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Common extensions of semigroup-
valued charges.

R.M. SHORTT∗ F. WEHRUNG
Wesleyan University Université de Caen
Department of Mathematics Département de Mathématiques
MIDDLETOWN, CT 06457 14032 CAEN CEDEX
U.S.A. FRANCE.

§0. INTRODUCTION.

Let A and B be fields of subsets of a nonempty set X and let µ : A → E and ν : B → E

be finitely additive measures (“charges”) taking values in a commutative semigroup E. We
assume that µ and ν are consistent (e.g. µ = ν on A ∩ B) and ask whether they have a
common extension to a charge ρ : A ∨ B → E.

Now, we shall see (proposition 2.3) that the most natural consistency condition which
we can formulate involves a partial preordering (which may not be an ordering) on E.
Furthermore, the formulation of our results will be much clearer when expressed with
the preordering than without (see for example theorem 3.2); note that this situation is
reminiscent of [12]. More generally, the consideration of the preordering seems fundamental
in the study of homomorphism extension properties of commutative semigroups when these
are rather viewed as positive cones (of, say, ordered groups), see [14] to [17]. For all these
reasons, we shall consider charges with values in what we will call here a pp-semigroup
(definition 1.1) rather than just a semigroup. Note that in [14] to [17], where completeness
with respect to the ordering plays an important role, these structures are called P.O.M.’s.

We say that a pp-semigroup E has the 2-charge extension property (from now on 2-
CHEP) when any two consistent E-valued charges µ, ν have a common extension ρ; when
one restricts oneself to finite Boolean algebras A and B, then we will say that E has the
grid property. Finally, by considering only one algebra, one gets the following definition
of the 1-CHEP: a pp-semigroup E has the 1-CHEP when for every Boolean subalgebra
A of a Boolean algebra B, every E-valued charge on A extends to a E-valued charge on

∗
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B. Note that a priori, there is no implication between the 2-CHEP and the 1-CHEP. Our
reference [8] contains a lot of relevant information about many types of charge extension
properties.

All these problems may be reformulated in terms of a system of linear equations and
inequalities in E. Such systems and their solutions are studied in chapter 1: proposition
1.7 provides a general existence theorem for them.

In chapter 2 (theorem 2.4), it is shown that the 2-CHEP implies the 1-CHEP.
In theorem 3.2, the class of pp-semigroups E with the grid property is fully character-

ized in terms of a small set of very simple axioms. In particular, the theory of pp-semigroups
satisfying the grid property is shown to be finitely axiomatizable.

Finally, we provide some converses of results in [12] and in this paper, by showing
(theorem 4.8) that if G is a directed partially ordered abelian group, then the following
holds:
(i) If G+ satisfies the 2-CHEP, then G is a complete �-group.
(ii) If G is a �-group, then G+ has the 1-CHEP if and only if G is a complete �-group.

We denote the set of all natural numbers by ω or N according to the case that we
consider it as the least limit ordinal or a pp-semigroup.

§1. PROPER SYSTEMS, DIAGONAL PROPERTIES.

We first recall the context in which most of our work takes place. It has been used in
several places, see [12] and [14] to [17].

1.1. Definition. A positively preordered semigroup, from now on a pp-semigroup, is
a structure (A,+, 0,≤) where (A,+, 0) is a commutative semigroup with zero and ≤ is a
preordering of A satisfying both axioms

(i) (∀x, y, z)(x ≤ y ⇒ x + z ≤ y + z),

(ii) (∀x)(0 ≤ x).

We recall now some definitions used in [14] to [17]. A pp-semigroup A is mini-
mal when it satisfies (∀x, y)

(
x ≤ y ⇔ (∃z)(x + z = y)

)
, antisymmetric when its un-

derlying preordering ≤A is antisymmetric, cancellative when it satisfies both statements
(∀x, y, z)(x + z ρ y + z ⇒ x ρ y) whenever ρ is either ≤ or =. Throughout this work, we
shall always use the abbreviations x ≡ y ⇔ (x ≤ y and y ≤ x), x 
 y ⇔ x + y = y, or
≡A and 
A if the context does not make the ground pp-semigroup A clear. Furthermore,
if X and Y are two subsets of a given preordered set, then we shall write X ≤ Y instead
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of (∀(x, y) ∈ X × Y )(x ≤ y); if X or Y is a finite set, we shall omit the braces in our
notations, writing e.g. a1, . . . , am ≤ b1, . . . , bn instead of {a1, . . . , am} ≤ {b1, . . . , bn}. The
finite refinement property (see e.g. [6], [13]) is the statement

(∀a0, a1, b0, b1)
(
a0 + a1 = b0 + b1 ⇒ (∃i,j<2cij)(∀i < 2)(ai = ci0 + ci1 and bi = c0i + c1i)

)
.

Now, we shall define strong refinement pp-semigroups in a slightly different way as in
[14] or [16] (where they are called strong refinement P.O.M.’s) , but it will turn out to be
equivalent.

1.2. Definition. A strong refinement pp-semigroup is a minimal, antisymmetric
pp-semigroup satisfying both following axioms:

(i) Pseudo-cancellation property:

(∀a, b, c)
(
a + c ≤ b + c ⇒ (∃d 
 c)(a ≤ b + d)

)
.

(ii) (∀a, b, x, y)
(
b ≤ a + x, a + y ⇒ (∃z ≤ x, y)(b ≤ a + z)

)
.

One of the useful features of strong refinement pp-semigroups is that they satisfy the
following

1.3. Lemma. Let A be a strong refinement pp-semigroup. Then A satisfies the

following finite interpolation property: for all finite subsets X and Y of A such that

X ≤ Y , there is z in A such that X ≤ z ≤ Y .

Proof. For |X| = |Y | = 2, it is an easy consequence of definition 1.2. The general
case is derived by an easy induction.

Now, we shall connect strong refinement pp-semigroups and linear systems. For all
m, n in N , define m−. n = max(m − n, 0). Let θ be an atomic formula of the language
(+,≤,=) with parameters in some pp-semigroup A, with variables x1, . . . , xn; thus θ can
be written in the form ∑

i<k

mixi + a ρ
∑
i<k

nixi + b,

where ρ is either ≤ or =. Define the reduct θ̄ of θ to be the following formula:

∑
i<k

(mi −. ni)xi + a ρ
∑
i<k

(ni −. mi)xi + b.
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It is obvious that every pp-semigroup satisfying θ̄ also satisfies θ, and that the converse
holds in cancellative pp-semigroups. We shall say that θ is reduced when θ = θ̄. A linear
system is a set of atomic formulas of (+,≤,=). The theory of linear systems which we
shall present in this chapter bears very close similarities with the theory presented in
[17] (in particular the notion of resolvent). If S is a linear system, the reduct of S is
S̄ = {θ̄ : θ ∈ S}; S is reduced when S = S̄. Throughout this work, we shall consider only
finite linear systems. If x is an unknown of a linear system S, then we shall say that S is
proper in x when it can be written under the following form:

(1.1)




ai + x ≤ bi (all i ∈ I)
bj ≤ aj + x (all j ∈ J)
ak + x = bk (all k ∈ K)
R [some system where x does not appear],

where x does not appear in the al, bl’s. If m is in ω, then (1.1) is m-proper in x when
|K| ≤ m. The resolvent in x of (1.1) is the following linear system:

(1.2)




ai ≤ bi (all i ∈ I ∪ K)
ai + bk ≤ ak + bi (all (i, k) ∈ I × K)
ak + bj ≤ aj + bk (all (j, k) ∈ J × K)
ak + bl = al + bk (all (k, l) ∈ K × K)
ai + bj ≤ aj + bi (all (i, j) ∈ I × J)
R.

