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Abstract. We study uniformly elliptic fully nonlinear equations of the type
F (D2u,Du, u, x) = f(x). We

• show that convex positively 1-homogeneous operators possess two principal
eigenvalues and eigenfunctions, and study these objects ;

• obtain existence and uniqueness results for non-proper operators whose prin-
cipal eigenvalues (in some cases, only one of them) are positive ;

• obtain an existence result for non-proper Isaac’s equations.

Résumé. On étudie des équations complètement non-linéaires, uniformément
elliptiques, du type F (D2u, Du, u, x) = f(x). On

• montre que les opérateurs convexes et positivement homogènes de degré 1
possèdent deux valeurs propres et deux fonctions propres principales. On
étudie les propriétés de ces objets ;

• obtient des résultats d’existence et d’unicité pour des équations qui ne sont
pas ”propres”, mais dont les valeurs propres (l’une ou les deux) sont posi-
tives ;

• obtient un résultat d’existence pour une équation de Isaac.
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1 Introduction and Main Results

This paper is a contribution to the study of uniformly elliptic fully nonlinear
equations

F (D2u,Du, u, x) = f(x) (1.1)

in a bounded domain Ω ⊂ RN . We pursue the following goals. First, we
show that positively homogeneous operators which are convex (or concave) -
like Hamilton-Jacobi-Bellman operators - possess two principal eigenvalues,
corresponding to a positive and a negative principal eigenfunction, and study
properties of these objects. Second, we show that existence and uniqueness
theory can be developed for coercive non-proper operators, more precisely,
for operators whose both principal eigenvalues (or, in some cases, only one of
them) are positive. Finally, we obtain existence results for the Dirichlet prob-
lem for non-proper operators which are not convex (like Isaac’s equations),
under the hypothesis that some related operator is coercive.

A starting point for our work is the paper by Lions [L1]. By combining
probability and analytical methods, in this paper he proved the existence
of principal eigenvalues for operators which are the supremum of linear op-
erators with C1,1-coefficients, and obtained results about the solvability of
related Dirichlet problems. We note that the first to observe the phenom-
enon of appearance of two ”half”-eigenvalues was Berestycki in [Be], where he
considered bifurcation for some Sturm-Liouville problems. Very recently ex-
istence of principal eigenvalues was proven in another particular case, namely
when F is a Pucci extremal operator (see below), by Felmer and Quaas [FQ]
(see also [BEQ], [Q]). The results in all these papers are partial also in
the sense that many known properties of the principal eigenvalue of a linear
operator were left open. It is our aim here to bring the eigentheory of fully
nonlinear equations closer to the level of the well studied linear case. Another
cornerstone to our work is the paper by Berestycki, Nirenberg and Varadhan
[BNV] – a deep study of properties of the principal eigenvalue of linear elliptic
operators in non-divergence form, as well as of related maximum principles
and existence theory. The results we obtain extend most of the main results
in [BNV] to nonlinear operators, and exhibit the particularities due to the
nonlinear nature of the operators we consider.

In the last thirty years there have been a multitude of results on existence,
uniqueness and regularity properties of classical, strong or viscosity solutions
of equations of type (1.1). For the classical case we refer to the works [L2], [E],
[Bu], and to the books [K], [GT]. For strong solutions of linear equations,
see [GT], Chapter 9. As far as viscosity solutions are concerned, we shall
quote here the fundamental work [CIL], where very general equations are
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studied, as well as [CC], [CCKS], [CKLS], [JS], [S] (see also the references in
these works), where a more specific - and close to ours - setting is considered.
Typical structure conditions on F assumed in these papers are

(S)
M−

λ,Λ(M − N)−γ|p − q| ≤ F (M, p, u, x) − F (N, q, u, x)

≤ M+
λ,Λ(M − N)+γ|p − q|,

for some positive constants λ, Λ, γ and any M,N ∈ SN (the set of all N ×N
symmetric matrices), p, q ∈ RN , and
(P ) F is proper, that is, F is nonincreasing in u.

Recall that Pucci’s operators are defined by M+
λ,Λ(M) = supA∈A tr(AM),

M−
λ,Λ(M) = inf

A∈A
tr(AM), where A ⊂ SN denotes the set of matrices whose

eigenvalues lie in the interval [λ, Λ]. Note M+
λ,Λ(M) = −M−

λ,Λ(−M).
Condition (P) is too restrictive compared to what is known for linear

operators. For instance, consider the linear operator L = tr(AD2·) + c(x).
It is well known that the Dirichlet problem for Lu = f ∈ LN is uniquely
solvable provided λ1(L) > 0 (see [BNV]). On the other hand, if tr(AD2·) is
replaced by a nonlinear operator satisfying (S), all the above quoted papers
concern the case c(x) ≤ 0. We will show that for a nonlinear operator the
right hypothesis under which the Dirichlet problem is solvable for any right-
hand side is again the positivity of the principal eigenvalues.

The paper is organized as follows. In the next section we give assumptions
and define the principal eigenvalues. In Sections 1.2 and 1.3 we state our
main results, about properties of principal eigenvalues and eigenfunctions,
and about solvability of the Dirichlet problem. In Section 2 we give examples
of operators to which our results apply, and discuss different situations that
can arise. Finally, in Section 3 we recall some previous results which we use,
and in Section 4 we give the proofs of our results.

1.1 Assumptions and definition of λ+
1 , λ−

1

The operator F is supposed to be defined on SN ×RN ×R× (Ω \N ), where
N ⊂ Ω is a null set.

For the definition of eigenvalues to make sense, we assume that the oper-
ator is positively homogeneous of order 1, that is,

(H0) F (tM, tp, tu, x) = t F (M, p, u, x), for all t ≥ 0.
Everywhere in the sequel we consider operators which satisfy the following

hypothesis : for some γ, δ > 0 and all M, N ∈ SN , p, q ∈ RN , u, v ∈ R,

(H1)

M−
λ,Λ(M − N) − γ|p − q| − δ|u − v| ≤ F (M, p, u, x) − F (N, q, v, x)

≤ M+
λ,Λ(M − N) + γ|p − q| + δ|u − v|.
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We are going to suppose that

(H2) F (M, 0, 0, x) is continuous in SN × Ω.
Note that when F is linear (H1)−(H2) mean F is uniformly elliptic, with

bounded coefficients, and continuous second-order coefficients.
We denote

G(M, p, u, x) = −F (−M,−p,−u, x).

An important role will be played by the following definition. We say that
an operator H(M, p, u, x) satisfies condition (DF ) provided

(DF )
G(M − N, p − q, u − v, x) ≤ H(M, p, u, x) − H(N, q, v, x)

≤ F (M − N, p − q, u − v, x).

This hypothesis permits to measure how far an operator H is from linear -
the extremes of (DF ) are attained, on one hand, when F is linear (so that
F = G and H(M, p, u, x) = F (M, p, u, x) + H(0, 0, 0, x)), and on the other
hand, when F (M, p, u, x) = M+

λ,Λ(M) + γ|p| + δ|u| – then (DF ) reduces to
(H1).

Lemma 1.1 Suppose F satisfies (H0). Then the following are equivalent

(i) F is convex in (M, p, u) ; (ii) F satisfies (DF ) ;

(iii) F satisfies one of the two inequalities in (DF ).

We shall assume that the domain Ω is smooth. We stress however that
most results can be extended to arbitrary bounded domains, by using an
approximation argument, as in [BNV], see Section 5.

We make the convention that each time we use the term viscosity solution
we mean LN -viscosity - see for example [CCKS] for definitions and properties
of these. Also, any time we say a non-regular function satisfies an (in)equality,
we shall mean it is satisfied in the viscosity sense.

For any λ ∈ R we define the sets

Ψ+(F, Ω, λ) = {ψ ∈ C(Ω) | ψ > 0 in Ω, F (D2ψ, Dψ, ψ, x) + λψ ≤ 0 in Ω},

Ψ−(F, Ω, λ) = {ψ ∈ C(Ω) | ψ < 0 in Ω, F (D2ψ, Dψ, ψ, x) + λψ ≥ 0 in Ω},

and the following (finite, see Proposition 4.2) quantities

λ+
1 (F, Ω) = sup {λ | Ψ+(F, Ω, λ) 6= ∅},

λ−
1 (F, Ω) = sup {λ | Ψ−(F, Ω, λ) 6= ∅}.

We shall not write the dependence of λ+
1 , λ−

1 in Ω or in F , when no confusion
arises. Note that λ+

1 (F ) = λ−
1 (G) and λ−

1 (F ) = λ+
1 (G). Note also that

λ+
1 (F ) ≤ λ−

1 (F ) when F is convex. We will show later that the sets Ψ in the
definitions of λ+

1 , λ−
1 can be replaced by much smaller ones - see (4.15) and

Proposition 4.11.
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1.2 Existence and properties of eigenvalues

The following theorem asserts the existence of two couples of principal eigen-
functions and eigenvalues of a nonlinear operator. Set Ep = W 2,p

loc (Ω)∩C(Ω).

Theorem 1.1 Suppose F satisfies (H0), (H1), (H2), and (DF ). Then there
exist functions ϕ+

1 , ϕ−
1 ∈ Ep for each p < ∞, such that





F (D2ϕ+
1 , Dϕ+

1 , ϕ+
1 , x) = −λ+

1 ϕ+
1 in Ω

ϕ+
1 > 0 in Ω

ϕ+
1 = 0 on ∂Ω,

and 



F (D2ϕ−
1 , Dϕ−

1 , ϕ−
1 , x) = −λ−

1 ϕ−
1 in Ω

ϕ−
1 < 0 in Ω

ϕ−
1 = 0 on ∂Ω.

If ϕ+
1 (or ϕ−

1 ) is normalized so that ϕ+
1 (x0) = 1 (resp. ϕ−

1 (x0) = −1) for
a fixed point x0 ∈ Ω, then ϕ+

1 ≤ C (resp. ϕ−
1 ≥ −C) in Ω, where C depends

only on x0, Ω, λ, Λ, γ and δ.
In addition, λ+

1 (resp. λ−
1 ) is the only eigenvalue corresponding to a

positive (resp. negative) eigenfunction in C(Ω).

The next result implies that the principal eigenfunctions are simple in a
strong sense, even in the set of viscosity solutions.

