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(Manuscript received , in final form )
ABSTRACT

The lowest order sigma-transformed momentum equatioridkas into account a phase-averaged wave
forcing based on Airy wave theory is shown to be generallpiisistent due to inadequate approxima-
tions in the vertical fluxes of wave momentum. The expressfdhese fluxes is required to first order
in parameters that define the large scale evolution of the\iield, such as the bottom slope. Unfor-
tunately there is no analytical expression for these fluersept for fluxes associated with wind-wave
generation. Alternative coordinate transforms that akoseparation of wave and mean flow momenta
do not suffer from this inconsistency, because the prokiemartical fluxes are related to the wave
momentum, and are not directly relevant to the mean flow ¢eoiu

1. Introduction water depth, or current. We shall show that these equa-
. . L tions, in the form given by Mellor, are not applicable to
Wave-induced motions are of prime importance |h] ' L o
the upper ocean, and in the coastal ocean (e.g. A e problem of wave shoaling in the absence of dissipa-
tion. A modified form of the equations is proposed that

huin et al. 2005 for a recent review). Thus, com--" . ; X
mon three-dimensional primitive equations must be mo erifies the known balance of forces in shoaling waves.

ified to account for waves, hopefully in a consistent way, ©VEVer, this form requires a numerical evaluation of

Among such modified equations, those based on surfabie _wav?( forcing terms.d t-lr;h's dlf‘flcu|tybI|S due to the_th
following coordinates provide physically sound defini¢"'0!C€ O averaging, and theé same problem arises wi
e alternative Generalized Lagrangian Mean equations

tions of velocities right up to the free surface, allowin )
a proper representation of surface shears and mixing% ndrews and Mcintyre (1978). Both Mellor's and the
ernative GLM equations describe the evolution of a

a vertical scale smaller than the wave height (i.e. a f . X . X
ght ( dgomentum quantity that contains the three-dimensional

meters). Any change of coordinate adds some compl d i hereinaft lled *
ity in the derivation, but the final equations can be re}Yave (Pseudo)-momentum (hereinafter called ‘wave mo-
ntum’ for simplicity, see Mcintyre 1981 for details).

atively simple because some of the advective fluxes i . . ; . .

removed, and boundary conditions may be simplified. fiting an evolution equation for this quantity requires

new set of such equations was recently derived by M&D explicit description of the complex vertical fluxes of
\yave momentum that are necessary to maintain the ver-

lor (2003) using a change of the vertical coordinate on tal struct f th field in th ¢ it
arguably the simplest possible. Like Lagrangian coor \pfaa\llez;lijdceure of the wave Tield In the surtace gravity
i .

nates, solutions to first order in the wave amplitude
these coordinates contain some contributions that o
appear at higher order with fixed cartesian coordinat
Mellor's (2003) set of equations was originally derive

for monochromatic waves, but it is easily extended to ) ) .
random waves (e.g. Ardhuin et al. 2004, eq. 8). How- We discuss here the simple case of monochromatic

ever, a correct form of these equations is not so simp}gves of amplitude and wavenumbet propagating in

in the presence of horizontal gradients in the wave fieIEﬂe horizontal: direction, with all quantities uniform in
the other horizonta} direction. The surface and bottom

Corresponding author addres&abrice Ardhuin, Centre Militaire e|evations are(z,t) and—h(z), respectively, so that the
d’Océanographie, Service Hydrographique et Océanbigap de la _ .
Marine, 29609 Brest, France local mean water depth 8(x,t) = h(x) + n(z,t), with

E-mail: ardhuin@shom.fr the overbar denoting an average over the wave phase. We

23/ The problem: wave motions and wave-following
He‘rtical coordinates




2 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME

shall assume that the maximum surface slope is a small
parameter; = ka < 1, that the Eulerian mean current
u in the z-direction is uniform over the depth. Thus

will denote the radian wave frequency related:toy the
linear wave dispersion relation (e.g. Mei 1989),

wave propagation

w= kil + 0 = kil + [gktanh(kD)]"?. (1)

y=270°
Finally, we assume that the water depth, current and . A

wave amplitude change slowly along theaxis with . > 2
a slowness measured by a second small paramagter (a) Eulerian e L
namely, |(0a/0x)/(ka)| < e, |(0u/0z)/(0)] < eo, v=0
[(0D/0x)| < €2, and slowly in time|(da/0t)/(ca)| < uw
g2, |k(0U/0t)/0?| < e, |(OD/0t)k/a| < e5. It should Y =000
be noted that the conditions on the bottom and current =
gradients are consistent with the condition on the wave B_>
amplitude gradient because in steady conditions the wave A e,

amplitude would change due to shoaling over the current
and/or bottom.
The vertical coordinate is implicitly transformed into

