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ABSTRACT

The lowest order sigma-transformed momentum equatiomdieMellor (J. Phys. Oceangr. 2003)
takes into account a phase-averaged wave forcing basedywave theory. This equation is shown to
be generally inconsistent due to inadequate approxinmtbthe wave motion. Indeed the evaluation
of the vertical flux of momentum requires an estimation offifessure and coordinate transformation
function s to first order in parameters that define the large scale @uaolof the wave field, such as the
bottom slope. Unfortunately there is no analytical exgoesfor p and s at that order. A numerical
correction method is thus proposed and verified. Altereativordinate transforms that allow a sepa-
ration of wave and mean flow momenta do not suffer from thismiststency nor require a numerical
estimation of the wave forcing. Indeed, the problematitiealflux is part of the wave momentum flux,
thus distinct from the mean flow momentum flux, and not diyelevant to the mean flow evolution.

1. Introduction but it requires a numerical evaluation of the wave forc-
Wave-induced motions are of prime importance iing terms. This difficulty is due to the choice of aver-
the upper ocean, and in the coasrt)al ocearﬁ) e.g. A ing, and the same problem arises with the alternative
huin et al. 2005 for a recent review). Therefore, usu eneralized Lagrangian Mean equations of Andrews and
three-dimensional primitive equations must be modifi f,;n'g'rzz (algﬁ/l equUSza.t?igr’]Qe(jrglsr::?iféeer ‘?hcé L(';A\/)(‘)Iigg:] I\g?ta
to account for waves. Among such modified equationg a ; . ;
atéiomentum quantity that contains the three-dimensional

those based on surface-following coordinates provié{wlee (pseudo)-momentum (hereinafter called ‘wave mo-
physically sound definitions of velocities right up to th entunn’ for simplicity, see Mclntyre 1981 for details).

free surface, allowing a proper representation of surf riting an evolution equation for this quantity requires

shears and mixing on a vertical scale smaller than t ey P .
wave height (i.e. a few meters). Any change of coofn explicit description of the complex vertical fluxes of

dinate adds some Complexity in the derivation, but tﬁgave momentum that are necessary to maintain the ver-

final equations can be relatively simple because part bq;al structure of the wave field in the surface gravity

the advective fluxes are removed, and boundary Conmgvegwde.
tions may be simplified. A new set of such equatio . ; ;
was recently derived by Mellor (2003) using a changergferggale é)(;grp(;ierr]r;tévave motions and wave-following

the vertical coordinate only, arguably the simplest pos-

sible. Mellor's (2003) set of equations was originally ) ) )
derived for monochromatic waves, but it is easily ex- We discuss here the simple case of monochromatic
tended to random waves (e.g. Ardhuin et al. 2004, eaves of amplitude and wavenumbet propagating in

8). Unfortunately, we show here that these equatiortBe horizontal: direction, with all quantities uniform in

in the form given by |\/|e||or, are not consistent in théhe other horlzonte@ direction. The Sur_face and bottom
simple case of shoaling waves without energy dissip@levations are(x, t) and—h(z), respectively, so that the
tion. A modification is proposed to solve the problempcal mean water depth B(z,t) = h(z) + n(z,t), with

c " o ddresgabrice Ardhuin. Centre Miltai the overbar denoting an Eulerian average over the wave
d,OCéggnggghngggNiggaHyéfgg%pu?;ueret o ar?&;ﬁ dels phase. We shall assume that the maximum surface slope
Marine, 29609 Brest, France is a small parameter; = ka < 1, and that the Eule-
E-mail: ardhuin@shom.fr rian mean currert in thez-direction is uniform over the
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depth. Thusv will denote the radian wave frequency re-
lated tok by the linear wave dispersion relation (e.g. Mei
1989),

w =Ko+ 0 = ku+ [gktanh(kD)]"?. (1)

