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Wave-mean flow equations for mass and momentum conservation in three dimensions,
previously obtained with a vertical coordinate transform, are generalized here to ran-
dom waves, and re-derived from the Generalized Lagrangian Mean equations. Combining
the momentum equation with a three-dimensional equation for wave pseudo-momentum
yields a set of equations describing the interactions of waves, mean flow and turbulence.
Consistent boundary conditions and parameterizations are described. These include a
Generalized Lagrangian Mean equation for the turbulent kinetic energy that describes
the stretching of turbulence by the shear of the wave-induced Stokes drift. The equations
derived here are readily integrated by coupling a spectral wave model to an ocean circu-
lation model, with practical applications to the forecasting of surface drift, upper ocean
mixing, coastal ocean circulation, and wave forecasting.

1. Introduction

The influence of waves on the mean flow has been well recognized in specific situations,
and forms the basis of models of the nearshore circulation, in and around the surf zone.
In the deep ocean the role of surface waves in shaping the ocean mixed layer through air-
sea fluxes and mixing is now well established, but ocean circulation models are still not
accounting for these important effects. Putting current theories into practice requires
a consistent, accurate, and easy-to-use formalism for coupling waves, mean flow and
turbulence. The present paper proposes such a formalism, based on first principles and
amenable to further extensions.

Although depth-integrated equations are well established (Phillips 1977) and have been
extended to account for internal waves (Kudryavtsev 1994) and rotation of the Earth (e.g.
Ardhuin, Chapron & Elfouhaily 2004), the basic three-dimensional (3D) equations with
phase-averaged wave effects are not yet well established for general situations. Several
sets of 3D equations have been proposed to describe the interactions of waves with the
mean flow, with potential applications to oceanographic problems. In particular the pop-
ular Craik-Leibovich equations (Craik & Leibovich 1976) were successfully applied to
the formation of Langmuir circulations (LCs), as demonstrated by Large Eddy Simula-
tions (LES, e.g. McWilliams, Sullivan & Moeng 1997). Nevertheless these equations were
derived for a uniform wave field (Leibovich 1980, Holm 1996) which is a priori incompat-
ible with the existence of the vortex force that is responsible for driving LCs. Although
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wave field gradients may be weak on the scale of LCs, momentum conservation is sat-
isfied only when refraction of waves over LCs modifies the waves pseudo-momentum.
This refraction compensates for the change of mean flow momentum represented by the
vortex force (Garrett 1976). This effect may be termed ‘local recoil’ by analogy with
the similar remote recoil described by Bühler & McIntyre (2003). The Craik-Leibovich
equations are therefore inapplicable to regions of strong gradients such as the surf zone,
and attempts at a parameterization of wave breaking and the induced enhancement of
turbulence have been only schematic (Noh, Min & Raasch 2004). Recently McWilliams
et al. (2004) proposed a new formalism separating waves, long (infragravity) waves, and
the mean flow, based on expansions in the wave slope in cartesian coordinates, including
effects of gradients in the wave field, but equations do not yet include turbulence in a
realistic way.

One essential difficulty for obtaining a realistic description of the ocean are the large
gradients at the air-sea interface. These strong variations impose that 3D models use
either very high resolution and interface tracking schemes, that will not be considered
here, or surface-following coordinates. The simplest coordinate transform was proposed
recently by Mellor (2003), with a transformation of the vertical coordinate only. Mellor’s
equations are not so easy to use because they give a rate of change of the Lagrangian-mean
velocity although the Eulerian-mean is also needed to evaluate boundary conditions and
turbulent fluxes. Besides, the original formulation of Mellor’s equations and the general
use of Craik-Leibovich equations is for monochromatic waves that cannot represent both
the scale of the Stokes layer and the full production of Turbulent Kinetic Energy (TKE)
associated with wave-induced shear. Finally, a very high resolution would be required in
order to resolve this shear at the surface.

Another type of coordinate transform gives the Generalized Lagrangian Mean (GLM)
equations of Andrews & McIntyre (1978a). Averages in GLM follow the mean displace-
ment of particles, so that each mean quantity can be expressed as an Eulerian mean plus
a Stokes correction. GLM is exact even for non-linear and rotational waves and has been
applied to wave-current interactions using approximations in the form of low-order series
expansions in the wave slope (e.g. Groeneweg 1999, Groeneweg & Battjes 2003). GLM
was also used to derive the Craik-Leibovich equations (Leibovich 1980). However, the
original GLM is not so easy to use because GLM-transformed equations involve a mean
vertical displacement that is second-order in the wave slope (McIntyre 1988).

Further complications arise with the separation of the flow into ‘mean flow’, ‘waves’
and ‘turbulence’. Although some patterns will be clearly understood as waves or mean
flow, it may be advantageous to describe structures such as LCs as a mean flow over
which waves refract, typically in LES models, or as turbulence stretched by the Stokes
drift, in large scale oceanic models. The separation of waves from the rest of the flow is
itself problematic. A long tradition has used the property that waves are mostly irrota-
tional. Yet, in the interaction of waves with turbulence Phillips (1958) demonstrated that
wave motions have a significant vorticity, which was recently confirmed by Magnaudet &
Masbernat (1990, see also also Thais & Magnaudet 1996). Wave vorticity also appears
as a result of the Coriolis force (e.g. Backus 1962, Hasselmann 1970, Pollard 1970, Xu &
Bowen 1994). Although we shall not consider vorticity in the wave motion except for the
effect of the Coriolis force and the bottom boundary layer, we present here a formalism
that is designed to be easily extended to include wave vorticity in the upper ocean. We
thus define turbulence by the difference between the full fields and averages of those fields
over flow realizations with fixed wave phases. This allows for a modulation of turbulent
properties over a wave period, which could be considered part of the wave motion if
we had chosen a different definition. Wave effects on the mean flow are obtained with
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a further GLM average, which is an average on the wave phases, and can be computed
from a wave spectrum. Another simple solution, not detailed here, is to define the GLM
as a low-pass time average, allowing a variation of wave properties on the scale of wave
groups as done by Reniers & al (2004). That would be a narrow spectrum approximation
with amplitude modulations.

In order to obtain a practical and consistent set of equations we thus generalize Mel-
lor’s equations for random waves in § 2, with consistent boundary conditions and mixing
parameterizations, and give a more general derivation of these equations from the GLM
formalism, giving GLM-Reynolds Averaged Navier Stokes Equations at second order in
wave slope, later referred to as GLM2-RANS. A GLM2 equation for the Turbulent Ki-
netic Energy is derived in § 3, with a description of its possible use for turbulent closure
of the GLM2-RANS equations. Using a 3D equation for the wave pseudo-momentum we
obtain a corresponding Mellor-type equation for the Eulerian mean momentum in § 4.
Processes related to wave evolution are discussed in § 5, and conclusions in § 6.

Notations used below are, as much as possible, consistent with both Mellor (2003) and
Andrews & McIntyre (1978a), with additions from Ardhuin & Herbers (2002) for spectral
wave aspects.

2. 3D equations for the mean flow

2.1. Sigma-coordinate transform for random waves

Practical applications require the treatment of random waves, and common sense rec-
ommends the use of already-existing wave models, even if they need to be improved. An
outline of how this can be done was given by Jenkins (1989), who coupled a one-vertical-
dimension hydrodynamic model with a single-point version of the WAM spectral wave
model (WAMDI 1988). Mellor’s (2003) equations were derived by defining implicitly the
vertical coordinate ς (ζ in his notation), so that the Cartesian vertical coordinate z is

z = s (x, ς, t) = η̂ + ςD + s̃, (2.1)

with x the Cartesian horizontal position vector, η̂ the mean (i.e. over flow realizations) sea
surface elevation, D the total water depth from the bottom to the mean sea surface, and s̃
a wave contribution so that s (ς = 0) = η, the actual position of the sea surface, including
wave motions, and, below the surface, s̃ corresponds to the vertical displacement of water
particles due to the wave motion.