Mellor’s ¢ coordinate through y=270°
z=s(x,y,ct)=T+cD+53 ) ) GLM
with s defined by Mellor's eq. (23b) as ®)
§ =30 = aFgsgcos (kx — wt) 3)
and the vertical profile functiohss defined by I _L=0>
_ sinh [kD(1+¢)]  sinh[k(z+h)] a '
Fss = =Gy~ smh(kD) O : el
(4) (c) Mellor-sigma pﬁuz‘ "
The coordinate transformation frosto ¢ has the very \v:W =905
nice property of following the vertical wave-induced mo- -p ds/dx

tion, at least for linear waves on a flat bottom, and to first
order iney. In that case the iso-surfaces are material
surfaces, and the fluxes of horizontal momentum through
one of these surfaces are simply correlations of pregsure
times the slope of that surfaég/dz (figure 1.c), which

replaces the wave-induced advective flux in an Eule- F!G.1. Wave-induced fluxes of horizontal momentum in Euleren-
: . . . eralized Lagrangian, and Mellor-sigma averages of the flégcous or
rian point of view (figure 1.a). grang 9 9

! . : . turbulent fluxes are neglected for simplicity. Distortediaigs repre-
Using this coordinate transform, Mellor obtained 8ent an elementary fluid volume and its position at four phasdhe
phase-a\/eraged equation for the drift curént ©+ug wave cycle,_ and the large arrow indicate the Io_cal wave alrbitloc-
whereug is the Stokes drift, i.e. the mean velocity ofty: The horizontal and vertical fluxes of the horizontal mertum are
water particles induced by fast wave-induced motion-rEpresentEd by smaller arrows. When averaging is perforoiémh-
| ! 4 _lﬁg water particles over their trajectory (Lagrangian) eerwtheir ver-
Mellor's horizontal mean momentum equation (34a) igal displacement (Mellor-sigma), the correspondingeative flux of
reproduced here for completeness, in our conditions witlpmentum is replaced by a modified pressure force. For ther@en
a flow restricted to the vertical, z plane, a constant wa- 2¢d L"".gr(‘;‘.”g'ag Mlez” ((?L.M)Goﬂa’ tne Contr'l?“gons(jto 'g""e“.‘e’.r'gu
density, no Coriolis force, and no turbulent fluxes arﬁ}J are dicated, Indeed, I fhe wwave induced advetive
ter density, no ) X t strictly zero, but of higher order, since the average/ dollows a
the atmospheric mean pressure set to zero (the wind-waw@-mean displacement, contrary to a truly Lagrangiamme zero
generation term due to pressure fluctuations is absorks€gection (e.g. Jenkins 1986).

in the F.3 term),

oDU n oDU* QU n gDa—ﬁ _F,, +F, (5) representsthe convergence of a vertical flux of horizon-
ot Oz 0s Oz wo T Tws tal momentum that accelerates the mean drift veldgity

- . Definingg as the acceleration due to the apparent gravity,
On the right-hand side the term p ands are of the order ofa anda respectively. In the
S5 0 f—m— case wher@ ands are in phaseF,s is of the order of

9~ oc (Pas/ax) (6)  gDkada/0x, with the Dk factor coming from the ver-

F:63:7
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tical divergence of the flux. Thug,; is of the order of in this situation is that the wave velocity potential be-

gDe3e,. comes a non-local function of the water depth (this effect
The other term may be described in terms of evanescent modes, see e.g.
Massel 1993). The velocity potential and pressure fields
0Szx 0 (., -0s may only be investigated analytically for plane beds (e.g.
Fop = — o _D% u +p% (") Ehrenmark 2005) or specific bottom profiles for which

a conformal mapping to a constant depth can be defined
represents the convergence of a horizontal flux of hogs.lgérRs?r?glzligolttgo?mG)élo g
; : pes, the modificatiafisp, of the
zUontaI momentum that accelerates the mean drift VeIOCHYspIacement and pressure due are expected to be of the
order of solutions without the slope (as given by Mellor)
éigws the slope, i.e. of ordees; andgac, respectively.
The horizontal gradient o] is of orderkass =
€162 and is expected to be in phase with the wave-
induced pressure[l(8), of order, giving another term
of ordergDs?=, omitted by Mellor in his estimation of
d(pds/0x)/ds. The madification of the pressure maybe
g is the acceleration due to the apparent gravity, and tAbtained from the modification of the velocity potential,