Finally, we assume that the water depth, current and

wave propagation

wave amplitude change slowly along theaxis with y=270°

a slowness measured by a second small parameter A

taken to be the maximum bottom slope. We thus assume ) .
((0D/0z)| < &3, |(9a/0x)| < &3, |(0u/dx)/(0)| < (a) Eulerian —
€2, [(Ba/Ot)/(ca)] < ea, |k(Ou/Ot)/c? < eo, y=0
|(0D/0t)k/o| < eo. The conditions on the bottom slope “WT

and current gradients are consistent with the condition on Y y=90°

the wave amplitude gradient because in steady conditions
the wave amplitude would change due to shoaling over v=0
the current and/or bottom. ."B'_'u»

The vertical coordinate is implicitly transformed into
Mellor’s ¢ coordinate through

z=s(x,6,t)=TT+s<D+73 (2) y=270°
with s defined by Mellor's eq. (23b) as
5 =350 = aFgsg cos (kx — wt) 3) (b) GLM
and the vertical profile functioh’sg defined by
sinh[kD(1+¢)] sinh[k(z+h)] a _
5= —gmn(kD)~  smhED) 0D E‘—_%

4
The coordinate transformation frosrto ¢ has the very
nice property of following the vertical wave-induced mo- (¢) Mellor-sigma

. . 2

tion, at least for linear waves on a flat bottom, and to pr
. . . — o = o
first order ine;. In that case the iso-surfaces are ma- w=270 y=90

terial surfaces, and the fluxes of horizontal momentum -p ds/dx

through one of these surfaces are simply correlations of

pressurep times the slope of that surfads/0x (figure

1.c), which replaces the wave-induced advective flux

in an Eulerian point of view (figure 1.a). More generally,

when averaging is performed following water particles,s. 1. wave-induced fluxes of horizontal momentum in Euleren-
over their trajectory (Lagrangian) or over their verticadralized Lagrangian, and Mellor-sigma averages of the fiéscous or
displacement (Mellor-sigma), the corresponding advegrbulent fluxes are neglected for simplicity. Distortediaps repre-

; i ifi~4 Sent an elementary fluid volume and its position at four phagehe
tive flux of momentumy,u; is replaced by a modified wave cycle, and the large arrow indicate the local wave alrviloc-

pressure force (figure 13. ity. The horizontal and vertical fluxes of the horizontal mentum are
Using his coordinate transform, Mellor (2003) obrerJreS,tter?(t)i? ?gczﬂzlrlle‘rz grrrrgg%ngh;ijre eép;esﬁgnn 2rgf9\%‘|11%st¢ ﬁirs-

tained a phase-averaged equation for the drift curré;ijsfhl‘;vs' imi2 + p becoming Mellorsu® + pds /&)_9 g

U = u + ugs whereug is the Stokes drift, i.e. the mean

velocity of water particles induced by fast wave-induced

motions.U is strictly defined as the phase-average parti-

cle drift velocity when following the up-and-down wave Mellor's horizontal mean momentum equation (34a) is

motion, andi = U —ug is a quasi-Eulerian mean currenteproduced here for completeness, in our conditions with

(Jenkins 1986, 1987). Below the wave crests equal, a flow restricted to the vertical, z plane, a constant water

to second order in the wave slope, with the Eulerian medensity, no Coriolis force, and no turbulent fluxes and the

currentu (figure 2). atmospheric mean pressure set to zero (wind-wave gener-
1For the Generalized Lagrangian Mean (GLM) only the contribuAUON due to air pressure fluctuations is absorbef.if),

tions to lowest order irz; are indicated. Indeed, in GLM the wave-

induced advective flux is not strictly zero, but of higher erdsince

the average only follows a zero-mean displacement with iduakad- 9 N

vection, contrary to a truly Lagrangian mean with zero ativac(e.g. oDU oDU U on

Jenkins 1986). 5t T ox T o T9Pg, = Frot Fus. (5)
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: : : of the order ofga da/0x, and the forceF, s is of the or-

ol o, % der ofgDka da/0x. Thus, in the case of shoaling waves,
i F,3 is of the order ofyDe?e,.

