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Crystal graphs of higher level q-deformed Fock

spaces, Lusztig a-values and Ariki-Koike algebras

Nicolas JACON ∗†

Abstract

We show that the different labelings of the crystal graph for irre-
ducible highest weight Uq(ŝle)-modules lead to different labelings of the
simple modules for non semisimple Ariki-Koike algebras by using Lusztig
a-values.

1 Introduction

The Ariki-Koike algebras have been introduced by Ariki and Koike in [AK].
They can be seen as natural generalizations of Iwahori-Hecke algebras of type
An−1 and Bn and as special cases of cyclotomic Hecke algebras introduced by
Broué and Malle in [BM]. Let R be a commutative ring, let l ∈ N, n ∈ N

and let v ,x1 ,x2,...,xl be l + 1 parameters in R. The Ariki-Koike algebra
HR,n := HR,n(v; x1, ..., xl) (or cyclotomic Hecke algebra of type G(l, 1, n)) over
R is the unital associative R-algebra presented by:

• generators: T0, T1,..., Tn−1,

• relations:

T0T1T0T1 = T1T0T1T0,

TiTi+1Ti = Ti+1TiTi+1 (i = 1, ..., n − 2),

TiTj = TjTi (|j − i| > 1),

(T0 − x1)(T0 − x2)...(T0 − xl) = 0,

(Ti − v)(Ti + 1) = 0 (i = 1, ..., n− 1).

Assume that R is a field of characteristic 0. When HR,n is a semisimple
algebra, it is known that the simple HR,n-modules are given by the set of Specht

modules S
λ
R parametrized by the l-partitions of rank n. Using results of Dipper

and Mathas [DM], the non semisimple case can be reduced to the case where
R = C and :

v = ηe, xi = ηvj
e , j = 1, ..., l,

where ηe := exp(
2iπ

e
) ∈ C and where 0 ≤ v1 ≤ ... ≤ vl < e are positive integers.

∗Laboratoire de Mathématiques Nicolas Oresme, Université de Caen
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In [Ac], Ariki has first provided a description of the simple modules in this
modular case. Proving and generalizing a conjecture by Lascoux, Leclerc and
Thibon, he has shown in [Ad] that the associated decomposition matrices can be
identified with the Kashiwara-Lusztig canonical basis elements of the irreducible
U(ŝle)-module of highest weight Λv1 + Λv2 + ... + Λvl

(where the Λi denote the
fundamental weights). It is known that these elements can be labeled by using
the “crystal graph theory” and there are several ways to do that. Each of these
ways corresponds to a certain realization of the Fock space as a module over
the quantum group Uq(ŝle). In particular, one of these realizations leads to
a labeling of the canonical basis elements by the “Kleshchev l-partitions” and
Ariki has given a parametrization of the HC,n-simple modules by using this class
of l-partitions.

In [GR] and [G], Geck and Rouquier have given another approach for para-
metrizing the simple modules of the Hecke algebras of type An−1 and Bn (which
are special cases of Ariki-Koike algebras). This approach has been generalized
to the case of Ariki-Koike algebras in [Jp]. Let y be an indeterminate and let
A := C[y, y−1]. We consider the Ariki-Koike algebra HA,n with the following
choice of parameters:

uj = ylm(j)

ηj−1
l for j = 1, ..., l,

v = yl.

where ηl := exp(
2iπ

l
) and where for j = 1, ..., l, we have m(j) = vj−

(j − 1)e

l
+αe

(α is a positive integer such that m(j) > 0 for all j = 1, ..., l).
If we specialize the indeterminate y to ηle := exp(2iπ

le ) via a ring homomor-
phism θ, we obtain the above Ariki-Koike algebra HC,n. Let K be the field of
fractions of A and let HK,n := K ⊗A HA,n. Then HK,n is a split semisimple al-

gebra and the simple HK,n-modules are the Specht modules S
λ
K defined over K.

We obtain a well-defined decomposition map d between the Grothendieck groups
of finitely generated HK,n-modules and HC,n-modules. For V ∈ Irr(HK,n), we
have equations:

d([V ]) =
∑

M∈Irr(HC,n)

dV,M [M ].

Using the theory of symmetric algebras, we can attach an integer a(V ) to each
simple HK,n-module V . This is called the a-value of V (for Hecke algebras of
type An−1 and Bn, this value can also be defined using the Kazhdan-Lusztig
theory). Then the main result of [Jp] asserts the following fact:

Theorem 1.1 For each M ∈ Irr(HC,n), there exists a unique simple HK,n-
module VM such that the following two conditions hold:

• dVM ,M = 1.

• if there exists W ∈ HK,n such that dW,M 6= 0 then a(W ) > a(VM ).

Moreover the application which sends M to VM is injective. As a consequence
the associated decomposition matrix is unitriangular and the following set is in
natural bijection with Irr(HC,n):

B = {VM | M ∈ Irr(HC,n)}.
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In [Jp], using Ariki’s theorem [Ad], we found that the set B is given by the

Specht modules S
λ
K where λ runs over the set of “FLOTW l-partitions”. This

kind of multipartitions have been defined in [FL] and is another way to index

the canonical basis elements of the associated U(ŝle)-module.
Of course, the Ariki-Koike algebra HA,n with the above choice of parameters

is not the only algebra which specializes to HC,n. In particular, assume that f

is an application from {1, ..., l} to N. We consider the Ariki-Koike algebra Hf
A,n

with the following choice of parameters:

uj = ylm(j)

ηj−1
l for j = 1, ..., l,

v = yl.

where for j = 1, ..., l, we have m(j) = vj −
(j − 1)e

l
+ αe + f(j)e and α is a

positive integer such that m(j) > 0 for all j = 1, ..., l. Then the algebra Hf
K,n

over K := Frac(A) is still a split semisimple algebra but the a-values defined
over each Specht module strongly depend on f . The aim of this paper is to
show that Theorem 1.1 is true for all choices of f . Moreover, we show that in
each case, the associated set B is parametrized by the crystal of the associated
Uq(ŝle)-module in one of the realizations of the Fock space mentionned above.
The proof requires a combinatorial study of the deep results on higher level
q-deformed Fock spaces proved by Uglov [U].

2 Decomposition maps for Ariki-Koike algebras

Let R be a commutative associative ring with unit and let v, x1,..., xl be l +
1 invertible elements in R. Let n ∈ N. Let HR,n := HR,n(v; x1, ..., xl) be
the associated Ariki-Koike algebra as it is defined in the introduction. For a
complete survey of the representation theory of HR,n, see [Ma].

It is known that this algebra is a “cellular” algebra in the sense of Graham
and Lehrer [GL] and thus has “Specht modules” which are parametrized by the
l-partitions of rank n. A l-partition λ of rank n is a sequence of l partitions

λ = (λ(1), ..., λ(l)) such that
l∑

k=1

|λ(k)| = n. We denote by Πn
l the set of l-

partitions of rank n.
For each l-partition λ of rank n, we can associate a remarkable HR,n-module

S
λ
R which is free over R. This is called a Specht module (see the definition of

“dual” Specht modules in [DJM]). Assume that R is a field. In general, the
Specht modules are reducible and each of these modules can be endowed with a
natural bilinear form. Let rad(.) denotes the radical of this form. For λ ∈ Πn

l ,
we denote :

D
λ
R := S

λ
R/rad(S

λ
R).

