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(Manuscript received , in final form )
ABSTRACT

The lowest order sigma-transformed momentum equatioridkas into account a phase-averaged wave
forcing based on Airy wave theory is shown to be generallpiisistent due to inadequate approxima-
tions in the vertical fluxes of wave momentum. The expressfdhese fluxes is required to first order
in parameters that define the large scale evolution of the\iield, such as the bottom slope. Unfor-
tunately there is no analytical expression for these fluersept for fluxes associated with wind-wave
generation. Alternative coordinate transforms that akoseparation of wave and mean flow momenta
do not suffer from this inconsistency, because the prolfiemartical fluxes are part of the wave mo-
mentum flux, and are not directly relevant to the mean flowetianh.

1. Introduction water depth, or current. We shall show that these equa-
. . L tions, in the form given by Mellor, are not applicable to
Wave-induced motions are of prime importance |h] ' L o
the upper ocean, and in the coastal ocean (e.g. A e problem of wave shoaling in the absence of dissipa-
tion. A modified form of the equations is proposed that

huin et al. 2005 for a recent review). Thus, com--" . ; X
mon three-dimensional primitive equations must be mo erifies the known balance of forces in shoaling waves.

ified to account for waves, hopefully in a consistent way, ©VEVer, this form requires a numerical evaluation of

Among such modified equations, those based on surfabie _wav?( forcing terms.d t-lr;h's dlf‘flcu|tybI|S due to the_th
following coordinates provide physically sound defini¢"'0!C€ O averaging, and theé same problem arises wi
e alternative Generalized Lagrangian Mean equations

tions of velocities right up to the free surface, allowin )
a proper representation of surface shears and mixing% ndrews and Mcintyre (1978). Both Mellor's and the
ernative GLM equations describe the evolution of a

a vertical scale smaller than the wave height (i.e. a f . X . X
ght ( dgomentum quantity that contains the three-dimensional

meters). Any change of coordinate adds some compl d i hereinaft lled *
ity in the derivation, but the final equations can be re}Yave (Pseudo)-momentum (hereinafter called ‘wave mo-
ntum’ for simplicity, see Mcintyre 1981 for details).

atively simple because some of the advective fluxes i . . ; . .
riting an evolution equation for this quantity requires

removed, and boundary conditions may be simplified. Iy P )
new set of such equations was recently derived by M&D explicit description of the complex vertical fluxes of
\yave momentum that are necessary to maintain the ver-

lor (2003) using a change of the vertical coordinate on tal struct f th field in th ¢ it
arguably the simplest possible. Like Lagrangian coor \pfaa\llez;lijdceure of the wave Tield In the surtace gravity
i .

nates, solutions to first order in the wave amplitude
these coordinates contain some contributions that o
appear at higher order with fixed cartesian coordinat
Mellor's (2003) set of equations was originally derive

for monochromatic waves, but it is easily extended to ) ) .
random waves (e.g. Ardhuin et al. 2004, eq. 8). How- We discuss here the simple case of monochromatic

ever, a correct form of these equations is not so simp}gves of amplitude and wavenumbet propagating in

in the presence of horizontal gradients in the wave fieIEﬂe horizontal: direction, with all quantities uniform in
the other horizonta} direction. The surface and bottom

Corresponding author addres&abrice Ardhuin, Centre Militaire e|evations are(z,t) and—h(z), respectively, so that the
d’Océanographie, Service Hydrographique et Océanbigap de la _ .
Marine, 29609 Brest, France local mean water depth B(x, ) = h(x) + n(z,t), with

E-mail: ardhuin@shom.fr the overbar denoting an Eulerian average over the wave

23/ The problem: wave motions and wave-following
He‘rtical coordinates
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phase. We shall assume that the maximum surface slope
is a small parameter, = ka < 1, thatthe Eulerian mean
currentw in the x-direction is uniform over the depth.
Thusw will denote the radian wave frequency related to

k by the linear wave dispersion relation (e.g. Mei 1989),

wave propagation

w=ki+ 0 = ku+ [gktanh(kD)]"?. (1)

y=270°
Finally, we assume that the water depth, current A

and wave amplitude change slowly along theaxis ) e .
with a slowness measured by a second small param- (a) Eulerian L —
eter e, taken to be the maximum bottom slope. We y=0
thus assumé(da/0x)/(ka)| < ez, |(Ou/dz)/(0)] < uw
€y, |(0D/0z)| < 3, |(0a/Ot)/(0a)]l < e, Y 900
k(0u/ot) /02| < es, |(0D/0t)k/o| < e5. The condi- v
tions on the bottom slope and current gradients are con- v=0
sistent with the condition on the wave amplitude gradient ,-B'_ur

because in steady conditions the wave amplitude would
change due to shoaling over the current and/or bottom.
The vertical coordinate is implicitly transformed into

