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SINGULAR SYMPLECTIC MODULI SPACES

D. KALEDIN, M. LEHN, AND CH. SORGER

Abstract. Moduli spaces of semistable sheaves on a K3 or abelian surface

with respect to a general ample divisor are shown to be locally factorial, with

the exception of symmetric products of a K3 or abelian surface and the class

of moduli spaces found by O’Grady. Consequently, since singular moduli space

that do not belong to these exceptional cases have singularities in codimension

≥ 4 they do no admit projective symplectic resolutions.

1. Introduction

How to construct irreducible holomorphic symplectic manifolds? Except for the

variety of Beauville and Donagi [4] all known examples arise from moduli spaces of

semistable sheaves on a K3 or abelian surface.

For every element v in the Mukai lattice Heven(X, Z) of a polarised K3 or abelian

surface (X, H) there is an associated moduli space Mv that parametrises polystable

sheaves E with Mukai vector v = v(E) := ch(E)
√

td(X). If H and v are chosen

to the effect that no strictly semistable sheaves exist, i.e. every semistable sheaf is

automatically stable, then Mv is a projective holomorphically symplectic manifold

due to Mukai [21].

In the opposite case, Mv is singular and one may ask whether Mv at least admits

a projective symplectic resolution. This question has been raised and successfully

answered in two cases by O’Grady [23, 24], leading to two new deformation classes

of irreducible holomorphic symplectic manifolds.

In this paper we give a complete answer to O’Grady’s question for general ample

divisors H and moduli spaces whose expected dimension 2+〈v, v〉 is≥ 4. The answer

depends essentially only on the divisibility of the Mukai vector v ∈ Heven(X, Z) and

the dimension of the moduli space. We may write v = mv0 with a primitive Mukai

vector v0 = (r, c, a) and a multiplicity m ∈ N. Suppose for simplicity that r > 0,

and let H denote a v–general ample divisor. Then every semistable sheaf E with

Mukai vector v(E) = v0 is stable, and a necessary and sufficient condition for the

existence of E is that c ∈ NS(X) and that 〈v0, v0〉 ≥ −2. There are five principal

cases to distinguish:

1) If 〈v0, v0〉 = −2, then Mukai has shown that Mv0
consists of a single point

[E0] only. As the expected dimension of the moduli space Mmv0
is negative for
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m > 0 there are no stable sheaves in this case, and it follows by induction that any

semistable sheaf must be of the form E⊕m
0 . Hence Mv is a single point as well.

2) If 〈v0, v0〉 = 0, the moduli space Mv0
is again a K3 surface or an abelian

surface if X is K3 or abelian due to beautiful results of Mukai. It turns out that

any semistable sheaf E with v(E) = mv0 is S-equivalent to a direct sum E =

E1⊕ . . .⊕Em with stable sheaves [Ei] ∈Mv0
. It follows that Mv = Sm(Mv0

). Thus

the moduli spaces are singular in codimension 2, but admit symplectic resolutions

in terms of the Hilbert scheme Hilbm(Mv0
)→Mv.

3) Assume now that 〈v0, v0〉 ≥ 2. Due to the combined efforts of many authors,

with important steps taken by Mukai, Huybrechts, O’Grady and Yoshioka, one

finally has the following result [27]: Mv0
is a smooth symplectic variety that is

deformation equivalent to Hilb1+
1
2 〈v0,v0〉(X), if X is a K3-surface, and to Pic0(X)×

Hilb
1
2 〈v0,v0〉, if X is an abelian surface.

Assume in addition that m ≥ 2. The main result of this article implies that one

has to further distinguish the following two cases:

4) Let 〈v0, v0〉 = 2 and m = 2. The moduli spaces MK3(2; 0, 4) and MAb(2; 0, 2)

studied by O’Grady [23, 24] and Rapagnetta [25] fall into this class. The moduli

space Mv has dimension 10, its singular locus has codimension 2 and is in fact iso-

morphic to S2Mv0
. As shown in [18], the symplectic desingularisations constructed

by O’Grady exist for all Mukai vectors in this class and can be obtained by blowing-

up the reduced singular locus.