Theorem 1.2 Assume there exists a viscosity solution u ∈ C(Ω) of

{
F (D2u,Du, u, x) = −λ+

1 u in Ω
u = 0 on ∂Ω

(1.2)

or of {
F (D2u,Du, u, x) ≥ −λ+

1 u in Ω
u(x0) > 0, u ≤ 0 on ∂Ω,

(1.3)

for some x0 ∈ Ω. Then u ≡ tϕ+
1 , for some t ∈ R. If a function v ∈ C(Ω)

satisfies either (1.2) or the inverse inequalities in (1.3), with λ+
1 replaced by

λ−
1 , then v ≡ tϕ−

1 for some t ∈ R.

Remark. Taking u = ϕ−
1 shows u(x0) > 0 cannot be removed from (1.3).

It is an interesting question whether the two eigenvalues can coincide for
truly nonlinear operators, and, when they do not, whether the eigenfunctions
can or may not differ only by a multiplication by a constant. The answers
are all affirmative, see Section 2.
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The next theorem gives a necessary and sufficient condition for the pos-
itivity of the principal eigenvalues. It also shows that the existence of a
positive viscosity supersolution implies the existence of a positive uniformly
bounded (below, and in the global W 2,p-norm) strong supersolution.

Theorem 1.3 (a) Assume there is a function u ∈ C(Ω) such that
{

F (D2u,Du, u, x) ≤ 0 in Ω
u > 0 in Ω,

resp.

{
F (D2u, . . .) ≥ 0 in Ω

u < 0 in Ω,

in the viscosity sense. Then either λ+
1 > 0 or λ+

1 = 0 and u ≡ tϕ+
1 , for

some t > 0 (resp. λ−
1 > 0 or λ−

1 = 0 and u ≡ tϕ−
1 , for some t > 0).

(b) Conversely, if λ+
1 > 0 then there exists a function u ∈ W 2,p(Ω),

p < ∞, such that F (D2u,Du, u, x) ≤ 0, u ≥ 1 in Ω, and ‖u‖W 2,p(Ω) ≤ C,
where C depends on p, N, λ, Λ, γ, δ, and λ+

1 .

Remark 1. When F is proper, u ≡ 1 satisfies the condition of Theorem 1.3.
Hence proper operators have positive eigenvalues.

Remark 2. Propositions 4.2 and 4.8 provide upper and lower bounds (in
terms of F and Ω) for λ+

1 and λ−
1 .

Remark 3. It follows from Theorem 1.3 that the eigenvalues are strictly
decreasing with respect to the domain : if Ω $ Ω′ then λ+

1 (Ω) > λ+
1 (Ω′) and

λ−
1 (Ω) > λ−

1 (Ω′) (take u = ϕ+
1 (Ω′) in Theorem 1.3). Note that λ+

1 and λ−
1

are continuous with respect to the domain, as Proposition 4.10 shows.
Further, we show that, similarly to the linear case, the positivity of the

principal eigenvalues is a necessary and sufficient condition for the operator
to satisfy a comparison principle. We say that a second order operator H
satisfies a comparison principle (CP), provided for any u, v ∈ C(Ω), one of
which is in EN , such that

{
H(D2u,Du, u, x) ≥ H(D2v, Dv, v, x) in Ω

u ≤ v on ∂Ω,

we have u ≤ v in Ω. A particular case of (CP) is the maximum principle,
when one of u, v is set to zero (and H(0, 0, 0, x) ≡ 0, as we always assume).

Theorem 1.4 Suppose a second-order operator F satisfies (H0), (H1), (H2),
and (DF ). Then λ+

1 (F ) > 0 is necessary and sufficient for F to satisfy
(CP ). Hence, if a second-order operator H satisfies (DF ), then λ+

1 (F ) > 0
is sufficient for H to satisfy (CP ).

If λ−
1 > 0, the comparison and even the maximum principle do not neces-

sarily hold. However, it can be shown that λ−
1 > 0 is necessary and sufficient

for a one-sided maximum principle.
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Theorem 1.5 Suppose a second-order operator F satisfies (H0), (H1), (H2),
and (DF ). Then F has the following property : for any u ∈ C(Ω),

{
F (D2u,Du, u, x) ≤ 0 in Ω

u ≥ 0 on ∂Ω
implies u ≥ 0 in Ω,

if and only if λ−
1 (F ) > 0.

Finally, we have the following Alexandrov-Bakelman-Pucci inequality for
nonproper second order operators.

Theorem 1.6 Suppose the operator F satisfies (H0), (H1), (H2), and (DF ).
Then for any u ∈ C(Ω), f ∈ LN(Ω), the inequalities F (D2u,Du, u, x) ≥ f ,
λ+

1 (F ) > 0 (resp. F (D2u,Du, u, x) ≤ f , λ−
1 (F ) > 0) imply

sup
Ω

u ≤ C(sup
∂Ω

u++‖f−‖LN (Ω)),

(
resp. sup

Ω
u− ≤ C(sup

∂Ω
u− + ‖f+‖LN (Ω))

)
.

where C depends on Ω, N, λ, Λ, γ, δ, and λ+
1 (F ) (resp. λ−

1 (F )).

1.3 The Dirichlet problem

We will show that the Dirichlet problem is solvable for any right-hand side
if and only if the eigenvalues of the operator are positive.

Theorem 1.7 Suppose F satisfies (H0), (H1), (H2), and (DF ). If λ+
1 (F ) > 0

then for any f ∈ Lp(Ω), p ≥ N, there exists an unique solution u ∈ Ep of
{

F (D2u,Du, u, x) = f in Ω
u = 0 on ∂Ω,

(1.4)

In addition, for any compact set ω ⊂⊂ Ω there holds

‖u‖W 2,p(ω) ≤ C‖f‖Lp(Ω),

where C depends on p, ω, Ω, λ, Λ, γ, δ, and λ+
1 (F ).

On the other hand, if λ+
1 (F ) = 0 then problem (1.4) does not possess a

solution in C(Ω), provided f ≤ 0, f 6≡ 0 in Ω.

Remark. In [Bu] Busca showed the existence of a unique classical solution
of the Dirichlet problem in the case when F is a supremum of a countable
family of linear operators with Hölder continuous coefficients and uniformly
positive first eigenvalues. This last condition turns out to be equivalent to
λ+

1 > 0, as our results show (see the next section).
As Theorem 1.7 shows, if only one of the two eigenvalues is positive, the

Dirichlet problem may not have a solution. However, it still does provided
the right-hand side is nonnegative.
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Theorem 1.8 Suppose F satisfies (H0), (H1), (H2), (DF ). If λ−
1 (F ) > 0

then for any f ∈ Lp(Ω), p ≥ N , such that f ≥ 0 in Ω, there exists a nonpos-
itive solution u ∈ Ep of (1.4).

Remark. We do not know if the solution obtained in Theorem 1.8 is unique.
As is known, the problem of solvability and uniqueness for the Dirichlet

problem for non-convex operators is quite complicated. We have the following
existence result, applicable to Isaac’s operators, which completes (and uses)
some recent results for proper operators, obtained in [CKLS] (see also [JS]).

Theorem 1.9 Assume F satisfies (H0), (H1), (H2), (DF ), and H satisfies
(DF ) and (H0). If λ+

1 (F ) > 0 then the problem

{
H(D2u,Du, u, x) = f in Ω

u = 0 on ∂Ω

is solvable in the viscosity sense for any f ∈ Lp(Ω), p ≥ N . If H(M, p, u, x)
is convex in M then u ∈ Ep , and u is unique.

2 Examples and Discussion

We have proved the existence of principal eigenvalues of Hamilton-Jacobi-
Bellman operators

FHJB(D2u,Du, u, x) = sup
α∈A

Lα
xu, with

Lα
xu := tr

(
Aα(x)D2u

)
+~bα(x).Du + cα(x)u,

where A is an arbitrary index set, Aα(x) are matrices which depend continu-

ously on x and such that λI ≤ Aα(x) ≤ ΛI, and ~bα : RN → RN , cα : RN → R
are measurable bounded (uniformly in α) functions.

Note that the question of existence and uniqueness of solutions of Hamil-
ton-Jacobi-Bellman equations is often set in the form : given a family of
linear operators as above and a family of continuous functions fα, solve

sup
α∈A

(
tr

(
Aα(x)D2u

)
+~bα(x).Du + cα(x)u − fα(x)

)
= 0.

This equation is in the form H(D2u,Du, u, x) = f(x), where

H(D2u,Du, u, x) = sup
α∈A

(Lα
xu − fα(x)) + inf

α∈A
fα(x), f(x) = inf

α∈A
fα(x).
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This H is convex in (M, p, u) and satisfies (DFHJB
), so the results of the

previous section apply.
It easily follows from the definitions of the eigenvalues that

λ+
1 (FHJB) ≤ inf

α∈A
λ1(L

α
x) ≤ sup

α∈A
λ1(L

α
x) ≤ λ−

1 (FHJB), (2.5)

where λ1(L
α
x) denotes the usual first eigenvalue of the linear operator Lα

x .
One should clearly ask whether the first and the third inequalities in (2.5)
are actually equalities.

As far as the first inequality is concerned, it actually is an equality when
the set A is countable, since then it is possible to show that the Dirichlet
problem for FHJB is uniquely solvable for any right-hand side (through an
argument similar to the one in [Bu]), provided infα∈A λ1(L

α
x) > 0. Then, if the

first inequality in (2.5) were strict, the operators L̃α
x = Lα

x + λ+
1 (FHJB) have

uniformly positive eigenvalues but supα∈A L̃α
xu = 0 has two solutions which

vanish on ∂Ω, the trivial one and ϕ+
1 given by Theorem 1.1 – a contradiction.

Further, it is clear that the Dirichlet problem for FHJB remains solvable under
infα∈A λ1(L

α
x) > 0, when A is a separable metric space such that the maps

α → Aα,~bα, cα are continuous for almost every x (a similar remark is made
in [GT], after Theorem 17.18). This implies, for instance, that

λ+
1 (M+

λ,Λ) = inf
λI≤A≤ΛI

λ1

(
tr

(
AD2·

))
,

the infimum being taken over constant matrices, and not over functions (as
was stated in [BEQ]), which is what the mere fact that the infimum is at-
tained suggests.