Mellor’s ¢ coordinate through y=270°
z=s(z,6,t)=T+sD+5 2)
with s defined by Mellor’s eq. (23b) as (b) GLM
§ =30 = aFgsgcos (kx — wt) 3)
and the vertical profile functiohsg defined by y=0
inh [kD(1+¢)] inh [k(z 4+ h)] E
S1n S S1n. z a !
Fss = . = — +0(=).
sinh (kD) sinh (kD) D T
, , (4)  (c) Mellor-sigma P ds/dx ,
The coordinate transformation frosto ¢ has the very AL AL
nice property of following the vertical wave-induced mo- y=270° y=90°
tion, at least for linear waves on a flat bottom, and to first -p ds/dx

order iney. In that case the iso-surfaces are material

surfaces, and the fluxes of horizontal momentum through

one of these surfaces are simply correlations of pregsure

times the slope of that surfaég/dz (figure 1.c), which

rgplace_s the Vlvave'.mduced advective fluxin an Eule- FIG. 1. Wave-induced fluxes of horizontal momentum in Euleraen-

rian point of view (figure 1.a). eralized Lagrangian, and Mellor-sigma averages of the fiiscous or
Using this coordinate transform, Mellor obtained &irbulent fluxes are ne_glected for sim_plicity. _ Distortewaqas repre-

phase-averaged equation for the drift curiént @+ ug sent an elementary fluid volume and its position at four phadehe

. P . wave cycle, and the large arrow indicate the local wave arbitloc-

Whereu_S IS the Stokes drift, i.e. the_mean Ve|OCI-ty Of Wal'ty. The horizontal and vertical fluxes of the horizontal n@rtum are

ter particles induced by fast wave-induced motioliss represented by smaller arrows.

strictly defined as the phase-average particle drift veloc-

ity when following the up-and-down wave motion, and

@ = U — ug is a quasi-Eulerian mean current. Below th©n the right-hand side the term

wave crest& is equal, to second order in the wave slope,

with the Eulerian mean current Fla = _95%s _ 9 (m) (6)
Mellor’s horizontal mean momentum equation (34a) is s ¢

reproduced here for completeness, in our conditions w

a flow restricted to the vertical, z plane, a constant wa-

ter density, no Coriolis force, and no turbulent fluxes a

the atmospheric mean pressure set to zero (the Wind-w%

generation term due to pressure fluctuations is absortzﬁ

in the £ term), tive flux of momentumu;u; is replaced by a modified
oODU 0DU? 900U on pressure force. For the Generalized Lagrangian Mean
o T Tor T e T gD 5" = Foa + Fag (5)  (GLM) only the contributions to lowest order in are

I|1Qpresents the convergence of a vertical flux of horizon-

tal momentum that accelerates the mean drift veldgity

hen averaging is performed following water particles
r their trajectory (Lagrangian) or over their vertical
lacement (Mellor-sigma), the corresponding advec-
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indicated. Indeed, in GLM the wave-induced advectivEhe first term corresponds to Mellor's definition while
flux is not strictly zero, but of higher order, since the awthe second is &(e3) relative correction. This definition
erage only follows a zero-mean displacement, contraryyelds a wave-induced vertical velocity = —uds/0x
a truly Lagrangian mean with zero advection (e.g. Jentlirough the isas surfaces redefined by = s (z,¢,t) =
ins 1986). 7+ ¢D + 5. This vertical velocity is of a higher order
Definingg as the acceleration due to the apparent grasempared to that given bydefined by eq.ﬂ2) as in Mel-
ity, p ands are of the order ofja anda respectively. In lor (2003).
the case whergands are in phasel s is of the order of
gDka da/dz, with the Dk factor coming from the ver- a. Wave-induced vertical displacements and pressure
ticaIQdivergence of the flux. Thus,; is of the order of over a sloping bottom
gl?l'gﬁg%therterm A sloping bottom induces a modification ¢§ and
&1 andp, that enter the definition o as well as that
0S,ys o [ o5 of the vertical momentum flux,3. A major problem
Fpp = — 9 —Da— u? thy (7) in this situation is that the wave velocity potential be-
r r r comes a non-local function of the water depth (this effect