A natural generalization of Mellor’s (2003) equations to random waves is to let s̃ be
the sum of the contributions of each wave train, as illustrated by figure 1. In doing
this we still impose that s(ς = 0) = η at the surface, and that s̃ be the wave-induced
vertical displacement in the water column. However, it is impossible to write down an
exact expression for surface elevation because of the non-linearities and the presence of
bound-wave terms.

Using the small parameter ε1 to represent the maximum wave steepness a0k0, the
vertical displacement s̃ is expanded to first order in ε1,

s̃ =
∑

k,s1

FSSk Zs11,keiψ
s1

1,k (2.2)

where the wavenumbers k take values in the entire horizontal plane while s1 is a sign
index with values + and −. The phase functions ψs11,k are locally approximated by plane
waves, that is,

ψs11,k = k · x − s1σt+O (ε2) , (2.3)
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Figure 1. Example of the vertical coordinate transformation for a superposition of two linear
waves of periods 4 and 12 s. Top: non-stationary streamlines of wave motion in cartesian coor-
dinates. Bottom: The same streamlines transformed to fixed horizontal lines in ς coordinates.

where ε2 is a small parameter representing medium variations that affect wave propa-
gation, e.g. water depth, current, or wave amplitude (Willebrand 1975), and Zs11,k is the
complex amplitude slowly varying of the surface elevation component (k, s1), and the
vertical profile function FSSk is given by

FSSk =
sinh [kD( 1 + ς/D )]

sinh (kD)
. (2.4)

Formally we may define

ε2 = max
k,s1

{
∇ (tanh(kD)) /k;U/C;∇Zs11,k/

(
kZs11,k

)
;
(
∂Zs11,k/∂t

)
/
(
σZs11,k

)}
(2.5)

Any first order quantity A associated with the surface wave component of wave num-
ber vector k propagating in the direction of the vector k, is the sum of two complex
components, with opposite imaginary parts, denoted A+

1,k and A−
1,−k

.
With this generalized change of the vertical coordinate the first order wave quantities

are straightforward superpositions of linear wave components, e.g., to first order in ε1
and zeroth order in ε2

ũα =
∑

k,s1

kαZ
s1
1,k

σ

k
FCSk eiψ

s1

1,k (2.6)
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with the vertical profile function

FCSk =
cosh [kD( 1 + ς )]

sinh (kD)
(2.7)

This result can be obtained either as a solution of the sigma-transformed equations or
as a sigma-transformed solution of the usual cartesian equations.

The wave elevation spectrum to lowest order is obtained by taking the limit

E (k) = lim
∆k→0

2Z+
1,kZ

−
1,−k

∆k
, (2.8)

or, more formally, by a Fourier-Stieltjes transform extended to evolutionary spectra
(Priestley 1981). The equation for the evolution of E (k) can be obtained by consid-
ering, as in § 3.2 (see also Ardhuin & Herbers 2002), the higher order terms in ε1 and
ε2 given by wind forcing, wave dissipation near the surface, bottom friction and wave
scattering processes.

2.2. 3D momentum and mass equations

The basic momentum equation was derived for monochromatic waves by Mellor (2003,
equation 50). Although the effect of air pressure-surface slope correlations was not prop-
erly justified (see Appendix A), the final form of Mellor’s equation 50 is correct. Because
Mellor’s equations are accurate to second order in ε1 and first order in ε2 the effect of
random waves is the linear sum of the effects of each spectral component (see e.g. Kenyon
1969). These equations can alternatively be derived from Andrews and McIntyre’s (1978a)
Generalized Lagrangian Mean formalism (see Appendix B), using the spectral extension
outlined above, giving,

∂

∂t
(ρwDUα) +

∂

∂xβ
(ρwDUαUβ) +

∂

∂ς
(ρwΩUα) + ǫα3βf3DUβ

+ D
∂

∂xα
(ρwgη̂ + p̂a) + ρwD

2

∫ (
∂b

∂xα
− ς

∂D

∂xα

∂b

∂ς

)

= −
∂Srad

αβ

∂xβ
+DT in

α −
∂S3

α

∂ς
− (X

L

α)⋆, (2.9)

where the hat denotes Eulerian means. Uα = ûα+Us,α is the GLM-mean velocity in the
horizontal direction α, sum of the Eulerian mean and the Stokes drift component Us,α.
Ω is a mean vertical velocity (Mellor 2003), Appendix B). In the next term, ǫijkAjBk
is the i component of the vector product of A and B, so that term is the Coriolis force
applied to the total (Eulerian plus Stokes drift) momentum, with the fraction applied to
the Stokes drift first described by Hasselmann (1970) and thus called the ‘Hasselmann
force’. The terms on the second line represent the hydrostatic pressure gradient due to
mean sea level η̂, mean atmospheric pressure p̂a and the buoyancy b, which is the relative
difference between the actual density and the mean density ρw. S3

α is defined by (B 28)
and corresponds to Mellor’s terms ∂(s̃α + p̃)/∂ς. The volume force Tin is due to the
transfer of momentum from the wind to the wave field, it is noted s̃α + p̃w by Mellor.

Finally, (X
L

α)⋆ represents viscous and turbulent momentum diffusion. Note that we have

assumed that b̂ = b so that these equations neglect surface wave—internal wave coupling
(e.g. Kudryavtsev 1994).

The continuity equation (Mellor’s equation 50) is

∂

∂xα
[D(ûα + Us,α)] +

∂Ω

∂ς
+
∂η̂

∂t
= 0, (2.10)
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and the advection of passive tracers with concentration c = ĉ+c′ is described by (Mellor,
equation 54),

∂(Dĉ)

∂t
+

∂

∂xα
[Dĉ(ûα + Us,α)] +

∂(Ωĉ)

∂ς
+

∂

∂xα
(Dc′u′α) +

∂c′w′

∂ς
= 0. (2.11)

That equation neglects wave-induced diffusion (see Herterich & Hasselmann 1982, Balk
2002). It should be noted that an explicit parameterization of the last two turbulent
mixing terms with non-isotropic eddy viscosities may yield a mean transport of the
tracer (Middleton & Loder 1989).

2.3. Surface boundary conditions

Assuming that the air-sea fluxes are known, we impose the continuity of velocity and
the normal and shear stresses Pnn and Pns across the air-sea interface, and velocity only
on the bottom. Assuming small Froude numbers for turbulent motions, turbulence is
blocked by the surface so that the surface position and vertical velocity are equal to their
Reynolds averages. Thus continuity of velocity across the interface reads,

û+
α + ũ+

α = û−α + ũ−α at ς = 0. (2.12)

For the horizontal stress, we use the notations and results of Xu & Bowen (1994),

τ1α = Pnnn1 + Pnsn3 at ς = 0 (2.13)

with P the stress tensor,

Pij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.14)

with µ the dynamic viscosity, and the local unit vector normal to the surface, to first
order in ε1,

n = (0, 0, 1)−
∑

k,s1

i (k1, k2, 0)Zs11,keiψ
s1

1,k . (2.15)

The second order expansion of the local shear stress Pns was derived by Xu & Bowen
(1994, equations 25 and 35), with a small error in the expression of the second order
expression for n (they omitted the second order Stokes surface elevation), but that will
not affect our results here since this omitted term has a zero mean. We only need the
normal stress Pnn to first order because the air pressure correlated with the surface slope
is a first order quantity (see Appendix A), that is,

Pnn = −p+ 2µ
∂w̃

∂z
(2.16)

Taking the Lagrangian mean of (2.12) and (2.13) one obtains,

û+
α + U+

sα = û−α + U−
sα at ς = 0, (2.17)

and, assuming a constant mean vertical momentum flux τa near the surface (the so-called
wind stress),

τa = τxα
L = τ in

aα + ρν
1

D

∂ûα
∂ς

+ ρν
1

D

∂Usα
∂ς

at ς = 0, (2.18)

where the density ρ and kinematic viscosity ν correspond to either air or water, depending
on the side of the interface where the stresses are evaluated. In this partition of the wind
stress the first term τ in is total wave-supported stress, thus the momentum flux from the
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atmosphere to the wave field. Neglecting variations of the shear stress over the phase of
the waves (Jenkins 1992) τ in is only due to correlations of the surface air pressure with
the surface slope (see Appendix A). The second term is the viscous stress applied to
the Eulerian velocity that is transferred beyond the surface viscous layer as a turbulent
flux, and the last term τvw is usually called the ‘virtual wave stress’ (e.g. Xu & Bowen
1994) and may be a significant fraction of surface viscous stress as measured by Banner
& Peirson (1998).

