) for L = 32, 64, 128,
and 256; a linear fit of the form Σ ∼ Σ(∞)+c/L [67] per-
formed over the three largest sizes (i.e., for L above the
disordered phase correlation length ξ ∼ 48 [60]) yielded
the infinite size value 0.02230(11), still above the exact
value 0.020792, yet closer to it than estimates reported
in several previous studies [32, 39, 61].

VI. LR POTTS CHAIN: ERROR ESTIMATES

ON THERMODYNAMICAL DATA

In this section, we discuss the precision of our results
for the q-state Potts chain with algebraically decaying in-
teractions, i.e., J(r) = 1/r1+σ. Our purpose is twofold.
First, we estimate the error on the density of states n(E)
obtained from the Wang-Landau algorithm, so that we
can obtain a better insight into the benefit of our method
with regards to the iterative calculation of n(E). Second,
we determine confidence intervals on reweighted averages
computed from an additional production run. Since com-
puting thermodynamic quantities from a production run
does not require that the histogram be perfectly flat, nor
that the estimate of the density of states be perfectly ac-
curate, this reduces to estimating the gain in precision
brought about by lower autocorrelation times.

A. Statistical error on the density of states

In order to compare the error on the density of states
produced by the single-spin update implementation and
our method, we performed for each method a series of
12 independent simulations with the Wang-Landau algo-
rithm, all starting with the same initial guess of the den-
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FIG. 8: Statistical error on the density of states of the six-
state Potts chain for two distinct modification factors ln f
of the Wang-Landau algorithm. The statistical errors were
obtained from 12 independent runs. The parameters of the
model are σ = 0.9 and L = 512. (a) and (b) correspond to
our method and the local-update algorithm respectively.

sity of states. The model parameters were set to q = 6,
σ = 0.9 and L = 512. This choice of parameters guaran-
tees that, in spite of the modest lattice size we consider,
autocorrelation times differ by a sufficient amount be-
tween the single-spin updates method and our method,
so that the benefit may be clearly interpreted in terms of
decorrelating capabilities. The initial guess of S(E) was
scaled up from an estimate obtained at L = 256, and
the updating factor of the Wang-Landau algorithm was
initially set to ln f = 5. We did not make use of all im-
provements to the original Wang-Landau algorithm, as
proposed by Zhou and Bhatt in [34], since these would
have partly overshadowed the gain produced solely by
lower autocorrelation times. Indeed, we mainly focused
on the systematic error (rather than the whole statisti-
cal error) that may show up during the first iterations.It
was shown in [34] that this systematic error results from
the combination of a large ln f coefficient with the pres-
ence of strong correlations between adjacent binning. We
thus simply relied on the original histogram flatness cri-
terion to switch from one iteration to another, and di-
vided ln f by the same amount (namely, 5) after each
iteration which passed the flatness check. We found out,
however, that using the criterion in [34] instead, that is,
averaging n(E) on multiple independent runs after each
iteration, and switching to the next iteration only after
a given number of entries was recorded in the histogram
(see Eq. (12) in [34]), led to markedly lower statistical
errors. As illustrated in Fig. 8, the statistical error on
the density of states is clearly improved by our method.
In particular, cluster updates lead to a spread of the er-
ror over the whole energy axis. In this respect, and as
already mentioned in Sec. IV, the lower diffusion rates
associated with collective updates in the critical energy
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FIG. 9: Graph of the specific heat for the six-state Potts
chain (σ = 0.9 and L = 512) obtained directly from the final
estimate of the density of states with (a) our method and (b)
the local-update algorithm. The inset shows the relative error
err(Cv)/Cv.