Then the theory of cellular algebras gives the following result :

Theorem 2.1 (Graham-Lehrer [GL], Dipper-James-Mathas [DJM]) Assume
that R is a field then :

1. Non zero D
λ
R form a complete set of non-isomorphic simple HR,n-modules.

Moreover, all of these modules are absolutely irreducible.
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2. If HR,n is a semisimple algebra then it is split semisimple and for all

λ ∈ Πn
l we have rad(S

λ
R) = 0. Thus, the S

λ
R form a complete set of non

isomorphic simple modules.

Using this theorem, when HR,n is semisimple, the simple modules are ex-
plicitely known and are given by the Specht modules. The following theorem
gives a criterion of semisimplicty for the algebra HR,n.

Theorem 2.2 (Ariki [As]) HR,n is split semi-simple if and only if:

• for all i 6= j and for all d ∈ Z such that |d| < n, we have:

vdxi 6= xj ,

•
n∏

i=1

(1 + v + ... + vi−1) 6= 0.

Hence we are reduced to understand the representations of HR,n in the
modular case. Assume that R is a field of characteristic 0. Then, using the
results of Dipper and Mathas ([DM]) and Mathas ([Ms]), the non semisimple
case can be reduced to the case where R = C and where all the ui are powers of
the same root of unity ηe := exp(2iπ

e ) with e ≥ 2. Let HC,n be the Ariki-Koike
algebra over C with the following choice of parameters:

xj = ηvj
e for j = 1, ..., l,

x = ηe,

where 0 ≤ vl ≤ ... ≤ v1 < e. The problem of describing the simple modules of
HC,n is linked with the problem of determining the decomposition map which
we now define.

Let HA,n be an Ariki-Koike defined over a commutative ring A with unit.
Let K be the field of fractions of A. We assume that:

(1) A is integrally closed in K,

(2) HK,n := K ⊗A HA,n is split semi-simple,

(3) we have a ring homomorphism θ : A → C such that C = Frac(θ(A)) and
such that the specialized algebra C ⊗A HA,n is the Ariki-Koike algebra
HC,n with the above choice of parameters.

Then, by [Gm], we have a well-defined decomposition map dθ between the
Grothendieck groups of finitely generated HK,n and HC,n-modules. In the con-
text of cellular algebras, this application can be easily defined. Let:

Φn
{e;v1,...,vl}

:= {λ ∈ Πn
l | D

λ
C
6= 0}.

Let R0(HC,n) be the Grothendieck group of finitely generated HC,n-modules.

This is generated by the classes of simple HC,n-modules [D
λ
C
] with λ ∈ Πn

l .
Hence, for all λ ∈ Πn

l , there exist numbers dλ,µ with µ ∈ Φn
{e;v1,...,vl}

such that:

[S
λ
C
] =

∑

µ∈Φn
{e;v1,...,vl}

dλ,µ[D
µ

C
].

4



The matrix (dλ,µ)λ∈Πn
l

,µ∈Φn is called the decomposition matrix of HC,n (where

we denote Φn := Φn
{e;v1,...,vl}

). Let Fn be the C-vectoriel space which is gener-

ated by the symbols [[Sλ]] with λ ∈ Πn
l . We obtain a homomorphism:

Fn → R0(HC,n)

[[Sλ]] 7→ [S
λ
C
] =

∑
µ∈Φn dλ,µ[D

µ

C
].

Now, Fn can be naturally identified with the Grothendieck group of finitely
generated modules over a semi-simple algebra HK,n verifying (1)− (3), by iden-

tifying the classes of simple HK,n-modules [S
λ
K ] with the symbols [[Sλ]]. Hence,

the decomposition map is defined as follows:

d : R0(HK,n) → R0(HC,n)

[S
λ
K ] 7→ [S

λ
C
] =

∑
µ∈Φn dλ,µ[D

µ

C
].

By Brauer Reciprocity, the decomposition matrix gives a description of the
projective covers of the simple HC,n-modules: for µ ∈ Φn

{e;v1,...,vl}
, the class of

the projective cover P
µ

C
of D

µ

C
is given by:

[P
µ

C
] =

∑

λ∈Πn
l

dλ,µ[S
λ
C
].

By results of Ariki and Uglov, the problem of determining the decomposition
matrices for Ariki-Koike algebras can be translated to the problem of computing
the canonical basis of q-deformed Fock spaces. In the next section, we recall
these results.

3 Canonical basis of higher level q-deformed Fock

spaces

The higher q-deformed Fock spaces have been introduced in [JM]. These spaces
which are spanned by the set of “multipartitions” can be endowed with a struc-
ture of integrable Uq(ŝle)-module. In [TU], generalizing works by Lascoux and
Leclerc [LT], Takemura and Uglov have given a construction of canonical bases
for these spaces. In this part, we review this construction following [U] (see also
[Us]). Then, we explain the links with the representation theory of Ariki-Koike
algebras which are given by Ariki’s theorem.

3.A q-wedge products and q-deformed Fock spaces

Let q and z be indeterminates and let l and e be positive integers. Let Ve be

an e-dimensional vector space over Q(q) with basis v
(e)
1 , v

(e)
2 ,..., v

(e)
e . We put

Ve,l := (Ve ⊗ Vl)[z, z−1]. For a ∈ {1, ..., e}, b ∈ {1, ..., l} and m ∈ Z, we put

k := a+ e(b− 1)− elm and uk := v
(e)
a zmv

(l)
b . Then Ve,l is a Q(q) vectoriel space

with basis {uk | k ∈ Z}.

The q-wedge square
∧2

Ve,l of Ve,l can be viewed as a q-deformation of the
exterior square of Ve,l. This is a Q(q)-vector space generated by the monomials
uk1 ∧ uk2 with (k1, k2) ∈ Z2. A basis of this space is given by the “ordered”
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monomials that is the monomials uk1 ∧ uk2 such that k1 > k2. Any monomial
uk1 ∧ uk2 can be expressed as a linear combination of ordered monomials using
the following rules (R1), (R2), (R3) and (R4).