‘ Mellor estimated the vertical momentum flSxs; from
vavemiueed (E) and the corresponding lowest order wave-induced
j mass transport kinematic pressure anlevels,

(a) Eulerian

| current

................... 20pi p=Dpo = ga(Fcc — Fss) cos(kr —wt),  (8)
0 40 80 120 160 200 -0.5 0 0.5 . . .
x (m) __ velocity (m/s) g is the acceleration due to the apparent gravity, and the
W N R S L vertical profile functionFo¢ is defined by
= “"I\""H‘"I\"" 5 rrrrrrr FCC:cosh[k:D(l—l—c)]:cosh[k(z+h)]+0(g)
3 hw”..tll‘,,”,,t,10,;‘ i . . cosh (kD) cosh (kD) D’
s : :
B : . fl wave (9)
5y - - - - _ o - J | momentum . . . . . .
N (1‘))01: L g'r;ngi;m- LTS N [t For non-dissipating shoaling waves, the right hand side
T T Ty e ] 200 | Lagrangian terms of eq. |(5) are of ordejDeje2. The estima-

: : : tion of F,5 thus requires the knowledge pf(¢D) and
W Oty —y ks to ordere;ieq, for which Airy theory is insufficient.
I L) In particular, this estimation demands a formal defini-
N N tion of 5, not given by Mellor (2003). Further, eq. (7)
o - ' ' is only valid if the wave-induced velocit® throughs
L~ AL

Py, N . levels is zero, or at least, yields a negligible fl(>
S R [0 SO M | and a negligible mean Jacobian-weighted vertical veloc-

ity Q = Q/(1+ ds/ds/D). This is not the case over a
FiG. 2. Averaging procedures (left) and examples of resultieigaity ~ sloping bottom with Mellor’s (20033 function.
profiles (right) in the case of (a) Eulerian averages, (b)3keeralized

Lagrangian Mean, (c) sigma transforms (Mellor 2003). Thektblack . . .
bars connect the fixed poin{s, z) where the average field is evaluated &- Formal definition of the the coordinate change

to the displaced pointée, z) + (£1, £3) where the instantaneous field : ; P _
is evaluated. For averages in moving coordinates the péints) + For a general surface defined [npllutly byz -

(¢1,€3) at a given vertical levef are along the gray lines. The drift s(z,<,t), the ¢ velocity component2 is (e.g. Mellor
velocity is the sum of the (quasi-Eulerian) current and theevinduced 2003 eq. 20),

mass transport. In the present illustration an Airy wavenopktude 3 m

and wavelength 100 m in 30 m depth, is superimposed on a hgfch

Stokes drift

T T T T _.|_15,;,,

current of velocityu(z) = —0.5 — 0.01z m/s for allz < ¢(x). The a d(Z - S) d(z - S)
quasi-Eulerian current profile is not represented in (cYssiit is not = d+ - dt
directly given in Mellor’s theory, although it can obvioydie obtained _ - .
by taking the difference of the other two profiles. o~ ~ Js _0s 0s
= W—U——U— — —, (10)
Ox or Ot
On the right-hand the first other term withs =17 + ¢D. .
g In the spirit of Mellor's (2003) derivation, the lev-
- els should be material surfaces for wave-only motions,
P = 084 _ 9 (DaQ Jrﬁ@) (6) SO that one may neglect the vertical flux of momentum
Oz Oz 0s (U +a)Q/(1 + ds/d</D).