. may be described in terms of evanescent modes, see e.g.
represents the convergence of a horizontal flux of Noggge| 1993). The velocity potential and pressure fields

zontal momentum that accelerates the mean drift veIocH;/ay only be investigated analytically for plane beds (e.g.
u Ehrenmark 2005) or specific bottom profiles for which

Mellor estimated the vertical momentum fli; from 5 contormal mapping to a constant depth can be defined
(E) and the corresponding lowest order wave-lnduc% .g. Roseau 1976).

kinematic pressure on isplevels (i.e. including a hy-
drostatic correction due to the vertical displacement),

For small bottom slopes, the modificatiafisp; of the
displacement and pressure due are expected to be of the
P =Do = ga(Foc — Fsg)cos(ka —wt),  (8) order of solutions without the slope (as given by Mellor)
times the slope, i.e. of ordees andgace,, respectively.

g is the acceleration due to the apparent gravity, and theThe horizontal gradient of is of order kas, =
vertical profile functionfcc is defined by e1e5 and is expée]cted to be in phase with the wave-
induced pressurg|(8), of order, giving another term
cosh[kD(1+¢)] _ cosh[k(z+h)] | 5 a,  of ordergDe2e, omitted by Mellor in his estimation of
cosh (kD) cosh (kD) D" 9(pods/0x)/ds. The modification of the pressure maybe
. . obtained from the modification of the velocity potential,
Tr;e terms on the right hand side of eﬂ. (5) are of ordghq it may be in phase wiis, /0, thus also contribut-
gDeies. The estimation of;3 thus requires the knowl- ing at the same order t8,5. However, a WBKB ap-
edge ofp/ (g D) andks to ordere, ey, for which Airy the- 5 65imation using Airy’s theory is sufficient for estimat-
oryis msufﬂ_ug_nt. In particular, this estimation demana%g F,, because the horizontal gradient of any wave-
a formal definition ofs. averaged quantity is of ordersoke.

For a general surface defined implicitly by 2 = , . . .
s(z,5,t), we define the (nearly vertical) wave-induced Mellor's (2003) approximate expression y; is thus
velocity through an isa-level by (e.g. Mellor 2003 eq. not consistent in general, in particular in the case exposed

here of waves shoaling on a gentle slope without wind

Fee =

20), ; AR oL 2
) forcing or dissipation. Similar contributions to the mo-
_ T mentum fluxes should also arise due to horizontal gradi-
d(z—s) d(z—23s) . .
w = T @ ents in the wave amplitude or other effects.
- ~ ~ In order to be convinced of the problem, one may con-
. .0s _0s O0s . X :
= Wl —ls— o (10) sider the case of steady monochromatic shoaling waves

over a slope without bottom friction, viscosity or any

In the spirit of Mellor (2003), the ise-levels should be kind of surface stress, and in the case of no net depth-
material surfaces for wave-only motions, thiishould integrated mass transport. We also neglect the Coriolis
be small. Otherwise the mean Jacobian-weighted verti¢afce. In this mathematical experiment, the flow is purely

velocity = &/(1 + ds/d</D) would carry a large part irrotational and can be solved for numerically. We con-

of the vertical flux of wave momentum. Using the wavesider that the non-dimensional deptlé/ is of order 1,

; ; : : d that there is no net mass flux across any vertical sec-
induced vertical and horizontal displacemegtgyx, ¢, t) an .
ands, (z, <, t), defined byOE, /0t = iy (x1 +E1, 2+ &3, 1), tion. In that case the mean current and the Stokes drift

; 5
one may take are of the same order, i.e. of the ordét; with C the
phase speed. The mean current exactly compensates the
. o divergence of the wave-induced mass transport, and the
§$=8G-by (M+<D). (11) mean sea level must is lower in the area where the wave
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height is increased, (Longuet-Higgins 1967)

kE koEo | ‘

~ sinh(2kD) * sinh(2ko Do)

|
I
WY
M‘H I

L L o
T

z(m)

() =

(12)