Let k1 ≤ k2 and for i = 1, 2, put ki = ai + e(l − bi) − elmi where ai ∈
{1, ..., e}, bi ∈ {1, ..., l} and mi ∈ Z. We define α := (a2 − a1)(mod el) and
β := (e(b1 − b2))(mod el). Then the relations (R1), (R2), (R3) and (R4) are
given as follows:

(R1) if α = 0 and β = 0:
uk1 ∧ uk2 = −uk2 ∧ uk1 ;

(R2) if α 6= 0 and β = 0:

uk1 ∧ uk2 = −q−1uk2 ∧ uk1+

+(q−2 − 1)
∑

m≥0

q−2muk2−α−elm ∧ uk1+α+elm−

−(q−2 − 1)
∑

m≥1

q−2m+1uk2−elm ∧ uk1+elm;

(R3) if α = 0 and β 6= 0:

uk1 ∧ uk2 = quk2 ∧ uk1+

+(q2 − 1)
∑

m≥0

q2muk2−β−elm ∧ uk1+β+elm+

+(q2 − 1)
∑

m≥1

q2m−1uk2−elm ∧ uk1+elm;

(R4) if α 6= 0 and β 6= 0:

uk1 ∧ uk2 = uk2 ∧ uk1+

+(q − q−1)
∑

m≥0

q2m+1 + q−2m−1

q + q−1
uk2−β−elm ∧ uk1+β+elm+

+(q − q−1)
∑

m≥0

q2m+1 + q−2m−1

q + q−1
uk2−α−elm ∧ uk1+α+elm+

+(q − q−1)
∑

m≥0

q2m − q−2m

q + q−1
uk2−β−α−elm ∧ uk1+β+α+elm+

+(q − q−1)
∑

m≥1

q2m − q−2m

q + q−1
uk2−elm ∧ uk1+elm.

where the summations are taken over the set of ordered monomials.
For any integer r ≥ 2, we can now define the r-fold q-wedge product

∧r
Ve,l.

This is the Q(q)-vector space generated by the elements uk1 ∧uk2 ∧ ...∧ukr
with

ki ∈ Z. Again the ordered monomials that is the monomials uk1 ∧uk2 ∧ ...∧ukr

with k1 > k2 > ... > kr, form a basis of
∧r

Ve,l. Moreover, an arbitrary
monomial can be expressed as a linear combinaison of ordered monomials using
the relations (R1), (R2), (R3) and (R4) in every adjacent pair of the factors.

Finally, for s ∈ Z, the semi-infinite q-wedge product
∧s+∞

2 Ve,l of charge s

is the inductive limit of
∧r

Ve,l where the maps
∧r

Ve,l →
∧r+1

Ve,l are given

6



by v 7→ v ∧ us−r. Hence,
∧s+∞

2 Ve,l is the Q(q)-vector space generated by the
semi-infinite monomials uk1 ∧ uk2 ∧ ... with ki ∈ Z and such that ki = s − i + 1
for i >> 0. A basis is given by the ordered monomials that is the monomials
uk1 ∧ uk2 ∧ ... with k1 > k2 > .... and the relations (R1)-(R4) provide a way to
express an arbitrary monomial as a linear combinaison of ordered monomials.

Now, each semi-infinite ordered monomial can be labeled by a pair (λ, sl)
where λ ∈ Πn

l is a l-partition of rank n and sl = (s1, ..., sl) ∈ Zl is such that∑l
i=1 si = s. This labeling coincides with that of [U] up to transformation

(s1, ..., sl) 7→ (sl, ..., s1) and (λ(1), ..., λ(l)) 7→ (λ(l), ..., λ(1)). Let uk1 ∧ uk2 ∧

... ∈
∧s+∞

2 Ve,l be a semi-infinite ordered monomial, for i = 1, 2, ..., we put
ki = ai + e(l − bi) − elmi where ai ∈ {1, ..., e}, bi ∈ {1, ..., l} and mi ∈ Z.

For b = 1, ...., l, let k
(b)
1 > k

(b)
2 > ... be the semi-infinite sequence obtained by

ordering the elements of the set {ai − emi | bi = b} in strictly decreasing order.

Then, there is a unique sb ∈ Z such that k
(b)
i = sb − i + 1 for i >> 1. We put

λ = (λ(1), ..., λ(l)) where for i > 0, λ
(b)
i = k

(b)
i − sb + i − 1 and sl = (s1, ..., sl).

This defines a bijection between the set of semi-infinite ordered monomials and
the set of pairs (λ, sl) where λ ∈ Πn

l and sl = (s1, ..., sl) ∈ Zl is such that∑l
i=1 si = s.
This bijection can be described as follows. First, the infinite decreasing

sequence (k1, k2, ...) can be pictured as a set of colored beads on an infinite
runner. For example, the sequence k = (15, 12, 8, 7, 3, 1,−2,−4,−5,−6, ...) is
represented by the following abacus:

−2−3−4−5−6−7 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

On the other hand, using the decomposition ki = ai + e(l − bi) − elmi, the
same sequence can be represented by an l-abacus, that is, as a set of colored
beads on l infinite runners. For e = 4 and l = 3, we obtain:

m=0

−16−17−18−19−28−29−30 6 7 8 17 18 19 20

1 2 3 4

5

9 10 11 12

13 14 15 16

21 22 23 24

25 26

29 30

33 34

−7 −6 −5 −4

−3 −2 −1 0

−11 −10 −9 −8−20−21−22−23

−15 −14−24−25−26 −12−11

m=3 m=2 m=1 m=−1 m=−2

−34 −33 −32

In the above representation, the colored beads are labeled by the integers ki

(with i = 1, 2, ...). We can alternatively labeled them by the integers k
(b)
i (with

i = 1, 2, ... and b = 1, 2, ..., l) as follows:

m=0

1 2 3

0

4

1 2 3 4

1 2 3 4−1−2−3

0−1−2−3

0−1−2−3−4−5−6−7−8−9−10

−4−5−6−7−8−9−10

−10 −9 −8 −7 −6 −5 −4

5 6 7 8

5 6 7

5 6 7 8 9 10

9 10

9 10

8
b=2

m=−1 m=−2m=1m=2m=3

b=1

b=3

Let λ be the l-partition and sl = (s1, ..., sl) be the l-tuple of integers asso-

ciated to k. For i = 1, 2, ... and b = 1, 2, ..., l, we have λ
(b)
i = k

(b)
i − sb + i − 1.
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Thus, one can now easily determine λ by counting the number of non colored
beads at the left of each colored bead on each runner. Continuing the above
example, we obtain λ = ((6, 1), (2, 2), (4, 1)) and sl = (−2, 2, 3).

Now, the higher level q-deformed Fock space is defined to be the C(q)-vector
space generated by the symbols |λ, sl〉 with λ ∈ Πn

l :

Fe,sl
:=

⊕

λ∈Πn
l

n∈N

C(q)|λ, sl〉.

Thus, if we identify the semi-infinite ordered monomial uk ∈
∧s+∞

2 Ve,l with
the pair |λ, sl〉 defined by the above bijection, we get:

s+∞
2∧

Ve,l =
⊕

s1+...+sl=s

Fe,sl
.

3.B Canonical basis and Ariki’s theorem

Let U ′
q(ŝle) be the quantum group associated to the Lie algebra ŝl

′

e. We denote
by ei, fi and ki with i = 0, ..., e−1, the Chevalley generators. We can construct
a structure of U ′

q(ŝle)-module on
∧s+∞

2 Ve,l (see [U, §3.5, §4.2]) such that each
of the subspace Fe,sl

is stable with respect to this action. Before describing the

action of the U ′
q(ŝle)-module Fe,sl

, we need some combinatorial definitions.