Using the wave-induced vertical and horizontal
represents the convergence of a horizontal flux of hodisplacements,&;(x,¢,t) and & (x,¢,t), defined by
zontal momentum that accelerates the mean drift velociy, /ot = u;(x, + &1, 2 + €3, 1), we redefine the wave
U. part of s,

The other term

Js
?553_518_' (11)
aszs 6 o oaa— v
Fp3 = — e~ ac (p(’?S/@a:) (7)  The first term¢; corresponds to Mellor’s definition while
o N the second is &(e) relative correction. This definition
represents a similar convergence of a vertical flux of harields a wave-induced vertical velocify = —uds’/dx
izontal momentum. through the isas surfaces redefined by = s (z,¢,t) =

Definingg as the acceleration due to the apparent graki-+ <D + s'. If i < 4, as in the examples below, then

ity, p ands are of the order ofa anda respectively. In 2his pressure includes a hydrostatic correction due to ééical
generalp ands are almost in phase, thus the fl9xs is  displacement.
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Q is of a higher order compared to that given by Mellor'sor reference the corresponding lowest order Eulerian

(2003)s (eq.ﬂ!). mean balance is (e.g. Rivero and Sanchez-Arcilla 1994,
Lane et al. 2006)

b. Wave-induced vertical displacements and pressure _ .

over a sloping bottom 0 (gﬁ —) ou?  Oduw

12)'2

A WKBJ approximation using Airy’s theory is suffi- O O 0z

cient for estimating) ;.. / 0= because the horizontal gra-Only the hydrostatic pressure gradient is present in both

dient of any wave-averaged quantityis of orderesk¢. the Eulerian and Mellor-sigma balances, because the

On the contrary, the other forde,s is affected by mod- other terms represent a different balance, including wave

|f|C&EOﬂSS/1 andp: to the local-flat-bottom solutiong, momentum in the latter (see figure 2).

andp. _ _ Equation @4) is now tested numerically. We take a
For small bottom slopes; andp; are expected to be Roseau-type bottom profile (1976) defined byand =

of the order o, s” andesp, i.e. of ordeme; andgaeie2,  coordinates given by the real and imaginary part of the
respectively. Thugs) /Ox is of orderkaes = 122, and  complex function

is expected to be in phase with the wave-induced pressure

(B, of orderga, giving another term of ordegDe3 e, Z0a) — hi(z' — i) + (hy — hy) In(1 + e*' —i®)

omitted by Mellor in his estimation of(pds/dz)/0s. () = o '

The modification of the pressure can be obtained from (16)

the modification of the velocity potential, and it may be With o = 157/180, hy = 6 m andhy = 4 m (fig-

in phase withd3, /dz, thus also contributing at the sameure 1), and a radian frequeney = 1.2 rad s! (i.e. a

order toF,3. frequencyf = 0.2 Hz), the non-dimensional water depth
In order to be convinced of the problem, one may cowaries betwee.85 < kH < 1.1. The reflection co-

sider the case of steady monochromatic shoaling wawf§icient for the wave amplitude i5.4 x 10~ (Roseau

over a slope without bottom friction, viscosity or any kind976), so that reflected waves may be neglected in the

of surface stress. We also neglect the Coriolis force. momentum balance. We illustrate the force balance ob-

this mathematical experiment, the flow is purely irrotet@ined for waves with an offshore amplitude= 0.12m,

tional. We consider that the non-dimensional dejpth  Which corresponds to a maximum steepngss- ka =

is of order 1, and that there is no net mass flux acro3$ x 10~2 equal to the maximum bottom slope = ¢;.

any vertical section. In that case the mean current and thlee change in wave amplitude is given by the conser-

Stokes drift are of the same order, i.e. of the or@ef vation of the wave energy flux (see Ardhuin 2006 for

with C the phase speed. The mean current exactly comihorough discussion), and the wave phasis taken

pensates the divergence of the wave-induced mass traassthe integral over of the local wavenumber, so that

port, and the mean sea level is lower in the area where the/0x = k. The various terms are then estimated us-

=0,. (15)

wave height is increased (Longuet-Higgins 1967) ing second order finite differences on a regular grid in
coordinates, with 201 by 401 points covering the domain
iz kE ko Eo (12) shown in figure 3.a. The three terms in g] (14) are shown

() =~ Soh@rD) T Smh (ke Dy) in figure 3.

