
HAL Id: hal-00004661
https://hal.science/hal-00004661

Preprint submitted on 11 Apr 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variable Range Hopping Conductivity: Case of the
non-constant density of states

Said Boutiche

To cite this version:
Said Boutiche. Variable Range Hopping Conductivity: Case of the non-constant density of states.
2001. �hal-00004661�

https://hal.science/hal-00004661
https://hal.archives-ouvertes.fr


Variable Range Hopping Conductivity: 
Case of the non-constant density of states 

 
 

Saïd Boutiche 
Dept. de Physique, Universite de Bechar 

08000, Bechar – Algeria 
 

e_learning_1@hotmail.com 
 
The variable range hopping theory has been widely used these last years to explain the electric 
conduction process in some biological systems as DNA. However, the experimental 
measurements on such systems reveal that the density of states varies strongly near Fermi 
level. This observation suggests that the theoretical concept of "constant density of states" 
near Fermi level is certainly insufficient to justify the observation of the T-1/4 conductivity in 
such systems. To overcome this difficulty, we show in this work that this conductivity may be 
obtained for any odd number q when the density of states is expressed under the asymmetric 
power law form: N(E) = N(EF) + const Eq. 
For this density of states, the thermoelectric power is also investigated. 
 
1-The hopping conduction 

 
1.1- History of the hopping conduction 
 

Few years after the discovery of the transistor effect in the second half of the forties by 
Bardeen, Brattain and Shockley, it has been observed as early as 1950 a break in the 
behaviour of doped Germanium conductivity at low temperatures. Hung and Gliessman [1] 
attributed this behaviour to a distinct mechanism from usual conduction that governs doped 
semiconductors. Some years later in 1956, Conwell [2] and Mott [3] suggested a model for a 
"new" process of conduction in which charge carriers conduct the electric current by 
thermally activated tunnelling from an occupied site to an empty site. This process has been 
known as phonon assisted hopping and was the starting point of a number of transport 
theories as, the model of Miller and Abrahams [4] developed in 1960. This model became the 
most widely accepted theory of conduction between localized states for the sixties decade and 
was the inspiration source of the variable range hopping theory of Mott [5]. In the beginning 
of the seventies, some investigators [6,7] found some insufficiencies in the analysis of the 
conduction paths of Miller and Abrahams and to overcome such deficiencies, a more 
sophisticated treatment, based on the percolation theory was suggested. Such an approach is 
still considered today as the most reliable theory for the evaluation of the electric coefficients 
as conductivity and thermoelectric power of non-crystalline semiconductors. We discuss 
bellow in terms of percolation, the effect of the density of states shape on the T-1/4 
conductivity of Mott and we investigate the corresponding thermopower. 
 

1.2- The random network of conductances 
 

When states are localized in the Anderson sense [8] near Fermi level Ef, Miller and Abrahams 
[4] have shown that the conduction problem of disordered systems is equivalent to the 
conduction process of a random network of conductances ijσ  that link sites at energies Ei and 
Ej, separated in space by the distance Rij. To conduct the electric current, ijσ  must be 
proportional to the hopping rate wij of the charge carrier from the i site to the j site. wij is in 



fact the condition of the conductance existence and was expressed by Miller and Abrahams 
under the form: 

 
ijjiij EfEfw τ])(1[)( −=                                                (1) 

which means that the conductance ijσ  exists only if the i site is occupied, with the probability 
f(Ei) and the j site is vacant with a probability 1 - f(Ej). In addition the charge transfer from i 
to j is possible only if there exist a transition rate ijτ , depending on the wave functions 
overlapping and must be proportional to the phonons density distribution )(∆ρ . Before the 
evaluation of wij, let write these different expressions. We have:  
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in these expressions k is the Boltzmann constant and T is the temperature of the system. All 
energies are measured from the Fermi level Ef, which is taken at the energies origin.  The 
transition rates is written under the form: 

{ } )(2exp. ∆−= ρατ ijij Rconst                                                     (2) 
 

in whichα  is the inverse localization length of the states and )(∆ρ  is the phonon density 
given by: 
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this expression is in fact the Bose-Einstein distribution and represents the phonons density 
that  will provide  the energy ji EE −=∆ , necessary to any hop from one site to another. By 
inserting equation (2) in (1) and by replacing the expressions of f(Ei) and f(Ej), we obtain: 
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where Eij is the hopping energy and will be discussed in details in the next sections. When wij 
takes a significant value, the i and j sites become connected via a conductance ijσ  
proportional to wij. We can then write: 
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The most important parameters in this conductance expression are the random variables Ei, Ej 
and Rij. The solution of the random network problem exists only when a continuous path of 
largest conductances cross the network from one side to the other. It is however not clear in 
this model when a conductance can be considered "large" and when it cannot. In other words 
it is unclear what are the physical conditions that must be satisfied for the existence of a 
continuous path of "large conductances" as the one shown in Figure-1. 
 