5) In all other cases our main result states:

Theorem A — If either m ≥ 2 and 〈v0, v0〉 > 2 or m > 2 and 〈v0, v0〉 ≥ 2, then

Mmv0
is a locally factorial singular symplectic variety.

As an immediate application one obtains:

Theorem B — Under the hypotheses of Theorem A, Mmv0
does not admit a proper

symplectic resolution.

Under some technical hypotheses theorems A and B hold as well for semistable

torsion sheaves (see the main text). Partial results for Theorem B in the case

m = 2 have been obtained previously by two of us [17], and, independently and

with different methods, by Kiem and Choy [15, 16].

We note that our approach is rather general; our main technical result, Propo-

sition 3.5, is essentially a linear-algebraic fact. Therefore, we expect that results

similar to Theorem A and B might hold in other situations with similar geometry

– in particular, for the moduli spaces of flat connections on an algebraic curve.

In fact, Proposition 3.5 is a statement about quiver varieties of H. Nakajima [22],

although the numerical data corresponding to our quivers are specifically excluded
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from consideration in [22] (which is not surprising as one of the results of [22] is that

any quiver variety considered there does admit a symplectic resolution). Thus our

approach and our Proposition 3.5 might be used wherever one finds quiver varieties

of the same type.

Acknowledgements: The moment when Grothendieck’s theorem on factoriality

was shown to us by Duco van Straten turned around our approach to the problem.

We thank him as well as Stefan Bauer, Daniel Huybrechts and Joseph Le Potier for

many helpful discussions.

Many authors have worked on moduli of sheaves on K3 and abelian surfaces

ever since the seminal work of Mukai. The most general results for our purposes

have been obtained by Yoshioka [27]. We refer to the textbook [13] and Yoshioka’s

paper for further references and general information on semistable sheaves and their

moduli spaces.

2. Notation and conventions, plan of the paper

2.1. The underlying surface. Throughout this article X will denote a complex

projective K3 or abelian surface with a fixed symplectic structure, i.e. an isomor-

phism H2(X,OX) ∼= C, and a fixed ample divisor H .

The even integral cohomology Heven(X, Z) is equipped with a pairing

〈v, w〉 := −

∫

X

vw∨,

where w∨ = (−1)iw for w ∈ H2i(X, Z). Following Mukai we associate to each

coherent sheaf E its Mukai vector

v(E) := ch(E)
√

td(X) ∈ Heven(X, Z).

The Hilbert polynomial of E with respect to an ample divisor H can be expressed

in terms of its Mukai vector as follows:

χ(E ⊗OX(mH)) = −〈v(E), v(OX(−mH))〉 =: Pv(m).

2.2. Semistable sheaves. Stability or semistability of a coherent sheaf is defined

with respect to a fixed ample divisor H . We let Mv denote the moduli space of

semistable sheaves with Mukai vector v. Closed points of Mv are in natural bijection

with polystable sheaves E. Points corresponding to stable sheaves form a – possibly

empty – open subset M s
v ⊂Mv.

Semistable sheaves may have two–, one– or zero–dimensional support. Stability

in the first case was defined by Maruyama and Gieseker, the generalisation to pure

sheaves of arbitrary dimension is due to Simpson. In the rest of the paper we

exclude once for all the case of zero-dimensional sheaves as being well-known: if the

Mukai vector is v = (0, 0, a) then Mv
∼= SaX , the symmetric product of X , and the

Hilbert-Chow morphism Hilba(X)→Mv provides a symplectic resolution.
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2.3. General assumptions. An element v0 ∈ Heven(X, Z) is primitive if it is

not an integral multiple of another lattice element. Given a non-trivial element

v ∈ Heven(X, Z) we may always decompose it as v = mv0 with a primitive element v0

and a multiplicity m ∈ N. Throughout this article we assume that v0 = (r0, c0, a0)

has the following properties:

(∗)






Either r0 > 0 and c0 ∈ NS(X),

or r0 = 0, c0 ∈ NS(X) is effective, and a0 6= 0;

〈v0, v0〉 ≥ 2.