Let λ = (λ(1), ..., λ(l)) be a l-partition of rank n. The diagram of λ is the
following set:

[λ] =
{
(a, b, c) | 1 ≤ c ≤ l, 1 ≤ b ≤ λ(c)

a

}
.

The elements of this diagram are called the nodes of λ. Let γ = (a, b, c) be a
node of λ. The residue of γ associated to the set {e; s1, ..., sl} is the element of
Z/eZ defined by:

res(γ) ≡ (b − a + sc)(mod e).

If γ is a node with residue i, we say that γ is an i-node. Let λ and µ be two
l-partitions of rank n and n + 1 such that [λ] ⊂ [µ]. There exists a node γ such
that [µ] = [λ] ∪ {γ}. Then, we denote [µ]/[λ] = γ and if res(γ) = i, we say that
γ is an addable i-node for λ and a removable i-node for µ. Now, we introduce
an order on the set of nodes of a l-partition. We say that γ = (a, b, c) is above
γ′ = (a′, b′, c′) if:

b − a + sc < b′ − a′ + sc′ or if b − a + sc = b′ − a′ + sc′ and c′ < c.

Let λ and µ be two l-partitions of rank n and n + 1 such that there exists an
i-node γ such that [µ] = [λ] ∪ {γ}. We define the following numbers:

Na
i (λ, µ) =♯{addable i − nodes of λ above γ}

− ♯{removable i − nodes of µ above γ},

8



N b
i (λ, µ) =♯{addable i − nodes of λ below γ}

− ♯{removable i − nodes of µ below γ},

Ni(λ) =♯{addable i − nodes of λ}

− ♯{removable i − nodes of λ}.

Theorem 3.1 Fe,sl
is an integrable U ′

q(ŝle)-module with action:

ei|λ, sl〉 =
∑

res([λ]/[µ])≡i

q−Na
i (µ,λ)|µ, sl〉,

fi|λ, sl〉 =
∑

res([µ]/[λ])≡i

qNb
i (λ,µ)|µ, sl〉,

ki|λ, sl〉 = qNi(λ)|λ, sl〉.

where 0 ≤ i ≤ e − 1.

Note that this action coincides with that of [U] up to transformation (s1, ..., sl) 7→
(sl, ..., s1).

We now introduce another basis for Fe,sl
namely the Kashiwara-Lusztig

canonical basis. This basis is defined by using an involution on the wedge space∧s+∞
2 Ve,l which has been introduced in [LT] for l = 1 and generalized to any l

in [U]. Let uk := uk1 ∧uk2 ∧ ... be a semi infinite monomial (ordered or not). For
i = 1, 2, ..., we put ki = ai + e(l − bi) − elmi where ai ∈ {1, ..., e}, bi ∈ {1, ..., l}
and mi ∈ Z. For r ∈ N, we put:

ω(uk) = ♯{i < j | ai = aj},

ω′(uk) = ♯{i < j | bi = bj}.

Then, for r ≥
∑∞

i=1 ki − (s − i + 1) we set:

uk := (−q)ω′(uk)q−ω(uk)ukr
∧ ukr−1 ∧ .... ∧ uk1 ∧ ukr+1 ∧ ukr+2 ∧ ...

One can prove that this monomial is independant of r and that u 7→ u defines
an involution on

∧s+∞
2 Ve,l. The canonical basis is now defined as follows:

Theorem 3.2 Let s ∈ Z. There exists a unique basis:

{G(λ, sl) |
l∑

i=1

si = s, λ ∈ Πn
l , n ∈ N}

of
∧s+∞

2 Ve,l such that:

• G(λ, sl) = G(λ, sl),

• G(λ, sl) − |λ, sl〉 ∈
⊕

µ qC[q]|µ, sl〉.

This is called the canonical basis of
∧s+ ∞

2 Ve,l.

9



In particular the set {G(λ, sl) | λ ∈ Πn
l , n ∈ N} gives a basis of the Fock space

Fe,sl
. Now, we consider the subspace Msl

:= U ′
q(ŝle).|∅, sl〉. It is well known that

this is isomorphic to the irreducible U ′
q(ŝle)-module V (Λ) with highest weight

Λ := Λs1(mod e) + Λs2(mod e) + ... + Λsl(mod e). Note that if s′l = (s′1, ..., s
′
l) ∈ Zl

is such that si ≡ s′i(mod e), then the modules Msl
and M

s
′
l
are isomorphic (but

the action of U ′
q(ŝle) on the elements of the standard basis |λ, sl〉 and |λ, s′l〉 are

different in general).
A basis of Msl

can be given by using the canonical basis of Fe,sl
and by

studying the associated crystal graph. This graph can be described combinato-
rially as follows.

Let λ be a l-partition and let γ be an i-node of λ, we say that γ is a normal
i-node of λ if, whenever η is an i-node of λ below γ, there are more removable
i-nodes between η and γ than addable i-nodes between η and γ. If γ is the
highest normal i-node of λ, we say that γ is a good i-node. Note that this
notion depends on the choice of sl.

Then, the crystal graph of Fe,sl
is given by:

• vertices: the l-partitions,

• edges: λ
i
→ µ if and only if [µ]/[λ] is a good i-node.

By using properties of crystal bases, we can obtain the crystal graph of Msl
:

this is the connected composants of that of Fe,sl
which contain the vacuum

vector |∅, sl〉. The vertices of this graph are given by the following class of
l-partitions.

Definition 3.3 Let sl ∈ Zn. The set of Uglov l-partitions Λn
e;sl

is defined re-
cursively as follows.

• We have ∅ := (∅, ∅, ..., ∅) ∈ Λn
e;sl

.

• If λ ∈ Λn
e;sl

, there exist i ∈ {0, ..., e− 1} and a good i-node γ such that if
we remove γ from λ, the resulting l-partition is in Λn

e;sl
.

Remark 3.4 Assume that sl ∈ Zn is such that 0 ≤ s1 ≤ s2 ≤ ... ≤ sl < e
then it is shown in [FL] that the set of Uglov l-partitions are the l-partitions
λ = (λ(1), ..., λ(l)) such that:

1. for all 1 ≤ j ≤ l − 1 and i = 1, 2, ..., we have:

λ
(j+1)
i ≥ λ

(j)
i+sj+1−sj

,

λ
(1)
i ≥ λ

(l)
i+e+s1−sl

;

2. for all k > 0, among the residues appearing at the right ends of the length
k rows of λ, at least one element of {0, 1, ..., e− 1} does not occur.

Such l-partitions are called FLOTW l-partitions in [Jp].
Assume that sl ∈ Zn is such that s1 << s2 << ... << sl, then the set Uglov

l-partitions Λn
e;sl

coincides with the set of Kleshchev l-partitions as in [Ac].
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Now, the canonical basis of Msl
is the following set:

{G(λ, sl) | λ ∈ Λn
e;sl

, n ∈ N}.

The following theorem gives a link between the canonical basis elements of
Msl

and the decomposition matrices of Ariki-Koike algebras.