Mellor estimated the vertical momentum fiSxs from
(E) and the corresponding lowest order wave-induc
kinematic pressure on ispfevels (i.e. including a hy-
drostatic correction due to the vertical displacement),

P =Dpo = ga(Foc — Fsg) cos(kx —wt),  (8)

vertical profile functionf¢ is defined by and it may be in phase wiifis, /0, thus also contribut-
ing at the same order td, 3. However, a WBKB ap-
cosh[kD(1+¢)]  cosh[k(z+ h)] a proximation using Airy’s theory is sufficient for estimat-
Foc = cosh (kD) = cosh (kD) +O(B)' ing F,, because the horizontal gradient of any wave-

averaged quantity is of ordere,/k.

The terms on the right hand side of . (5) are of order Mellor's (2003) approximate expression fbf; is thus
gDe2e,. The estimation of,5 thus requires the knowl- not consistent in general, in particular in the case exposed
edge ofp/ (¢ D) andk3 to ordere; e, for which Airy the- here of waves shoaling on a gentle slope without wind
ory is insufficient. In particular, this estimation demand@rcing or dissipation. Similar contributions to the mo-
a formal definition ofs. mentum fluxes should also arise due to horizontal gradi-

In the spirit of Mellor (2003), the isq-levels should €NtS in the wave amplitude or other effects.
be material surfaces, thus the fluctuating wave-inducegd!n Order to be convinced of the problem, one may con-

vertical velocity sider the case of steady monochromatic shoaling waves
over a slope without bottom friction, viscosity or any
95 95 95 0s 03 kind of surface stress, and in the case of no net depth-
O=w-u— —u—+u— —u— — — (10) integrated mass transport. We also neglect the Coriolis
ox Ox ox or Ot

force. In this mathematical experiment, the flow is purely

should be zero, or at least small, otherwise the mean véfotational and can be solved for numerically. We con-
tical velocity will carry a large part of the vertical flux SIder that the non-dimensional dept#i/ is of order 1,

of wave momentum. Using the wave-induced vertical arhd that there is no net mass flux across any vertical sec-
horizontal displacements; ande.,, one may take tion. In that case the mean current and the Stokes drift

are of the same order, i.e. of the ord&r? with C the
. o phase speed. The mean current exactly compensates the
S R (Mm+<D). (11) divergence of the wave-induced mass transport, and the
Ta mean sea level must is lower in the area where the wave

The first term corresponds to Mellor's definition whild'€ight is increased, (Longuet-Higgins 1967)
the second is @(e2) relative correction. This def- LE ko Eo
inition yields a wave-induced vertical velocity = Nx) = —= D) smhiak
1003/ 0% 0+ 1005 /0T a — ads) Oz, through the isa: sinh(2kD) - sinh(2ko)
surfaces redefined by = s (z,v,s,t) = 7+ ¢D + 5. where the) subscript correspond to quantities evaluated
This vertical velocity is generally of an higher order comat the offshore boundary of the domain, but the exact lo-
pared to the given by the wave motion defined in Mellazation where these are evaluated is irrelevant to the esti-
(2003). mation of horizontal gradients &t

Because of the steady condition, the first terrrun (5)is
a. Wave-induced vertical displacements and pressutero and the second is of ordBXC2siey /D ~ gDeles.
over a sloping bottom The vertical velocity2 can be estimated from the steady
g mass conservation equation,

(12)

A sloping bottom induces a modification gf an
& andp, that enter the definition a§’ as well as that oDU 60
of the vertical momentum flux,.s. A major problem oz T ac " (13)
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where the first term is of orddpCe?e2/D and the sec-
ond is of order). Thus the third term in|(5) is of order
C?eles ~ gDetes. The remaining terms Ii:![l(S) areareof & °
orders?e, giving the lowest order momentum balance

o

i
| NM I

IS
T

- - a) topographyand pressure
50 O xm) ° 100 150

il
i
il
|
F(%ta g)g( P Fx3 "