Now, let S be a linear system with parameters in some pp-semigroup A, let σ =
〈x1, . . . , xn〉 be an enumeration of all unknowns of S; this we shall sometimes indicate
by writing S(x1, . . . , xn) instead of just S. Let k be in ω. We construct inductively
S

(k)
m (xm, xm+1, . . . , xn) by the following rule: S

(k)
1 is the reduct of S; if S

(k)
m is defined and

if it is k-proper in xm, then S
(k)
m+1 is the reduct of the resolvent of S

(k)
m in xm. If S

(k)
n is

defined, then we will call it the reduced resolvent of S along σ and we will say that S is
k-proper.

1.4. Lemma. Let E be a pp-semigroup, let S be a proper system with parameters

from E and one unknown. If S admits a solution in E, then E satisfies the resolvent of S;

furthermore, if E is a strong refinement pp-semigroup, then the converse is true.

Proof. The first assertion is obvious. Conversely, assume that E satisfies the resolvent
of S and that E is a strong refinement pp-semigroup. Since E is antisymmetric, every
system of the form (1.1) is equivalent to a system of the form (1.1) with K = ∅ and R = ∅;
furthermore, it is trivial to see that both corresponding resolvents are equivalent. So we
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may assume without loss of generality that S is (1.1) with K = ∅ and R = ∅. For all i in
I, let ci in E such that ai + ci = bi; thus for all (i, j) in I ×J , ai + bj ≤ ai +aj + ci, whence
bj ≤ aj + ci + dij for some dij 
 ai; thus bj ≤ aj + ci + di where di =

∑
j∈J dij ; since

di 
 ai, changing ci into ci +di does not affect the definition of ci, so that we may assume
without loss of generality that bj ≤ aj + ci. Thus, by definition of a strong refinement
pp-semigroup, for all j in J , there is ej such that bj ≤ aj + ej and ej ≤ ci for all i in I.
By lemma 1.3, there is x such that (∀i ∈ I)(x ≤ ci) and (∀j ∈ J)(ej ≤ x). For all i in
I, ai + x ≤ ai + ci = bi and for all j in J , bj ≤ aj + ej ≤ aj + x, whence x satisfies the
required conditions.

Now, say that for every k in ω, the k-diagonal property is the following property:

“Let ai, bi (i < k) such that ai ≡ bi (all i < k) and ai + bj = aj + bi (all i, j < k).
Then there exists x ≡ 0 such that ai + x = bi (all i < k).”

Say that a pp-semigroup E is a k-strong refinement pp-semigroup when E/ ≡E is a
strong refinement pp-semigroup and E satisfies the k-diagonal property.

1.5. Lemma. Let m in ω, let E be a pp-semigroup, let S be a m-proper linear system

with parameters from E. If S admits a solution in E, then E satisfies the resolvent of S;

furthermore, if E is a m- strong refinement pp-semigroup, then the converse is true.

Proof. The first assertion is obvious. Conversely, assume that E satisfies the resolvent
of S and that E is a m-strong refinement pp-semigroup. Write S in the form (1.1), where
|K| ≤ m; without loss of generality, R = ∅. Let S′ be the result of replacing = by ≡
everywhere in S. Then E satisfies the resolvent of S′, thus, applying lemma 1.4 in E/ ≡,
S′ admits a solution c in E. Then, since E satisfies the resolvent of S and by the m-
diagonal property, there exists d ≡ 0 in E such that ak + c + d = bk for all k in K. Hence,
c + d is a solution of S.

Note that it is easy to prove that in fact, lemma 1.5 characterizes m-strong refinement
pp-semigroups.

Lemma 1.5 yields us one of our main technical results:

1.6. Theorem. Let k in ω, let A be a sub-pp-semigroup of a cancellative pp-

semigroup B, let S be a k-proper linear system with parameters from A; let f be an

preordered semigroup-homomorphism from A to a k-strong refinement pp-semigroup E. If

S admits a solution in B, then f(S) admits a solution in E.
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Proof. By induction on the number of unknowns in S. With no unknown it is trivial;
so suppose that S is k-proper along 〈x1, . . . , xn〉 where n ≥ 1. By hypothesis, S admits a
solution in B, say 〈b1, . . . , bn〉. Thus 〈b2, . . . , bn〉 is a solution in B of the resolvent in x1

of S(x1, x2, . . . , xn), thus also of the reduct S′(x2, . . . , xn) of the latter since B is cancella-
tive. But S′ is by definition k-proper along 〈x2, . . . , xn〉, thus, by induction hypothesis,
f(S′) admits a solution in E, say 〈c2, . . . , cn〉. Since f(S′)(x2, . . . , xn) is the reduct of the
resolvent (in x1) S′′(x2, . . . , xn) of f(S)(x1, . . . , xn), E also satisfies S′′(c2, . . . , cn). But
f(S)(x1, c2, . . . , cn) is k-proper (in x1), thus, by lemma 1.5, it admits a solution in E; the
conclusion follows.

The particular cases of proper systems we shall use are contained in the following

1.7. Proposition.

(i) Any linear system of the form

(1.3)




x + z = a; y + z = b; a′ + x = b′ + y;
ai+ + x ≤ bi+ (all i+ ∈ I+); bi− ≤ ai− + x (all i− ∈ I−);
aj+ + y ≤ bj+ (all j+ ∈ J+); bj− ≤ aj− + y (all j− ∈ J−);
ak + x ≤ bk + y (all k ∈ K); bl + y ≤ al + x (all l ∈ L);

is 2-proper.

(ii) Let m in ω. Then any linear system of the form

(1.4)




ai+ + x ≤ bi+ (all i+ ∈ I+); bi− ≤ ai− + x (all i− ∈ I−);
aj+ + y ≤ bj+ (all j+ ∈ J+); bj− ≤ aj− + y (all j− ∈ J−);
ak + x ≤ bk + y (all k ∈ K); bl + y ≤ al + x (all l ∈ L);

au + x = bu + y (all u < m);

is m-proper.

Proof. It is straightforward to verify that the reduct of the resolvent of (1.3) in z

is formed with a system of the form (1.4) together with a system without unknowns, and
that the reduct of the resolvent of (1.4) in y is a 0-proper system in x.

§2. CHARGE EXTENSION PROPERTIES.