Theorem 3.5 (Ariki, see [Ab]) Let HC,n be the Ariki-Koike algebra over C with
the following choice of parameters:

xj = ηvj
e for j = 1, ..., l,

v = ηe,

where 0 ≤ v1 ≤ ... ≤ vl < e. Let Φn := Φn
{e;vl,...,vl}

and (dλ,µ)λ∈Πn
l

,µ∈Φn be the
associated decomposition matrix.

Let sl = (s1, ..., sl) ∈ Zl be such that vj ≡ sj(mod e) for j = 1, ..., l. Then,
for each ν ∈ Λn

e;sl
, write

G(ν, sl) =
∑

λ∈Πn
l

dλ,ν(q)|λ, sl〉,

where dλ,ν(q) ∈ C[q]. Then there exists a bijection κ : Φn → Λn
e;sl

such that for
all λ ∈ Πn

l and µ ∈ Φn, we have:

dλ,µ = dλ,κ(µ)(1).

In other words, Ariki’s theorem asserts that the columns of the decompo-
sition matrix of HC,n with the above choice of parameters coincides with the
canonical basis elements of Msl

evaluated at q = 1 whenever vj ≡ sj(mod e) for
j = 1, ..., l. Note that this decomposition matrix only depends on {e; v1, ..., vl}
whereas the canonical basis elements of Msl

depends on {e; s1, ..., sl}. In par-
ticular, if sj ≡ s′j(mod e) for j = 1, ..., l, the labelings of the canonical basis
elements of Msl

and M
s
′
l

by Λn
e;sl

and Λn
e;s′

l
are different in general as we can

see in the following example.

Example 3.6 Assume that l = 2, e = 4, v1 = 0, v2 = 1. Then different values
for sl lead to different labelings of the same crystal graph:

• for s1 = 0 ≡ v1(mod e), s2 = 1 ≡ v2(mod e):

Λ4
sl

= {(∅, (4)); ((1), (2, 1)); ((1, 1), (1, 1)); ((1), (3)); ((1, 1), (2)); ((2), (1, 1));

((2), (2)); ((2, 1), (1)); ((2, 1, 1), ∅); ((2, 2), ∅); ((3), (1)); ((3, 1), ∅); ((4), ∅)};

• for s1 = 4 ≡ v1(mod e), s2 = 1 ≡ v2(mod e):

Λ4
sl

= {((1, 1, 1), (1)); ((1), (2, 1); ((1, 1), (1, 1)); ((1), (3)); ((1, 1), (2));

((2), (1, 1)); ((2), (2)); ((2, 1), (1)); ((2, 1, 1), ∅); ((2, 2), ∅); ((3), (1));

((3, 1), ∅); ((4), ∅)};

11



• for s1 = 0 ≡ v1(mod e), s2 = 5 ≡ v2(mod e):

Λ4
sl

= {(∅, (2, 1, 1)); (∅, (2, 2)), ((1), (1, 1, 1)); ((1, 1), (1, 1)); ((1, 1), (2));

((2), (1, 1)); ((1), (2, 1)); ((1, 1, 1), (1)); ((1, 1), (2)); ((1), (3)); (∅, (3, 1));

(∅, (4)); ((2, 1), (1)), ((2), (2))}.

In [Ac], Ariki has given an explicit description of Φn
{e;v1,...,vl}

by showing
that this set coincides with the set Λn

e;sl
with s1 >> s2 >> ... >> sl and

vj ≡ sj(mod e) for j = 1, ..., l. In [Jp], another parametrization of the simple
HC,n-modules has been given by using the set Λn

e;sl
with sl = (v1, ..., vl) (namely

the set of FLOTW l-partitions) and an ordering of the rows of the decomposition
matrices by Lusztig a-values. In the next section, we will show that each of the
sets Λn

e;sl
with vj ≡ sj(mod e) has a natural interpretation in the representation

theory of HC,n.

4 Unitriangularity of the decomposition matri-

ces of Ariki-Koike algebras

4.A Specialisations and Lusztig a-values

Let e be an integer and let sl = (s1, s2, ..., sl) ∈ Zl be a sequence of integers.
The aim of this part is to study the Ariki-Koike algebra HC,n with the following
choice of parameters:

uj = ηsj(mod e)
e for j = 1, ..., l,

v = ηe.

For j = 1, ..., l, we define rational numbers:

m(j) = sj −
(j − 1)e

l
+ αe,

where α is a positive integer such that m(j) ≥ 0 for j = 1, ..., l. Let y be an
indeterminate and put A := C[y, y−1]. We consider the Ariki-Koike algebra
Hsl

A,n over A with the following parameters:

uj = ylm(j)

ηj−1
l for j = 1, ..., l,

v = yl.

By Theorem 2.2, Hsl

C(y),n := C(y) ⊗A Hsl

A,n is split semisimple. Moreover, if

we specialize the parameter y to ηle := exp(2iπ
le ), we obtain the above Ariki-

Koike algebra HC,n. Hence, we have a well-defined decomposition map between
R0(H

sl

C(y),n) (which can be identified with Fn as it is explained in section 2) and

R0(HC,n).

We now associate to each simple Hsl

C(y),n-module S
λ
C(y) an a-value following

[Jp]. Put ml = (m(1), ..., m(l)) where the m(j) are defined above. We need to
define the notion of “ml-translated symbols” associated to l-compositions.

Let n ∈ N and l ∈ N. An l-composition λ of rank n is an l-tuple (λ(1), ...., λ(l))
where :

12



• for all i = 1, ..., l, we have λ(i) = (λ
(i)
1 , ..., λ

(i)

h(i)) for h(i) ∈ N and λ
(i)
j ∈ N>0

(j = 1, ..., h(i)), h(i) is called the height of λ(i),

•
l∑

i=1

h(i)∑

j=1

λ
(i)
j = n.

Let λ = (λ(1), ..., λ(l)) be a l-composition and let h(i) be the heights of the
compositions λ(i). Then the height of λ is the following positive integer:

hλ := max{h(1), ..., h(l)}.

Let k be a positive integer. The translated symbol B[ml]
′ associated to ml, k

and λ is:
B[ml]

′ := (B′(1), ..., B′(l)),

where B′(i), for i = 1, ..., l, is given by:

B′(i) := (B
′(i)
1 , ..., B

′(i)
hλ+k),

in which:
B

′(i)
j := λ

(i)
j − j + hλ + k + m(i) (1 ≤ j ≤ hλ + k).

The integer hλ + k is called the height of B[ml]
′.

Now, the a-value on the Hsl

C(y),n-module S
λ
C(y) is defined by using the char-

acterization of the Schur elements which has been obtained by Geck, Iancu and
Malle in [GIM]. We obtain the following definition:

Definition 4.1 Let λ be a l-partition of rank n and let S
λ
C(y) be the simple

Hsl

C(y),n-module. Let k be a positive integer and B[ml]
′ be the set associated to

m and k. Then, if h is the height of B[ml]
′, the a-value of S

λ
C(y) is the following

rational number:

asl
(λ) = f(n, h,ml) +

∑

1≤i≤j<l+1

(a,b)∈B′(i)×B′(j)

a>b if i=j

min {a, b} −
∑

1≤i,j<l+1

a∈B′(i)

1≤k≤a

min {k, m(j)},

where f(n, h,ml) is a rational number which only depends on the parameters
{e; s1, ..., sl}, on h and on n (the expression of f is given in [Jp]).