The wave-supported stress τ in can be extended in the water column as the correla-
tion of wave-induced pressure and streamline slope. In (x, y, ς) coordinates this is easily
interpreted as a pseudo-shear stress, supported by the wave field, so that, the vertical
divergence of this flux,

1

D

∂τ in

∂ς
= Tin (2.19)

is the force that contributes to the growth of wave pseudo-momentum at depth z = ςD,
with a vertical profile identical to that of the Stokes drift.

In the same way, τvw can be generalized to all elevations on either side of the interface
as τvw = ρν (∂Usα/∂ς) /D . The vertical divergence of τvw is thus the momentum source
for the mean flow associated to the viscous dissipation of wave energy into heat (see
Phillips 1977 and the Appendix in Xu & Bowen 1994). A small fraction (ρaνa) / (ρwνw)
of the water-side wave pseudo momentum is transferred to the atmosphere, but most
of the momentum is given up in the water very near the surface because ∂τvw/∂ς is
proportional to the seventh moment of the frequency spectrum which is determined by
capillary waves with wavelengths of a few centimetres (Phillips 1977).

We can thus express (2.18) at the base of the surface viscous layer, ς = −δs, away
from the large shear in the Eulerian velocity (confined to the top millimetre, see McLeish
& Putland 1975, Peirson & Banner 1998), in an area where Eulerian velocity gradients
should be resolved by a numerical model,

τa = τxα
L = τ in

α + ρwKz

∂ûα
∂ς

+
ρw
D
νw
∂Usα
∂ς

at ς = −δs. (2.20)

2.4. Bottom boundary conditions

All wave effects were derived so far using linear wave theory with a free-slip condition
on the bottom. This is essentially valid at a distance of a few δb from the actual water-
sediment interface, with the wave boundary layer thickness δb ≈ u⋆w/σ where u⋆w is the
friction velocity in the wave boundary layer. δ is generally less than 10 cm. A proper
representation of the wave boundary layer therefore does not affect previous results, and
we may therefore adopt a state of the art representation of bottom friction including
effects of moveable bed roughness (e.g. Trowbridge & Madsen 1984a, Madsen & al. 1990)
and near bed mass transport (known as ‘streaming’, see e.g. Trowbridge & Madsen 1984b,
Marin 2004). As ocean circulation models typically do not resolve the WBBL, we may
represent the loss of wave energy and momentum in the WBBL as a modification of the
bottom boundary condition that apply at the top of the WBBL, with a parameterized
stress and non-zero Eulerian and Stokes drift velocities.

We thus have

ûα = κu⋆c ln

[
D (1 + ς)

z0a′

]
, for

δf
D

< 1 + ς ≪ 1 (2.21)

with von Kármán’s constant κ = 0.41, and z0a′ a roughness for the Eulerian current that
takes into account wave mixing and mass transport (e.g. Mathisen & Madsen 1996). The
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mean stress continuity reads,

τb = −ρwu
2
⋆c

û

û
+ τbfric, (2.22)

with u⋆c the friction velocity for the Eulerian current, τbfric the wave pseudo-momentum
lost by bottom friction effects on the wave motion. This momentum loss is essentially
due to pressure-slope correlations over bedforms, and can be significant for energetic
waves (Ardhuin et al. 2003). In laminar flow conditions the viscous dissipation of wave
energy may be the dominant contribution and should be included in τbfric. Equations
(2.21)-(2.22) can be solved iteratively for the unknowns z0a′ and u⋆c.

3. Mixing

The last term of (2.9), (X
L

α)⋆, represents the change of momentum (mean flow mo-
mentum plus wave pseudo-momentum). Since momentum is conserved and turbulence
has zero momentum, this term can only represent a spatial redistribution of mean flow
momentum or wave pseudo-momentum. For the mean flow momentum this mixing will
be parameterized with an eddy viscosity Kz. Mass-flux schemes, as used for atmospheric
convection, will not be considered even though they may perform better when the mixed
layer is well resolved (Cheinet 2002).

We represent mixing as the sum of vertical mixing and horizontal mixing,

(X
L

α)⋆ = 1
D

∂
∂ς

(
Kz

∂ρwûα

∂ς

)
+

∂Rh
αβ

∂xβ
. (3.1)

Various parameterizations have been proposed for the horizontal mixing tensor Rhαβ
(e.g. Smagorinsky 1965) and these will not be discussed here, we only note that they are
highly resolution-dependent, with specific parameterizations proposed for the surf zone
(e.g. Svendsen & Putrevu 1994). We further expect that high-resolution simulations may
need to incorporate the diffusion effects of Langmuir circulations and waves, that could
be verified by existing observations.

We rather insist on the parameterization of Kz. If the popular KPP scheme is used,
one should be careful to modify the original profile of Kz (Large, McWilliams & Doney
1994, see also Jézéquel, Pichon & Mazé 2004) so that Kz goes to realistically large values
at the surface. This can be done by modifying the polynomial expression of the profile
function G, that should go to z0w at the surface, with the waterside roughness length z0w
determined by the wave field (see e.g. Mellor & Blumberg 2004 for a parameterization of
z0w).

Another option is to use a so-called Mellor-Yamada scheme (Mellor & Yamada 1982,
Mellor & Blumberg 2004) or any other scheme that is based on at least one equation
for the Turbulent Kinetic Energy (TKE). Such a description of TKE evolution will be
explored here because it gives insight into the coupling of waves, mean flow and turbu-
lence.

3.1. Lagrangian Mean TKE equation

Taking an average over the flow realization for given wave phases we have the usual
equation for the TKE,

q2 = u′iu
′
i/2
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in Cartesian coordinates (e.g. Phillips 1977, with his mean flow u taken to be the Eulerian
mean flow û plus the wave velocity ũ),
[
∂

∂t
+ (ûi + ũi)

∂

∂xi

]
q2 +

∂

∂xi
[u′i (p

′/ρw + q2)] = −u′iu
′
j

∂ (ûi + ũi)

∂xj
+ b′w′ − ε, (3.2)

with ε the usual viscous dissipation of TKE into heat. Taking a Lagrangian mean of (3.2)
one obtains,

[
∂

∂t
+ (ûi + Usi)

∂

∂xi

]
q2
L

+
∂

∂xi
[u′i (p

′/ρw + q2)]

L

= −u′iu
′
j

∂ (ûi + ũi)

∂xj

L

+ b′w′
L

− εL,

(3.3)
in which equation (2.15) of Andrews and McIntyre (1978a) has been used.

For each term Y the Lagrangian mean Y
L

may be computed as the Eulerian mean Ŷ

plus a Stokes correction, Y
S
, given by Andrews and McIntyre (1978a, equation 2.27), at

second order in ε1,

Y
S

= ξ̃j
∂Ỹ

∂xj

φ

, (3.4)

in which Ỹ is the wave induced perturbation of Y and ξ̃j is the wave-associated displace-
ment in direction j.