. . We have verified that the depth-integrated forces are in
where the) subscript correspond to quantities evaluate@wance, within 0.1% of.,,. However, at most water
at the offshore boundary of the domain. depths there is a large imbalance, of the order of the in-

Since wave forcing is steady, the Eulerian mean cUiiidual forces (i.egDe2e,) ,up to 180% ofF,,. This

rent response is steady (e.g. Rivero and Sanchez-Arcligiragicts the known steady balance obtained from the
1994, McWilliams et al. 2004, Lane et al. 2006), angjerian-mean analysis of Rivero and Sanchez-Arcilla
thus the Lagrangian mean current is also steady. Thygg4).
the first term in () is zero and the second is of Order or'the case of shoaling waves without breaking the
DC®ejey/D ~ gDejes. The vertical mean veloCitf  three-dimensional equations of motion of Mellor (2003)
can be estimated from the steady mass conservation eqy@-not consistent to their dominant order, because of an

tion, aDU 99 improper approximation of,3. This conclusion holds
+"=0 (13) forany relative magnitude of the wave and bottom slopes
oz s €1 andes.

where the first term is of ordedCe?z, /D and the sec- )
ond is of order2. Thus the third term in[{5) is of order¢. Wind-forced waves

025411522 ~ gDefey. The remaining terms irf](5) are of Clearly, any deviation of the wave-induced fielsls
ordereies, giving the lowest order momentum balance p, andu from Airy-wave theory may have strong effects
Feta Fxx Fx3 on the vertical momentum flux terifi,3. Another ex-
O . 08 0 —— ample of such a situation, correctly described by Mellor,
Do (gm)—— — + 8—§P55/51’= 0. (14) s the case of wind-wave generation. We briefly address
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with 5 a small non-dimensional wave growth factor, and
ol =~ p, andp, the densities of water and air respectively. He
o = then assumed that the water-side wave-induced pressure
<05’y was of the form

2(m)

a) topographyand pressure

-100 -50' 0 x(m) 50 100 ' 150 cosh [k(z + h)]

D1 ellor — — ———————=si . 18
DPMell gpBa cosh (kD) siny.  (18)

Implicitly s/, is zero, and for his purposg, was irrel-
evant. We shall now also determing. The continuity
of dynamic pressures at the surface is

-100 -56
! (c) Feta
w PEw + 98, = —gBasiny at z=(. (19)

A solution is obtained by solving Laplace’s equation
=) . - . with proper boundary conditions, to first orderin The
(d) Fx3 boundary conditions include the Bernoulli equation,

T ] 99 Pa
a =—g¢——
Pw

Pa, al 2=, (20)

in which non-linear terms have been neglected because
they are the sum of products of the foNfy, - V {y, un-
changed from the case without wind, and terms of the
(e) Fxx+Feta+Fx3 ) : ) form V¢,, - V{y, which are negligible compared to the
left-hand side terms for primary waves of small slope.
YR 5 ol 09 Similarly, the surface kinematic boundary condition is
Normalized force F / (g D &3) linearized as

FiG. 3. (a) Snapshot of the pressure field far a slowly varyingy Air % _ % at » — z (21)
wave over a the bottom topography given by (16). The foirc¢he Oz Ot s
balance 4) are shown in panels b, c and d, with their sumnelpa
all estimated from Mellor's analytical expressions. Alides have been  The combination of both yields
normalized bygDe3. N.B. in the case shown hetg = e2 = .
¢ 9o papa

. . . o " o: T, ot
it here because the full solution can has not been given w

previously. Mellor focused on the wind-wave generatioy) s also a solution of Laplace’s equation with the bot-
contribution to the vertical momentum flux tefils/0z  tom boundary conditiod,, /82 = 0 atz = —h. With

sea surface, and, below, it explains the growth of the wangslior, one has

momentum profile with the same profile as that of the

at z=¢. (22)