Surprisingly, it turns out that an analogous intuitive statement about the
third inequality in (2.5) is wrong, as we shall show next.

First, note that λ+
1 = λ−

1 is possible for truly nonlinear operators. An
explicit example is, for instance, Ω = (0, π) × (0, π) ⊂ R2, and

Fa,b(D
2u) = max {aux1x1

+ bux2x2
, bux1x1

+ aux2x2
} , a, b > 0, a 6= b,

where ϕ+
1 = −ϕ−

1 = sin(x1) sin(x2), and λ+
1 (Fa,b) = λ−

1 (Fa,b) = a + b.
Further, Theorem 1.2 (with u = −ϕ−

1 ) easily implies that ϕ+
1 = −ϕ−

1 after
renormalization, whenever λ+

1 = λ−
1 . Let us now look at the same operator

Fa,b(D
2u) = max{L1u, L2u}, but on a ball B ⊂ R2. A simple symmetry

argument shows λ1(L1, B) = λ1(L2, B), so, by what we already saw, λ+
1 (Fa,b)

is equal to λ1(L1). However, λ−
1 (Fa,b) cannot be equal to λ1(L1). Indeed,

suppose for contradiction λ−
1 = λ1(L1) = λ+

1 =: λ. Then the principal
eigenfunction ϕ := ϕ+

1 = −ϕ−
1 of Fa,b would satisfy

{
Fa,b(D

2ϕ) + λϕ = 0 in B,
Ga,b(D

2ϕ) + λϕ = 0 in B,
(2.6)
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By adding up the two equations in (2.6) we see that ϕ is the principal eigen-
function of the Laplacian, and so ϕ is smooth and radial. It also follows from
(2.6) that Fa,b(D

2ϕ) = Ga,b(D
2ϕ) in B, which means ϕx1x1

≡ ϕx2x2
. The only

smooth radial functions which satisfy this are C1|x|
2 + C2 – a contradiction.

We shall now see it is possible that the first eigenfunctions be the same
or different when λ+

1 6= λ−
1 . An example when λ+

1 6= λ−
1 and ϕ+

1 = −ϕ−
1 is

provided by the operator

Fa(D
2u) = max{∆u, a∆u}, a > 0, a 6= 1.

Then ϕ+
1 = −ϕ−

1 is the usual first eigenfunction of the Laplacian, however
λ+

1 = min{λ1, aλ1} < max{λ1, aλ1} = λ−
1 , where λ1 is the first eigenvalue of

the Laplacian. Note that the spectrum of Fa is actually the so-called Fucik
spectrum of the Laplacian.

Finally, we note that M+
λ,Λ is an operator for which ϕ+

1 and ϕ−
1 are not

proportional, for instance when Ω is a ball. Indeed, suppose for contradiction
that ϕ ∈ Ep(B) is a function such that ϕ > 0 in B, ϕ = 0 on ∂B, and

{
M+

λ,Λ(D2ϕ) + λ+
1 ϕ = 0 in B,

M−
λ,Λ(D2ϕ) + λ−

1 ϕ = 0 in B,
(2.7)

for some ball B. By summing these two equations we obtain

(λ + Λ)∆ϕ + (λ+
1 + λ−

1 )ϕ = 0 in B, (2.8)

so ϕ is the first (radial and smooth) eigenfunction of the Laplacian.

We recall that M+
λ,Λ(M) = Λ

∑

{ei>0}

ei + λ
∑

{ei<0}

ei, where ei denote the

eigenvalues of M , for any M ∈ SN . This, together with the fact that ϕ
attains its maximum at the origin, imply M+

λ,Λ(D2ϕ(0)) = λ∆ϕ(0). It then

follows from the first equation in (2.7) that
λ+

1

λ
= λ1, where λ1 is the first

eigenvalue of the Laplacian.
Therefore the first equation in (2.7) reads M+

λ,Λ(D2ϕ) − λ∆ϕ = 0 in B,
or

Λ
∑

{ei(x)>0}

ei(x) + λ
∑

{ei(x)<0}

ei(x) − λ

N∑

i=1

ei(x) ≡ 0 in B,

where ei(x) denote the eigenvalues of D2ϕ(x). Hence ei(x) ≤ 0 in B, for all
i = 1, . . . , N .

However, by writing (2.8) in the radial variable and by using Hopf’s
lemma, it is easy to see that D2ϕ(x) has a positive eigenvalue in a neigh-
bourhood of ∂Ω (see also Lemma 4.1). This is a contradiction.
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Naturally, given some positive constants λ, Λ, γ, δ, our results apply to
the extremal operator

Fe(D
2u, Du, u) = M+

λ,Λ(D2u) + γ|Du| + δ|u|,

and hence all results concerning maximum principles and existence for the
Dirichlet problem apply to operators H satisfying (DFe

), that is, (H1). In
particular, our results give an ABP inequality and existence results for Isaacs
operators

inf
β∈B

sup
α∈A

{
tr

(
Aα,β(x)D2u

)
+~bα,β(x).Du + cα,β(x)u

}
,

under a more general hypothesis than cα,β(x) ≤ 0, which was considered in
previous works (see for example [CIL], [CKLS] and the references in these
papers).

An interesting particular case is obtained by setting λ = Λ = 1, in other
words, M+

λ,Λ(D2u) = ∆u in Fe. In a very recent work Hamel, Nadirashvili
and Russ considered (among other things) the operator ∆u + |Du|, showed
it has two eigenvalues and proved that the domain which minimizes the
eigenvalue λ+

1 (∆ + |D · |, Ω) on the set of all smooth domains with fixed
measure is the ball. Their result depends on the fact that the second-order
operator is the Laplacian. It is a very interesting open question to prove
that the same holds for more general second-order operators, for example,
to prove that λ+

1 (M+
λ,Λ, Ω) is minimized when Ω is a ball. The analogous

question for λ−
1 is completely open.

3 Some known results

In this section we recall some results for proper uniformly elliptic equations.
We start with the Alexandrov-Bakelman-Pucci estimate for viscosity so-

lutions, see Proposition 3.3 in [CCKS].

Theorem 3.1 (ABP) Let f ∈ LN(Ω). If u ∈ C(Ω) is a LN -viscosity solu-
tion of

M+
λ,Λ(D2u) + γ|Du| ≥ f in {u > 0},

then there exists a constant B depending on N, λ, Λ, γ, and diam(Ω), such
that

sup
Ω

u ≤ sup
∂Ω

u+ + B‖f−‖LN (Ω). (3.9)
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Similarly, if u is a LN -viscosity solution of M−
λ,Λ(D2u) − γ|Du| ≤ f in

{u < 0}, then
sup

Ω
u− ≤ sup

∂Ω
u− + B‖f+‖LN (Ω). (3.10)

Hence if F satisfies conditions (S) and (P ) from the introduction, then
F (D2u,Du, u, x) ≥ f implies (3.9), and F (D2u,Du, u, x) ≤ f implies (3.10).

Theorem 3.1 implies a comparison result (Theorem 2.10 in [CCKS]).

Theorem 3.2 Suppose H satisfies (DF ) and F satisfies (H1),(H2), and (P ).
If u, v ∈ C(Ω) are LN -viscosity solutions of

{
H(D2u,Du, u, x) ≥ H(D2v,Dv, v, x) in Ω,

u ≤ v on ∂Ω,

and one of u, v is in EN , then u ≤ v in Ω.

Now we give a regularity result, which will be needed in the sequel.

Theorem 3.3 Suppose F satisfies (H1),(H2), and F (M, p, u, x) is convex
in M . If u ∈ C(Ω) is a viscosity solution of

F (D2u,Du, u, x) = f in Ω

and f ∈ Lp(Ω), p ≥ N , then u ∈ W 2,p
loc (Ω), and for every Ω′ ⊂⊂ Ω

‖u‖W 2,p(Ω′) ≤ C
(
‖u‖L∞(Ω) + ‖f‖Lp(Ω)

)
,

where C depends on dist(Ω′, ∂Ω), p, N, λ, Λ, γ, δ.

Proof. In case F is proper (satisfies (P )), this follows from Theorem 3.1 in
[S]. If F is not proper, by (H1) F (D2u, Du, u, x)− δu is proper. By applying
Theorem 3.1 in [S] to F (D2u,Du, u, x) − δu = f − δu we conclude.

Theorem 3.4 Suppose F satisfies (H1),(H2), (P ), and F (M, p, u, x) is con-
vex in M . Then, for any f ∈ Lp(Ω), p ≥ N there exists a unique solution
u ∈ Ep of {

F (D2u, Du, u, x) = f in Ω,
u = 0 on ∂Ω.

Proof. This is again a consequence of Theorem 3.1 in [S].
Next, we recall the following maximum principle in small domains.
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Theorem 3.5 Suppose H satisfies (DF ), and F satisfies (H1) and (H2).
Then there exists ε0 > 0, depending on N, λ, Λ, γ, δ, and diam(Ω), such that
if |Ω| ≤ ε0 then for any u ∈ C(Ω)

{
H(D2u,Du, u, x) ≤ 0 in Ω,

u ≥ 0 on ∂Ω

implies u ≥ 0 in Ω.

Proof. By (H1) u satisfies

M−
λ,Λ(D2u) − γ|Du| ≤ δ|u| = δu− in {u < 0}.

Now we use Theorem 3.1 to conclude, in a standard way.
We shall need the following version of Hopf’s boundary lemma.

Lemma 3.1 Let Ω be a regular domain and let u ∈ EN , u 6≡ 0, be a
nonnegative solution to

M−
λ,Λ(D2u) − γ|Du| − δu ≤ 0 in Ω, u = 0 on ∂Ω, (3.11)

with γ, δ ∈ R. Then u > 0 in Ω. Moreover, for each x0 ∈ ∂Ω

lim sup
x→x0

u(x0) − u(x)

|x − x0|
< 0,

where the limit is taken over the set of x for which the angle between x − x0

and the outer normal at x0 is less than π/2 − α for some fixed α > 0.

Remark. For a general strong maximum principle for degenerate convex
elliptic operators, see the paper of M. Bardi, F. Da Lio [BD].