— rxT #7 0

fD% (97)— o + a—gp@s/@:cf 0. (14)

o | () Fxx
-0.5F
For reference this corresponds to the lowest order Eule-
rian mean balance ¥ |
-100 -50
— J— 0, T
0 — ou? ouw (c) Feta
——(gn—w?)———-——=0 15) o
a (gn ) a.’I] aZ ’ ( ) 05}
which is known to be verified (e.g. Rivero and Sanchez-
Arcilla 1994, McWilliams et al. 2004, Lane et al. 2006). T . = =

The balance[(34) will now be tested numerically. We,,
take a Roseau-type bottom profile (1976)s%ndz co- -0.5f
ordinates given by the real and imaginary part of the com-
plex function 0

hy(z' — i) + (hg — h1) In(1 4 e*' ~i@ v
2() = 1 ( ) + (ho — h1) In( ) L
«
(16)
With = 157/180, hy = 6 m andhy = 4 m (fig- - - .
ure 1), the reflection coefficient for the wave amplitude is B e
1.4 x 1079 (Roseau 1976), so that reflected waves may BT /e DOE3) ol 02
be neglected in the momentum balance. We illustrate
the force balance obtained for waves of radian frequengy, 5 (a) snapshot of the pressure field far a slowly varyingyAir
w = 1.2rad s! (i.e. a frequencyf = 0.2 Hz), and wave ovaathe bottom topography given by ¢g} (16). The foircéhe

4 (e) Fxx+Fetat+Fx3

offshore amplitudery = 0.12 m, which corresponds to bﬁllantGE 43 fafe S&OVI\II” in panle{,s bl, c and d, with /i:}?fir Srl.]lmriﬂgpﬁ
H _ H all estimated from Mellor's analytical expressions. 0S have peen
gor’::c?r)grgllé)g eftef%”gﬁxﬁ 10—_§“Tf1‘l“§'];g;2?n’1/‘z\‘l'gﬂgm normalized byg De?. N.B. in the case shown herg = £5 = =.

92 = 4. . -
plitude is given by the conservation of the wave energy
flux (see Ardhuin 2006 for a thorough discussion), a
the wave phase is taken as the integral overof the lo-

cal wavenumber, so th&t)/0x = k. The various terms

rWere an analytical solution can be found, and it has not
been fully given previously. Mellor focused on the wind-

are then estimated using second order finite differen nge generation contribution to the vertical momentum

A . , . term pds/0x term. As he very well expressed it, it
on aregular grid in coordinates, with 201 by 401 pOIntSequals wave-supported wind stress at the sea surface, and,
covering the domain shown in figure 1. The three ter

in eq. (1%) are shown in figure 2 rTE)Selow, it explains the growth of the wave momentum pro-
d. 9 : file with the same profile as that of the Stokes drift.

We have verified that, within 0.1%, the depth- \We define the wave-induced non-hydrostatic kinematic
integrated forces are in balance. However, at any giv . ~ o yd
ulerian pressurgr = pro+pEw, elevation) = (o+y

depth there is a large imbalance (of the order of the i . —PE ; -
dividual forces,i.e. gDe2e,), showing that the three- 21d Velocity potentiab = do + ¢u, in which the 0 sub-

dimensional equations of motion of Mellor (2003) are ndiC! Pt Tefers to the primary waves, and thesubscript
consistent to the dominant ordgPs2e,, at least for the refers to the. added components in the presence of wind
case of shoaling waves without breaking. This conclusiéﬁgrcmg' Taking a primary surface elevation of the form

holds for any relative magnitude of the wave and bottohfl — @ ¢03% Withe the phase) = kz — wt, Mellor con-
slopess; ande. sidered an atmospheric kinematic pressure fluctuation in

guadrature with the primary waves

b. Wind-forced waves p
Pa = —gB—asiny, (17)
P

a

Clearly, any deviation of the wave-induced fields
p, u from Airy-wave theory may have strong effects on
momentum flux terms. Another example of such a situvith 8 a small non-dimensional wave growth factor, and
ation is correctly described by Mellor, this is the case ¢f,, andp, the densities of water and air respectively. He
wind-wave generation. We briefly address it here becausen assumed that the water-side wave-induced pressure
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was of the form yielding
a . .
PMollor = 795aw sin 1. (18) Cw = 55 [(1— A)siney + Bsiny/| (29)
cosh (kD) u
~ _ “ _ . . /
Implicitly s/, is zero, and for his purposg, was irrel- PBw = gﬁ2FCC [= (4 A)sing + Bsiny].