3.2. TKE production and Stokes drift shear

The first term on the right hand side of (3.1) is the shear production Ps of TKE. As a
first approximation we may assume that Reynolds stresses u′iu

′
j are not correlated with

the wave phase,

u′iu
′
j

L

= u′iu
′
j (3.5)

u′iu
′
j

∂ (ûi + ũi)

∂xj

L

= u′iu
′
j

∂ (ûi + ũi)

∂xj

L

for all i and all j (3.6)

This last equation implies that the Reynolds stresses that interact with one wave compo-
nent to produce TKE are not themselves produced by the wave shear of that component.
This is clearly not applicable to the WBBL. Near the surface, fluctuations of turbulence
with the wave phase were observed by Thais & Magnaudet (1996) but they should only
give higher order corrections to Ps.

If we chose not to resolve the Langmuir circulations we may neglect horizontal gradients
of ûα. This classical ‘boundary layer approximation’ yields

Ps = −u′αw
′
∂ûα
∂z

− u′αw
′

(
∂ũα
∂z

S

+
∂w̃α
∂xα

S
)

− u′αu
′
β

∂ũα
∂xβ

S

− (w′)2
∂w̃

∂z

S

, (3.7)

where Ps is clearly the sum of a current shear production Pcs, the first right hand side
term in (3.7), and a wave shear production Pws, the other terms. At second order in ε1,
application of (3.4) shows that the last two terms of (3.7) are zero.

Ardhuin & Jenkins (On the interaction of waves and upper ocean turbulence, manuscript
submitted to the Journal of Physical Oceanography) considered the case TKE produc-
tion due to long period swell for which they assumed that the turbulent flux is vertically
uniform and carries all the air-sea momentum flux,

− ρwu′αw
′ = τα, (3.8)
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because most of the air-sea flux is carried by short waves that lose their energy to
turbulence very close to the surface (relative to the wavelength of longer waves). They
obtained

Ps =
τα
ρw

(
∂ûα
∂z

+
∂ũα
∂z

S

+
∂w̃α
∂xα

S
)
. (3.9)

Using (3.4) one gets Pws, the conversion of wave energy to TKE,

Pws =
τα
ρw

∂Usα
∂z

. (3.10)

This production can be either positive, if waves propagate in the direction of the turbulent
stress, or negative in the other case. The vertical profile of Pws is identical to the Stokes
drift shear, and is thus concentrated near the surface.

In order to compute Pws due to all wave components, the assumed turbulent flux in
(3.8) should be corrected by the ratio u′αw

′/τaα, as the turbulent flux is dwarfed by the
wave-supported flux near the surface, and dominates below the depth at which waves
have transferred most of their momentum to the mean flow. Assuming that the total flux
is the turbulent flux plus the wave-supported flux due to wave generation by the wind,
that ratio can be estimated by using the spectral shape of the wind input source term,

u′αw
′/τaα = 1 −

1

τaα

∫ 0

ς

T in
α dς

′. (3.11)

Because Usα (ς = 0) is proportional to the third moment of the frequency spectrum of
the surface elevation variance (the ‘wave spectrum’), it is sensitive to that variance at
high frequencies. The order of magnitude of Pws ≈ τaαUsα (ς = 0) /ρw may be obtained
by using a properly defined wave spectrum that matches observations of wave energy
(the zeroth moment) and mean square surface slope (the fourth moment), as a function
of wind speed and fetch, such as proposed by Kudryavtsev et al. (1999). This gives
Us (ς = 0) = 0.012U10 for unlimited fetch, U10 being the wind speed at 10 m height. In
comparison, the momentum flux generally associated with wave breaking is expected to
be one order of magnitude larger for active wind-wave generation, Pwb = AτaαU10/ρw
with A of the order of 0.1–0.2 (e.g. Craig & Banner 1994, Mellor & Blumberg 2004).

3.3. TKE production in the WBBL

In the WBBL where the turbulent flux is actually due to the wave shear, one may use
(3.1) and a parameterization of the form,

u′iu
′
j = −Nijlmδilδjm

∂ũl
∂um

, (3.12)

where Nijlm is a viscosity tensor, giving

Pws = Nij

(
∂ũi
∂xj

)2

. (3.13)

Such a parameterization, including the time-variation of N , is given by Davies & Vil-
laret (1999, see also Marin 2004). However, the determination of the roughness length
for the wave orbital motion poses another problem that can be avoid by with a direct
parameterization of the wave dissipation (e.g. Ardhuin et al. 2003 for parameterization
over sand-dominated sediments with weak currents).

Similar arguments can be developed for the ‘inner layer’ layer at the ocean surface (see
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e.g. Makin & Kudryavtsev 1999 for a description of the atmospheric inner layer), but we
will neglect this effect on the ground that this layer is very thin.

4. A practical 3D momentum equation

In order to estimate shear stresses, the Eulerian velocity must be estimated. Besides,
practical applications may not be able to afford the necessary vertical resolution to resolve
the vertical shear of the Lagrangian Mean velocity near the surface. We therefore seek an
equation in ς coordinates, similar the first form of the GLM equations of Andrews and
McIntyre (1978a), for their variable uL−p which corresponds to our û. Such an equation
could possibly be derived directly from that GLM equation following the method used
in Appendix B. However, now that it has been properly derived, we shall use (2.9).

Splitting the momentum in the first rate of change term of (2.9), into an Eulerian
velocity plus a wave pseudo-momentum that is then moved to the right hand side, one
gets,

∂

∂t
(ρwDûα) +

∂

∂xβ
(ρwDUαUβ) +

∂

∂ς
(ρwΩUα) + εαβ3f3DUβ

+ D
∂

∂xα
(ρwgη̂ + p̂a) + ρwD

2

∫ (
∂b

∂xα
− ς

∂D

∂xα

∂b

∂ς

)

= −
∂Srad

αβ

∂xβ
+DT in

α −
∂S3

α

∂ς
− (X

L

α)⋆ −
∂

∂t
(ρwDUsα). (4.1)

A näıve implementation of (4.1) in a numerical model would consist of estimating ∂ust/∂t
by applying a Stokes drift profile to the increments of the wave energy E over one
time step. This approach may lead to errors as the gains or losses of wave pseudo-
momentum ∂Us/∂t may have vertical profiles quite different from the wave pseudo-
momentum p = Us. In particular, it must be kept in mind that the waves support a
significant fraction of the momentum flux at the surface and bottom boundaries. We have
seen in § 2.3 that momentum lost due to viscous dissipation of the waves is partially given
to the atmosphere and bottom sediments. It can thus be wrong to make waves exchange
momentum with the water column only, as done by Dolata & Rosenthal (1984). They
considered the case of waves attenuated by bottom friction (which can be significant,
see e.g. Ardhuin & al. 2003), and assumed that the momentum source for the mean flow
had the vertical profile of the Stokes drift. However, it is not clear why dissipation in the
wave bottom boundary layer would lead to a production of mean flow momentum over
the entire water column.

Waves redistribute their pseudo-momentum over the vertical due to the fact that they
propagate in a waveguide that imposes the vertical profiles of p for free waves. The
associated vertical fluxes of p are unknown, so that the only practical solution at hand
is to evaluate the vertical profiles of momentum exchanges between waves and the mean
flow, i.e. we need a 3D equation for p.

4.1. 3D wave pseudo-momentum

GLM theory provides a 3D equation for the wave action A in the form (Andrews and
McIntyre 1978b, equation (2.15) and (4.12)),

∂

∂t
(ρwJA) +

∂

∂xβ

[
(uLβ + Cgβ)ρwJA

]
+

∂

∂z
(wLJA) = ρwJF , (4.2)
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It can be transformed to our ς coordinates (rewriting A⋆ as A and F⋆ as F see Appendix
B),

∂

∂t
(ρwDA) +

∂

∂xβ
[(Uβ + Cgβ)ρwDA] +

∂

∂ς
(ρwΩA)

= ρwDF +
∂

∂xβ
[(ûAβ − Uβ)ρwDA] −

∂

∂ς
(ρwCgβ

sβ
sς
DA), (4.3)

where ûAβ, the advection speed of waves by a vertically sheared current, is a depth-
weighted velocity (Kirby & Chen 1989), so that the second term on the right hand side
of (4.3) gives a zero vertical integral at second order, provided that vertical variations in
û are much less than σ/k, the intrinsic phase speed.