We recall next the following Harnack inequality.

Theorem 3.6 Let u ∈ C(Ω) and f ∈ LN(Ω) satisfy u ≥ 0 in Ω and

M+
λ,Λ(D2u) + γ|Du| + δu ≥ f in Ω, (3.12)

M−
λ,Λ(D2u) − γ|Du| − δu ≤ f in Ω. (3.13)

Then for any compact set K ⊂ Ω

sup
K

u ≤ C{inf
K

u + ‖f‖LN (Ω)},

where C is a constant depending only on K, Ω, N , Λ , λ, γ and δ.

Proof. Inequality (3.13) implies the so-called weak Harnack inequality - this
was proved by Wang in [W], see also [CC], [CKS] for related results. The fact
that inequality (3.12) implies the local maximum principle (see for example
[GT] for the terminology) was proved by Wang in the proper case (δ = 0),
and was extended to δ > 0 in [BS] - see pages 560-562 of that paper.
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4 Proofs of the main results

We start with the trivial proof of Lemma 1.1.
Proof of Lemma 1.1. Suppose f : RN2+N+1 → R is such that f(tx) = tf(x)
for all t ≥ 0. First, f is convex if and only if

f(y1) − f(y2) ≤ f(y1 − y2) for all y1, y2 ∈ RN2+N+1 (∗).

Indeed, if f is convex then

f(y1) = 2f(
y1 − y2 + y2

2
) ≤ f(y1 − y2) + f(y2).

Whereas if f satisfies (∗), then for any α ∈ [0, 1]

f(αy1 + (1 − α)y2) − αf(y1) = f(αy1 + (1 − α)y2) − f(αy1)

≤ f((1 − α)y2) = (1 − α)f(y2),

so f is convex.
Now we define g(y) = −f(−y); we have from (∗) that

g(y1 − y2) = −f(y2 − y1) ≤ f(y1) − f(y2),

and the lemma follows.

Everywhere in the sequel F will denote an operator which satisfies (H0),
(H1), (H2), and (DF ).

The following theorem will be used several times.

Theorem 4.1 Suppose u, v ∈ C(Ω) are viscosity solutions of

{
F (D2u,Du, u, x) ≤ 0 in Ω

u > 0 in Ω,
resp.

{
F (D2u, . . .) ≥ 0 in Ω

u < 0 in Ω

and




F (D2v,Dv, v, x) ≥ 0 in Ω
v ≤ 0 on ∂Ω

v(x0) > 0,
resp.





F (D2v, . . .) ≤ 0 in Ω
v ≥ 0 on ∂Ω

v(x0) < 0,

for some point x0 ∈ Ω, where F satisfies (H0), (H1), (H2), and (DF ). Suppose
one of u, v is in EN . Then u ≡ tv for some t > 0.

Proof. Let u, v satisfy the first set of inequalities in Theorem 4.1. We
suppose first that both u, v ∈ EN . Theorem 4.1 is proved via a rather typical
argument, used for example in the linear setting in [BNV]. Take a compact
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set K ⊂ Ω such that |Ω \ K| ≤ ε0, where ε0 is given in Theorem 3.5. Set
zt = v − tu. If t is large enough zt < 0 in K. By (DF ) and (H0), we have for
all t ≥ 0

F (D2zt, Dzt, zt, x) ≥ F (D2v, Dv, v, x) − tF (D2u,Du, u, x) ≥ 0 (4.14)

in Ω. Since zt ≤ 0 on ∂(Ω\K), by using Theorem 3.5 we get zt ≤ 0 in Ω\K.
So, by Hopf’s Lemma (Lemma 3.1), either zt ≡ 0 in Ω in which case we are
done, or zt < 0 in Ω. We define

τ = inf{t | zt < 0 in Ω}.

Since v(x0) > 0 we have τ > 0. Now we repeat the same argument for zτ .
So, either zτ ≡ 0 in Ω in which case we are done, or zτ < 0 in Ω. In this case
there exists η > 0 such that zτ−η < 0 in K. Now we repeat again the same
argument for zτ−η, which yields a contradiction with the definition of τ .

If the inequalities satisfied by u, v are reversed (second set of inequalities
in Theorem 4.1), we consider the function tu−v and use the same argument.

In case one of the functions, say v, is only in C(Ω), exactly the same
argument applies, since (4.14) holds. This is very standard - if ψ is a test
function for zt, then ψ + tu is a test function for v, and vice versa.

Corollary 4.1 If µ, ν ∈ R and u, v ∈ C(Ω) are such that




F (D2u, . . .) = µu in Ω
u > 0 in Ω
u = 0 on ∂Ω

and





F (D2v, . . .) = νv in Ω
v > 0 in Ω
v = 0 on ∂Ω,

and one of u, v is in EN , then µ = ν and u = tv for some t > 0. The same
is valid if both functions are negative instead of positive.

Proof. Suppose µ ≤ ν. Then use Theorem 4.1 with F (D2u,Du, u, x) re-
placed by F (D2u,Du, u, x) − µu.

Another consequence of Theorem 4.1 is an upper bound of the eigenvalues
in terms of the ”thickness” of the domain. Before stating it, we recall the
following simple fact.

Lemma 4.1 Suppose u ∈ C2(B) is a radial function, defined on a ball B, say
u(x) = g(|x|). Then the matrix D2u(x) has g′′(|x|) as a simple eigenvalue,
and |x|−1g′(|x|) as an eigenvalue of multiplicity N − 1.

Proposition 4.1 Suppose Ω contains a ball B2R, with R ≤ 1. Then

λ+
1 (F, Ω) ≤ λ−

1 (F, Ω) ≤
C

R2
,

where C depends on N, λ, Λ, γ, δ.
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Proof. The proof is similar to the proof of Lemma 1.1 in [BNV]. Clearly
λ−

1 (Ω) ≤ λ−
1 (BR). We set σ(x) = −1

4
(|x|2 − R2)2, σ < 0 in BR. Then

|Dσ| ≤ |x|(R2−|x|2) and the eigenvalues of D2σ are R2−|x|2 and R2−3|x|2.
By (H1) we have

F (D2σ,Dσ, σ, x) ≤ M+
λ,Λ(D2σ) + γ|Dσ| + δ|σ|,

so, through an easy computation,

F (D2σ,Dσ, σ, x) ≤ −
C0

R2
σ

in BR, where C0 depends on N, λ, Λ, γ, δ. To get this, we use the previous

lemma and the fact that M+
λ,Λ(M) = Λ

∑

{ei>0}

ei + λ
∑

{ei<0}

ei, where ei denote

the eigenvalues of M .
Suppose now there exists λ ∈ R, ψ ∈ C(Ω) such that ψ < 0 in Ω,

F (D2ψ, Dψ, ψ, x) + λψ ≥ 0, and λ > C0

R2 . By applying Theorem 4.1 with F
replaced by F (D2u,Du, u, x) + C0

R2 u and Ω replaced by BR, we get ψ = tσ in
BR, a contradiction with σ = 0, ψ < 0 on ∂BR.

Next, for any λ ∈ R we define the sets

Ψ̃+(F, Ω, λ) = {ψ | ψ ∈ W 2,p(Ω) ∀ p < ∞ , inf
Ω

ψ = 1,

and F (D2ψ, Dψ, ψ, x) + λψ ≤ 0 in Ω },

Ψ̃−(F, Ω, λ) = {ψ | ψ ∈ W 2,p(Ω) ∀ p < ∞ , sup
Ω

ψ = −1,

and F (D2ψ,Dψ, ψ, x) + λψ ≥ 0 in Ω }

(note these sets contain functions which are regular up to ∂Ω), and the
following quantities

λ̃+
1 (F, Ω) = sup {λ | Ψ̃+(F, Ω, λ) 6= ∅}, (4.15)

λ̃−
1 (F, Ω) = sup {λ | Ψ̃−(F, Ω, λ) 6= ∅}.

By using these definitions and by setting ψ ≡ 1 in (4.15), we obtain the
following bounds.

Proposition 4.2 We have λ̃−
1 ≤ λ−

1 and

−δ ≤ −‖c‖∞ ≤ λ̃+
1 ≤ λ+

1 ≤ λ−
1 ≤

C

R2
,

where c(x) = F (0, 0, 1, x), and C is the constant from Proposition 4.1.
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We are now going to show that a version of the ABP inequality (and

hence the maximum principle) holds for operators with positive λ̃+
1 , λ̃−

1 .

Proposition 4.3 Suppose F satisfies (H0), (H1), (H2), (DF ). Suppose there

exists a function ψ1 ∈ Ψ̃+(F, Ω, 0). Then for any u ∈ C(Ω), f ∈ LN(Ω) the
inequality F (D2u,Du, u, x) ≥ f in Ω implies

sup
Ω

u ≤ C

(
sup
∂Ω

u+ + ‖f−‖LN (Ω)

)
,

where C depends on diam(Ω), λ, Λ, γ, δ, and ‖ψ1‖C1(Ω). Similarly, if there

exists a function ψ2 ∈ Ψ̃−(F, Ω, 0) then the inequality F (D2u,Du, u, x) ≤ f
implies

sup
Ω

u− ≤ C

(
sup
∂Ω

u− + ‖f+‖LN (Ω)

)
.

Note that λ̃+
1 > 0 (resp. λ̃−

1 > 0) implies the existence of ψ1 ∈ Ψ̃+(F, Ω, 0)

(resp. ψ2 ∈ Ψ̃−(F, Ω, 0)).

Proof. The proof is symmetric for both cases, so we present it only in the
case when there exists a function φ ∈ Ψ̃+(F, Ω, 0). Set A = ‖φ‖C1(Ω) (recall
W 2,p(Ω) embeds into C1,α(Ω)).

We define the following operator

Fφ(M, p, v, x) = F (φM + p ⊗ Dφ + vD2φ, φp + vDφ, vφ, x) (4.16)

(here and in the sequel p ⊗ q denotes the matrix (piqj)ij, for p, q ∈ RN).

Claim. Hypotheses (S) and (P ) from the introduction are satisfied by Fφ (so
Theorem 3.1 applies to Fφ).

Before continuing, we recall the following properties of Pucci operators.