Let us first introduce some notation and terminology. For all x, y in some Boolean
algebra B, write x \ y = x ∧ ¬y. A Boolean subring of B is a subset of B which contains
{0} and which is closed under the binary operations ∧, ∨ and \. A Boolean ring is a
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Boolean subring of some Boolean algebra; it is easy to prove that this notion is finitely
axiomatizable in the language (0,∧,∨, \). In every Boolean ring R, we shall write z = x+y

(resp. z =
∑

i<n xi) when z is the disjoint join of x and y (resp. of the xi, i < n).

2.1. Definition. Let R be a Boolean ring, let E be a pp-semigroup. Then a E-valued
charge on R is a map µ : R → E satisfying µ(0R) = 0E and µ(z) = µ(x) + µ(y) for all x,
y, z in R such that z = x + y.

It is obvious that then, µ is an increasing map.

If R is a Boolean ring, we introduce the pp-semigroup N[R] of all finite linear com-
binations with coefficients in N of elements of R, the zero of R being identified with
zero and the sum of disjoint elements of R being the same in R and in N[R]. If E is a
pp-semigroup and µ is a E-valued charge on R, then µ extends to a unique preordered
semigroup-homomorphism (the ‘integral’) from N[R] to E, which we still denote by µ. If
R is represented as a subring of some P(X), then N[R] is canonically isomorphic to the
pp-semigroup of functions f : X → N with finite range such that f−1{n} ∈ R for all
n in N \ {0}, and the integral takes a simple form (the so-called Abel transform) with a
straightforward proof:

2.2. Proposition. Let X be a set, let R be a Boolean subring of P(X), let E be a

pp-semigroup, let µ be a E-valued charge on R. Then for all f in N[R], we have

µ(f) =
+∞∑
n=1

µ
(
{x ∈ X : f(x) ≥ n}

)
.

Of course, with a proper formulation, proposition 2.2 does not need any representation
of R as a ring of sets.

Consider now the previous definition of the 1-CHEP (see the introduction). This
definition can of course easily be restricted to particular classes of Boolean algebras (e.g.
finite algebras), or on the contrary widened (e.g. to Boolean rings). Sufficient conditions
implying the 1-CHEP (for Boolean algebras) have been given in [12]. In this paper, we
will later on give a few necessary conditions for the 1-CHEP.

Let E be a pp-semigroup, let A and B be two Boolean subrings of a Boolean ring C,
let µ : A → E and ν : B → E be charges. Then µ and ν will be said to be consistent when
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for all X in A and Y in B, X ≤ Y (resp. X ≥ Y , X = Y ) implies µ(X) ≤ ν(Y ) (resp.
µ(X) ≥ ν(Y ), µ(X) = ν(Y )).

2.3. Proposition. In the context above, µ and ν are consistent if and only if there

is an preordered semigroup-homomorphism from N[A] + N[B] to E extending both µ and

ν.

(N[A] + N[B] is of course the internal sum in N[C] of N[A] and N[B]).

Proof. The condition given here is obviously sufficient. Conversely, suppose that µ

and ν are consistent.

Claim. Let f ∈ N[A] and g ∈ N[B]. Then f = g ⇒ µ(f) = ν(g) and f ≤ g ⇒ µ(f) ≤
ν(g) and f ≥ g ⇒ µ(f) ≥ ν(g).

Proof of claim. Immediate from proposition 2.2. Claim .

Now, let ρ be either = or ≤, let f , f ′ in N[A], g, g′ in N[B] such that f + g ρ f ′ + g′;
we shall prove that µ(f) + ν(g) ρ µ(f ′) + ν(g′). Substracting f ∧ f ′ from f and f ′ and
g ∧ g′ from g and g′, we see that without loss of generality, f ∧ f ′ = g ∧ g′ = 0. Suppose
first that ρ is =. Then f = g′ and g = f ′, thus the conclusion follows by the claim. If ρ

is ≤, then f ≤ g′ and g ≤ f ′, whence µ(f) ≤ ν(g′) and ν(g) ≤ µ(f ′) by the claim, the
conclusion follows again.

Consider now the previous definition of the 2-CHEP (see the introduction). Again, it
can be either restricted or widened (to arbitrary classes of Boolean rings). By proposition
2.3, every injective pp-semigroup has the (full) 2-CHEP (see [14]); in particular, P =
([0,+∞],+, 0,≤) is, by Tarski’s theorem, injective, thus it has the 2-CHEP. Moreover, the
terminology used here suggests that the 2-CHEP is stronger than the 1-CHEP, which is
far from being obvious in the definition above. Strangely (?), this is always the case (in a
sort of ‘uniform way’), as shown by the theorem below:

2.4. Theorem. The 2-CHEP implies the 1-CHEP.

Note that the analogue of this theorem in the case of abelian groups is immediate in
view of the (non-trivial!) result that every abelian group (with the coarse preordering) has
the 1-CHEP [3].

Proof. Let E be a pp-semigroup satisfying the 2-CHEP. To prove that E satisfies the
1-CHEP, it suffices, by Zorn’s lemma, to prove that for every Boolean subalgebra A of a
Boolean algebra B such that B is generated above A by one element B and every E-valued
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ei[A]

ei[A]

∞

B ¬B

A

ei[A]

ei[A]

∞

B ¬B

A

B
3-i

charge µ on A, µ extends to a E-valued charge on B. For convenience sake, represent B
(via Stone’s representation theorem) as an algebra of subsets of some set X. Let ∞ be
some object not in X × {0, 1, 2}, let Ω = (B × {0}) ∪ (¬B × {1, 2}) ∪ {∞}. For i = 1 or
2, let ei : X → Ω, x �→ (x, 0) (x ∈ B), x �→ (x, i) (x ∈ ¬B). Thus ei is a one-to-one map.
Put Bi =

(
(¬B) × {i}

)
∪ {∞}, and let Ai be the Boolean subalgebra of P(Ω) generated

by {ei[A] : A ∈ A} ∪ {B3−i}. Thus an element of Ai can have two forms:

— Either ei[A], A ∈ A:

— Or ei[A] + B3−i, A ∈ A:

Finally, put c = µ(X). Define E-valued charges µi : Ai → E by

{
µi

(
ei[A]

)
= µ(A) (all A ∈ A),

µi(B3−i) = c.
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Claim. µ1 and µ2 are consistent.

Proof of claim. First, let Z in A1 ∩A2. If Z ⊆ B ×{0}, then Z = e1[A] = e2[A] for
some A ∈ A, A ⊆ B, whence µ1(Z) = µ2(Z) = µ(A). Otherwise, it is not difficult to see
that Z = e1[A]+B2 = e2[A]+B1 for some A ∈ A containing ¬B; thus µ1(Z) = µ(A)+c =
µ2(Z). So we have proved that µ1|A1∩A2 = µ2|A1∩A2 . Now, let Z1 ∈ A1, Z2 ∈ A2 such
that Z1 ⊆ Z2; we shall prove that µ1(Z1) ≤ µ2(Z2). We argue by cases:

Case 1. Z1 ⊆ B × {0}, ∞ /∈ Z1.