evant. We shall now also determigg. The continuity (30)

of dynamic pressures at the surfack is Mellor’s expression fop,, given by eq. (18) is obtained

PEw + g5, = —gBasiny at z=(. (19) by replacing;,, andpg,, in (1Y), givingA = 1. One may
) ) ) take B = 1 to have¢,, = 0 att = 0, or more simply
The_se sQIutlons are obtained by_ _solvmg I__aplaceB = 0, which gives¢,, = 0, andpgw, = FocPapa/puw-
equation with proper boundary conditions, to first orderhe choice ofB has no dynamical effect. In the present
in 5. The wave amplitude is now also a function of timegaseg,, should give a contribution t8,,5 because it is
and for the sake of simplicity we shall obtain the solutiom phase withp,, but this is a relative correction of order
in the absence of current, which is equivalent to workin | thus negligible. The contribution gk, to (595 /9z)

in the frame of reference moving at the velocity at whicly qite important because for uniform horizontal condi-
the wave phase is advected by the current. The boundggy s this flux is otherwise zero.

conditions include the Bernoulli equation,

d¢ _ 3. Afix to the problem ?
E = _gC — Pa; at z= Ca (20)
in which non-linear terms have been neglected beca
they are the sum of products of the foNfy, - V(p, un-
changed from the case without wind, and terms of t

Contrary to that particular wind-forcing term, there is
no, simple asymptotically analytical correction foand
YShat can account for the bottom slope and wave field
radient. Numerical solutions for the three-dimensional
; L ave motion are generally found as infinite series of
e i e i nEgIOble Corparet 0 Menodes (e, assel 1053). The velociy potental for
Similarly, the surface kinematic boundary condition i%ny of these modes satisfies Laplace’s equation with a
’ focal vertical profileF,, proportional tocos(kyz + k. h)

linearized as and a dispersion relatiow’ = gk, tan(k,, D). The local
op OC - amplitudes of these modes are non-local functions of the
9. ot at z=¢. (21) depth, and may be obtained numerically with a coupled-
L . mode model (Massel 1993). These series of modes can
The combination of both yields be made to converge faster by adding a ‘sloping bottom
826 96 7 _ mode’ that often accounts for a large part of the correc-
—Z t9-=——F, at z=( (22) tionand is alocal function of the depth and bottom slope.
ot 9z ot It is thus of interest to see if that correction only, with-
¢ 1S also a solution of Laplace’s equation with the boout the.infinite series, may provide an accurate analytical
tom boundary conditiod¢,,/0z = 0 atz = —h. With ~ correction to Mellor's momentum flu%,.
the fully resonant atmospheric pressiiré (17) envisaged by-ollowing Athanassoulis and Belibassakis (1999), one
Mellor, one has may define the velocity potential for that mode as
G = alt)cost, (23) 6 = ~aoDF()eosv,  (3D)
a(t .
b0 = gT()FCC sin ), (24) In order to satisfy the bottom boundary conditien=
Fo = ga(t)Foc cosd, (25) 091/0z = 419 ¢y /0, the functionF should verify

dalt Boa(t DF'(—h) = 1/ sinh(kH) and the satisfaction of the sur-
alt) _ poalt) (26) face boundary condition may be obtained wii0) =

dt 2@ ’ F'(0) = 0. Athanassoulis and Belibassakis (1999) have
bw = ﬁg2—Fcc [Acosy 4+ Beosy)'] (27) used
g - 3 =\ 2
. , 1 — _
with ¢' = (kz 4+ wt). The elevation and under-water F' = Fxp = — 5D [(ZDC) + <ZDC> ] )
non-hydrostatic pressure correspondingspare given sinh(kD)
by @1) and the linearized Bernoulli equation (32)
96 and Chandrasekara and Cheung (2001) have used
il R S 28 1 -
ot PE (28) F = Fcy = ———5——[1 — cosh(kz — k()] .
IHere the pressure is Eulerian. For correspondance to Néghings- kD sinh” (kD)

sures or levels, one should také = pr — g5’ (33)



6 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME

With these choicesp; does not satisfy exactly
Laplace’s equation, and thus requires further corrections ) ! ‘
in the form of evanescent modes. An infinite number -o.1 _ e
of other choices is available, either satisfying Laplace’s | ; !
equation or the surface boundary conditions, but never
both, so that each of these solutions is only approxi- -03 ; | e Mellor
mate, and the exact solution is given by the infinite series ), 3 A Correction with FCh
of modes, which can be computed numerically for any 3 3
bottom topography (e.g. Athanassoulis and Belibassakis
1999, Belibassakis et al. 2001, Magne et al. 2006). Ry