 
 

Figure-1: Simulation of a continuous path of "large conductances" in a random square  
network at the percolation threshold 

 
In the beginning of the seventies, the authors of references [6] and [7] have shown that this 
problem is best handled if percolation theory is used. Based on the concept of "critical 
percolation threshold", such a theory is in fact perfectly adapted to the description of the 
problem of random conductances network. It is indeed possible to define a critical value cσ  
and to consider only conductances larger than cσ  for the construction of the current 
continuous path. We have visualized such a situation in Figure-1 by representing only 
conductances with a value cσσ > . 

 
2- Electric properties of the hopping conduction mechanism 
 

2.1- Mott Conductivity  
To some extent, the model of the hopping conduction was fruitful since it is the inspiration 
source of the variable range hopping theory of Mott [5]. According to this theory, when 
conduction between localized states near Fermi level EF is by hopping, the temperature T 
dependence of the conductivity is given by: 
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To derive equation (5), Mott has minimized the argument of equation (4) with respect to the 
distance hop Rij. To do this, he assumed that the density of states is constant over the energy 
range of hopping: 
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In typical variable range hopping systems where Mott conductivity can be observed, the 
hopping energy ranges between 0.1 – 0.2 eV and it is difficult to believe that N(E) remains 
constant over such an energy range. But what equations (5) and (6) become if the density of 
states is non-constant near EF?  



Since Mott theory gives no answer to this question, it would be interesting to investigate this 
issue, particularly in the current microbiology/nanotechnology context for which it is believed 
that the DNA electric conductivity obeys [11,12] equation (5) with a strong density of states 
variation [13] near Fermi level. 
 

2.2- The hopping thermo-electric power (or thermopower)  
 
The thermo-electric power behaviour in the variable range hopping regime is also an acute 
problem. Indeed, all thermopower theories agree that the Peltier heat is zero for constant N(E) 
and this means that the thermopower must be zero in this situation. But the experimental 
results show various metallic and non-metallic behaviours. To get around this difficulty 
Zvyagin first [9], then Overhof [10] tried to find a compromise between the constant character 
of the density of states for which Mott law is derived and the non-constant density of states 
nature, which yields a non-zero thermopower. They assumed that the density of states varies 
"linearly and slowly" near EF so that the Mott conductivity can be observed simultaneously 
with a non zero thermo-electric power. They found the well known square root temperature 
dependence of the thermopower S: 
 

S = const. T1/2                                                                (7) 
 
It is then natural to ask also what equation (7) will become if the density of states N(E) is not 
slowly varying?  
 
3- Computation of the hopping conductivity for non-constant density of states.  
 
 3.1- The density of states 

To compute the hopping conductivity when the density of states N(E) is non-constant, 
we make use of the percolation theory. It is first necessary to make an assumption about the 
shape of N(E). Intuition and observation must be the keys parameters on which any 
theoretical choice must be rested. As we do it previously [14], we consider first that N(EF) is 
the density of states at Fermi level, we suppose thereafter that the asymmetric part of N(E) 
follows an odd power law form so that we can write: 
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where q = 1,3,5, … is an odd number and sq is a constant (sq is the slope for the linear case of 
N(E) ). 
 
 3.2- Construction of a random network of conductances 
 According to the percolation theory, the current is conducted through a random 
network only if there exist a percolating channel that goes from one side of the system to the 
other. For this, two critical conditions must be satisfied: the first concerns the nature of each 
conductance ijσ  given equation (4), that must be at least equal to a critical conductance cσ : 

cij σσ ≥                                                                     (9) 
and the second condition concerns the average number >< m(Ei)  of conductances linked to 
each site located at energy Ei. Such a number must be equal at least to a critical concentration 
c of links per site: 



 >=< )m(Eic                                                               (10) 
When the conditions (9) and (10) are satisfied it appears in the random network a critical path 
of conductances (as shown in Fig-1) joining one side of the system to the other. 
The problem of the random network is said solved only when cσ  is correctly identified and 
this happens when equation (10) is solved. 
 