Then Z1 = A1 × {0}, Z2 ⊇ A2 × {0} where A1 and A2 are in A and A1 ⊆ A2. The
conclusion follows.

Case 2. Z1 �⊆ B × {0}, ∞ /∈ Z1.

Thus Z1 = e1[A] for some A ∈ A, and B1 ⊆ Z2, thus µ1(Z1) = µ(A) ≤ c ≤ µ2(Z2).

Case 3. ∞ ∈ Z1.

Then Zi = ei[Ai] + B3−i for i = 1 or 2, where Ai ∈ A and A1 ⊆ A2. Thus µ1(Z1) =
µ(A1) + c ≤ µ(A2) + c = µ2(Z2).

In all three cases, µ1(Z1) ≤ µ2(Z2).

Similarly, Z1 ∈ A1, Z2 ∈ A2 and Z1 ⊇ Z2 implies µ1(Z1) ≥ µ2(Z2). So, by definition,
the claim holds. Claim .

Now, since E has the 2-CHEP, there exists a charge ρ : A1 ∨A2 → E extending both
µ1 and µ2. For all A in A, (A ∩B)× {0} = e1[A] ∩ e2[A] ∈ A1 ∨A2, and (A \B)× {1} =
e1[A] \ e2[A] ∈ A1 ∨A2; therefore, for all C in A1 ∨A2, (C ∩ B) × {0} and (C \ B) × {1}
belong to A1 ∨ A2. This allows us to define a E-valued charge ν on A1 ∨ A2 by

ν(C) = ρ
((

(C ∩ B) × {0}
)
∪

(
(C \ B) × {1}

))
.

Since ρ is a charge, ν is a charge. Furthermore, for all A in A, we have ν(A) =
ρ
(
e1[A]

)
= µ1

(
e1[A]

)
= µ(A). So ν satisfies the required conditions.

§3. THE GRID PROPERTY.

In this chapter, we shall completely solve the extension problem of two consistent
charges on finite algebras. We shall first adopt a convenient notation and terminology.
Say that a grid is an ordered pair (A,B) where A and B are Boolean subalgebras of some
P(S) where S is a finite set. A charged grid [on (A,B)] is an ordered pair (µ, ν) where
µ (resp. ν) is a E-valued charge (on some pp-semigroup E) on A (resp. on B); it is said
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b

b

a a a

2

1

1 2 3

to be consistent when µ and ν are consistent. Grids and charged grids can always be
represented the following way: let X (resp. Y ) be the set of atoms of A (resp. B), let
I = {(A, B) ∈ X ×Y : A∩B �= ∅}; then A (resp. B) is isomorphic to the Boolean algebra
of all sections of I by some vertical (resp. horizontal) band. Throughout this chapter, all
our examples of grids will be with X = {1, . . . , m} and Y = {1, . . . , n} for some m, n in
ω \ {0}. So to define a charged grid, we shall draw a X × Y -rectangle, the subset I of
X × Y (any subset with full first and second projection can do), and put the values of
µ (resp. ν) at the atoms of A (resp. of B) on the corresponding axis. For example, the
following picture

represents the case where X = {1, 2, 3}, Y = {1, 2}, I = {(1, 1), (2, 1), (2, 2), (3, 2)},
µ
(
{i}

)
= ai, ν

(
{j}

)
= bj (all i ∈ X, j ∈ Y ).

The following definition is exactly the restriction of the definition of the 2-CHEP to
finite Boolean algebras.

3.1. Definition. A pp-semigroup E has the grid property when it has the 2-CHEP
for finite Boolean algebras.

Our main theorem is the following (k-strong refinement pp-semigroups have been
defined just before the statement of lemma 1.5):

3.2. Theorem. A pp-semigroup has the grid property if and only if it is a 2-strong

refinement pp-semigroup.

Thus the grid property is finitely axiomatizable; a possible list of axioms equivalent to
the grid property is the following:

(∀a, b)
(
a ≤ b ⇒ (∃x)(a + x = b)

)
;

(∀a, b, c)
(
a + c ≤ b + c ⇒ (∃x 
 c)(a ≤ b + x)

)
;

(∀a, b, c, d)
(
b ≤ a + c, a + d ⇒ (∃x ≤ c, d)(b ≤ a + x)

)
;

(∀a, a′, b, b′)
(
(a ≡ b and a′ ≡ b′ and a + b′ = a′ + b) ⇒ (∃x ≡ 0)(a + x = b and a′ + x = b′

)
.
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a
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(We recall here that a 
 b stands for a + b = b and a ≡ b stands for a ≤ b and b ≤ a).

Proof. Assume first that E satisfies the grid property. We prove that E is a 2-strong
refinement pp-semigroup, in a sequence of claims.

Claim 1. Let ai, bi (i = 0 or 1) in E such that ai ≤ bi (i = 0 or 1) and a0+b1 = a1+b0.

Then there is x in E such that ai + x = bi (i = 0 or 1).

Proof of claim. Consider the following E-valued charged grid:

Our hypotheses imply consistency of this grid. Let ρ be an extension charge for this
grid, put x = ρ

(
{(2, 1)}

)
. Then x satisfies the required conditions. Claim 1.

Taking a0 = a1 and b0 = b1, we immediately get that E is minimal.

Claim 2. E satisfies the finite refinement property.

Proof of claim. Let a1, a2, b1, b2 in E such that a1 + a2 = b1 + b2. Consider the
following E-valued charged grid:

Its consistency results immediately from a1 + a2 = b1 + b2. If ρ is an extension charge
for this grid, put cij = ρ

(
{(i, j)}

)
. Then ai = ci1 + ci2 and bi = c1i + c2i for all i in

{1, 2}. Claim 2.

Claim 3. E satisfies the pseudo-cancellation property.

Proof of claim. Let a, b, c in E such that a + c ≤ b + c. Consider the following
E-charged grid:

12
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b

b

a a a
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1

1 2

Our hypothesis implies consistency of this grid. If ρ is an extension charge for this
grid, put x = ρ

(
{(2, 1), (3, 1)}

)
. Then x 
 c and a ≤ b + x. Claim 3.

Claim 4. For all a, ai, bi (i = 1 or 2) in E such that ai ≤ bi ≤ ai + a (i = 1 or 2)

and a1 + a2 + a = b1 + b2, there are x1, x2 in E such that ai + xi = bi (i = 1 or 2) and

x1 + x2 = a.

Proof of claim. Consider the following E-charged grid:

Our hypothesis implies consistency of this grid. If ρ is an extension charge for this
grid, put xi = ρ

(
{(2, i)}

)
(i = 1 or 2). It is immediate that x1 and x2 satisfy the required

conditions. Claim 4.

Claim 5. Let a, b, c in E such that a ≤ b ≤ a + c. Then there is x ≤ c in E such

that b = a + x.

Proof of claim. An immediate application of claim 4, where a1 becomes a, a2

becomes b, a becomes c, b1 becomes b and b2 becomes a + c. Claim 5.