region offer a clear benefit. As expected from the ar-
guments of Zhou and Bhatt, the reduction is also more
marked for ln f = 0.04 than for ln f = 10−7, and the
systematic error brought about by correlation between
successive binning is indeed partly tamed by a lower
Wang-Landau modification factor. Finally, we show in
Fig. 9 the resulting statistical error on the specific heat,
since thermodynamical averages are the relevant quanti-
ties in the first place. Cv was computed directly from the
estimated density of states n(E), i.e., according to the

formula Cv(kT ) = (
〈
E2

〉

kT
− 〈E〉2kT )/(L kT 2), where

〈En〉 = (
∑

E Enn(E)e−E/kT )/(
∑

E n(E)e−E/kT ). For
long-range models, energy levels are not equally spaced,
and it should be noted that too large histogram bins may
cause a systematic deviation on the averages as well. We
paid attention to this by comparing our results for several
bin widths, and made sure that the systematic deviation
engendered was always lower than the statistical error
itself. As shown in the inset of Fig. 9, the accuracy on
the estimation of Cv is larger by nearly an order of mag-
nitude at the transition temperature. Incidentally, we
observe that this is comparable to the gain in terms of
autocorrelation times, as already presented in Fig. 3.

B. Transition temperatures, Binder cumulants and

interface free energies

We now discuss some of our results for the three-state
Potts chain, for which we performed extensive simula-
tions for sizes ranging from L = 128 to L = 65536.
As opposed to higher values of q, there exists indeed a
large set of numerical studies for q = 3, so that com-
parison with previous estimates is easier. Table IV re-
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FIG. 10: Specific heat for the three-state Potts chain with
σ = 0.5 as obtained with our method.

TABLE IV: Estimates of peaks of the specific heat Cv and the
susceptibility χ, and corresponding effective transition tem-
peratures for the three-state LR Potts chain with σ = 0.5.
Error calculations were carried out by means of the jackknife
method applied to a single production run. The number of
MCS per production run is the same for both methods, yet
varies between 106 and 107 from the smaller to the larger
lattice sizes.

.

L Tc(Cv) Cmax
v

(CU) (SSU) (CU) (SSU)

128 1.6450(18) 1.645(3) 3.55(2) 3.55(3)

256 1.6607(2) 1.6607(13) 4.86(2) 4.88(5)

512 1.6741(9) 1.675(1) 6.54(3) 6.47(6)

1024 1.6815(2) 1.6815(17) 9.14(8) 9.10(24)

2048 1.6856(3) 1.685(1) 13.63(15) 13.73(80)

4096 1.68742(9) 1.6875(10) 22.21(34) 21.9(2.2)

8192 1.68801(7) 40.28(44)

16384 1.688031(34) 79.46(35)

32768 1.687851(12) 164.1(4)

65536 1.687749(09) 332.8(6)

L Tc(χ) χmax

(CU) (SSU) (CU) (SSU)

128 1.6793(14) 1.679(4) 3.44(3) 3.46(3)

256 1.6837(2) 1.6837(15) 6.09(3) 6.13(5)

512 1.6864(8) 1.6877(15) 10.81(7) 10.86(13)

1024 1.6882(3) 1.688(2) 19.73(28) 19.8(5)

2048 1.6887(2) 1.6882(15) 37.6(5) 37.5(1.8)

4096 1.68869(9) 1.6887(11) 75.4(1.2) 74.6(6.7)

8192 1.68842(7) 165.2(1.8)

16384 1.688148(35) 369.8(1.1)

32768 1.687870(20) 827(2)