Stokes drift (Mellor 2003). G = a(t)cosp, (23)
In horizontally uniform conditions, the wave amplitude ga(t)

is a function of time only, and for the sake of simplicity po = —=Fcocsiny, (24)

we shall solve the problem in the frame of reference mov- _ o

ing at the velocity at which the wave phase is advected by Pro = ga(t)Foc cosy, (25)

the current. We write the wave-induced non-hydrostatic ~ da(t) Boa(t)

kinematic Eulerian pressure in the fofi§ = pro+pEw, a 2 (26)

the elevation ag = (o + ¢, and the velocity potential a

as¢ = ¢o + ¢, in which the 0 subscript refers to the bw = ﬁggFCC [Acostp + Beosy)] (27)

primary waves, and the subscript refers to the added
components in the presence of wind forcing. Taking&ith ¢ = (kz + ot). The elevation and under-water
primary surface elevation of the forgg = a cos+ with non-hydrostatic pressure correspondingstp are given
the the phase’ = kx — ot, Mellor considered an atmo- by 3) and the linearized Bernoulli equation

spheric kinematic pressure fluctuation in quadrature with

i 0 ~ ~
the primary waves o (d0 + bw) = —PE0 — DEw (28)
~ Pw . 3Here the pressure is Eulerian. For correspondance to Nagfies-
Pa = —gB——asiny, (17) sures on levels, one should takgé = pg — g5'.

a
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yielding (1999) have used

a =3 =\ 2

Cw = B=[(1—A)siny + Bsiny'’ (29) - = =G =G

2a[( ) ] F=Fas smniD) [\ D ) T\ D ’

PEw = gﬁtic [~ (14 A)sint + Bsiny']. (32)
(30) and Chandrasekera and Cheung (2001) have used

1 _
Mellor's expression fof,, (eq. 18) is obtained by re- £ = fon = kD sinh®(kD) [1 = cosh(kz — k()] .
placing(,, andpg,, in (@), giving A = 1. One may (33)
take B = 1 to have¢,, = 0 att = 0, or more simply  \yjth these choicess; does not satisfy exactly

B = 0, which gives(,, = 0, andppw = FocPapa/pw-  Laplace’s equation, and thus requires further corrections
The choice ofB has no dynamical effect. In the presenf, the form of evanescent modes. An infinite number
cases,, should give a contribution 8., because it is qf other choices is available, either satisfying Laplace’s
in phase withpo, but this is a relative correction of ordereqation or the surface boundary conditions, but never
0, thus negligible. To the contrary, the contribution Ogoth, so that each of these solutions is only approxi-
pw 10 (pds/0x) is quite important, because for uniformmate, and the exact solution is given by the infinite series

horizontal conditions this flux is otherwise zero. of modes, which can be computed numerically for any
_ bottom topography (e.g. Athanassoulis and Belibassakis
3. A solution to the problem ? 1999, Belibassakis et al. 2001, Magne et al. 2006).

Contrary to that particular wind-forcing term, there is The vertical displacement and Eulerian pressure cor-

no simple asymptotically analytical correction foand rec_tlonsg\rﬁ g;yen by t:ije mteglrlatlon of the vertical ve-
¥ that can account for the bottom slope and wave fielgCity @nd the linearized Bernoulli equation,

gradient. A major problem in this situation is that the dh

wave velocity potential becomes a non-local function of &1 = d—aDd— sin¢ (34)
the water depth. The velocity potential and pressure fields dixz o

may only be investigated analytically for plane beds (e.g. pEp1 = ——aDF(z)siney (35)
Ehrenmark 2005) or specific bottom profiles. Numeri- dz

cal solutions for the three-dimensional wave motion are Thus, in absence of wind forcing but tak|ng into ac-

generally found as infinite series of modes (e.g. Magount the ‘sloping bottom mode'’ to first order in the bot-

sel 1993). The velocity potential for any of these modegm slope, the wave-induced flux of momentum through
satisfies Laplace’s equation with a local vertical profilgo< surfaces is