Claim 6. E satisfies the finite interpolation property.

Proof of claim. As in [13, 2.28] (only minimality, the finite refinement property and
the result of claim 5 are used). Claim 6.
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Claim 7. E/ ≡ is a strong refinement pp-semigroup.

Proof of claim. We have already seen that E is minimal and satisfies the pseudo-
cancellation property; thus, it suffices to show that E satisfies part (ii) of definition of
a strong refinement pp-semigroup (definition 1.2). So let a, b, c, d in E such that b ≤
a + c, a + d. By claim 6, there is h in E such that a, b ≤ a + h ≤ a + c, a + d. Using
minimality of E, the pseudo-cancellation property and the finite refinement property, we
see that there are v, e such that h = v+e and v ≤ c and e+a ≤ a. Thus a+v ≤ a+h ≤ a+d,
whence there are x ≤ d and w such that v = x + w and w + a ≤ a. Hence, x ≤ v ≤ c

and b ≤ a + h = a + v + e ≤ a + v = a + x + w ≤ a + x, so that x satisfies the required
properties. Claim 7.

Claim 8. E satisfies the 2-diagonal property.

Proof of claim. Let ai, bi in E (i = 1 or 2) such that ai ≡ bi and a1 + b2 = a2 + b1.
Using claim 4 after having replaced a by 0, a2 by b1, b2 by a1, we obtain x and y in E

such that x + y = 0 and a1 + x = b1 and a2 = b2 + y, whence x ≡ 0 and b2 = a2 + x, so
that x satisfies the required conditions. Claim 8.

We conclude one direction by claims 7 and 8.

Conversely, suppose that E is a 2-strong refinement pp-semigroup. We shall prove
that E satisfies the grid property. If G = (µ, ν) is a E-charged grid on a grid (A,B), define
the weight of G to be the integer m+n+ s, where m (resp. n, s) is the number of atoms of
A (resp. B, A ∨ B), so that s ≤ mn. Furthermore, suppose that G is consistent; we have
to find a E-valued charge on A ∨ B extending both µ and ν. Without loss of generality,
the atoms of A∨ B are points; let Ω be their set. Furthermore, it is sufficient to solve the
extension problem on each atom of A ∩ B, so that we may restrict ourselves to the case
where A ∩ B = {∅,Ω}. Then, we define the interaction matrix of A and B by

M =
(
1Ai(x)

)
(i,x)∈[1, m+n]×Ω

,

where (Ai)i∈[1, m] (resp. (Ai)i∈[m+1, m+n]) is the list of atoms of A (resp. B). To avoid
trivialities, m ≥ 1 and n ≥ 1.

Claim 9. The image space of [the column vectors of] M is the orthocomplement of

the vector �a = (ai)i∈[1, m+n] where ai = 1 for 1 ≤ i ≤ m, ai = −1 for m + 1 ≤ i ≤ m + n.

In particular, M has rank m + n − 1.

Proof of claim. For all i, let Ri =
(
1Ai(x)

)
x∈Ω

be the ith row of M ; let bi (1 ≤ i ≤
m + n) in Z such that

∑m+n
i=1 biRi = 0. Let P (resp. N) be the set of i such that bi ≥ 0

14



(resp. bi < 0), define f+, f−, g+, g− in N[P(Ω)] by

f+ =
∑

i∈P∩[1, m]

bi · 1Ai , f− =
∑

i∈N∩[1, m]

(−bi) · 1Ai ,

g+ =
∑

i∈P∩[m+1, m+n]

bi · 1Ai , g− =
∑

i∈N∩[m+1, m+n]

(−bi) · 1Ai .

It follows that f+ + g+ = f− + g− and f+ ∧ f− = g+ ∧ g− = 0, whence f+ = g− and
f− = g+; thus all four of them are in N[A] ∩ N[B] = N[A∩ B] = N, i.e. they are constant.
Let p (resp. q) be the constant value of f+ (resp. f−), so that both are in N. If f+ = 0,
then bi = −q for 1 ≤ i ≤ m, bi = q for m + 1 ≤ i ≤ m + n. If f+ �= 0, then bi = p for
1 ≤ i ≤ n, bi = −p for m + 1 ≤ i ≤ m + n. The conclusion follows. Claim 9.

Now, we prove that for any consistent E-valued grid (µ, ν) defined on the grid (A,B)
such that A ∩ B = {∅,Ω} and A ∨ B = P(Ω), µ and ν extend to a E-valued charge on
P(Ω), by induction on the weight of (µ, ν). As before, let m (resp. n) be the number
of atoms of A (resp. B), let s = |Ω|. To avoid trivialities, m, n, s ≥ 2. Note that by
claim 9, m + n − 1 ≤ s ≤ mn. By proposition 2.3, there is an preordered semigroup-
homomorphism λ from N[A]+N[B] to E extending both µ and ν. For each S ⊆ [1, m+n],
put AS =

⋃
i∈S Ai. We consider two cases.

Case 1. s ≥ m + n.

By claim 9 and the fact that M has s ≥ m+n columns, there exists x0 in Ω such that
the matrix M0 =

(
1Ai(x)

)
(i,x)∈[1, m+n]×(Ω\{x0}) has still rank m+n−1; put Ω0 = Ω\{x0}.

We may assume without loss of generality that {x0} = A1 ∩Am+1. If A1 = {x0}, then the
column space of M0 is orthogonal to the vector (a′

i)i∈[1, m+n] such that a′
0 = 0, a′

i = 1 for
2 ≤ i ≤ m and a′

i = −1 for m + 1 ≤ i ≤ m + n, which contradicts claim 9 and the fact
that M and M0 have the same column space; hence A1 �= {x0}. Similarly, Am+1 �= {x0}.
Put X = A1 \ {x0}, Y = Am+1 \ {x0}, Z = {x0}, and let A0 = {A ∩ Ω0 : A ∈ A},
B0 = {B∩Ω0 : B ∈ B}. Then A0 has atoms X, A2,..., Am and B0 has atoms Y , Am+2,...,
Am+n. Put I = [2, m] and J = [m + 2, m + n].

Claim 10. A0 ∩ B0 = {∅,Ω0} and A0 ∨ B0 = P(Ω0).

Proof of claim. For each x in Ω0, there are i ∈ [1, m] and j ∈ [m + 1, m + n] such
that Ai ∩Aj = {x}, whence {x} = (Ai \ {x0})∩ (Aj \ {x0}). Thus A0 ∨B0 = P(Ω0). Now,
let C be an element of A0 ∩ B0 not in {∅,Ω0}. If C = AS + X = AT for some S ⊆ I and
T ⊆ J , then for all x in Ω0, we have

1A1(x) +
∑
i∈S

1Ai(x) = 1X(x) +
∑
i∈S

1Ai(x) = 1X+AS
(x) = 1AT

(x),
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whence the vector (a′′
i )i∈[1, m+n] defined by a′′

i = 1 (i ∈ {1} ∪ S), a′′
i = −1 (i ∈ T ), a′′

i = 0
(i /∈ S ∪ T ∪ {1}) is in the orthocomplement of the image space of M0, whence, by claim
9 and definition of M0, S = I and T = J , a contradiction. Similarly, one cannot have
C = AT + Y = AS for some S ⊆ I, T ⊆ J . Claim 10.