65536 1.687773(16) 1754(3)
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ports our values for transition temperatures and peaks
of response functions for σ = 0.5. Both Cv and χ were
computed from a production run whose length varied be-
tween 106 and 107 MCS depending on the lattice size,
and error bars were computed by means of the jackknife
blocking method. We performed these production runs
twice, first using single-spin updates, and then using our
method, yet in both cases with the same estimate of the
density of states. Figure 10 shows the graph of Cv as
obtained with cluster updates. We mention that, for
L > 4096, the local-update implementation was simply
intractable as a result of excessive computation times.
For all sizes, our results match within error bars for
both methods, and it should be noticed that, for the two
largest sizes, we obtain estimates of transition temper-
atures accurate up to the fifth digit. A fit of Tc(L), as
given by the location of the peaks of Cv, to the power
law Tc(L) = Tc(∞) + a/L yielded Tc(∞) = 1.68764(1)
for our method, and Tc(∞) = 1.6888(8) for the local-
update implementation. The same fit performed on Tc(χ)
gave Tc(∞) = 1.68765(2) and Tc(∞) = 1.6892(6) re-
spectively. These values compare very well with each
other. However, our infinite size transition temperature
is slightly larger than the best estimate determined so
far (to the best of our knowledge) with a numerical ap-
proach, namely, the value of Tc = 1.68542 obtained in
[68] with the cluster mean-field method. An important
effect we noticed is the presence of a crossover around
L = 32768 for Tc(Cv), where the finite-size transition
temperature starts to decrease slightly; hence we had to
restrict our fits to the largest lattice sizes. We think that
this crossover may be attributed to the large correlation
length at σ = 0.5. In Fig. 11, we observe indeed that the
temperature at which the crossover occurs is the same
as the temperature where the reduced Binder cumulant

of the energy, namely, UL =
〈
E4

〉
/

〈
E2

〉2
, experiences

a minimum. For σ = 0.2, the same effect is witnessed
by our results, with the change of slope of UL taking
place around L = 2048, and a change of behavior for
Tc(Cv) occuring near L = 4096. We also note in pass-
ing that, for σ = 0.5, relying on the Binder cumulant
to assess the first-order nature of the transition requires
simulating the system up to sizes that are far beyond
the capabilities of single-spin update implementations.
In particular, carrying a power-law fit of UL restricted
to sizes below L ∼ 3000 would yield underestimated val-
ues. Our results in Fig. 11 show that the infinite size
value lies around 1.033, and thus that the transition is
stronger than suggested for instance in [69].

Although a precise determination of correlation lengths
for the LR Potts chain is beyond the scope of this work,
we tried to obtain a rough estimate of it from the finite-
size behavior of the interface free energy ∆F . First, we
computed a reweighted histogram N(T, E) of the energy
at the transition temperature Teqh where both peaks of
the histogram have equal height (see Fig 12). Then we
measured ∆F from lnPmax − lnPmin, where Pmax and
Pmin stand for the height of the peaks, and the minimum
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FIG. 12: Graph of the free energy F (T, E) = − ln N(T, E)
for the three-state LR Potts chain with σ = 0.5. N(T, E) is
the reweighted histogram at a transition temperature defined
by equal peak heights. For the four lattice sizes shown here,
lattice configurations corresponding to phase coexistence are
suppressed by a factor ranging from 0.1 to 10−6 with respect
to pure phase configurations; for the three largest sizes, we
note that a canonical simulation is clearly intractable.

of the histogram between the two energy peaks, respec-
tively. By fitting the interface free energy to the power
law ∆F ∝ Lα, we obtain a very good fit for sizes rang-
ing from L = 256 to L = 65536, yielding α = 0.91(2)
and ∆F/Lα = 0.0004 in the thermodynamic limit. This
is illustrated in Fig. 13. In view of the expected behav-
ior for short-range models, namely, ∆F scales to leading
order as a power of the lattice size with an exponent
given by the dimension of the interface [70], this suggests
that the effective dimension of the interface lies between
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FIG. 13: Fit of the interface free energy ∆F to a power law of
the lattice size for the three-state LR Potts chain with σ = 0.5.
All estimates of ∆F were obtained with our method.