The last term on the right-hand-side of (4.3) arises from the change of vertical coordi-
nate and the fact that the vertical velocity Ω is defined by (B 13) to include the horizontal
advection velocity through iso-ς surfaces. Because A is also transported by propagation
with the group speed Cg, the last term represents this non-advective flux of A through
the iso-ς surfaces, which is a ‘vertical’ flux in our new coordinates.

Combining (4.3) with the two-dimensional equation for the wave number kα (e.g.
Mellor 2003, in between equations 29 and 30),

∂kα
∂t

+ (ûAβ + Cgβ)
∂kα
∂xβ

= −kβ
∂ûAβ
∂xα

−
kσ

sinh 2kD

∂D

∂xα
, (4.4)

we obtain finally an equation for the 3D wave pseudo-momentum (or the Stokes drift),
Usα = kαA,

∂

∂t
(ρwDUsα) +

∂

∂xβ
[(Uβ + Cgβ)ρwDUsα] +

∂

∂ς
(ρwΩUsα)

= ρwkαDF + ρwDA (ûAβ − Uβ)
∂kα
∂xβ

− ρwkα
∂

∂ς
(Cgβ

sβ
sς
DA)

−ρwDUsβ
∂ûβ
∂xα

− ρwDA
kσ

sinh 2kD

∂D

∂xα
. (4.5)

4.2. Pseudo-momentum source terms

The total momentum source term ρwkαF may be decomposed as follows,

ρwkαF = T in
α + T nl

α + T ds
α + T bfric

α + T bscat
α + Twg

α . (4.6)

These are source terms for the wind input, wave-wave interactions, wave dissipation, bot-
tom friction, wave-bottom scattering, and wave guide effects, respectively. Twg integrates
vertically to zero, just like the term for wave-wave interactions Tnl.

We can further split Tds into effect of whitecapping, viscous dissipation, and wave-
turbulence interaction (outside of the wave bottom boundary layer represented in Tbfric),

T ds
α = Twc

α + T turb
α + T visc

α . (4.7)

Since the vertical distribution of wave guide effects represented by Twg are completely
unknown and will not be explored here, the present effort of establishing a 3D equation
for the wave pseudo-momentum may look pointless. The following two assumptions are
now necessary, they will hopefully be verified by observations:

When waves and turbulence are present, the conversion of wave energy to TKE for
each spectral component corresponds to a conversion of wave pseudo-momentum to mean
flow momentum, with the same vertical profile. Further, wave-wave interactions and wave
guide effects does not directly contribute to exchanges with the mean flow.
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The first hypothesis is clearly different from that of Dolata & Rosenthal (1984), who
took a Stokes drift profile for the source of mean flow momentum. In particular the
present assumption will yield a stronger enhancement of bottom streaming in the case of
bottom friction, and weaker acceleration of the flow in the entire water column. Such a
choice is even more important for the loss of wave pseudomomentum due to whitecapping
that is generally much stronger and expected to be concentrated near the surface (e.g.
Melville et al. 2002). We now briefly describe the parameterizations to be used for each
source term.

wind input: as shown by Mellor (2003, see also Appendix A) the momentum source
due to wave generation by the wind is given by

Tin =
ρwg

D
v

∫
2kD

cosh [2kD(1 + ς)]

sinh(2KD)
kSin/σdk (4.8)

with Sin the energy source term as used in a numerical wave model. Among the existing
parameterization for Sin the one by Janssen (1989, with extensions described in Komen
& al. 1994) seems to give good results. It is based on quasi-linear theory and adjusted
to observations. However it does not take into account the presence of swell that may
slightly modify the wind input. It can also be refined by using the sum of linear and
quadratic functions of u⋆ (e.g. Banner & Young 1994) in order to better represent wind
input observations for both long (Snyder et al. 1981, Hasselmann & Bösenberg 1991) and
short waves (Plant 1982). The quadratic term may also be reduced at very high frequency
to account for the sheltering of short waves by long waves (Hara & Belcher 2002).

wave-wave interactions: we may assume that

Tnl =
ρwg

D

∫
2kD

cosh [2kD(1 + ς)]

sinh(2KD)
kSnl/σdk, (4.9)

with Snl given by Herterich & Hasselmann (1980), possibly simplified as, for example,
the Discrete Interaction Approximation (Hasselmann & Hasselmann 1985). Although we
know that Tnl integrates to zero over the vertical, there is no theory for the vertical re-
distribution of wave pseudo-momentum due to wave-wave interactions that could justify
the profile assumed here.

bottom friction: A quantitatively good approximation of the decay of wave energy
over a sandy bottom without significant currents can be obtained by taking into account
the formation of sand ripples (see Ardhuin et al. 2003 for details of the parameterization
and a validation). Further refinements for the effects of currents on waves can be found
in Myrhaug et al. (2001). Muddy and rocky areas need special treatment.

wave-bottom scattering: wave reflection over the bottom topography results in an
exchange of momentum between waves and the bottom due to correlations of pressure
and bottom slope on the scale of the wavelength. We may thus include this source term
in the bottom boundary layer, writing

Tbscat = δ(ς,−1)
ρwg

D

∫
k

σ
Sbscatdk. (4.10)

Partial reflections over localized abrupt features in the bottom topography can also be
represented by this source term, as long as they have small amplitudes relative to the
water depth (Magne et al. 2004).

water viscosity: Since the local loss of wave pseudo-momentum is concentrated within
a few centimetres of the air-sea interface (see § 2.3), the source term can be regarded as
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part of the surface boundary condition,

Tvisc = δ(ς,0)
ρw
D2

νw
∂Us

∂ς
. (4.11)

We include the contribution of viscous stresses in the highly sheared WBBL into the
bottom friction term.

wave-turbulence interactions outside the WBBL: As wave energy is converted
to TKE according to (3.10) and (3.11), momentum is exchanges with the mean flow. We
will assume that this momentum exchange Tturb has the same profile as Pws.

whitecapping: There are many debates on the spectral distribution of wave en-
ergy losses due to whitecapping. In particular, wave models that do not separate wave-
turbulence interaction from whitecapping have used a rather broad distribution of wave
dissipation over the entire spectrum (see Komen et al. 1994). We will here take the view
that wave energy is lost essentially in the saturated part of the wave spectrum and is
well predicted by a saturation threshold, as described by Alves & Banner (2003). We
now need to describe at what depth the wave momentum is given up to the mean flow,
with a vertical profile that should be given by a detailed description of a breaking waves.
Although some measurements of the detailed flow below breaking waves have now been
made (Melville et al. 2002), it is still fairly arbitrary to decide at what depth the mo-
mentum and turbulence are injected by breakers before further diffusion with turbulent
mixing. We have at most an upper value for this depth for a given breaker size and type,
that may be used with a distribution (e.g. Phillips 1985, Melville & Matusov 2002) of
self-similar breakers (e.g. Reul & Chapron 2003). This matter is further discussed in § 5.

4.3. Final equations

The the non-linear advection term ∂ (ρwDUαUβ) /∂xβ in (4.1) can be expanded as

∂

∂xβ
(ρwDUαUβ) =

∂

∂xβ
[ρwD (ûαûβ + Us,αUβ + Us,β ûα)] . (4.12)

The last term in that expansion can now be combined with the last but one term in
(4.5), using the same algebraic combination as Garrett (1976 equations 3.10 and 3.11),
obtaining the so-called ‘vortex force’,

DUsβ
∂ûβ
∂xα

−
∂

∂xβ
(ρwDUsβûα) = −ρwǫα3βDUsβǫ3ij

(
∂ûj
∂xi

−
∂ûi
∂xj

)
− ûα

∂

∂xβ
(DUsβ)

= −ρwǫα3βω3DUsβ − ûα
∂

∂xβ
(ρwDUsβ) (4.13)

where ω3 = ǫ3ij (∂ûj/∂xi − ∂ûi/∂xj) is the vertical component of the vorticity of the
velocity field û.