Define finite sets I+, I−, J+, J−, K, L by

I+ = {(S, T ) ∈ P(I) × P(J) : AS + X ≤ AT },
I− = {(S, T ) ∈ P(I) × P(J) : AT ≤ AS + X},
J+ = {(S, T ) ∈ P(I) × P(J) : AT + Y ≤ AS},
J− = {(S, T ) ∈ P(I) × P(J) : AS ≤ AT + Y },

K = {(S, T ) ∈ P(I) × P(J) : AS + X ≤ AT + Y },
L = {(S, T ) ∈ P(I) × P(J) : AT + Y ≤ AS + X}.

Furthermore, note that the only ordered pair (S, T ) in P(I)×P(J) such that AS+X =
AT + Y is (I, J) itself. Then, consider the following linear system, with coefficients in
N[A] + N[B]:

(3.1)




x + z = A1;
y + z = Am+1;
AS + x ≤ AT (all (S, T ) ∈ I+)
AT ≤ AS + x (all (S, T ) ∈ I−)
AT + y ≤ AS (all (S, T ) ∈ J+)
AS ≤ AT + y (all (S, T ) ∈ J−)
AS + x ≤ AT + y (all (S, T ) ∈ K)
AT + y ≤ AS + x (all (S, T ) ∈ L)
AI + x = AJ + y

Then this linear system admits a solution in N[P(Ω)], namely (X, Y, Z); but this is a
2-proper linear system by proposition 1.7, hence, applying theorem 1.6 to the preordered
semigroup-homomorphism λ from N[A]+N[B] to E, we obtain that the image of (3.1) under
λ admits a solution in E; denote by (x, y, z) this solution. One can define E-valued charges
µ0 and ν0, respectively on A0 and B0, by µ0(Ai) = µ(Ai) (all i ∈ I), ν0(Ai) = ν(Ai) (all
i ∈ J) and µ0(X) = x, ν0(Y ) = y. By definition of (x, y, z), µ0 and ν0 are consistent. Since
(µ0, ν0) has weight m+n+s−1, it follows from the induction hypothesis that there is a E-
valued charge ρ0 on P(Ω0) extending both µ0 and ν0. Define a E-valued charge ρ on P(Ω)
extending ρ0 by ρ(Z) = z. Then ρ(A1) = x+ z = µ(A1) and ρ(Am+1) = y + z = ν(Am+1);
it follows that ρ extends both µ and ν.
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Case 2. s = m + n − 1.

We first prove the

Claim 11. There is i in [1, m + n] such that Ai is a singleton.

Proof of claim. Assume e.g. that m ≥ n. Suppose that |Ai| ≥ 2 for all i ∈ [1, m].
Then s = |Ω| =

∑m
i=1 |Ai| ≥ 2m, whence n > m, a contradiction. Claim 11.

So we can assume without loss of generality that A1 = {x0} and x0 ∈ Am+1 for some
x0. Note that Am+1 �= {x0}, otherwise {x0} would be in A ∨ B, a contradiction. Put
Y = Am+1 \ {x0}; let Ω0 = Ω \ {x0}, A0 = {A ∩ Ω0 : A ∈ A, B0 = {B ∩ Ω0 : B ∈ B.
Thus A0 has atoms A2,..., Am and B0 has atoms Y , Am+2,..., Am+n. Put I = [2, m] and
J = [m + 2, m + n].

Claim 12. A0 ∩ B0 = {∅,Ω0} and A0 ∨ B0 = P(Ω0).

Proof of claim. The proof of the second fact is as in claim 10. To prove the first
fact, we need only to check the case where AS = AT +Y for some S ⊆ I and T ⊆ J . Thus
A1 + AS = Am+1 + AT , whence their common value is Ω, whence S = I and T = J .

Claim 12.

Now, let I and J be the finite sets defined by

I = {(S, T ) ∈ P(I) × P(J) : AS ≤ AT + Y },
J = {(S, T ) ∈ P(I) × P(J) : AT + Y ≤ AS}.

Then, consider the following linear system, with coefficients in N[A] + N[B]:

(3.2)




A1 + y = Am+1;
AS ≤ AT + y (all (S, T ) ∈ I);
AT + y ≤ AS (all (S, T ) ∈ J );
AJ + y = AI .

Then this linear system admits a solution in N[P(Ω)], namely Y ; but this is a 2-proper
linear system, hence, applying theorem 1.6 to the preordered semigroup-homomorphism
λ from N[A] + N[B] to E, we obtain that the image of (3.2) under λ admits a solution
in E; denote by y this solution. One can define E-valued charges µ0 and ν0, respectively
on A0 and B0, by µ0 = µ|A0 , ν0(Ai) = ν(Ai) for i ∈ J , and ν0(Y ) = y. By definition
of y, µ0 and ν0 are consistent. Since (µ0, ν0) has weight m + n + s − 2, it follows from
the induction hypothesis that there is a E-valued charge ρ0 on P(Ω0) extending both µ0

and ν0. Define a E-valued charge ρ on P(Ω) extending ρ0 by ρ(A1) = µ(A1). Then
ρ(Am+1) = ρ(A1 + Y ) = λ(A1) + y = λ(Am+1), whence ρ extends both µ and ν.

This concludes the proof of theorem 3.2.
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Since we deal with finite algebras, the conclusion of theorem 3.1 can even be strength-
ened to Boolean rings:

3.3. Theorem. The grid property for Boolean algebras implies the grid property for

Boolean rings.

Note that theorem 3.3 does not generalize to the infinite case, since e.g. N has the
2-CHEP for Boolean algebras but not for Boolean rings.

Proof. Let E be a pp-semigroup satisfying the grid property [for Boolean algebras].
By theorem 3.2, E is a 2-strong refinement pp-semigroup. Let A and B be two Boolean
subrings of a finite Boolean ring C, let µ : A → E and ν : B → E be consistentcharges.
We can suppose that C = P(C) for some finite set C. Let A =

⋃A and B =
⋃B, so that

A (resp. B) is a Boolean subalgebra of P(A) (resp. P(B)). Let c be some object not in
C, let C ′ = C ∪ {c}. Put X = C ′ \ A, Y = C ′ \ B (the introduction of c guarantees that
X and Y are nonempty), let A′ (resp. B′) be the Boolean subalgebra of P(C) generated
by A and {X} (resp. by B and {Y }). We shall extend µ (resp. ν) to a E-valued charge µ′

(resp. ν′) on A′ (resp. B′) such that µ′ and ν′ are consistent: then we will be done since
E has the grid property for Boolean algebras.