The vertical displacement and Eulerian pressure cor-
rections are given by time integration of the vertical ve-

0

0.2 i N 2 b

NTUA 3 modes
----- NTUA 4 modes
NTUA 5 modes
= = = +NTUA 6 modes
mmmm NTUA 10 modes

-0.5

-0.7

locity and the linearized Bernoulli equation, 08 : ;o b b
09 ] . S Lo L
dh . : LNV : :
&1 = —aDF'(z)siny (34) 4 .
dz -1 0.5 0 05 1 15
dh Net force integrated over x normalized by hydrostatic pressure
]AjEl = d—aDF(Z) sin ’L/J (35)
X

FiG. 3. Net forces in the momentum balantEl (14) for steady shoal-

. . . . . ing waves over a smooth bottom profile. The net force has been i
Thus, in absence of wind forcing but taking into 8Cqrated over: and normalized by a similar integration of the the hydro-

count the ‘sloping bOt_tom mode’ to first order in the botstatic pressure forcL.,. Several solutions are obtained with Meilor's
tom slope, the wave-induced flux of momentum throughiginal expression, one possible analytical correctiangu$cy,, and

iso- surfaces is numerical estimations using the NTUA model, with variousniers of
modes.
~(’)§’ ad ans
by = (Foo—Fss) [%(T) .
z x is found to converge to the expected force balance de-
gka® dh , scribed by eq.m4) as the number of evanescent modes is
+ 5, (DF +ckes) increased (figure 3). In this calculation the value$pf

ra? dh does not differ significantly from the values estimated
gra ' using Mellor's analytical expressions, as expected. The
— |—-FscF + Fss (DF F '
+ 2 dx [=FscF + Fss ( +<Fes)l, only significant difference between the NTUA numerical
(36) result with 10 modes, and Mellor’s analytical expression
_ ' ) is found inF,3, with a much stronger vertical flux of mo-
with Feg = cosh[kD(1+¢)|/sinh (kD). The first mentum near the surface in the numerical result, allowing

line is the term given by Mellor (2003). The secong palance with the strongly sheargg, .
line arises from the correction due to the difference be-

tweens’ ands, and the third line arises due to correctiong. Conclusions
p1 = D1 — gs) to the pressure on levels. These ad- - ) _
ditional term are of the same order as the first term, andThe momentum flug® 95’ /0 is the surface-following
have no flux at the bottom and surface. Thus the dep@porch_nate analog of the Eulerian vertical momentum flux
integrated equations including that term also comply wifigrm uw discussed by Rivero and Arcilla (1995), with
known depth-integrated equations (e.g. Smith 2006). p° the wave-induced pressure at the displaced position
In the case chosen hefey, gives a net momentum bal-(in the surface-follow_ing coordinates). Just like the Eule
ance closer to zero thar g, as shown in figure 3. How- rian momentum fluxiw is modified by the bottom slope,
ever, the remaining error is significant. Thus one cannative amplitude gradients, wind-wave generation, bound-
use only that mode, and the amplitude of the evanescany layers, or vertical current shears, these effects also
modes have to be computed, which can only be done maedify the vertical wave-induced displacement and pres-
merically with a coupled mode model. sure. In particular the coordinate change defined by Mel-
A numerical evaluation of the forces was performeldr (2003) through the analytical functiGrmust be mod-
using the NTUA coupled mode model (Athanassoulis anfied. Here we propose the modified expression given by
Belibassakis 1999). The NTUA solution was obtained ieg. ), providing consistent equations for the mean drift
a domain with 401 points in the horizontal dimensionzelocity U at the lowest order. These equations involve
For the small bottom slope used here, the model contamsertical gradient of a wave-induced term, requiring an
a numerical reflectiol® = 0.002 much larger than the estimate of that term to first order in the bottom slope.
analytical Roseau. However, this only introduces a motnfortunately there is no analytical expression for the
ulation in thez direction of the estimated forces. Thisvave motion at first order in the wave slope. Thus Mel-
modulation is significant but still relatively smaller tharor’s equations, even when corrected, require a computer-
the average. The net force estimated from NTUA resuitstensive solution that is generally not feasible. For ex-
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ample, Magne et al. (2006) only included a total of five REFERENCES
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