One obtains,

∂

∂t
(ρwDûα) +

∂

∂xβ
(ρwDûαûβ) +

∂

∂ς
(ρwΩûα) + ρwDǫα3β [f3ûβ + (f3 + ω3)Usβ ]

+ D
∂

∂xα
(ρwgη̂ + p̂a) + ρwD

2

∫ (
∂b

∂xα
− ς

∂D

∂xα

∂b

∂ς

)

=
∂Rhαβ
∂xβ

+
1

D

∂

∂ς

(
Kz

∂ρwûα
∂ς

)
−

∂

∂xβ

(
Srad
αβ − ρwDCgβUsα

)

−ûα
∂

∂xβ
(ρwDUsβ) +

∂

∂ς

(
ρwDUsαCgβ

sβ
sς

− S3
α

)



Practical 3D formalism for waves, currents and turbulence 15

+ρwDA
kσ

sinh 2kD

∂D

∂xα
−D

(
Twc
α + T turb

α

)
for

(
−1 +

δ

D

)
< ς < 0.

(4.14)

we repeat the mass conservation equation (B 12)

∇ · [ρwD(û + Us)] +
∂ρwΩ

∂ς
+
∂ρwη̂

∂t
= 0. (4.15)

Using (4.15), we may simplify (4.14) as

∂

∂t
(ρwDûα) + ρwDûβ

∂ûα
∂xβ

+ ρwΩ
∂ûα
∂ς

−
∂

∂t
(ρwη̂) + ρwDǫα3β [f3ûβ + (f3 + ω3)Usβ ]

+ D
∂

∂xα
(ρwgη̂ + p̂a) + ρwD

2

∫ (
∂b

∂xα
− ς

∂D

∂xα

∂b

∂ς

)

=
∂Rhαβ
∂xβ

+
1

D

∂

∂ς

(
Kz

∂ρwûα
∂ς

)

−
∂

∂xβ

(
Srad
αβ − ρwDCgβUsα

)
+

∂

∂ς

(
ρwDUsαCgβ

sβ
sς

− S3
α

)

+ρwDA
kσ

sinh 2kD

∂D

∂xα
−D

(
Twc
α + T turb

α

)
for

(
−1 +

δ

D

)
< ς < 0.

(4.16)

In (4.14) and (4.16) the term ∂
(
Srad
αβ − ρwDCgβUsα

)
/∂xβ is clearly Hasselmann’s

(1970) interaction stresses with a vertical profile given by the Stokes drift profile. How-

ever, as found by Mellor for the radiation stresses, the next term ∂
(
DUsαCgβ

sβ

sς
− S3

α

)
/∂ς

modifies the interaction stresses so that their vertical profile is not exactly given by the
Stokes drift. Our equation further suggest that the force ρwDAkσ/sinh 2kD∂D/∂xα,
may set up an Eulerian current, flowing towards the deeper waters as waves shoal.

Subtracting wave effects from (2.12) the surface boundary conditions for û are,

û+
α = û−α +

(
U−
s,α − U+

s,α

)
at ς = 0, (4.17)

with U−
s,α and U+

s,α the xα components of the Stokes drift in the water and the air
respectively. The difference of these two is positive for waves in shallow water.

The direct surface momentum source τ̂aα for the Eulerian current is,

τ̂aα = τaα − τ in
aα − ρwν

1

D

∂Usα
∂ς

at ς = 0. (4.18)

Below the top millimeter, we may rewrite this quantity as

τ̂aα = ρwKz

∂ûα
∂ς

at ς = −δs. (4.19)

In the current bottom boundary layer, at the outer edge of the WBBL, one gets,

ûα = κu⋆c ln

[
D (1 + ς)

z0a′

]
, for

δf
D

< 1 + ς ≪ 1 (4.20)

with a bottom stress for the Eulerian momentum,

τ̂bα = −ρwu
2
⋆c

ûα
û
, for

δf
D

< 1 + ς ≪ 1. (4.21)
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Finally the mixing parameterization should include the production of TKE by the
Stokes shear, as proposed in § 3 for example.

5. Discussion

Results and performances of the model outlined here will be investigated elsewhere
because they may vary with choices in parameterization (A coherent wave-current-
turbulence parameterization of upper ocean processes, by Rascle, Ardhuin & March-
esiello, manuscript in preparation for the Journal of Physical Oceanography). However,
it is important to discuss the impact of a few parameterization choices.

5.1. Wave breaking

It is obvious from observations that the upper ocean is highly mixed relative to the
boundary layer below a rigid boundary (e. g. Agrawal et al. 1992, Terray et al. 2000),
and the high level of turbulence very near the surface is apparently due to wave breaking.
In a numerical model that does not intend to resolve breaking events, one may probably
obtain good profiles of TKE and velocities either with a strong injection of TKE below
the surface, and relatively little mixing, or with a strong injection of TKE at the surface
and a more vigorous mixing.

Some applications may require a detailed description of this process that has been
done with the parameterization of coherent motions (rollers) acting as a momentum or
energy buffers between the wave field and the mean flow or turbulence. This may be
justified by the difference density the aerated fluid that is called roller in applications
to the nearshore circulation (e.g. Govender et al. 2002). This roller is not too different
from the entraining plume of Longuet-Higgins & Turner (1974), that takes its momentum
from the breaking wave and gives momentum to the underlying fluid by a horizontal drag
force at the plume interface.

5.2. Long (infragravity) waves

Although wave effects were explicitly formulated from a wave spectrum, the spectrum
may alternatively be replaced by energy modulated in time on the scale of wave groups
with slowly varying carrier frequency and wave direction, with a corresponding modula-
tion of all second-order wave quantities (Stokes drift, action ...). This latter option allows
the time and space resolution of infragravity (IG) motions as part of the ‘mean flow’.
These motions are most important in the nearshore, in particular when sediment trans-
port is considered (e.g. Reniers et al. 2004). IG motions may also be relevant to future
ocean altimetry missions or other applications. Obtaining IG bound wave properties in
the spectral formulation as given in present paper would require using higher order spec-
tral statistics (e.g. Herbers & Burton 1997). Using either one of these options avoids the
more complex separation in waves, IG waves and mean flow performed by McWilliams
et al. (2004).

6. Conclusions

We have derived a consistent set of equations and boundary conditions that generalizes
Mellor’s (2003) equations to spectral waves. Because this derivation uses the Generalized
Lagrangian Mean of Andrews & McIntyre (1978), it is amenable to further extensions,
including the interaction of surface and internal waves, that will be added in future
work, or the inclusion of nonlinear effects that might appear at higher order in the wave
slope. The present formalism, once the proper parameterizations are fully defined, should
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be applicable for describing nearshore flows, surface wave evolution and upper ocean
processes. Results obtained by Mellor & Blumberg (2004) and Lewis & Belcher (2003),
already validate parts of the present formalism, i.e. the parameterization of enhanced
turbulence near the surface and its impact on the surface temperature cycle, and the
effects of the Hasselmann force (the combined effect of Coriolis and Stokes drift) on the
velocity profile below the depth of enhanced turbulence, respectively. A general validation
of the full model will be presented later, including surface drift velocities.

Open discussions with George Mellor, Bertrand Chapron, Tanos Elfouhaily and Stephen
Henderson contributed significantly to the advancement of the present work.