Let E = {(U, V ) ∈ A× B : U + X = V + Y }. It is obvious that (A, B) ∈ E and that
(U, V ) ∈ E and (U ′, V ′) ∈ E implies (U ∩U ′, V ∩V ′) ∈ E , whence E admits a least element,
say (U0, V0). Consider the finite sets I, J , K, L defined by

I = {(U, V ) ∈ A× B : U ≤ V + Y },
J = {(U, V ) ∈ A× B : V ≤ U + X},

K = {(U, V ) ∈ A× B : U + X ≤ V + Y },
L = {(U, V ) ∈ A× B : V + Y ≤ U + X}.

Then consider the following linear system, with coefficients in N[A] + N[B]:

(3.3)




U0 + x = V0 + y;
U ≤ V + y (all (U, V ) ∈ I);
V ≤ U + x (all (U, V ) ∈ J );
U + x ≤ V + y (all (U, V ) ∈ K);
V + y ≤ U + x (all (U, V ) ∈ L).

Then this linear system admits a solution in N[P(Ω)], namely (X, Y ); but by propo-
sition 1.7, this is a 1-proper (thus 2-proper) linear system, hence, applying theorem 1.6 to
the preordered semigroup-homomorphism λ from N[A] + N[B] to E (given by proposition
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2.3), we obtain that the image of (3.3) under λ admits a solution in E; denote by (x, y)
this solution. Define E-valued charges µ′ : A′ → E and ν′ : B′ → E by µ′(X) = x and
ν′(Y ) = y. We show that µ′ and ν′ are consistent. Since we can never have U +X ≤ V (or
V + Y ≤ U) for (U, V ) ∈ A × B (because c /∈ A ∪ B), the part of the consistency dealing
with ≤ and ≥ results immediately from the definition of (x, y). It remains to prove that
for all (U, V ) in A × B such that U + X = V + Y , we have λ(U) + x = λ(V ) + y. By
definition of (U0, V0), there are S in A and T in B such that U = U0 + S and V = V0 + T ,
whence S = T , whence S, T ∈ A ∩ B. Hence,

λ(U) + x = λ(U0) + x + λ(S)

= λ(V0) + y + λ(T )

= λ(V ) + y.

Thus µ′ and ν′ are consistent. The conclusion follows.

We can now harvest the corollaries of theorems 3.2 and 3.3. First of all, note that
theorem 3.2 implies immediately the result obtained by Basile and Rao in [1]:

3.4. Proposition. Any abelian group (equipped with its coarse preordering) satisfies

the grid property.

Actually, theorem 3.2 shows immediately the following

3.5. Corollary. The only coarse pp-semigroups satisfying the grid property are the

abelian groups.

At the opposite end of pp-semigroups, theorem 3.2 also characterizes the antisymmet-
ric pp-semigroups satisfying the grid property:

3.6. Corollary. An antisymmetric pp-semigroup satisfies the grid property if and

only if it is a strong refinement pp-semigroup.

So this yields us an algebraic (as opposed to ‘arithmetical’) characterization of strong
refinement pp-semigroups.

Note also that the proof of theorem 3.2 (see claim 2) also shows us that strong refine-
ment pp-semigroups satisfy the finite refinement property, thus that the definition given
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here and the definition given in [14] are equivalent. This point could have been established
much more directly by using lemma 1.4.

Theorem 3.2 also allows us to characterize immediately all cancellative pp-semigroups
satisfying the grid property:

3.7. Corollary. A cancellative pp-semigroup satisfies the grid property if and only

if it satisfies the finite interpolation property.

It also shows us that adjoining an infinite element does not harm the grid property:

3.8. Corollary. A pp-semigroup E has the grid property if and only if E ∪ {∞} has

the grid property.

Note also that the grid property implies separativeness (see [17]):

3.9. Corollary. Any pp-semigroup satisfying the grid property is separative.

Proof. Let E be a pp-semigroup satisfying the grid property. Since E is minimal, it
is preminimal, i.e. it satisfies both statements

(∀a, b, c, d)
(
(a + c ≤ b + c and c ≤ d) ⇒ a + d ≤ b + d

)
,

(∀a, b, c, d)
(
(a + c = b + c and c ≤ d) ⇒ a + d = b + d

)
.

Furthermore, the pseudo-cancellation property yields that E satisfies the statement

(∀a, b)(a + b ≤ 2b ⇒ a ≤ b).

Finally, let a, b in E such that 2a = a + b = 2b. By the previous result, a ≡ b. By
the 2-diagonal property, there is x ≡ 0 satisfying the following linear system:

{
a + x = b;
a + x = a.

Thus, a = b. This checks the definition of separativeness introduced in [17].

This implies easily that every pp-semigroup satisfying the grid property can be em-
bedded (in a natural way) into a product of ‘cones with infinity’ G+ ∪ {∞} where G is a
preordered abelian group satisfying the finite interpolation property.
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Let us conclude this chapter by showing a connection between the grid property and
the 2-CHEP. Say that a pp-semigroup E is algebraically compact when every (infinite)
linear system with parameters from E of which every finite subsystem admits a solution
in E admits a solution in E.

3.10. Proposition. Every algebraically compact 2-strong refinement pp-semigroup

satisfies the 2-CHEP for Boolean rings.

Proof. Let A, B be Boolean subrings of a Boolean ring C, let E be an algebraically
compact strong refinement pp-semigroup, let µ : A → E and ν : B → E be consistent
charges. Let (xc)c∈C be a C-indexed family of variables; consider the following linear
system: 


xc = xa + xb (all a, b, c in C such that c = a + b);
xa = µ(a) (all a ∈ A);
xb = ν(b) (all b ∈ B).

Since E has the 2-CHEP for finite Boolean rings (by theorem 3.3), every finite sub-
system of this system admits a solution in E; since E is algebraically compact, the whole
system admits a solution in E; this solution is obviously a E-valued charge on C extending
both µ and ν.

3.11. Corollary. N = N ∪ {∞} satisfies the 2-CHEP for Boolean rings.

Proof. The Alexandroff compactification of the discrete topology on N yields a com-
pact Hausdorff topology on N, for which the addition is continuous. Thus N is a fortiori
algebraically compact, whence the conclusion follows.

Another example of algebraically compact pp-semigroup is G+ ∪ {∞}, where G is
any divisible complete �-group. In fact, G+ ∪ {∞} is an injective pp-semigroup by the
characterization given in [14], whence it is algebraically compact.

3.12. Question. Let G be a complete �-group. Is G+ ∪ {∞} algebraically compact?

Let us finally mention the fact that for abelian groups, algebraic compactness is strictly
stronger that the 2-CHEP: this is a consequence of [10], where the authors show that an
abelian group satisfies the 2-CHEP if and only if it is cotorsion.
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§4. CASE OF POSITIVE CONES OF ORDERED ABELIAN GROUPS.

In this chapter, we shall prove some partial converses of theorems proved in [12] and
here.