We need to introduce the following preorder on the set of l-compositions.

Definition 4.2 Let µ and ν be l-compositions of rank n. Let k and k′ be such
that hµ + k = hν + k′. Let Bµ[ml]

′, (resp. Bν [ml]
′) be the m-translated symbol

associated to µ, m and k (resp. µ, ml and k′). Then we write:

µ ≺ ν,

if: ∑

1≤i≤j<l+1

(a,b)∈B
′(i)
µ ×B

′(j)
µ

a>b if i=j

min {a, b} −
∑

1≤i,j<l+1

a∈B
′(i)
µ

1≤k≤a

min {k, m(j)} <

13



∑

1≤i≤j<l+1

(a,b)∈B
′(i)
ν ×B

′(j)
ν

a>b if i=j

min {a, b} −
∑

1≤i,j<l+1

a∈B
′(i)
ν

1≤k≤a

min {k, m(j)}.

In particular, if µ and ν are l-partitions, we have:

µ ≺ ν ⇐⇒ asl
(µ) < asl

(ν).

Before beginning the proof of the main result, we need to give the following
useful proposition which has been shown in [Jp] in the case 0 ≤ s1 ≤ .... ≤ sl < e.
One can easily check that the proof holds in the general case.

Proposition 4.3 Let λ be a l-composition of rank n, let B := (B(1), ..., B(l))
be an ordinary symbol of λ, let β1 and β2 be two elements of B[ml]

′, we assume
that:

β1 < β2.

Let r ∈ N. We add r nodes to λ on the part associated to β1. Let µ be the
resulting l-composition of rank n+r. We add r nodes to λ on the part associated
to β2. Let ν be the resulting l-composition of rank n + r. Then, we have:

ν ≺ µ.

In particular, if µ and ν are some l-partitions, then:

asl
(µ) > asl

(ν).

Assume that λ is a l-composition of rank n.

...  , ,   ...   , ,  ...

N N’

i
j

Assume that µ and µ′ are two l-compositions which are obtained from λ by

adding r nodes on the parts λ
(N)
i and λ

(N ′)
j respectively. Assume in addition

that we have:

λ
(N)
i − i + sN −

Ne

l
> λ

(N ′)
j − j + sN ′ −

N ′e

l
.

Observe that if we use the notation of Section 3.A, this property is equivalent

to k
(N)
i −

Ne

l
> k

(N ′)
j −

N ′e

l
.

Keeping the above representation of λ, µ and µ′ are respectively given as
follows:
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...  , ,   ...   , ,  ...

N N’

i
j

������
������
������

������
������
������...  , ,   ...   , ,  ...

N N’

i
j

Then Proposition 4.3 asserts that we have:

µ ≺ µ′.

The aim of the following part is to show that the matrix associated to the
canonical basis elements of the irreducible modules Msl

is unitriangular with
respect to a-values.

4.B Study of the involution on the semi-infinite q-wedge

product

Let s ∈ Z. We keep the notations of the previous sections. We will work with
the semi-infinite q-wedge product

∧s+∞
2 Ve,l. First, we attach to each semi-

infinite monomial an a-value. Let uk ∈
∧s+∞

2 Ve,l be a semi-infinite q-wedge
product and let uk̃ be the monomial obtained by reordering the ki in strictly
decreasing order. Then, the bijection described in section 3.A shows that we can
associate to uk̃ a symbol |λ, sl〉 with λ ∈ Πn

l and sl = (s1, ..., sl) ∈ Zl verifying
∑l

i=1 si = s. We put:

π(uk) := |λ, sl〉,

a(uk) := asl
(λ).

In this part, we show the following proposition:

Proposition 4.4 Let uk ∈
∧s+∞

2 Ve,l be a semi-infinite ordered q-wedge prod-
uct. Then, we have:

uk = uk + sum of ordered monomials ur with a(ur) > a(uk),

where the involution is defined in section 3.B.
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We note that a similar property is shown in [U] but for a (partial) order which
is not compatible with the preorder induced by the a-values.

Let uk be an arbitrary semi-infinite monomial such that there exists i ∈ N

such that ki < ki+1. Then the relations (R1) − (R4) in section 3.A show how
to express uk in terms of semi-infinite monomials uk′ such that k′

i > k′
i+1. Let

uk′ be such a semi-infinite monomial such that k′
i 6= ki+1 and k′

i+1 6= ki. Then
the l-partitions associated to uk and uk′ have the same charge sl. We put :

|λ, sl〉 := π(uk),

|λ′, sl〉 := π(uk′).

From the relations (R1) − (R4), using the representations of uk and uk′ by l-
abacus, we can see that uk′ is obtained from uk by moving two colored beads
representing k1 and k2 to two colored beads representing k′

1 and k′
2 and lying in

the same runners as k1 and k2. As a consequence, the l-partition λ′ is obtained
from λ by removing a ribbon R of size x from a component N and adding a
ribbon R′ of size x to a component N ′ as in the following figure.

...  , ,   ...   , ,  ...

p
p+1

N

a

t

N’

b
b−1

Then, there exist positive integers a, b, p and t such that:

λ′(N) = (λ
(N)
1 , ...., λ

(N)
a−1, λ

(N)
a+1−1, ..., , λ

(N)
b −1, λ(N)

a −(x−(a+b)), λ
(N)
b+1, ..., λ

(N)

h(N)),

λ′(N ′) = (λ
(N ′)
1 , ..., λ

(N ′)
p−1 , λ

(N ′)
t +(x−(p−k)), λ(N ′)

p +1, ..., λ
(N ′)
t−1 +1, λ

(N ′)
t+1 , ..., λ

(N ′)

h(N′)).

In fact, the two l-partitions λ′ and λ are both obtained by adding R and R′ to the
components N and N ′ of the same l-partition ν = π(ur). Here, ur corresponds

to the sequence (k1, ..., ki−1, k̂i, k̂i+1, ki+2, ...) where k̂i and k̂i+1 are the minimal

integers of {ki, ki+1, k
′
i, k

′
i+1} such that the beads associated to k̂i and k̂i+1 lie

at the components N and N ′ of the l-abacus of ur and k̂i+1 < k̂i.

Assume that λ 6= λ′. Put k̂i = a+e(l−b)−elm and k̂i+1 = a′+e(l−b′)−elm′

where a, a′ ∈ {1, ..., e}, b, b′ ∈ {1, ..., l} and, m, m′ ∈ Z. Then, by studying the
relations (R1) − (R4), we get that:

a − em −
Ne

l
> a′ − em′ −

N ′e

l
.