Lemma 4.2 Let M,N ∈ SN , p, q ∈ RN , and φ(x) ∈ C(Ω) be such that
0 < a ≤ φ(x) ≤ A. Then

M−
λ,Λ(M) + M−

λ,Λ(N) ≤ M−
λ,Λ(M + N) ≤ M−

λ,Λ(M) + M+
λ,Λ(N),

M−
λa,ΛA(M) ≤ M−

λ,Λ(φM) ≤ M−
λA,Λa(M),

−C(λ, Λ, N)|p||q| ≤ M−
λ,Λ(p ⊗ q) ≤ Λ|p||q|.

Proof. For the first two lines, simply use the definition of M−
λ,Λ. For the

third line, note that for any y ∈ RN we have

<(p ⊗ q)y, y> = <p, y> <q, y>≤ |p||q||y|2,
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so M̃ = p ⊗ q − |p||q|I is negative definite and M−
λ,Λ(M̃) = Λ tr(M̃). Of

course |tr(p ⊗ q)| ≤ |p||q|. So, by what we already know,

M−
λ,Λ(M̃) + M−

λ,Λ(|p||q|I) ≤ M−
λ,Λ(p ⊗ q) ≤ M−

λ,Λ(M̃) + M+
λ,Λ(|p||q|I),

and the lemma follows, with C(λ, Λ, N) = Λ(N + 1) − λN .

We continue with the proof of Proposition 4.3. Let M, N ∈ SN , and
p, q ∈ RN . Then by (H1) and the above lemma

Fφ(M, p, v, x) − Fφ(N, q, v, x) ≥ M−
λ,Λ (φ(M − N) + Dφ ⊗ (p − q))

−γ|p − q|

≥ M−
λ,Λ(φ(M − N))

+M−
λ,Λ(Dφ ⊗ (p − q)) − γ|p − q|

≥ M−
λ,ΛA(M − N) − (CA + γ)|p − q|,

where C = C(λ, Λ, N) is the constant from Lemma 4.2. In the same way we
obtain

Fφ(M, p, v, x) − Fφ(N, q, v, x) ≤ M+
λ,ΛA(M − N) + (CA + γ)|p − q|

(recall M−
λ,Λ(M) = −M+

λ,Λ(−M)). So Fφ satisfies (S), with modified con-
stants. Let us prove now that Fφ satisfies (P ). Let v1, v2 ∈ R be such that

v = v1−v2 ≥ 0. Then by the definition of Fφ, (DF ), (H0) and φ ∈ Ψ̃+(F, Ω, 0)
we get

Fφ(M, p, v1, x) − Fφ(M, p, v2, x) ≤ F (vD2φ, vDφ, vφ, x)

= vF (D2φ,Dφ, φ, x) ≤ 0.

So Fφ(M, p, v, x) is nonincreasing in v and the claim follows.

Now set v =
u

φ
. Then by using that F (D2u,Du, u, x) ≥ f we easily

obtain Fφ(D
2v, Dv, v, x) ≥ f . Now we use Theorem 3.1 for Fφ, which yields

sup
Ω

v ≤ sup
∂Ω

v+ + C‖f−‖LN (Ω),

where C depends on the appropriate quantities. Note that A−1u ≤ v ≤ u.
Proposition 4.3 follows.

The following comparison result is an immediate consequence of (DF )
and Proposition 4.3.
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Proposition 4.4 Suppose λ̃+
1 (F ) > 0. If u, v ∈ C(Ω) are such that

{
F (D2u,Du, u, x) ≥ F (D2v, Dv, v, x) in Ω,

u ≤ v on ∂Ω,

and one of u, v is in EN , then u ≤ v in Ω.

Proof. Recall λ̃+
1 (F ) > 0 implies that Ψ̃+(F, Ω, 0) is not empty. Then we

conclude with the help of (DF ) and Proposition 4.3, applied to v − u.

Remark. Note that λ̃−
1 (F ) > 0 does not imply comparison.

Next, we prove that λ̃+
1 > 0 is sufficient for the solvability of the Dirichlet

problem.

Proposition 4.5 Suppose F satisfies hypotheses (H0), (H1), (H2), and (DF ).

If λ̃+
1 (F ) > 0 then for any f ∈ Lp(Ω), p ≥ N , there exists a unique viscosity

solution u ∈ Ep of

{
F (D2u,Du, u, x) = f in Ω

u = 0 on ∂Ω.

In addition f ≥ 0 in Ω implies u ≤ 0 in Ω, and f ≤ 0 implies u ≥ 0.

Proof. Suppose first f ∈ C(Ω). By λ̃+
1 > 0 and the definition of λ̃+

1 , there

exists a function ψ1 ∈ Ψ̃+(F, Ω, 1
2
λ̃+

1 ), that is, ψ1 ≥ 1 in Ω and

F (D2(kψ1), D(kψ1), kψ1, x) ≤ −
λ̃+

1

2
kψ1 for all k > 0

(in this inequality we have used the fact that F is homogeneous). We fix k1

such that λ̃+
1 k1 ≥ 2‖f‖L∞ . Then the positive function k1ψ1 is a supersolution

of the equation F (D2u,Du, u, x) = f .

Similarly, since λ̃−
1 ≥ λ̃+

1 > 0 we can find a function ψ2 ∈ Ψ̃−(F, Ω, 1
2
λ̃−

1 ),
such that ψ2 ≤ −1 in Ω and

F (D2(kψ2), D(kψ2), kψ2, x) ≥ −
λ̃−

1

2
kψ2 for all k > 0.

Fixing k2 such that λ̃−
1 k2 ≥ 2‖f‖L∞ the negative function k2ψ2 is a subsolu-

tion of the equation F (D2u,Du, u, x) = f .
Now we use the following (standard) lemma.
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Lemma 4.3 Under the hypotheses of Proposition 4.5, suppose u0 ∈ Ep is a
subsolution and v0 ∈ Ep is a supersolution of F (D2u,Du, u, x) = f , where
f ∈ C(Ω). Suppose in addition that u0 ≤ v0 in Ω, u0 ≤ 0 on ∂Ω, and v0 ≥ 0
on ∂Ω. Then there exists a solution u ∈ Ep of

{
F (D2u,Du, u, x) = f in Ω

u = 0 on ∂Ω.

Proof. It is clear that hypothesis (H1) implies that F (M, p, u, x) − δu is
nonincreasing in u. Therefore, by Theorem 3.4 we can solve the hierarchy of
problems

{
F (D2un+1, Dun+1, un+1, x) − δun+1 = f − δun in Ω

un+1 = 0 on ∂Ω.

By Theorem 3.2 we have u0 ≤ u1 ≤ . . . ≤ v0. Hence un tends pointwise to
a function u, and by interior estimates (Theorem 3.3) in W 2,p

loc , hence locally
uniformly. Then by the viscosity solutions theory (see for example Theorem
3.8 in [CCKS]) u is a solution of F (D2u,Du, u, x) = f in Ω. By Theorem
3.2 we have w1 ≤ un ≤ w2 for all n, where w1, w2 ∈ Ep are the solutions of

{
F (D2wi, Dwi, wi, x) − δwi = εiL in Ω

wi = 0 on ∂Ω,

where ε1 = 1, ε2 = −1, L = supn ‖f − δun‖L∞(Ω) (L depends on f , δ, u0, v0).
Hence u ∈ C(Ω) and u = 0 on ∂Ω.

To finish the proof of Proposition 4.5, if f ∈ Lp is not in C(Ω), we take a
sequence fn ∈ C(Ω) which tends to f in the Lp-norm. By what we already
proved, there exists a solution un ∈ Ep of F (D2un, Dun, un, x) = fn. Then
by (DF ) we obtain

F (D2(un − um), D(un − um), un − um, x) ≥ fn − fm,

F (D2(um − un), D(um − un), um − un, x) ≥ fm − fn,

for any m,n. By the ABP inequality (Proposition 4.3)

‖um − un‖L∞(Ω) ≤ C‖fm − fn‖LN (Ω),

hence {un} is a Cauchy sequence in C(Ω) and tends uniformly to a function
u. We conclude by passing to the limit again. The function u is in Ep, by
Theorem 3.3.

The uniqueness and the final statement of Proposition 4.5 follow from
Proposition 4.4.

We are now able to prove the existence of two principal eigenvalues and
eigenfunctions, when λ̃+

1 > 0.
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Proposition 4.6 Suppose λ̃+
1 > 0. Then there exist positive numbers Λ+

1 , Λ−
1 ,

and functions ϕ+
1 , ϕ−

1 ∈ Ep for all p < ∞, such that

{
F (D2ϕ+

1 , Dϕ+
1 , ϕ+

1 , x) = −Λ+
1 ϕ+

1 , ϕ+
1 > 0 in Ω

ϕ+
1 = 0 on ∂Ω,

and {
F (D2ϕ−

1 , Dϕ−
1 , ϕ−

1 , x) = −Λ−
1 ϕ−

1 , ϕ−
1 < 0 in Ω

ϕ−
1 = 0 on ∂Ω.

Proof. Recall F is convex and positively homogeneous. We have proved
(Propositions 4.4 and 4.5) that (CP ) holds for F and the Dirichlet problem
is uniquely solvable for F . Moreover the Hopf lemma (Lemma 3.1) holds for
F . Then we can use an adaptation of the classical Krein-Rutman Theorem
for a convex operator in a cone to establish the existence of Λ+

1 > 0 and
ϕ+

1 . The argument is carried out in extenso in [Q] or [FQ]. Since we can use
exactly the same argument, we refer to these papers for details.

The same argument can be used for G, this yields the existence of Λ−
1 > 0

and ϕ−
1 .

Proposition 4.7 If λ̃+
1 > 0 and Λ+

1 , Λ−
1 are as in the previous proposition

then Λ+
1 = λ+

1 and Λ−
1 = λ−

1 .

Proof. From Proposition 4.6 (the existence of ϕ+
1 ) and the definition of λ+

1

we have Λ+
1 ≤ λ+

1 .
Suppose there exists ε > 0 such that Λ+

1 < λ+
1 − ε. By the definition of

λ+
1 we can take φ ∈ C(Ω) such that

F (D2φ,Dφ, φ, x) + (λ+
1 − ε)φ ≤ 0, φ > 0 in Ω.