We shall first need some elementary results about ordered sets. Let E be an ordered
set, let κ and λ be non zero ordinals, let s ∈ Eκ. Then E satisfies the (s, λ)-interpolation
property (in abbreviation the (s, λ)-IP) when for all t ∈ Eλ such that s ≤ t (i.e. (∀ξ <

κ)(∀η < λ)(s(ξ) ≤ t(η))), there exists c in E such that s ≤ c ≤ t. Similarly, E satisfies the
(s, λ ↓)-IP when the conclusion above holds for all decreasing families t ∈ Eλ. One defines
similarly the (κ, t)-IP, the (κ ↑, t)-IP, etc.... E satisfies the (κ, λ)-IP when for all s ∈ Eκ

and t ∈ Eλ such that s ≤ t, there is c in E such that s ≤ c ≤ t. One defines similarly the
(κ, λ ↓)-IP, etc.... In 1.1 and 1.2, E is a fixed ordered set.

4.1. Lemma. Let κ ≥ 1, λ ≥ 2, let s ∈ Eκ. Then the following are equivalent:

(i) E satisfies the (s, λ)-IP;

(ii) E satisfies the (s, 2)-IP and the the (s, η ↓)-IP for all nonzero η ≤ λ.

Proof. An easy induction.

4.2. Lemma. Let κ, λ ≥ 2. Then the following are equivalent:

(i) E satisfies the (κ, λ)-IP;

(ii) For all non zero ξ ≤ κ and η ≤ λ, E satisfies the (ξ ↑, 2)-IP, the (2, η ↓)-IP and the

(2, 2)-IP.

Proof. Assuming (ii), one proves, using lemma 4.1 (for ≤ and ≥) that for all s ∈ Eκ,
E satisfies the (s, λ)-IP. The proof is straightforward.

Now, from 4.3 to 4.7, let E be the positive cone of an abelian ordered group.

4.3. Lemma. Let A be a Boolean subring of a Boolean algebra B such that 1B /∈ A,

let µ be a E-valued charge on A and let c in E such that (∀A ∈ A)(µ(A) ≤ c). Let

A∗ = A∪{¬A : A ∈ A} be the Boolean subalgebra of B generated by A. Define a map µ∗

from A∗ to E extending µ by putting µ∗(¬A) = c − µ(A). Then µ∗ is a E-valued charge

on A∗ extending µ.

Proof. Straightforward.
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4.4. Lemma. Let A, B be Boolean subrings of a Boolean algebra C such that

(∀(A, B) ∈ A×B)(A∨B �= 1C), let µ : A → E and ν : B → E be bounded (say, by c ∈ E)

consistent E-valued charges. Then µ∗ and ν∗ [as they have been defined in lemma 4.3] are

consistent.

Proof. The additional hypothesis on A and B allows us to eliminate one case in the
verification of consistency of µ∗ and ν∗; from then on, the proof is straightforward.

4.5. Lemma. Suppose that E satisfies the 2-CHEP for Boolean algebras. Then E

has the 2-CHEP for bounded charges on Boolean rings.

Proof. Let µ : A → E and ν : B → E be bounded (say, by some c ∈ E) consistent
charges, A and B being Boolean subrings of a Boolean ring C. Without loss of generality,
A, B, C satisfy the hypothesis of lemma 4.4. Thus, µ∗ and ν∗ (their definition depends on
c) are consistent charges on the Boolean algebras A and B. The conclusion follows from
the hypothesis.

4.6. Lemma. Suppose that E satisfies the 2-CHEP [for Boolean algebras]. Then for

every infinite ordinal κ, E satisfies the (κ ↑, 2)-IP and the (2, κ ↓)-IP.

Proof. Since E is the positive cone of an abelian ordered group, it suffices to prove
the first property. So let a, b in E, let (cξ)ξ<κ be an increasing κ-sequence of elements of
E such that cξ ≤ a, b for all ξ. Let u, v be two distinct objects not in κ, let Ω = κ∪{u, v}.
Let A (resp. B) be the Boolean subring of P(Ω) generated by all intervals η\ξ (ξ ≤ η < κ)
and (κ \ ξ) ∪ {u} (resp. (κ \ ξ) ∪ {v}), ξ < κ. One can define a E-valued charge µ

(resp. ν) on A (resp. B) by putting µ(η \ ξ) = ν(η \ ξ) = cη − cξ in the first case, and
µ
(
(κ \ ξ)∪ {u}

)
= a− cξ, ν

(
(κ \ ξ)∪ {v}

)
= b− cξ for all ξ < κ. It is straightforward that

µ and ν are consistent charges. By assumption, there is a charge ρ from the Boolean ring
C = A ∨ B to E extending both µ and ν. Let c = ρ(κ). It is immediate that cξ ≤ c for all
ξ and that c ≤ a, b.

To complete the picture, we prove the

4.7. Lemma. Suppose that E satisfies the 1-CHEP [for Boolean algebras]. Then for

all infinite ordinals κ and λ, E satisfies the (κ ↑, λ ↓)-IP.

Proof. Without loss of generality, κ and λ are limit ordinals. Let (aξ)ξ<κ be an
increasing κ-sequence of elements of E and let (bη)η<λ be a decreasing sequence of elements
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of E such that (∀(ξ, η) ∈ κ × λ)(aξ ≤ bη). Let Ω = (κ × {0}) ∪ (λ × {1}), equipped with
the linear ordering ≤ defined by

(ξ, m) ≤ (η, n) ⇔
(
m < n or (m = n = 0 and ξ ≤ η) or (m = n = 1 and η ≤ ξ)

)
.

Adjoin a least element, say o, to Ω; let Ω∗ = Ω ∪ {o}. Define a family (cζ)ζ∈Ω∗ by
co = 0, c(ξ,0) = aξ (all ξ < κ), c(η,1) = bη (all η < λ). Then (cζ)ζ∈Ω∗ is increasing (for
the ordering of Ω∗), and one can define a E-valued charge µ on the Boolean subalgebra
A of P(Ω) generated by all intervals (σ, τ ] by putting µ

(
(σ, τ ]

)
= cτ − cσ (σ ≤ τ). By

assumption, µ extends to a E-valued charge ν on the Boolean subalgebra B of P(Ω)
generated by A and {I} where I =

⋃
ξ<κ[(0, 0), (ξ, 0)]. Let c = ν(I). It is straightforward

to verify that (∀ξ < κ)(aξ ≤ c) and (∀η < λ)(c ≤ bη.

From lemmas 4.2, 4.6 and 4.7 and results in [12], we deduce immediately the following
result:

4.8. Theorem. Let G be a directed, abelian ordered group. If G+ satisfies the

2-CHEP, then G is a complete �-group. Furthermore, if G is a �-group, then G+ satisfies

the 1-CHEP if and only if it is a complete �-group.

Certain results of this chapter can be extended (with similar proofs) to the objects
called D.P.O.M.’s introduced in [17]; for example, if G is an abelian ordered group, then
G+ ∪ {∞} is a D.P.O.M. .

(Added in proof) The second author has answered positively question 3.12; that is, the positive cone of

a complete �-group with infinity adjoined is always algebraically compact; thus, by proposition 3.10, it has the

2-CHEP.
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