Thus, we obtain:

ν
(N)
b − b + sN −

Ne

l
> ν

(N ′)
t − t + sN ′ −

N ′e

l
. (∗)
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Assume that we have λ
′(N ′)
i = ν

(N ′)
i + yi for integers yi with i = p, p+1, ..., t

and assume that we have λ
(N)
j = ν

(N)
j + xi for integers xj with j = a, a + 1, ...b.

We define a l-composition λ[1] as follows.

• If yt ≤ xb, then we put j1 := b and we define:

λ[1]
(k)
i =






λ
′(k)
i if (i, k) 6= (b, N) and (i, k) 6= (t, N ′),

λ
′(k)
i + yt if (i, k) = (b, N),

λ
′(k)
i − yt if (i, k) = (t, N ′).

In this case, λ[1] and λ′ are both obtained by adding the same number of
nodes on a l-composition. Then, by (∗) and by Proposition 4.3, we get:

λ[1] ≺ λ′.

• If yt > xb, there exists j1 ∈ {a, a + 1, ..., b − 1} such that:

xj1 + xj1+1 + .... + xb ≥ yt ≥ xj1+1 + ... + xb−1 + xb.

Then, we define:

λ[1]
(k)
i =






λ
′(k)
i + xi if k = N and

b ≥ i ≥ j1 + 1,

λ
′(k)
i + yt − (xj1+1 + ... + xb−1 + xb) if (i, k) = (j1, N),

λ
′(k)
i − yt if (i, k) = (t, N ′),

λ
′(k)
i if otherwise.

For all i such that a ≤ i ≤ b, observe that ν
(N)
b + xi+1 + ... + xb−1 + xb =

νi + (b − i). Then, by (∗), for all i such that j1 ≤ i ≤ b, we have:

ν
(N)
i − i + sN −

Ne

l
> ν

(N ′)
t − t + xi+1 + ... + xb + sN ′ −

N ′e

l
.

Thus, for all i such that j1 ≤ i ≤ b, we obtain:

λ′(N)
i − i+ sN −

Ne

l
> λ′(N

′)
t − t+xi+1 + ...+xb−1 +xb − yt + sN ′ −

N ′e

l
.

Thus, using Proposition 4.3, we get:

λ[1] ≺ λ′.

Keeping the above figure, λ[1] is as follows.

...  , ,   ...   , ,  ...

p
p+1

N

a

t

N’

b−1
b
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As we have ν
(N ′)
t − 1 + yt = ν

(N ′)
t−1 , note that:

λ[1]
(N)
j1

− j1 + sN −
Ne

l
> ν

(N ′)
t−1 − (t − 1) + sN ′ −

N ′e

l
. (∗∗)

We now define a l-composition λ[2] as follows. Put :

x′
j1 := xj1 + xj1+1 + ... + xb − yt.

• If yt−1 ≤ x′
j1 , we put j2 := j1 and we define:

λ[2]
(k)
i =






λ[1]
(k)
i if (i, k) 6= (j1, N) and (i, k) 6= (t − 1, N ′),

λ[1]
(k)
i + yt−1 if (i, k) = (j1, N),

λ[1]
(k)
i − yt−1 if (i, k) = (t − 1, N ′).

By (∗∗), we have:

λ[1]
(N)
j1

− j1 + sN −
Ne

l
> λ[1]

(N ′)
t−1 − yt−1 − (t − 1) + sN −

N ′e

l

By Proposition 4.3, we get:

λ[2] ≺ λ[1].

• If yt−1 > x′
j1 , there exists j2 ∈ {a, a + 1, ..., j1 − 1} such that:

xj2 + xj2+1 + ... + xj1−1 + x′
j1 ≥ yt−1 > xj2+1 + ... + xj1−1 + x′

j1 .

Then, we define:

λ[2]
(k)
i =






λ[1]
(k)
i + x′

j1 if (i, k) = (j1, N),

λ[1]
(k)
i + xi if k = N and

j1 − 1 ≥ i > j2,

λ[1]
(k)
i − yt−1 if (i, k) = (t − 1, N ′),

λ[1]
(k)
i + yt−1 − (xj2+1 + ... + xj1−1 + x′

j1
) if (i, k) = (j2, N),

λ[1]
(k)
i if otherwise.

By (∗∗), we have:

λ[1]
(N)
j1

− i + sN −
Ne

l
> λ[1]

(N ′)
t−1 − (t − 1) − yt−1 + sN ′ −

N ′e

l
.

Moreover, we have λ[1]
(N)
j1

+x′
j1

= λ[1]
(N)
j1−1+1 and λ[1]

(N)
i +xi = λ[1]

(N)
i−1+1

for all i such that j1 − 1 ≥ i ≥ a. Thus, for all i such that j1 − 1 ≥ i ≥ j2,
by (∗∗), we obtain:

λ[1]
(N)
i −i+sN−

Ne

l
> λ[1]

(N ′)
t−1 −(t−1)+xi+1+...+xj1−1+x′

j1−yt−1+sN ′−
N ′e

l
.

Hence, by Proposition 4.3, we conclude that:

λ[2] ≺ λ[1].
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Keeping the above figure, λ[2] is as follows.

...  , ,   ...   , ,  ...

p
p+1

N

a

t

N’

b−1
b

Continuing in this way, we obtain the l-composition λ[p − t + 1] = λ:

...  , ,   ...   , ,  ...

p
p+1

N

a

t

N’

b
b−1

We have :
λ ≺ λ′.

Thus, we conclude that:
asl

(λ) < asl
(λ′).

Now all the ordered monomials up which appear in uk are obtained recursively

by using the relations (R1) − (R4). Hence by induction, we obtain that there
exists β such that:

uk = βuk + sum of ordered monomials ur with a(ur) > a(uk),

By [U, Remark 3.24], we have β = 1. This concludes the proof of the proposition.

4.C Consequences

The result of the previous section leads to the following theorem:

Theorem 4.5 Let sl ∈ Zn and let Msl
:= Uq(ŝle).|∅, sl〉 ⊂ Fe,sl

. Let

{G(µ, sl) | µ ∈ Λn
e;sl

, n ∈ N}

be the canonical basis elements. Then, for all n ∈ N and µ ∈ Λn
e;sl

, we have:

G(µ, sl) = |µ, sl〉 +
∑

λ∈Πn
l

,asl
(λ)>asl

(µ)

dλ,µ(q)|λ, sl〉,

where dλ,µ(q) ∈ qC[q].
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Proof. By Proposition 4.4, we have for all λ ∈ Πn
l :

|λ, sl〉 = |λ, sl〉 + sum of |µ, sl〉 with asl
(µ) > asl

(λ).

Assume that λ ∈ Λn
e;sl

and that µ is one of the minimal l-partitions with respect
to asl

which appears in G(λ, sl). Then the characterization of the canonical basis
in Theorem 3.2 immediately implies that λ = µ.