Appendix A. Effects of surface pressure fluctuations

A.1. Wind-wave growth

Waves are generated by pressure and tangential stress variations on the scale of the
wavelength. We solve here the problem with the usual cartesian coordinate system before
transforming the solution to sigma coordinates. The variation of tangential stresses is
neglected (see Lamb 1932 p. 629, Jenkins 1992). Atmospheric pressure at the surface can
be described as,

pa (x, t) = p̂a (x, t) +
∑

k,σp

P ak,σp
eik·x−σpt. (A 1)

with P a
k,σp

the Fourier component of the air pressure at the surface, with wavenumber
k and angular frequency σp. Following the general procedure for solving second-order
differential equations, the wave field can now be obtained by adding the general solution
in absence of forcing and a particular solution of the wave equations that satisfies this
forcing. Neglecting terms that are second order in ε1, the surface equation for the wave
potential φ is

∂φ

∂t
= −gη −

1

ρ
pa, at z = η, (A 2)

which can be combined with the kinematic boundary condition to give,

∂2φ

∂t2
+ g

∂φ

∂z
= −

1

ρ

∂pa
∂t

at z = 0. (A 3)

A particular solution φp, that also must satisfy the Laplace equation and the bottom
boundary condition, is given by,

φp =
∑

k

cosh [k( z +D )]

cosh (kD)
Φp

k
(t) eik·x, (A 4)

where Φp
k

(t) is the solution of (A 3). This solution can be written as a resonant term plus
some bound terms, with resonance obtained for σp = σ ≡ gk tanh (kH)

Φp
k

(t) = i
∑

σp 6=±σ

σpP
a
k,σp

ρ
[
σ2 − σ2

p

]e−iσpt −
∑

s1

t
P a

k,sσ

2ρ
e−is1σt (A 5)

Pressure in the water is given by the (linearized) Bernoulli equation that we may write

p = −ρgz − ρ
∂φ

∂t
+O (a0gε1) , (A 6)
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with the non-hydrostatic part pp given by taking the derivative of (A 4),

pp =
∑

k

cosh [k( z +D )]

cosh (kD)
P p

k
(t) eik·x, (A 7)

with

P p
k

(t) = −
∑

σp 6=±σ

σ2
pP

a
k,σp[

σ2 − σ2
p

]e−iσpt +
∑

s1

P a
k,s1σ

2
e−is1σt − iσt

∑

s1

s
P a

k,s1σ

2
e−is1σt (A 8)

so that the pressure response under the water is not entirely in phase with the pressure
forcing, which was mistakenly suggested by Mellor (2003). Although it is an apparent
paradox that the wave pressure pp at the surface is not equal to the atmospheric pressure,
the difference is explained by the partial adjustment of the surface elevation and the
resulting hydrostatic pressure: Again, pp is the non-hydrostatic pressure only.

To obtain the surface elevation amplitudes Zp
k
(t) at first order, we subtract (A 2) from

(A 6) at z = 0,

η =
1

ρg
[pp|z=0 − pa].

Hence

Zp
k

(t) = −
∑

σp 6=±σ

[
σ2
p

σ2 − σ2
p

+ 1

]
P a

k,sσ

ρg
e−iσpt−

∑

s1

P a
k,s1σ

2ρg
e−is1σt− iσt

∑

s1

s1
P a

k,s1σ

2ρg
e−is1σt

(A 9)
Atmospheric pressure is generally influenced by the waves, say, to first order, propor-

tional with a complex coefficient βC = (−βR − iβI) to the elevation,

P a
k,σp

= δ (σp, s1σ) ρgβCZ
s1
k

(A 10)

where δ(x, y) equals 0 unless x = y, and with βI positive for growing waves, and βR
positive also due to the Bernoulli equation in the air: for winds faster than the waves,
the flow accelerates over the wave crests due to streamline convergence, and thus the
pressure decreases.

Thus the wave energy will be augmented at first order in βI by the following term, Ep,

Ep(k) = tσβIE2(k) (A 11)

This equation is only valid for short time scales since we have assumed a constant
spectrum, it is thus better written as a time derivative (over long times), following the
method of Hasselman (1962),

∂E(k)

∂t
= σβIE2(k) = Sin(k) (A 12)

A.2. Bound waves and momentum equation

We have thus computed waves that are induced by air pressure fluctuations. These waves
are characterized by ηp, pp, φp. They have a free wave structure propagating at the
speed of the air pressure perturbation: the polarization relations between all variables
are identical to those of free waves, except for one extra term in the pressure and elevation
represented by the second terms in (A 8) and (A 9), respectively.

The bound wave terms (ppb, ηpb) can be written as

ppb =
∑

k,s1

−Zpb,s1
k

(t) ei(k·x−s1σt) (A 13)
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ηpb =
∑

k,s1

Zpb,s1
k

(t) ei(k·x−s1σt) (A 14)

with

Zpb,s1
k

(t) = −
βC
2
Zs1

k
=
βR + iβI

2
Zs1

k
. (A 15)

The βI component of the pressure fluctuations, in quadrature with the free wave elevation,
clearly drives bound waves with a surface elevation in quadrature ahead of the free waves.

The βR component of the pressure fluctuations, in anti-phase with the elevation, tends
to increase the wave height since the resulting surface elevation is in phase with the free
waves.

It is striking that this ‘bound wave’ has no corresponding velocity and a pressure op-
posite to the corresponding pressure if it were a free wave. Indeed the associated velocity
is part of the rate of change of the free wave velocity. It should be noted that integration
of the vertical velocity does yield the vertical displacements of the bound wave. In terms
of the coordinate transform (2.1), keeping s(ς = 0) = η requires a modification of s due

to the bound wave. In order to change s we can add to it a term of amplitude Spb,s1
k

,
with a vertical profile given by bound terms in the vertical displacement, that happen to
have the same vertical profile as the free waves,

Spb,s1
k

(t) = −βCS
s1
k
. (A 16)

This part of the change of variable s induces extra terms in the equations of motion,
including a vertical velocity w̃pb, which now has a component in quadrature with the
velocity and pressure. Considering only the solution driven by the pressure component
in quadrature with the elevation, and evaluating all modified terms in the equations of
motion, one gets exactly the same term as in Mellor’s (2003) equation (51a), that is,

−
∂

∂ς

(
s̃pbα p̃+ s̃αp̃pb + w̃pbũα

)
=
∂FSSFCC

∂ς
ρg

∫

k

βIkαE(k)dk, (A 17)

that we may rewrite as

T in
α = p̃wη

∂η̃

∂xα

∂FSSFCC

∂ς
. (A 18)

Indeed, if one considers the hypothetical case of a uniform wave field with no current and
no dissipation we see that the wind to wave momentum flux is distributed over depth in
the same way as the Stokes drift.

The part of the pressure that is in anti-phase with the surface elevation modifies slightly
the term

p̃ s̃α, (A 19)

in the momentum equation, which is already a second order correction. We may therefore
neglect this effect, and obtain Mellor’s (2003) momentum equation with the effect of
random waves accurate to second order in ε1.

Appendix B. Transformation of the GLM equation to

sigma-coordinates

For simplicity equations are derived considering a single wave train of wavenumber
vector k and intrinsic frequency σ. Results from random waves are obtained by replacing
the surface elevation variance varη by the spectral energy density. All second order quan-
tities are simply the sums of the following monochromatic solution for all wavenumber
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vectors. Another option is to use a narrow spectrum approximation and resolve explicitly
the variations in wave properties over the scale of wave groups.

We shall apply results obtained by Andrews and McIntyre (1978a, 1978b), replacing
their equations (3.2) and (4.1) by Reynolds-Averaged Navier Stokes equations (RANS),
which means that their dissipative forces X represent both viscous forces and turbulent
Reynolds stresses. We shall retain all wave effects up to second order in the wave slope and
first order in the wave. The resulting equations are therefore second order Generalized
Lagrangian Mean RANS equation, abbreviated as GLM2-RANS.

B.1. Mass conservation

The Jacobian J of the GLM coordinate transformation (from Eulerian coordinates) can
be shown to be equal to 1 plus a second order quantity. Using the 3D wave action A (see
Andrews and McIntyre 1978b), one has,

J = 1 + J2 +O(ε31) (B 1)

J2 = −
k2A

σ
= −k2varη

cosh [2k(z + h)]

sinh2(kD)
, (B 2)

where varη is the surface elevation variance due to the waves. Because there is no mean
stretching of the horizontal coordinates, a vertical distance dz′ = Jdz in GLM cor-
responds to a Cartesian distance dz. As J < 1 over the entire water column on has
dz′ > dz. Thus the vertical GLM position is everywhere larger than the mean Eulerian
elevation of the same water particles. In a sense this is because at any time there are
more particles per horizontal length of crest than of trough (McIntyre 1988).