Since

F (D2ϕ+
1 , Dϕ+

1 , ϕ+
1 , x)+(λ+

1 −ε)ϕ+
1 > F (D2ϕ+

1 , Dϕ+
1 , ϕ+

1 , x)+Λ+
1 ϕ+

1 = 0 in Ω,

and ϕ+
1 > 0 in Ω, ϕ+

1 = 0 on ∂Ω, Theorem 4.1 implies that φ = tϕ+
1 for some

t > 0, which is a contradiction. By replacing F by G in this argument we
get Λ−

1 = λ−
1 .

Lemma 4.4 Set

Ψ+
0 (F, Ω, λ) = {ψ ∈ Ep , ∀ p < ∞ | F (D2ψ, Dψ, ψ, x) + λψ ≤ 0 in Ω

and ψ > 0 in Ω}
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Ψ−
0 (F, Ω, λ) = {ψ ∈ Ep , ∀ p < ∞ | F (D2ψ, Dψ, ψ, x) + λψ ≥ 0 in Ω

and ψ < 0 in Ω}.

Then
λ+

1 (F, Ω) = λ̄+
1 (F, Ω) := sup {λ | Ψ+

0 (F, Ω, λ) 6= ∅},

λ−
1 (F, Ω) = λ̄−

1 (F, Ω) := sup {λ | Ψ−
0 (F, Ω, λ) 6= ∅}.

Proof. If λ̃+
1 > 0 this follows from the previous proposition, since clearly

Λ+
1 (F, Ω) ≤ λ̄+

1 (F, Ω) ≤ λ+
1 (F, Ω) (from Proposition 4.6 and the definitions

of λ+
1 , λ̄+

1 ).

Note that if F is a proper operator then λ̃+
1 (F ) ≥ 0 (since ψ ≡ 1 is

in Ψ̃+(F, Ω, 0)). On the other hand F (D2u,Du, u, x) − δu is nonincreasing

in u. Then, setting F̂ (D2u,Du, u, x) = F (D2u, Du, u, x) − (δ + 1)u we have

λ̃+
1 (F̂ ) ≥ 1, so, by what we already proved,

λ+
1 (F ) + δ + 1 = λ+

1 (F̂ ) = λ̄+
1 (F̂ ) = λ̄+

1 (F ) + δ + 1.

Theorem 4.2 Suppose F satisfies hypotheses (H0), (H1), (H2), and (DF ). If
λ+

1 (F, Ω) > 0 then there exist functions ϕ+
1 , ϕ−

1 ∈ Ep for all p < ∞, such that
ϕ+

1 > 0, ϕ−
1 < 0 in Ω, ϕ+

1 = 0, ϕ−
1 = 0 on ∂Ω, and

F (D2ϕ+
1 , Dϕ+

1 , ϕ+
1 , x) = −λ+

1 ϕ+
1 , F (D2ϕ−

1 , Dϕ−
1 , ϕ−

1 , x) = −λ−
1 ϕ−

1 .

Proof. Take a sequence of smooth domains Ωn ⊂⊂ Ω, such that Ωn → Ω as
n → ∞. By the previous lemma λ+

1 (Ω) > 0 implies λ̃+
1 (Ωn) > 0, for each n.

By Propositions 4.6 and 4.7 there exist functions ϕ
(n)
1 ∈ W 2,p

loc (Ωn) ∩ C(Ωn),

∀ p < ∞, such that ϕ
(n)
1 > 0 in Ωn, ϕ

(n)
1 = 0 on ∂Ωn, and

F (D2ϕ
(n)
1 , Dϕ

(n)
1 , ϕ

(n)
1 , x) = −λ

(n)
1 ϕ

(n)
1 in Ωn.

where λ
(n)
1 = λ+

1 (Ωn). Likewise, there exist negative eigenfunctions in Ωn

corresponding to λ−
1 (Ωn).

Clearly {λ(n)
1 } is nonincreasing and bounded below by λ+

1 (Ω). Hence

{λ(n)
1 } converges to a number Λ1, with Λ1 ≥ λ+

1 (Ω) > 0. Proposition 4.2
provides an upper bound for Λ1.

The argument which follows is inspired by [BNV]. Fix a point x0 ∈ Ω

and renormalize ϕ
(n)
1 so that ϕ

(n)
1 (x0) = 1 (of course kϕ

(n)
1 satisfies the same

equation as ϕ
(n)
1 , for any k > 0). Fix a compact set K ⊂ Ω such that x0 ∈ K

and |Ω \ K| < β, where β is to be chosen later.
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By the Harnack inequality (Theorem 3.6) we have for large n

‖ϕ(n)
1 ‖L∞(K) ≤ C1ϕ

(n)
1 (x0) = C1.

By the hypotheses on F – the homogeneity, (H1), and the fact that

F (M, p, u, x) ≤ F (M, p, 0, x) + F (0, 0, u, x),

we get

F (D2(ϕ
(n)
1 − C1), D(ϕ

(n)
1 − C1), 0, x) ≥ F (D2(ϕ

(n)
1 − C1), . . .)

−F (0, 0, ϕ
(n)
1 − C1, x)

≥ F (D2ϕ
(n)
1 , . . .) − C1F (0, 0, 1, x)

−δ|ϕ(n)
1 − C1|

≥ (−λ
(n)
1 − δ)ϕ

(n)
1 − 2C1δ

(we have written F (D2u, . . .) for F (D2u,Du, u, x)). By applying the ABP
inequality (Theorem 3.1) in the domain Ωn \ K we get

sup
Ωn\K

(ϕ
(n)
1 − C1) ≤ (1/2) sup

Ωn\K

ϕ
(n)
1 + C2,

provided we choose β = (2B(Λ1 + δ + 1))−N , where B is the constant from
Theorem 3.1. Hence

‖ϕ(n)
1 ‖L∞(Ω) ≤ 2(C1 + C2).

In addition, we proved that

F (D2ϕ
(n)
1 , Dϕ

(n)
1 , 0, x) ≥ −(Λ1 + δ + 1 + 2C1δ) =: −C3

in Ωn. Therefore, by Theorem 3.2,

ϕ
(n)
1 ≤ C3w0 (4.17)

in Ωn, where w0 ∈ Ep, p < ∞, is such that
{

F (D2w0, Dw0, 0, x) = −1 in Ω
w0 = 0 on ∂Ω

(this problem is solvable, see Theorem 3.4).

Now, by interior W 2,p-estimates, the sequence ϕ
(n)
1 converges in W 2,p

loc to
a nonnegative function ϕ+

1 , which is bounded in Ω, ϕ+
1 (x0) = 1, and

F (D2ϕ+
1 , Dϕ+

1 , ϕ+
1 , x) = −Λ1ϕ

+
1 (4.18)
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in Ω. By the strong maximum principle ϕ+
1 > 0 in Ω. By (4.17) ϕ+

1 ≤ C3w0

in Ω – so in particular ϕ+
1 ∈ C(Ω) and ϕ+

1 = 0 on ∂Ω.
Recall that Λ1 ≥ λ+

1 . On the other hand the definition of λ+
1 and (4.18)

imply Λ1 ≤ λ+
1 . Exactly the same argument (reversing signs and inequalities

where appropriate) can be carried out for λ
(n)
1 = λ−

1 (Ωn) and ϕ
(n)
1 < 0 in Ω

(then G(D2(−ϕ
(n)
1 ), . . .) = −λ−

1 (−ϕ
(n)
1 ) in Ω). Theorem 4.2 is proved.

Proof of Theorem 1.1 We have just proved that operators with positive
λ+

1 have a principal eigenvalue (equal to λ+
1 ). So, to show that any F has

two principal eigenvalues and eigenfunctions, it is enough to consider the
operator F (M, p, u, x) − (λ+

1 (F ) + 1)u, whose λ+
1 is equal to 1.

The upper bound on ϕ+
1 , ϕ−

1 follows from the proof of Theorem 4.2. The
fact that no other eigenvalue can correspond to a positive (negative) eigen-
function is a consequence of Corollary 4.1. Theorem 1.1 is proved.

The following lower bound on λ+
1 in terms of the measure of the domain

is an easy consequence of Theorem 1.1 and Theorem 3.1.

Proposition 4.8 Under the hypotheses of Theorem 1.1

λ+
1 (F, Ω) ≥

1

B|Ω|
1

N

− δ,

where B is the constant from Theorem 3.1.

Proof. Recall F (D2u,Du, u, x)− δu satisfies the hypotheses of Theorem 3.1
and apply this theorem to

F (D2ϕ+
1 , Dϕ+

1 , ϕ+
1 , x) − δϕ+

1 = −(λ+
1 + δ)ϕ+

1 .

Proof of Theorem 1.2 We shall use Theorem 4.1 (the first set of inequali-
ties), with F (D2u,Du, u, x) replaced by F (D2u,Du, u, x) + λ+

1 u.
Suppose u1 = u satisfies (1.3). Then we apply Theorem 4.1 with u = ϕ+

1

and v = u1.
If u1 = u satisfies (1.2) then either u1 is positive somewhere, so u1 satisfies

(1.3) and we are in the previous case, or u1 is a negative eigenfunction, so
λ+

1 = λ−
1 , by Theorem 1.1. Then we apply Theorem 4.1 with u = ϕ+

1 and
v = −u1. Theorem 1.2 is proved.

In the sequel we shall need the following boundary Lipschitz estimate for
fully nonlinear equations. It is simple and probably known, yet we have not
found a reference.
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Proposition 4.9 Suppose F satisfies (H1) and Ω satisfies an uniform ex-
terior sphere condition. Suppose u ∈ C(Ω) satisfies F (D2u, Du, u, x) = f ,
u = 0 on ∂Ω, where f ∈ L∞(Ω). Then there exists a constant k depending
on N, λ, Λ, γ, δ, diam(Ω), ‖u‖L∞(Ω), ‖f‖L∞(Ω), and the radius of the exterior
spheres, such that for each x0 ∈ ∂Ω

|u(x)| ≤ k|x − x0| for each x ∈ Ω.