- - a) topographyand pressure
50 O xm) ° 100 150

il
i
Jil
|
-100
where the) subscript correspond to quantities evaluated
at the offshore boundary of the domain, but the exact lo-
cation where these are evaluated is irrelevant to the esti-
mation of horizontal gradients af 051
Because of the steady condition, the first ternﬁn (5)is
zero and the second is of ordBIC?c}ey/ D ~ gDejies. 15 0
The vertical velocity2 can be estimated from the steady ‘rorg

mass conservation equation, w
-0.5¢F

0

(b) Fxx

oDU 09

= = 13
ox + 05 0 (13) ) : - -
(d) Fx3

where the first term is of orddpCe?e,/D and the sec-

ond is of order). Thus the third term in|(5) is of order
C?eles ~ gDetey. The remaining terms in(5) are are of ) ,
orders2e, giving the lowest order momentum balance K ™ =

F(%ta g)g( a Fx3 205k
,D% (g77)— a;r + a—gﬁa’g/a:c: 0. (14) | © PocFetatpxs

For reference this corresponds to the lowest order Eule- oy e —

) -0.1 0 0.1 0.2
rian mean balance Normalized force F / (g D £3)

0 [/ _ = 0w Ouw FiG. 2. (a) Snapshot of the pressure field far a slowly varyingy Air
- (gn - w2) =0, (15) wave over a the bottom topography given by (16). The foircéhe
Ox Ox 0z balancea@ are shown in panels b, ¢ and d, with their sumnelps
L. - . all estimated from Mellor’s analytical expressions. Alides have been
which is known to be verified (e.g. Rivero and Sanchegormalized bygDe3. N.B. in the case shown herg = 5 = ¢.
Arcilla 1994, McWilliams et al. 2004, Lane et al. 2006).
The balance@4) will now be tested numerically. We

take a Roseau-type bottom profile (1976)dgnd > co-  4ints covering the domain shown in figure 1. The three
ordinates given by the real and imaginary part of the cosyms in eq. [(14) are shown in figure 2.

plex function We have verified that, within 0.1%, the depth-
;. o —ia integrated forces are in balance. However, at any given
Z(z') = hi(@’ —ia) + (he — ) In(1 + e ). depth there is a large imbalance (of the order of the in-
o dividual forces,i.e. gDe%c5), showing that the three-
, (1_6) dimensional equations of motion of Mellor (2003) are not
With o = 15m/180, hy = 6 m andh, = 4 m (fig-  consistent to the dominant ordgbe2e,, at least for the
ure 1), and a radian frequenay = 1.2 rad s° (i.e. @ (456 of shoaling waves without breaking. This conclusion

frequencyf = 0.2 Hz), the non-dimensional water depth,|4s for any relative magnitude of the wave and bottom
varies between.85 < kH < 1.1. The reflection coeffi- slopes:; andes.

cient for the wave amplitude is4 x 10~ (Roseau 1976),

so that reflected waves may be neglected in the mom?ﬁ\/\ﬁnd-forced waves

tum balance. We illustrate the force balance obtained for

waves, and offshore amplitudg = 0.12 m, which cor- Clearly, any deviation of the wave-induced fields
responds to a maximum steepness= ka equal to the p, u from Airy-wave theory may have strong effects on
maximum bottom slope, = 2.6 x 10~2. The change in momentum flux terms. Another example of such a situ-
wave amplitude is given by the conservation of the waation is correctly described by Mellor, this is the case of
energy flux (see Ardhuin 2006 for a thorough discussionyind-wave generation. We briefly address it here because
and the wave phasg is taken as the integral overof here an analytical solution can be found, and it has not
the local wavenumber, so that)/dx = k. The various been fully given previously. Mellor focused on the wind-
terms are then estimated using second order finite diffevave generation contribution to the vertical momentum
ences on a regular grid incoordinates, with 201 by 401 flux term pds/dx term. As he very well expressed it, it
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equals wave-supported wind stress at the sea surface, angdis also a solution of Laplace’s equation with the bot-

below, it explains the growth of the wave momentum prdem boundary conditiod¢,,/0z = 0 atz = —h. With

file with the same profile as that of the Stokes drift. the fully resonant atmospheric press@ (17) envisaged by
We define the wave-induced non-hydrostatic kinematiellor, one has