0 and 1 for long-range chains. This assumption is also
supported by the fact that the fits of ∆F/L in [69] ex-
hibit important finite-size corrections, while our fit with
a non-integer exponent does not suggest such corrections.
Finally, if we mimic the large q arguments proposed in
[59] for the nearest-neighbor Potts model, namely, that
the correlation length ξ of the disordered phase is given
by (∆F/L)−1, we obtain after changing the unit expo-
nent to α, an estimate of ξ ∼ 2500 for the LR chain
at σ = 0.5. In this respect, we would like to mention
that: (i) the topology of the interface between the or-
dered and disordered phases is certainly far more com-
plex than in short-range models, and (ii) we make use
of Infinite Image Periodic Boundary Conditions; hence
this estimate should be taken as very rough one, since
for instance the factor 2 in the definition of the interface
tension (see Eq. (7) in [59]) might be questionable in LR
models. Nonetheless, our estimate seems at least consis-
tent with the fact that the change of slope of UL sets in
for sizes slightly above this size, i.e., L ∼ 5000.

VII. COMBINATION WITH THE TRANSITION

MATRIX METHOD

In this section, we examine how our method can be effi-
ciently combined with the transition matrix method [25].
We show in particular that transition matrices represent
a very efficient way of estimating the microcanonical tem-
perature β(E) used to compute cluster bond probabili-
ties when nothing is known initially about the density
of states. We also discuss how the estimated β(E) can
then be used as an efficient predictor to speed up the
convergence towards the ground state during the early
iterations of the Wang-Landau algorithm.
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FIG. 14: Microcanonical inverse temperature β(E) =
dS(E)/dE computed from the estimated density of states us-
ing a spline interpolation, for the three-state long-range chain
with σ = 0.4, 0.5, and 0.6 from bottom to top.

A. Efficient estimation of β(E) and bootstrapping

As seems obvious from the scheme presented in Sec. II,
one of the basic requirements of our algorithm is to have
an estimate of β(E) at our disposal over the whole en-
ergy axis in order to compute cluster bond probabilities.
One rather simple way of estimating β(E) is to com-
pute it from the current estimate of the density of states
n(E) using a finite-difference scheme, i.e., in real-time
in the course of the iteration scheme. This is the most
tractable approach if one decides to rely solely on Wang-
Landau’s algorithm to estimate n(E). During early iter-
ations, however, the estimate of n(E) is somewhat rough
and it is necessary to resort to a spline interpolation in
order to obtain a sufficiently smooth estimate of β(E).
Since the unequal spacing of energy levels in long-range
models renders an interpolation scheme for n(E) abso-
lutely mandatory [7], β(E) is already available to us for
free. Figure 14 shows estimates obtained with this ap-
proach for the three-state long-range chain with various
interaction ranges, computed after ten iteration steps of
10000 measurements each. We note in passing that the
presence of a clearly visible minimum in the three cases
results from the first-order nature of the transition. For
sufficiently short-range interactions, and when no ran-
dom disorder is present, the microcanonical entropy S(E)
scales quite gently with the lattice size, and it is also
perfectly feasible to use the value of β(E) obtained at a
smaller lattice size as an initial guess.

In any case, it is crucial for the performance of our
algorithm that we should compute β(E) to sufficient ac-
curacy. Indeed, we have found that any departure from
the ideal line results in poorer performance, as illustrated
in Fig. 15. The curve (a) in the figure shows the mean
acceptance rate as a function of the energy for an esti-
mate of β(E) obtained after the ultimate Wang-Landau
iteration and a modification factor ln f = 10−7. Curves
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FIG. 15: Mean acceptance rate as a function of the energy
per spin for the six-state long-range Potts chain with σ = 0.5,
and L = 512 spins (strong first-order regime) for three distinct
estimates of β(E). (a) best estimate, as given by the ultimate
iteration of the Wang-Landau algorithm; (b) β(E) scaled by
0.9; (c) β(E) scaled by 1.1.