Proof. This is proved similarly to the linear case, see [CH], pages 341-343,
or Problem 3.6 in [GT]. We use the barrier w(x) = l(R−p − |x − y|−p) for
sufficiently large p and l. Here y is the center of the exterior ball touching
∂Ω at x0 and R is its radius. We replace F by F − δu (so that F − δu be
proper) and f by f − δu. Since w is radial, with the aid of Lemma 4.1 it is
simple to see that

M+
λ,Λ(D2w) + b|Dw| ≤ −l

provided p is taken large enough. We then fix l ≥ ‖f − δu‖∞. Hence

F (D2w, Dw,w, x) − δw ≤ F (D2u, Du, u, x) − δu in Ω

w ≥ u on ∂Ω,

so the comparison between u and w permits to conclude.
Next, we prove that the principal eigenvalues are continuous with respect

to the domain.

Proposition 4.10 Suppose Ωn are smooth domains such that Ωn → Ω as
n → ∞. Then λ+

1 (Ωn) → λ+
1 (Ω), and λ−

1 (Ωn) → λ−
1 (Ω).

Proof. The two limits are proved in the same way, so let us prove the first.
We already know that there exist positive eigenfunctions ϕ

(n)
1 , ϕ+

1 for F in
Ωn, Ω. If Ωn+1 ⊂ Ωn ⊂ Ω for each n, the proposition is proved through
exactly the same argument as the one in the proof of Theorem 4.2.

Suppose now Ω ⊂ Ωn ⊂ Ωn+1 for each n. Then λ+
1 (Ωn) is nondecreasing

and bounded above by λ+
1 (Ω). Again through the same argument we can

show that ϕ
(n)
1 is uniformly bounded in L∞(Ω), and converges to a positive

function ϕ in W 2,p
loc (Ω). By the previous proposition {ϕ(n)

1 } is equicontinuous
in Ω, and hence converges (up to a subsequence) to a function ϕ in C(Ω).
Then ϕ = tϕ+

1 is a consequence of Corollary 4.1.
Finally, for any given sequence Ωn, such that Ωn → Ω, we can find

sequences Ω′
n, Ω

′′
n such that Ω′

n is increasing, Ω′′
n is decreasing, Ω′

n ⊂ Ωn,
Ω′

n ⊂ Ω, Ωn ⊂ Ω′′
n, and Ω ⊂ Ω′′

n. Proposition 4.10 then follows from what we
already proved.
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Lemma 4.5 Assume λ+
1 (Ω) > 0. Then there exists a function v such that

v ∈ Ep, ∀p < ∞, satisfying

F (D2v, Dv, v, x) ≤ 0 in Ω, 1 ≤ v ≤ C in Ω,

where the constant C depends on λ, Λ, N, Ω, γ, δ, and λ+
1 . Respectively, if

λ−
1 > 0 then there exists a function w ∈ Ep such that −C ≤ w ≤ −1 and

F (D2w, Dw, w, x) ≥ 0.

Proof. First, by Proposition 4.9 there exists a neighbourhood of ∂Ω, de-
pending only on N, λ, Λ, γ, δ and λ+

1 (or λ−
1 ), such that ϕ+

1 (or ϕ−
1 ) attains

its maximum (minimum) outside this neighbourhood.
Next, we use the idea of the proof of Proposition 6.1 in [BNV]. Choose a

compact set K ⊂ Ω such that ϕ+
1 attains its maximum (set to 1) in K, and

such that |Ω \ K| ≤ ε = (2δB)−N where B is the constant in Theorem 3.1.
We solve the problem

F (D2w,Dw, 0, x) =

{
−2δ in Ω \ K
0 in K,

and w = 0 on ∂Ω (see Theorem 3.4). By Theorem 3.1 we have

0 < w ≤ B2δε1/N = 1 in Ω.

Then, by (H1),

F (D2(w + 1), D(w + 1), w + 1, x) ≤ F (0, 0, w + 1, x) + F (D2w, Dw, 0, x)

≤ δ(w + 1) − 2δ ≤ 0 in Ω \ K.

By the Harnack inequality (Theorem 3.6), we know that ϕ+
1 ≥ η on K, for

some η > 0 which depends on the appropriate quantities. Set A = 2δ
λ+

1
η

and

v = 1 + w + Aϕ+
1 . Then 1 ≤ v ≤ 2 + A =: C.

Further, by (H1),

F (D2v, Dv, v, x) ≤ F (D2(w + 1), D(w + 1), w + 1, x) − Aλ+
1 ϕ+

1

≤
F (D2(w + 1), D(w + 1), w + 1, x) ≤ 0 in Ω \ K

2δ − Aλ+
1 η ≤ 0 in K.

To get the corresponding statement when λ−
1 > 0 we can repeat the same

argument, reversing signs and inequalities where appropriate.

Note that we cannot directly infer from the proof of Lemma 4.5 that the
function v is in W 2,p(Ω), because of unavailability of global W 2,p-estimates
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for fully nonlinear equations. In order to offset this lack (at least we are
unaware of any reference dealing with that question), we use the following
construction. Set

Ωd = {x ∈ RN | dist(x, Ω) < d }.

Then if d is small enough (say d ≤ d0, depending only on the shape of Ω) Ωd

is smooth, so by (H2) we can continuously extend the function F (M, 0, 0, x)

in SN × Ωd. Define F̂ = F if x ∈ Ω, and F̂ (M, p, u, x) = F (M, 0, 0, x) for

each x 6∈ Ω. The extended operator F̂ has the same properties as F , namely,
is convex in (M, p, u) and satisfies (H0), (H1), (H2).

Proposition 4.11 We have λ+
1 (Ω) = λ̃+

1 (Ω).

Proof. Fix d ≤ d0. For each ε > 0 we can apply Lemma 4.5 to the
operator F̂ + (λ+

1 (F̂ , Ωd) − ε) in the domain Ωd, which yields λ̃+
1 (F, Ω) ≥

λ+
1 (F̂ , Ωd) − ε, by the definitions. By letting first ε → 0, then d → 0 and

by using Proposition 4.10, we get λ̃+
1 (F, Ω) ≥ λ+

1 (F, Ω). Since by definition

λ̃+
1 ≤ λ+

1 , Proposition 4.11 is proved.

Proposition 4.12 Assume λ+
1 (Ω) > 0. Then there exists a function v such

that v ∈ W 2,p(Ω), for all p < ∞, satisfying

F (D2v, Dv, v, x) ≤ 0 in Ω, v ≥ 1 in Ω, ‖u‖W 2,p(Ω) ≤ C,

where the constant C depends on p, λ, Λ, N, Ω, γ, δ, and λ+
1 . Respectively, if

λ−
1 > 0 then there exists a function w ∈ W 2,p(Ω) such that −C ≤ w ≤ −1,

F (D2w, Dw, w, x) ≥ 0, and ‖w‖W 2,p(Ω) ≤ C.

Proof. In view of the previous proposition we only need to prove the bound
on the W 2,p-norm. We are going to show that there exists d0 > 0, depending
on λ, Λ, N, Ω, γ, δ and λ+

1 , such that λ+
1 (Ωd0

) > 0. The result will then follow
from Lemma 4.5 and the interior W 2,p-estimates (Theorem 3.3).

Take the function v we constructed in Lemma 4.5. Looking at its con-
struction, v = 1 + w + Aϕ+

1 (see the proof of Lemma 4.5), we have v ≡ 1 on
∂Ω, and v(x) ≤ 1 + k0dist(x, ∂Ω), by Proposition 4.9 applied to w and ϕ+

1 .
Here k0 depends on the right quantities.

We extend v outside Ω in the following way : given d0 such that the
distance function to the boundary of Ω is smooth in Ωd0

\Ω (we refer to [GT],
Chapter 14.6, for properties of the distance function), for each y ∈ Ωd0

\ Ω
we set

v(y) = 1 − (k0 + 1)d(y) − C d2(y), where 0 ≤ d(y) = dist(y, ∂Ω) ≤ d0.
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Of course y = x+d(y)n(x), where n(x), x ∈ ∂Ω, is the unit exterior normal to
∂Ω, and x is the point where dist(y, ∂Ω) is attained. The extended function
v is clearly continuous in Ωd0

.
Claim. We can choose d0 sufficiently small, and C sufficiently large, depend-
ing only on the appropriate quantities, such that

M+
λ,Λ(D2v) ≤ −1 in Ωd0

\ Ω. (4.19)

Proof of the Claim. Fix y and a principal coordinate system at x (see [GT],
page 354). Then

D2d(y) = diag

(
κ1

1 − κ1d(y)
, . . . ,

κn−1

1 − κn−1d(y)
, 0

)
,

where κi = κi(x) are the principal curvatures of ∂Ω at x, see Lemma 14.17
in [GT]. Clearly there exists a constant κ depending only on Ω such that
|κi(x)| ≤ κ for all i and all x ∈ ∂Ω. Take d0 so small that κd0 ≤

1
2
.

Since |Dd| = 1 we have Dd⊗Dd(y) =diag(0, . . . , 0, 1), in the same coor-
dinate system. Now, by using

D2(d2) = 2dD2d + 2Dd ⊗ Dd,

we see −2C is an eigenvalue of D2v, while each of the other N−1 eigenvalues
of D2v is bounded by 2

(
(k0 + 1)κ + 2κdC

)
. This implies

M+
λ,Λ(D2v) ≤ 2Λ(N − 1)

(
(k0 + 1)κ + 2κdC

)
− 2λC.

Taking d0 < λ
4κΛN

and C = 2ΛNκ(k0+1)+1
λ

yields the claim.
Therefore, by the way we extended F ,

F (D2v, Dv, v, x) = F (D2v, 0, 0, x) ≤ M+
λ,Λ(D2v) ≤ −1 in Ωd0

\ Ω,

with the choice of d0 we made above. So we already know that we have
F (D2v, Dv, v, x) ≤ 0 in Ω ∪ (Ωd0

\ Ω). Finally, the function v is a viscosity
solution of F (D2v,Dv, v, x) ≤ 0 in Ωd0

- this follows from the fact that we
have constructed v to be sufficiently ”steep” outside Ω, namely

v(x) ≤

{
1 + k0d(x, ∂Ω) for x ∈ Ω
1 − (k0 + 1)d(x, ∂Ω) for x 6∈ Ω,

so no regular function can ”touch from below” the graph of v at a point on
∂Ω. By the definition of λ+

1 we infer λ+
1 (Ωd) > 0 for each d < d0.