Eulerian pressurgg = pro+pEew, €levationy = (o4

and velocity potentiad = ¢ + ¢.,, in which the 0 sub- G = aft)cosy, (23)
script refers to the primary waves, and thesubscript ga(t) _
refers to the added components in the presence of wind o = TFCC sin, (24)
forcing. Taking a primary surface elevation of the form ~
Co = acos) withe the phase) = kx — wt, Mellor con- po = ga(t)Fcccosy, (25)
sidered an atmospheric kinematic pressure fluctuation in ~ da(t)  Boa(t) (26)
quadrature with the primary waves e 2
a
w = —Foco [Acosy + Beosty'] (27
5. = —gB8P asin g, a7 ¢ By Focl (8 Y] (27)
Pa

with ¢" = (kz 4+ wt). The elevation and under-water
with 8 a small non-dimensional wave growth factor, anfon-hydrostatic pressure correspondingptp are given
pw andp, the densities of water and air respectively. Hpy @) and the linearized Bernoulli equation
then assumed that the water-side wave-induced pressure

was of the form O, ~
B0 — 28)
_ B coshlk(z+h)] .
PMellor = —gf3a cosh (kD) sing.  (18) yielding
Implicitly 7, is zero, and for his purposg, was irrel- Cw = 52 [(1— A)siney + Bsiny/ (29)
evant. We shall now also determing. The continuity 2@
of dynamic pressures at the surfack is PEw = gﬁchc [~ (14 A)sine + Bsiny'].
DEw + g8, = —gBasiny at z=(. (19) (30)

These solutions are obtained by solving LaplaceMellor's expression fop,, given by eq. (18) is obtained
equation with proper boundary conditions, to first orddly replacing,, andpg., in (L9), givingA = 1. One may
in 3. The wave amplitude is now also a function of timelake B = 1 to have¢,, = 0 att = 0, or more simply
and for the sake of simplicity we shall obtain the solutio® = 0, which gives(,, = 0, andpg., = FccPapa/puw-
in the absence of current, which is equivalent to workinghe choice ofBB has no dynamical effect. In the present
in the frame of reference moving at the velocity at whichase¢., should give a contribution t6.,5 because it is
the wave phase is advected by the current. The boundBhphase withy,, but this is a relative correction of order
conditions include the Bernoulli equation, B, thus negligible. The contribution @f,, to (pds/dx)
5 is quite important because for uniform horizontal condi-
0¢ — gC—p., at z=C (20) tions this flux is otherwise zero.

ot
, . ) 3. Afix to the problem ?
in which non-linear terms have been neglected because

they are the sum of products of the foRfy, - V¢o, un- Contrary to that particular wind-forcing term, there is
changed from the case without wind, and terms of tH9 Simple asymptotically analytical correction fpand
form V¢,, - V(o, which are negligible compared to the® that can account for the bottom slope and wave field
Ieft-handwside terms for primary waves of small S|Op@_radient. Numerical solutions for the three-dimensional

Similarly, the surface kinematic boundary condition i¥/@ve motion are generally found as infinite series of
linearized as modes (e.g. Massel 1993). The velocity potential for

any of these modes satisfies Laplace’s equation with a
adp  OC local vertical profileF;, proportional tocos(ky,z + knh)
9z ot and a dispersion relation’ = gk, tan(k, D). The lo-
cal amplitudes of these modes are non-local functions of
The combination of both yields the water depth, and may be obtained numerically with a
coupled-mode model (Massel 1993). This non-local de-
0%¢ 1ol Opa - pendance of the wave amplitude on the water depth arises
92 99, T o at z=¢. (22)  fromthe elliptic nature of Laplace’s equation, satisfied by

1Here the pressure is Eulerian. For correspondance to Mafires-  the velocity potential in irrotational conditions, but tly
sures or levels, one should také = pr — g5’ becomes important over steep topography. The series of

at z=¢(. (22)
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modes can be made to converge faster by adding a ‘sleyith Fos = cosh[kD(1+¢)|/sinh (kD). The first

ing bottom mode’ that often accounts for a large part dihe is the term given by Mellor (2003). The second

the correction and is a local function of the depth arlthe arises from the correction due to the difference be-
bottom slope. Itis thus of interest to see if that correctidaweens’ ands, and the third line arises due to corrections
only, without the infinite series, may provide a first ordel; = pr1 — gs) to the pressure o levels. These ad-

analytical correction to Mellor's momentum fluk s. ditional term are of the same order as the first term, and
Following Athanassoulis and Belibassakis (1999), orfeave no flux at the bottom and surface. Thus the depth-
may define the velocity potential for that mode as integrated equations including that term also comply with
dh known depth-integrated equations (e.g. Smith 2006).
$»1 = ——aoDF(z)cos, (31) In the case chosen hefg;, gives a net momentum
dz balance closer to zero than Mellor’s (2003) original ex-
In order to satisfy the bottom boundary conditien= pression (figure 3). However, the remaining error is sig-
9¢1/0z = —9L0¢y/0x, the functionF should ver- nificant. Thus one cannot use only that mode, and the

ify DdF(fh)/dfz = 1/sinh(kH) and the satisfaction amplitude of the evanescent modes have to be computed,
of the surface boundary condition may be obtained witthich can only be done numerically with a coupled mode
F(0) = dF(0)/dz = 0. Athanassoulis and Belibassakignodel.