(b) and (c) show the same quantity for microcanoni-
cal temperatures that were under- and overestimated by
10%. The poor estimate of β(E) causes a marked de-
crease of the acceptance rate in the transition region
(around E/L ∼ −1.5), from around 100% to nearly 40%.
Tunneling times obviously experience a corresponding in-
crease, from 243 for the best estimate, to 737 and 1150
for the under- and overestimated temperatures, respec-
tively. This can be easily explained, if one considers that
the efficiency of cluster updates reaches a maximum at
the percolation threshold. Any departure of the estimate
of β(E) from the ideal line results in a shift between the
temperature at which clusters percolate (which depends
on β(E)) and the effective temperature of the system
(which is given by dS(E)/dE). This behavior has been
observed in the context of canonical simulations of disor-
dered systems, e.g., the Random Field Ising model [71],
where the presence of randomness depresses the critical
temperature. In this case, using the (canonical) simula-
tion temperature to compute the bond probabilities sim-
ply results in a growing shift between the critical temper-
ature and the percolation threshold as the randomness is
increased.

In view of the previously mentioned requirements on
the estimation of β(E), it is clear that, if one does not
have a reliable guess of β(E) at hand before the simula-
tion starts, an efficient scheme must be devised in order
to compute β(E) in the early stage of the Wang-Landau
algorithm. This is vital at this stage, because the exceed-
ingly noisy estimate of the density of states makes it more
likely to obtain under- or over-estimated values for β(E).
An efficient approach in this regards relies on transition
matrices [25, 72]. This method produces highly precise
estimates of β(E), although it has an inherently higher
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FIG. 16: Symbols show the microcanonical inverse tempera-
ture β(E) computed from the transition matrix accumulated
over 2000 MCS, for the six-state LR model (σ = 0.5) contain-
ing 512 spins. The estimate obtained from an interpolation
scheme after the ultimate iteration is shown as a solid line for
comparison.

cost in term of computer load. The starting point is the
Broad Histogram equation [53, 73]:

n(E)T∞(E → E′) = n(E′)T∞(E′ → E),

where T∞(E → E′) is the transition matrix ele-
ment between energy levels E and E′ (also denoted as
〈N(σ, E′ − E)〉E in [73]). This quantity contains the mi-
crocanonical average at energy E of the number of po-
tential single-spin moves from a state σ of energy E to
a state σ′ of energy E′. It is estimated by accumulating
a double-entry histogram h(E, ∆E) containing the num-
ber of potential moves from E to E + ∆E each time the
energy level E is visited. Long-range interactions lead to
energy levels which are irregularly spaced, with in par-
ticular a few gaps in the vicinity of the ground state [7],
and it is necessary to choose an axis bin small enough
to minimize discretization errors, and at the same time
sufficiently large to contain at least a handful of entries.
In this case, T∞(E → E′) varies sufficiently smoothly for
the following approximation scheme to be valid:

β(E) =
1

∆E
ln

T∞(E → E + ∆E)

T∞(E → E −∆E
,

where the actual estimate is obtained by weighted-
averaging over several values of ∆E. As illustrated in
Fig. 16 for the six-state LR chain, the estimation of β(E)
from the transition matrix elements is reliable already
after 2000 MCS, which roughly corresponds to 50 round-
trips between the upper and the lower energy range. For
long-range models, each estimation of the number of po-
tential moves requires of order L2D operations (as op-
posed to LD for nearest-neighbor interactions). However,
we have shown in Sec. III that a single cluster update can
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demand as little as O(LD lnLD) operations when long-
range specific optimizations are carried out; hence esti-
mation schemes based on transition matrices partly scup-
per the benefits of these optimizations, and should there-
fore be employed only as a bootstrap procedure when
nothing is known yet about the microcanonical temper-
ature. Conversely, models with nearest-neighbor inter-
actions do not undergo such a drawback, and make the
transition matrix approach a perfectly transparent one
from the viewpoint of algorithm complexity.