Integrating over depth we define

sG(x, z, t) = −

∫ z

−h

J2(z
′)dz′ = kvarη

sinh [2k(z + h)]

2 sinh2(kD)
. (B 3)

Using the second order expression for ηL (e.g. Jenkins & Ardhuin 2004)

ηL = varη
k

tanhkD
, (B 4)

we can see that
∫ ηL

−h

Jdz = ηL +D − sG(0) = D, (B 5)

which is a further verfication of the vertical stretching induced by GLM.
By analogy to 2.1 we thus define

s = ςD + sG + η̂ (B 6)

for which we can use the chain rules given by Mellor (2003) to go from (xα, z, t) to
(x⋆α, ς, t

⋆), i.e. for any variable φ

∂φ

∂t
=
∂φ⋆

∂t⋆
−
st
sς

∂φ⋆

∂ς
(B 7)

∂φ

∂xα
=
∂φ⋆

∂x⋆α
−
sα
sς

∂φ⋆

∂ς
(B 8)

∂φ

∂z
=

1

sς

∂φ⋆

∂ς
(B 9)

with st, sς and sα the partial derivatives of s with respect tp t, ς and xα, respectively.
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In our case we have the remarkable identity

sςJ = D. (B 10)

Dropping the star superscripts just like Mellor (2003) going from his equation (14) to
(22), we can transform the GLM mass conservation equation

∂ρwJ

∂t
+
∂ρwJu

L
α

∂xα
+
∂JwL

∂z
= 0 (B 11)

to the following

∂ρwη̂

∂t
+
∂DρwUα
∂xα

+
∂ρwΩ

∂ς
= 0, (B 12)

by defining

Ω =
[
JwL − J

(
uLαsα + st

)]⋆
, (B 13)

and (uLα)⋆ = Uα, that is, the Lagrangian drift velocity in Mellor’s coordinate is indeed
the transformed GLM velocity. For constant ρw (B 11) is clearly Mellor’s equation (51).

B.2. 3D momentum in Mellor’s coordinates

We start here from the ‘alternative form’ of the GLM equations, (Andrews and McIntyre
1978, equation 8.7a), considering only the vertical component of the Earth’s rotation,

D
L
uLα + ǫα3βf3u

L
β +

1

ρwJ

∂pL

∂xα
+X

L

α =
1

ρwJ

(
∂Rαβ
∂xβ

+
∂Rα3

∂z

)
. (B 14)

First looking at the Lagrangian-mean pressure we have to second order in ε1,

pL = p+ ξj
∂p′

∂xj
. (B 15)

The mean vertical momentum equation for steady mean motions gives,

−
∂p

∂z
= ρwg +

∂w2

∂z
+
∂uw

∂x
. (B 16)

Over a gently sloping bottom uw is third order in ε1 and (B 16) integrates vertically to

p = pH − ρwσ
2FSSFSSvarη, (B 17)

where pH is the mean hydrostatic pressure and the second term is the wave-induced
Eulerian mean pressure.

Assuming that we have only free waves, the Stokes correction in (B15) can be rewritten
as

ξj
∂p′

∂xj
= ρwvarη

(
σ2FSSFSS − gkFCCFCS

)
, (B 18)

so that

pL = pH − ρwgvarηkF
CCFCS . (B 19)

Finally the radiation stress is defined by Andrews and McIntyre (1978a, equation 8.6)
as

Rαj = pξ (1 − J)δαj + pξ
∂ξi
∂xα

Kij ,

= pξ (1 − J)δαj +Bαj (B 20)
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where the Kij are the cofactors of the coordinate transform matrix x → (x + ξ), and
Bαj is the flux in direction j of a generalized wave action in direction opposite to xα
(Andrews and McIntyre 1978b, equation 2.7b, see also Jenkins & Ardhuin 2004),

Bαj = p′ξj,α + pξmξj,α. (B 21)

To second order we thus have

Rα3 = p′ξ3,1 + ρgξ3,1ξ3,α = plξ3,1 (B 22)

It should be noted that this term does not integrate to zero over the vertical as pointed
out by Andrews and McIntyre (1978b, see corrigendum). We can now consider the con-
tribution of bound waves due to air pressure fluctuations over the waves, as considered
in § 2. These clearly contribute to ∂Rα3/∂z, giving the extra term found in Appendix A,
with the same vertical profiles as the Stokes drift,

T in
α (z) = pa

∂η

∂xα
kD(FCCFCS + FSCFSS). (B 23)

For Rαβ , simple algebra shows that for either α = β or α 6= β we find at second order,

Rαβ = p′
∂ξβ
∂xα

. (B 24)

We may now transform (B 14), to the new coordinates, using the GLM mass conserva-
tion equation. We first consider the Lagrangian mean derivative. Using (B 13) and (B 10)
we get

sςρwJD
L
uLα = sς

[
∂

∂t
(ρwJu

L
α) +

∂

∂xβ
(ρwJu

L
αu

L
β ) +

∂

∂z
(ρwJw

L)

]

=
∂

∂t
(ρwDUα) +

∂

∂xβ
(ρwDUαUβ) +

∂

∂ς
(ρwJw

LUα)

−
∂s

∂t

∂

∂ς
(ρwJUα) −

∂s

∂xβ

∂

∂ς
(ρwJUαUβ) − ρwJUα

(
∂2s

∂t∂ς
+ Uβ

∂2s

∂ς∂xβ

)

=
∂

∂t
(ρwDUα) +

∂

∂xβ
(ρwDUαUβ) +

∂

∂ς
(ρwΩUα), (B 25)

with the ⋆ superscripts omitted on the right hand side. Transforming the pressure gradient
term, one gets, to second order in ε1,

sς
∂pL

∂xα
= sς

∂

∂xα
pH −

∂s

∂xα

∂

∂ς
pH + sς

∂

∂xα
(ρwgvarηkF

CCFCS)

= D
∂

∂xα
(gη̂ + p̂a) +D2

∫ (
∂b

∂xα
− ς

∂D

∂xα

∂b

∂ς

)
+
∂Spαβ
∂xβ

, (B 26)

with Spαβ the isotropic part of the radiation stress Sαβ .
We finally transform the GLM radiation stress R,

sς

(
∂Rαβ
∂xβ

+
∂Rα3

∂z

)
=

∂

∂xβ

(
sςp′

∂ξβ
∂xα

)
+

∂

∂ς

(
p′
∂ξ3
∂xα

− sβp′
∂ξβ
∂xα

)

=
∂

∂xβ
Suαβ + T in

α +
∂

∂ς
S3
α, (B 27)

with Suαβ the non-isotropic part of the radiation stresses Sαβ , and S3
α a wave-induced
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vertical flux of momentum defined by

S3
α =

[
2ρwgvarηF

CC ∂F
SS

∂xα
+ ρwgF

CCFSS
∂

∂xα
varη − sβρwgvarηF

CCFCS
kαkβ
k2

]
.

(B 28)
Putting all the pieces of this puzzle together (B 14) can be rewritten in the new coor-

dinate system to obtain a generalization of Mellor’s (2003) equation (51a)

∂

∂t
(ρwDUα) +

∂

∂xβ
(ρwDUαUβ) +

∂

∂ς
(ρwΩUα) + ǫα3βf3DUβ

+ D
∂

∂xα
(ρwgη̂ + p̂a) + ρwD

2

∫ (
∂b

∂xα
− ς

∂D

∂xα

∂b

∂ς

)

= −
∂Sαβ
∂xβ

+ T in
α +

∂S3
α

∂ς
− (X

L

α)⋆, (B 29)

with (X
L

α)⋆ the transformed viscous and turbulent stresses.
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