(1999) have used
=3 -2
z—C z2—C 0 < — ‘ ‘
F =F\g= ‘ ; 1
AB sinh(kD) ( D ) +( D ) ] ’ 0.1 3 ¥ | SRR
(32) 02 N SRR b
and Chandrasekara and Cheung (2001) have used s ! / ‘ :
- | —Mellor
1 —
F= FCh = 5, [1 — COSh(kZ — kC)} . 0.4 S m——— Correction with FCh
kD Slnh2 (kD) NTUA 3 modes

(33) 3

With these choicess; does not satisfy exactly " -oe
Laplace’s equation, and thus requires further corrections
in the form of evanescent modes. An infinite number

----- NTUA 4 modes
---------- NTUA 5 modes
= = = :NTUA 6 modes

07 s NTUA 10 modes

of other choices is available, either satisfying Laplace’s -8 3 DA Pt ot
equation or the surface boundary conditions, but never o :f 3 T Lo S
both, so that each of these solutions is only approxi- 3 ‘

mate, and the exact solution is given by the infinite series i g 0 05 T s
of mOdeS, which can be Computed nUmerica”y for any Net force integrated over x normalized by hydrostatic pressure

bottom topography (e.g. Athanassoulis and Belibassaléis . .
: . 1G. 3. Net forces in the momentum balang¢e| (14) for steady sipali
1999, Belibassakis et al. 2001, Magne et al. 2006). \aves over a smooth bottom profile. The nét force has beegritesl

The vertical displacement and Eulerian pressure c@ker z and normalized by a similar integration of the the hydrdstat
rections are given by time integration of the vertical vepressure force’.:o. Several solutions are obtained. One corresponds

; ; i ; ; to Mellor’s orginal expression, one possible analyticakrection using
lOCIty and the linearized Bernoulli equation, Fcn, and numerical estimations using the NTUA model, with vasio
dh _dF . numbers of modes.
&1 = —aD—siny (34)
dx dz

B h . A numerical evaluation of the forces was performed
PE1 = aaDF(Z) sin 1) (35)  using the NTUA coupled mode model (Athanassoulis and
) ] ) o Belibassakis 1999). The NTUA solution was obtained in
Thus, in absence of wind forcing but taking into acy domain with 401 points in the horizontal dimension.
count the ‘sloping bottom mode’ to first order in the botegr the small bottom slope used here, the model contains
tom slope, the wave-induced flux of momentum through numerical reflectiod? = 0.002 much larger than the
iso< surfaces is analytical value given by Roseau (1976). However, this
o ga d(aFss) only introduces a modulation in thedirection of the es-
Por = (Feo — Fss) {77 timated forces. This modulation is significant but still
relatively smaller than the average. The net force esti-
gka® dh pdF | o mated from NTUA results is found to converge to the ex-
dz tofies pected force balance described by eﬁl (14) as the number
)} of evanescent modes is increased (figure 3). In this cal-

2 dx

ka2 dh dF’
gre i [—FSCF + Fss (D— +<Fes

culation the values of,, does not differ significantly
2 dx dz

from the values estimated using Mellor's analytical ex-
(36) pressions, as expected. The only significant difference
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between the NTUA numerical result with 10 modes, and The simplicity and consistency of order2e, approx-

Mellor's analytical expression is found ih,3, with a imations to MRLO4 equations and the GLM equations,
much stronger vertical flux of momentum near the suin their adiabatic form (without wave dissipation), arises
face in the numerical result, allowing a balance with thigom the fact that wave forcing terms in the horizontal

strongly sheared,.. momentum equation are only present in horizontal gradi-
ent terms. Thus in momentum equations for the quasi-
4. Conclusions Eulerian velocityU — ug, the wave motion is needed

to zeroth order in small parameters such as the bottom

The momentum flug® 95’ /dz is the surface-following slope. This quasi-Eulerian velocity was defined and used
coordinate analog of the Eulerian vertical momentum fluyy Jenkins (1987) in horizontally homogenous situations.
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