F,, proportional tocos(k,z + k,h) and a dispersion re-

lation 0> = gk, tan(k,D). The local amplitudes of _0s" (Foe — Fss) ga d(aFss)
these modes are non-local functions of the water depth, Pog — \Fee SS9 T o
and may be obtained numerically with a coupled-mode gka? dh dF

model (Massel 1993). This non-local dependance of the — <D— + gFCS)]
wave amplitude on the water depth arises from the elliptic 2 dz dz

nature of Laplace’s equation, satisfied by the velocity po- gka? dh dF

tential in irrotational conditions. The series of modes cait ™ 5~ g [FscF + Fss (Dg + §FCS>} ;
be made to converge faster by adding a ‘sloping bottom 36
mode’ that often accounts for a large part of the correc- (36)

tion and is a local function of the depth and bottom slopgjith 7.y = cosh [kD(1+¢)]/sinh (kD). The first

It is thus of interest to see if that correction only, Withtine is the term given by Mellor (2003). The second
out the infinite series, may provide a first order analyticghe arises from the correction due to the difference be-

correction to Mellor's momentum fluX.s. tweens’ ands, and the third line arises due to corrections
Following Athanassoulis and Belibassakis (1999), ong = 5, — gs) to the pressure on levels. These ad-
may define the velocity potential for that mode as ditional term are of the same order as the first term, and
ah have no flux at the bottom and surface. Thus the depth-
- 4 oDF ‘ 31) Integrated equations including that term also comply with
91 4z’ (2) cos ¥, (31) known depth-integrated equations (e.g. Smith 2006).

) N In the case chosen heFgy, gives a net momentum bal-
In order to satisfy the bottom boundary condition= " ance closer to zero than Mellor's (2003) original expres-
9¢1/0z = —9Ldg, /0, the functionF' should ver- sion (figure 4). However, the remaining error is signifi-
ify DAF(—h)/dz = 1/sinh(kH) and the satisfaction cant. Thus one cannot use only that mode, and the con-
of the surface boundary condition may be obtained withibution of the evanescent modes have to be computed,
F(0) = dF'(0)/dz = 0. Athanassoulis and Belibassakisvhich can only be done numerically.
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induced pressure at the displaced position (in the surface-

] : ‘ following coordinates). Howevefitd3'/0z anduw do

X 3 T not represent the same physical quantity since the former
; ‘ contains wave momentum, which is not included in the
latter.

‘ : Just like the Eulerian momentum flaxw is modified
04f i ] ——— Correction with FCh by the bottom slope, wave amplitude gradients, wind-
NTUA 3 modes wave generation, boundary layers, or vertical current
_____ NTUA 4 modes shears, these effects also mod#y;. But in these situa-

06— o i NTUA 5 modes tions, thes levels as defined by Mellor (2003) are not ma-
, r: = = = +NTUA 6 modes . .. . . ~_
OTf |5 e NTUA 10 modes terial surfaces, and a missing Eulerian-like flux teem

osbo o\ ] would have to be added to correct the momentum equa-

0 3 ' 3 3 tions, with 2 the wave-induced velocity acrosdevels.

oy N B o, Alternatively, we propose to replagavith s', defined by
- T e : s ed (1)) su~ch that Ieyels are closer to material surfaces,
[(Feta + P+ Fx3) d / Feta dx i.e. so thatl is of a higher order.