 3.3- Resolution of the random network problem of conductances 
 With the help of equation (4), we can rewrite equation (9) under the form: 
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The right side of this equation is proportional to cσ  and Em is the energy that must be 
identified to solve our random network problem. To do this, we have first to evaluate the 
number m(Ei) when the density of states is given by equation (8). To find m(Ei) it is necessary 
to count all sites located at energies Ej accessible by the electron located at the site of energy 
Ei. Such Ej sites are randomly distributed within a sphere of radius Rij that can be calculated 
from equation (11): 
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By writing: 
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and by inserting equation (12) into equation (13) we obtain: 
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The integration of this equation is made over all Ej, whether Ej< Ei or Ej> Ei and according to 
equations (1) and (2), the following configurations are expected for Eij when Ei>0: 
    

 
 
By replacing these Eij values and equation (8) in equation (14), we can write m(Ei) as: 
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To avoid an extremely tedious calculation in the next steps, it is more simple to write m(Ei) 
under the form: 
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where m0(Ei) represents the number of conductances resulting from the symmetrical part 
N(EF) of the density of states N(E) and ),( qEiµ is the number of conductances resulting from 
the asymmetrical part of N(E). By comparing equations (15) and (16), we obtain for Ei>0: 
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and 
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and we obtain for Ei<0: 
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where x = Ei/Em is a new dimensionless energy variable of integration and –E0 is the energy 
solution of the equation N(E) = 0. Since m(x) is a physical product of the density of states, it 
is not surprising to obtain m0(-x) = m0(x)  and ),(),( qxqx µµ −=− . We show in Figure-2 

these parameters represented in unit of 4
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the temperature of the system is such 0EEm ≈  . 

 
 

Figure-2: Plot of the m(x) number of conductances attached to the site located at x for q=1. 
 



The last step of the resolution of our percolation problem concerns the evaluation of the 
average number of conductances linked to the site located at energy Ei. The simplest way to 
obtain this number is to follow the procedure of Pollak [7] by weighting m(Ei) with a 
probability factor that is proportional to m(Ei)N(Ei), so that equation (10) becomes: 
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To reduce the tedious and important calculation volume for the evaluation of these integrals, it 
is more simple to expand their integrands under the form: 
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In equation (22) we have omitted to write the asymmetrical functions since their integrations 
cancel over positive and negative energies. A detailed examination of the surfaces delimited 
by each term of the integrands (see Figure-2) shows that eq.(22) is quasi-similar [14] to that of 
ref.[7]: 
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derived for constant density of states N(E) = N(EF). By inserting equation (17) in eq(23) and 
by taking as in ref.[7], c = 1.7, we obtain: 
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We can then deduce that the hopping energy layer of equation(11): Em =  kT.(T0/T)1/4 and 
eq.(5) are valid for any odd q (and sq) when N(E) is given by eq.(8), as if N(E) = N(EF). These 
results are summarized in Figure-3. 
 

 
Figure-3: Some N(E) shapes for which Mott conductivity is obtained  

 
 
 



4- Thermo-electric power in the variable range hopping case 
 
To compute the Seebeck coefficient S (or thermopower), we start from the formula: 
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where e is the electronic charge and Π is an energy called the Peltier heat. Equation (24) is 
one of the classical Kelvin relations of thermo-electricity; for metals it gives [15]: 
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In the variable range hopping regime, Πmay be interpreted [14] as the mean energy of any 
site that belongs to the continuous critical path of conductances. We can then write: 
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In this expression, we have weighted the energy E by a probability factor p(E) that is assumed 
proportional to the number m(E) of conductances attached to the site of energy E. By using 
equations (8) and (16), equation (26) becomes: 
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In this expression, we have again omitted to write the asymmetrical functions of E since their 
integrations cancel over positive and negative energies. After the evaluation of equation (27), 
equation (24) yields: 
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In this thermoelectric power equation, the second term of the square brackets expression can 
be neglected for two reasons: firstly 
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tends to zero with q as it is shown in the plot of Figure-4 (Γ is the Euler function). 

 
Figure 4: sketch of G(q) in function of q 



Secondly the term ((dlnN(E)/dEq)Em
q) is always < 1. We can then write: 
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in which F(q) is given by: 
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By replacing Em by its value (see equation-23), we find [14] that the T dependence of the 
variable range hopping thermoelectric power is a class given by: 
 

FEE
q

qq
q

dE
ENdTTk

e
kqFS

=

−+







=

)(ln  )( 4
13

4
1

0                                 (30) 

For the linear asymmetry case (q = 1) of the density of states, the classical variable range 
hopping thermopower formula [9,10,16] is recovered: 
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in which we have for the numerical constant: F(1) = 5/42. 
 
 
5- Variable range hopping and DNA molecule conductivity  
 
If we consider that DNA is a conductor substance of electric charges [12], and if in addition 
we admit that variable range hopping is the main process that governs the charges transport 
along the DNA molecule [12], then it would be difficult to conciliate the variable range 
hopping mechanism in its classic conception (constant density of states) and the strong N(E) 
variation observed for this molecule [13, 17]. 
In this work, we have shown that the T-1/4 conductivity of the variable range hopping 
mechanism can be valid even for non-constant density of states. 
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