Getting the statement for λ−
1 > 0 is again a matter of reversing signs and

inequalities.
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Proof of Theorem 1.3 Part (a) is a consequence of Theorem 4.1. Indeed,
if u is as in Theorem 1.3 (a) then λ+

1 ≥ 0, by the definition of λ+
1 . If λ+

1 = 0
then Theorem 4.1 with v = ϕ+

1 implies u = tϕ+
1 .

Part (b) follows from Proposition 4.12.

Proof of Theorem 1.4 That λ+
1 > 0 suffices for (CP ) follows from Propo-

sitions 4.4 and 4.11.
On the other hand, if λ+

1 ≤ 0 then ϕ+
1 is a counterexample to the max-

imum principle, since then F (D2ϕ+
1 , Dϕ+

1 , ϕ+
1 , x) ≥ 0 in Ω, ϕ+

1 = 0 on ∂Ω,
but ϕ+

1 6≤ 0 in Ω.

Proof of Theorem 1.6 Theorem 1.6 is a consequence of Proposition 4.3
in which we take ψ1, ψ2 to be the functions v, w constructed in Proposition
4.12, in view of the imbedding W 2,p(Ω) →֒ C1,α(Ω).

Proof of Theorem 1.5 Use Theorem 1.6 and note that if λ−
1 ≤ 0 then

ϕ−
1 (ϕ−

1 < 0 in Ω) provides a counterexample to the one-sided maximum
principle.

Proof of Theorem 1.7 The existence result follows from Propositions 4.5
and 4.11. The W 2,p bound follows from Theorem 3.3 and Theorem 1.6.

Suppose for contradiction λ+
1 = 0 and u ∈ C(Ω) is a function such that

F (D2u,Du, u, x) = f ≤ 0 in Ω, u = 0 on ∂Ω. First, if u ≥ 0 in Ω, then by
Lemma 3.1 u > 0 in Ω (note u 6≡ 0 since f 6≡ 0). Then u = u and v = ϕ+

1

satisfy the first set of inequalities in Theorem 4.1, so u = tϕ+
1 , which yields

a contradiction with f 6≡ 0.
Second, if u is negative somewhere, we have the second set of inequalities

in Theorem 4.1, with u = ϕ−
1 and v = u (recall that F (D2ϕ−

1 , . . .) = −λ−
1 ϕ−

1 ,
ϕ−

1 < 0 in Ω, and note λ−
1 ≥ λ+

1 = 0). We again obtain a contradiction with
f 6≡ 0.

Proof of Theorem 1.8 As in the proof of Proposition 4.5, λ̃−
1 = λ−

1 > 0
implies the existence of a negative subsolution u0, provided f ∈ C(Ω). On
the other hand, f ≥ 0 implies that v0 ≡ 0 is a supersolution. Then Lemma
4.3 shows Theorem 1.8 holds in case the right-hand side f is in C(Ω).

If f ∈ Lp is not in C(Ω), we take a sequence fn ∈ C(Ω), fn ≥ 0, which
tends to f in the Lp-norm. By what we already proved, there exists a solution
un ∈ Ep, un ≤ 0, of F (D2un, Dun, un, x) = fn, and un = 0 on ∂Ω. Note
that we cannot use the same approximation argument as in the proof of
Proposition 4.5, since the ABP inequality does not hold. However, the half-
ABP inequality which still holds under λ−

1 > 0 (see Theorem 1.6) implies
that un is uniformly bounded in Ω (recall un ≤ 0). Then by interior W 2,p

estimates un converges in W 2,p
loc to a solution u of F (D2u,Du, u, x) = f . It

only remains to show that u = 0 on ∂Ω and u ∈ C(Ω).
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Take again a compact subset K ⊂ Ω such that |Ω\K| ≤ (2δB)−N , where
B is the constant in Theorem 3.1. We already know that un ⇒ u in K. Now
the inequality

F (D2(un−um), D(un−um), un−um, x)−δ(un−um) ≥ fn−fm−δ(un−um),

(and the same with m and n interchanged), together with Theorem 3.1, yield

sup
Ω\K

|un − um| ≤ sup
∂K

|un − um| + B‖fn − fm‖Lp(Ω) +
1

2
sup
Ω\K

|un − um|.

This implies that {un} is a Cauchy sequence in C(Ω \ K) and so converges
uniformly in this set.

Proof of Theorem 1.9 We are going to use the results for proper operators
obtained in [CKLS].

First, suppose H and f are continuous in all their variables. Let φ = v be
the function constructed in Proposition 4.12. Then, as we already showed in
the proof of Proposition 4.3, the operator Hφ satisfies hypotheses (1.2) and
(1.3) in [CKLS] (we define Hφ as in (4.16) with F replaced by H). Hence
Theorem 1.9 follows from Theorem 1.1 in [CKLS] - note that if u is a solution
of Hφ(D

2u,Du, u, x) = f , then u = φu is a solution of H(D2u,Du, u, x) = f .
Next, if H is only measurable, we smooth out G,H, and F as in the proof

of Theorem 4.1 in [CKLS]

Fε(M, p, u, x) =
1

εn

∫

RN

η

(
x − y

ε

)
F (M, p, u, y) dy, same for Hε, Gε,

where η ≥ 0 has compact support and mass 1. Now, for fixed ε, the operators
Hε, Gε, Fε satisfy all the hypotheses we have made on H,G, F , with the same
constants λ, Λ, γ, δ.

In particular, Fε also possesses a principal eigenvalue λ+
1 (Fε, Ω).

Claim. λ+
1 (Fε) → λ+

1 (F ), as ε → 0.
Proof of the Claim. By the bounds on the first eigenvalue that we have
already proved (Proposition 4.2) {λ+

1 (Fε)} is bounded in ε. Fix a subsequence
of {λ+

1 (Fε)} and let µ be the limit of some subsequence of this subsequence.
We are going to show that µ = λ+

1 (F ). Let ϕ+
1,ε be the first eigenfunctions of

Fε normalized so that ϕ+
1,ε(x0) = 1 for a fixed point x0 ∈ Ω. Then {ϕ1,ε} is

uniformly bounded in the ÃL∞-norm, by Theorem 1.1. Hypothesis (H1) and
the equation satisfied by ϕ1,ε then imply

M+
λ,Λ

(
D2ϕ1,ε

)
+ γ|Dϕ1,ε| ≥ −C, M−

λ,Λ

(
D2ϕ1,ε

)
− γ|Dϕ1,ε| ≤ C,
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where C is independent of ε. Hence, by Proposition 4.2 in [CKLS] (see also
the end of the proof of Theorem 4.1 in this paper), a subsequence of {ϕ1,ε}
converges uniformly in Ω to a positive function ϕ ∈ C(Ω), which solves

F (D2ϕ,Dϕ, ϕ, x) = −µϕ in Ω, and u = 0 on ∂Ω.

So µ = λ+
1 (F, Ω), by Theorem 1.1.

Hence, if ε is small enough, we have λ+
1 (Fε) > 1

2
λ+

1 (F ) > 0.

We take a sequence fn ∈ C(Ω) which converges to f in Lp. By what we
already proved, if ε is small enough, there exists a solution uε,n of

Hε(D
2uε,n, Duε,n, uε,n, x) = fn,

and uε,n = 0 on ∂Ω. Since H satisfies (DF ) this implies

Fε(D
2uε,n, Duε,n, uε,n, x) ≥ fn, and

Fε(D
2(−uε,n), D(−uε,n),−uε,n, x) ≥ −fn

in Ω. By the ABP inequality (Theorem 1.6) uε,n is uniformly bounded in ǫ
and n, so we can finish the proof of Theorem 1.9 through the same argument
as the one used to end the proof of Theorem 4.1 in [CKLS].

The last statement in Theorem 1.9 is a consequence of Theorem 3.3.

5 General bounded domains

In [BNV] Berestycki, Nirenberg and Varadhan proved the existence of a prin-
cipal eigenvalue and a principal eigenfunction of linear elliptic operators with
bounded (and continuous second-order) coefficients in arbitrary bounded do-
mains. They also made a deep study of the properties of these objects.
Many of the results in [BNV] were new even for smooth domains, since the
constants in the estimates were shown for the first time to depend only on
bounds for the coefficients of the operator and on the domain.

As noted in the introduction, once we have proved our theorems in smooth
domains, it is not difficult to adapt some arguments from [BNV] in order to
show that most of our results extend to general domains. In this section we
make several remarks concerning these extensions, leaving the details to the
interested reader.

So suppose Ω is just bounded, F satisfies (H0)-(H1), and F (M, 0, 0, x)
is continuous in SN × Ω. Following Section 3 in [BNV] we use the positive
function u0 defined as the limit of the solutions of F (D2u,Du, 0, x) = −1
in smooth subdomains of Ω which converge to Ω. Note that the negative
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function u 0 defined as the limit of the solutions of F (D2u,Du, 0, x) = 1
satisfies 0 < −u 0 ≤ u0, by the assumptions on F .

The functions we consider are not continuous up to the boundary, and the

Dirichlet boundary condition u = 0 is to be replaced in all results by u
u0= 0,

that is, u(xj) → 0 whenever xj → ∂Ω and u0(xj) → 0. Inequalities u ≤ v on
∂Ω are to be replaced by lim sup(u(xj) − v(xj)) ≤ 0 whenever xj → ∂Ω and
u0(xj) → 0. In defining the comparison principle one has to explicitly state
that the functions involved are bounded (see [BNV] for an example showing
that this is unavoidable). The space Ep has to be replaced by W 2,p

loc ∩L∞(Ω).
Then Theorem 1.1 is proved through the same approximation argument as

the one used in the proof of Theorem 4.2, since we already know eigenvalues
exist in the smooth subdomains. Theorem 1.2 and all other results following
from Theorem 4.1 do not change. Theorem 1.3 (b) has to be replaced by
the result in Lemma 4.5, which remains true (but Proposition 4.12 no longer
holds). The results on solvability of the Dirichlet problem and the ABP
inequality are proved by an adaptation of the arguments in Section 6 of
[BNV], by using at the appropriate places the fact that the Dirichlet problem
is already known to be solvable in smooth subdomains of Ω.
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