B. Efficient predictors for the Wang-Landau

algorithm
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FIG. 17: The graph shows the number of MCS needed to
reach the ground-state (dashed horizontal line) of the six-
state Potts chain (σ = 0.5 and L = 512) for an initially
unknown density of states, using three distinct schemes: (a)
and (b) predictor based on β(E), local- and collective-update
algorithms respectively; (c) no predictor (S(E) = 0, ∀E),
local-update algorithm.

Finally, we discuss how β(E) can be used as an efficient
predictor during the early stage of the Wang-Landau
algorithm when nothing is known about the density of
states. In the original implementation of this algorithm,
we start with S(E) = 0 for all energy levels, and sim-
ply increment S(E) by the modification factor ln f each
time the corresponding energy level is visited. One of
the main drawbacks of this approach is that the Markov
chain tends to wander around a fairly long time in the up-
per energy range, until eventually enough visits have been
recorded in the histogram for the system to start explor-
ing low-energy levels. This point has already been men-
tioned in [34], where it was suggested that starting with
a good initial guess of S(E) was more efficient in terms of
the number of histogram entries required to reach the fi-
nal estimate, than performing a multi-range run with no
initial guess at all. To circumvent this drawback when no
initial guess is available, we therefore propose to use β(E)

to predict S(E) for energy levels that are visited for the
first time, and thus for which S(E) is not available (i.e., it
is set to S(E) = 0 in the original implementation of the
Wang-Landau algorithm). A linear prediction scheme
turned out to sufficiently efficient for our purpose. As il-
lustrated in Fig. 17, using a predictor brings about a gain
of three orders of magnitude in the time needed to reach
the ground state. Our method and the single-spin update
method lead similar performance, with however a slightly
better behavior when cluster updates are used. We note
that the Markov chain stays initially somewhat longer in
the upper energy range when cluster updates are used,
since a good estimate of β(E) is needed to build the clus-
ters with the correct bond probabilities. We think that
this approach would prove particularly useful when the
characteristics of the model makes it impossible to ob-
tain an initial guess of S(E) from simulations at smaller
lattice sizes, e.g., in the presence of disorder or when the
long-range interaction experience a slow decay.

VIII. CONCLUSION

In conclusion, we have developed a new Monte Carlo
method which combines in an efficient and straightfor-
ward way the benefits of flat histogram algorithms with
the fast-decorrelating capabilities of cluster updates. It is
suited for spin models with any number of interaction be-
tween spins. Our formulation is versatile, and the method
can be applied to a variety of density of states estimation
schemes, including the Wang-Landau algorithm, Berg’s
recursion scheme or the transition matrix method. We
have shown that using the microcanonical temperature
to compute cluster bond probabilities leads to a dras-
tic reduction in effective autocorrelation times, tunnel-
ing times and equilibration times. In the context of the
Wang-Landau implementation, the reduced correlation
between successive binning of the energy histogram yields
a lower error in the estimation of the density of states,
and as a result more reliable estimates of thermodynamic
averages. Several schemes for the estimation of the mi-
crocanonical temperature were proposed, amongst which
an efficient procedure which harnesses the power of the
transition matrix method, and allows us to bootstrap
the algorithm even if nothing is known initially about
the density of states. Finally, we carefully examined
the precision of our method in the case of spin models
with power-law decaying interactions. Here, our method
proves all the more powerful that it is able to reduce
the algorithm complexity to that of a short-range model
having the same number of spins. This allowed us to
study several finite-size effects at large lattice sizes, oth-
erwise largely out of reach of conventional local-update
implementations. In particular, we found out that the
interface free energy scales perfectly well with a power of
the lattice size, yet with a non-integer exponent which
lies between 0 and 1. This, we think, is accounted for
by the complex topology of the phases in coexistence in
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long-range models. A more detailed study, including a
deeper insight into the topological properties of the gen-
erated clusters and the estimation of correlation lengths

at large lattice sizes, would be very promising. We think
that our method clearly draws this challenge within com-
putation range.
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