�

Now, we give the consequences on the decomposition matrices of Ariki-Koike
algebras. By Ariki’s theorem, we obtain the following result. Note that this
generalizes and gives a new proof of the main result of [Jp] where the case
0 ≤ s1 ≤ ... ≤ sl < e was considered (but the proof of [Jp] gave an explicit
construction of the canonical basis elements). Note also that it provides an
interpretation of the parametrization by the Kleshchev l-partitions by using
a-values.

Let HC,n be the Ariki-Koike algebra over C with the following choice of
parameters:

xj = ηvj
e for j = 1, ..., l,

x = ηe,

where 0 ≤ v1 ≤ ... ≤ vl < e.
Let sl = (s1, ..., sl) ∈ Zl be such that si = vi(mod e) for i = 1, ..., l and let

Hsl

C(y),n be the Ariki-Koike algebra over C(y) with the following parameters:

uj = ylm(j)

ηj−1
l for j = 1, ..., l,

v = yl,

where m(j) = sj −
(j − 1)e

l
+αe for j = 1, ..., l and where α is a positive integer

such that m(j) > 0 for j = 1, ..., l. Then the specialisation θ : C[y, y−1] → C

which sends y to exp(
2iπ

le
) induces a decomposition map:

d : R0(H
sl

K,n) → R0(HC,n).

Theorem 4.6 For each M ∈ Irr(HC,n), there exists a unique simple Hsl

C(y),n-

module VM such that the following two conditions hold:

• dVM ,M = 1,

• if there exists W ∈ Hsl

C(y),n such that dW,M 6= 0 then a(W ) > a(VM ).

Moreover the application which sends M to VM is injective. As a consequence
the associated decomposition matrix is unitriangular and the following set is in
natural bijection with Irr(HC,n):

Bsl
= {VM | M ∈ Irr(HC,n)}.

Finally, we have:
Bsl

= {Sλ
C(y) | λ ∈ Λn

e;sl
}.
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Example 4.7 We keep the example 3.6, the decomposition matrices of Ariki-
Koike algebras can be computed using the algorithm described in [Ja]. For l = 2,
e = 4, v1 = 0, v2 = 1, we obtain the following matrices which are written using
the different labelings of the above theorem. The rows of the matrices are indexed
by the l-partitions of rank 4, we also give the associated a-values.

• When s1 = 0 and s2 = 1, the simple HC,n-modules may be labeled by
Λ4

4,(0,1):

((4), ∅) 0
((3), (1)) 1
(∅, (4)) 1

((3, 1), ∅) 1
((2), (2)) 2
((2, 2), ∅) 2
((1), (3)) 2

((2, 1), (1)) 3
((2, 1, 1), ∅) 4
((2), (1, 1)) 4
((1, 1), (2)) 4
((1), (2, 1)) 5

((1, 1), (1, 1)) 6
(∅, (3, 1)) 4

((1, 1, 1), (1)) 6
(∅, (2, 2)) 6

((1, 1, 1, 1), ∅) 9
(∅, (2, 1, 1)) 9

((1), (1, 1, 1)) 9
(∅, (1, 1, 1, 1)) 16




1 . . . . . . . . . . . .
. 1 . . . . . . . . . . .
. . 1 . . . . . . . . . .
1 . . 1 . . . . . . . . .
. 1 . . 1 . . . . . . . .
. . . . . 1 . . . . . . .
1 . 1 . . . 1 . . . . . .
. . . . . . . 1 . . . . .
. . . 1 . . . . 1 . . . .
. . . . . . . . . 1 . . .
1 . . 1 . . 1 . . . 1 . .
. . . . . . . . . . . 1 .
. . . . . 1 . . . . . . 1
. . 1 . . . 1 . . . . . .
. . . 1 . . . . 1 . 1 . .
. . . . 1 . . . . . . . .
. . . . . . . . 1 . . . .
. . . . . . 1 . . . 1 . .
. . . . . . . . . . . . 1
. . . . . . . . . . 1 . .




• When s1 = 4 and s2 = 1, the simple HC,n-modules may be labeled by
Λ4

4,(4,1):
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((4), ∅) 0
((3, 1), ∅) 1
((2, 2), ∅) 2

((2, 1, 1), ∅) 3
((3), (1)) 5

((2, 1), (1)) 6
((1, 1, 1), (1)) 8

((2), (2)) 9
((1, 1), (2)) 10
((2), (1, 1)) 12
((1), (3)) 12

((1, 1), (1, 1)) 13
((1), (2, 1)) 16

((1, 1, 1, 1), ∅) 6
(∅, (4)) 14

(∅, (3, 1)) 19
(∅, (2, 2)) 22

(∅, (2, 1, 1)) 25
((1), (1, 1, 1)) 21
(∅, (1, 1, 1, 1)) 32




1 . . . . . . . . . . . .
1 1 . . . . . . . . . . .
. . 1 . . . . . . . . . .
. 1 . 1 . . . . . . . .
. . . . 1 . . . . . . . .
. . . . . 1 . . . . . . .
. 1 . 1 . . 1 . . . . . .
. . . . 1 . . 1 . . . . .
1 1 . . . . 1 . 1 . . . .
. . . . . . . . . 1 . . .
1 . . . . . . . 1 . 1 . .
. . 1 . . . . . . . . 1 .
. . . . . . . . . . . . 1
. . . 1 . . . . . . . . .
. . . . . . . . . . 1 . .
. . . . . . . . 1 . 1 . .
. . . . . . . 1 . . . . .
. . . . . . 1 . 1 . . . .
. . . . . . . . . . . 1 .
. . . . . . 1 . . . . . .




• When s1 = 0 and s2 = 5, the simple HC,n-modules may be labeled by
Λ4

4,(0,5):

(∅, (4)) 0
(∅, (3, 1)) 1
(∅, (2, 2)) 2
((1), (3)) 3

(∅, (2, 1, 1)) 3
((1), (2, 1)) 4
((2), (2)) 5

((1), (1, 1, 1)) 6
((2), (1, 1)) 6
((1, 1), (2)) 8

((1, 1), (1, 1)) 9
((2, 1), (1)) 10

((1, 1, 1), (1)) 15
(∅, (1, 1, 1, 1)) 6

((4), ∅) 6
((3), (1)) 6
((3, 1), ∅) 11
((2, 2), ∅) 14

((2, 1, 1), ∅) 17
((1, 1, 1, 1), ∅) 24




1 . . . . . . . . . . . .
1 1 . . . . . . . . . . .
. . 1 . . . . . . . . . .
1 1 . 1 . . . . . . . . .
. 1 . . 1 . . . . . . . .
. . . . . 1 . . . . . . .
. . 1 . . . 1 . . . . . .
. . . . . . . 1 . . . . .
. . . . . . . . 1 . . . .
. 1 . 1 1 . . . . 1 . . .
. . . . . . . 1 . . 1 . .
. . . . . . . . . . . 1 .
. . . . 1 . . . . 1 . . 1
. . . 1 . . . . . . . . .
. . . . . . 1 . . . . . .
. . . . 1 . . . . . . . .
. . . 1 . . . . . 1 . . .
. . . . . . . . . . 1 . .
. . . . . . . . . 1 . . 1
. . . . . . . . . . . . 1



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