Whether the origina¥ or our corrected’ is used, the
FiG. 4. Net forces in the momentum balan¢e| (14) for steady m@aliwave'mdUQGd momentum flu%,; must b? estimated to
waves over a smooth bottom profile. The nef force has beegrateel  first order in the bottom slope, for consistency. This
over z and normalized by a similar integration of the the hydrastat requires arO(e,) estimation of botrﬁf ands or3. Un-
pressure forcé.+,. Several solutions are obtained. One correspon : : ;
to Mellor’s orginal expression, one possible analyticarection using #Brtunately there is no anaIYtICé](EQ). expression for the
Fen, and numerical estimations using the NTUA model, with vasio Wave motion. Thus Mellor's equations, even when cor-
numbers of modes. rected, require a computer-intensive solution that is gen-
erally not feasible. For example, Magne et al. (2006)
only included a total of five modes in their calculation of
A numerical evaluation of the forces was performedlave propagation over a submarine canyon. In an exam-
using the NTUA model (Athanassoulis and Belibassakjge shown here, this small number of modes is insufficient
1999). The NTUA solution was obtained in a domaifor an accurate estimation of wave-forcing terms.

with 401 points in the horizontal dimension. For the The trouble with these equations can be avoided by us-
small bottom slope used here, the model contains a fi{g, instead, equations of motion for the quasi-Eulerian
merical reflection? = 0.002 much larger than the analyt-vemcitya = U — ug (Jenkins 1986, 1987, 1989). Such
ical value given by Roseau (1976). However, this only insquations have been obtained in the limit of vanishing
troduces a modulation, in thedirection, of the estimated wave amplitude using an analytical continuation (e.g. us-
forces. This modulation is significant but still relatlvelyng a Taylor expansion) of the current profile across the
smaller than the average. The net force estimated frafirface (McWilliams et al. 2004). A general and explicit
NTUA results is found to converge to the expected forag|ution can also be obtained from the exact General-
balance described by eq [14) as the number of evanggqd Lagrangian Mean (GLM) equations of Andrews and
cent modes is increased (figure 4). In this calculation thhgcintyre (1978a) expanded to second order in the surface
values off;, do not differ significantly from those esti-sjopez; (Ardhuin et al., manuscript submitted to Ocean
mated using Mellor’s analytical expressions, as expectaflodelling, see [http://arxiv.org/abs/physics/0702067]

The only significant difference between the NTUA num these, the equation for the horizontal quasi-Eulerian

merical result with 10 modes, and Mellor’s analytical €Xs,omentum involves no flux term likpO3 /02 because

ression is found i, 3, with a much stronger value near, . —_—
tphe surface in the numerical result, allogving a baland@is corresponds to the flux 9¢;/dz[1 + O(c)] of wave
with the strongly sheareH,, (figure 4). momentunus (Andrews and Mcintyre 1978b, eq. 2.7b),
not directly relevant to the problem of mean flow evolu-
tion (see also Jenkins and Ardhuin 2004). This flux of
wave momentum only appears in evolution equations for
Mellor (2003) changed the vertical coordinate fronthe total momentun/, such as given by Mellor (2003),
¢ to z, using an implicit functions in two parts,z = or the ‘alternative’ form of the GLM equations (Andrews
5(z,y,¢,t) + s(z,y,s,t) with s changing only slowly and Mcintyre 1978, eq. 8.7a).
in space and time and representing the faster wave- For that reason, the equations for the quasi-Eulerian
induced change of vertical coordinate. If thdevels velocity 7 are simple and consistent in their adiabatic
are material surfaces, then the momentum 4% = form (without wave dissipation), at least to lowest order
P95/ 0z is the surface-following coordinate counterpaih wave slope and current vertical shear, for which ana-
of the Eulerian vertical momentum flux termw dis- lytical expressions exist for the wave forcing terms. Fur-
cussed by Rivero and Arcilla (1995), wifif the wave- ther details on the relationships between all these equa-

-03

| e— Mellor

| A

4, Conclusions
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tions, and further validation against numerical solutions over steep three-dimensional bathymetippl. Ocean Res23,

of Laplace’s equation can be found in Ardhuin et al. (sub- 319-336. _ _

mitted manuscript) Chandrasekera, C. N. and K. F. Cheung, 2001: Linear redracti
’ . diffraction model for steep bathymetd.of Waterway, Port Coast.
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