The results of this paper suggest to distinguish systematically between the fol-

lowing three cases for a Mukai vector v satisfying assumptions (∗):

(A) m = 1.

(B) m = 2 and 〈v0, v0〉 = 2.

(C) m ≥ 3, or m = 2 and 〈v0, v0〉 ≥ 4.

2.4. General ample divisors. The significance of (∗) lies in the fact that one has

the notion of a v–general ample divisor H : there is a systems of hyperplanes in the

ample cone of X , called v–walls, that is countable but locally finite for torsion free

sheaves ([13], ch. 4C) and finite for torsion sheaves ([27], sec. 1.4.) with the following

property: if H is v–general, i.e. if H is not contained in any v–wall, then for every

direct summand E′ of a polystable sheaf E with v(E) = v one has v(E′) ∈ Qv(E).

Let H be a v0–general ample divisor and consider the following assertions:

(∗∗) Mv0
is non-empty.

(∗ ∗ ∗) Mv0
is irreducible.

Yoshioka shows in [27], Thm 0.1 and Thm 8.1, that (∗) implies (∗∗) and (∗ ∗ ∗)

except when X is a K3 surface, r0 = 0 and c0 is not ample. Moreover he has com-

municated to us an unpublished note that fills this gap, so that (∗∗) and (∗ ∗ ∗) are

consequences of (∗). An essential technique in Yoshioka’s work is the deformation

of the underlying surface; the arguments are rather involved. For the irreducibility

part (∗ ∗ ∗) we give a new and direct proof, based on an old and beautiful idea of

Mukai, see Theorem 4.1.

2.5. Elements of the construction of moduli spaces. We need to recall some

basic elements of the construction machinery of moduli spaces of sheaves following

the approach of Simpson [26] (see also [13], ch. 4). Let v be a Mukai vector satisfying

(∗) and let Pv denote the corresponding Hilbert polynomial. Choose a sufficiently

large integer k = k(v) and put N = Pv(k), H := OX(−kH)⊕N . Then there is a

closed subscheme R ⊂ QuotX,H(H, P ) with the following property: a closed point

[q : H → E] ∈ R

is stable or semistable with respect to the canonical PGl(N)–action and the corre-

sponding linearisation of the determinant line bundle on R if and only if q induces
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an isomorphism CN → H0(X, E(kH)) and if E is stable or semistable, respec-

tively. Let Rs ⊂ Rss ⊂ R denote the open subsets of stable and semistable points,

respectively. Then

Rss// PGl(N)) ∼= Mv and Rs// PGl(N) ∼= M s
v .

Let π : Rss → Mv denote the quotient map. The orbit of a point [q : H → E] is

closed in Rss if and only if E is polystable. In that case, the stabiliser subgroup of

[q] in PGl(N) is canonically isomorphic to PAut(E) = Aut(E)/C∗. Moreover, by

Luna’s slice theorem there is a PAut(E)–invariant subscheme S ⊂ Rss, containing

[q], such that the canonical morphisms

(PGl(N)× S)// PAut(E)→ Rss and S// PAut(E)→M

are étale. The Zariski tangent space T[q]S is isomorphic to Ext1(E, E).

2.6. Local description. The completion of the local ring OS,[q] has the following

deformation theoretic description:

Let C[Ext1(E, E)] denote the ring of polynomial functions on Ext1(E, E) and

let A := C[Ext1(E, E)]∧ denote its completion at the maximal ideal M of func-

tions vanishing at 0. There is a trace map tr : Ext2(E, E) → H2(OX). We denote

its kernel by Ext2(E, E)0. The automorphism group Aut(E) naturally acts on

Ext1(E, E) and Ext2(E, E)0 by conjugation. Since the scalar multiples of the iden-

tity act trivially we actually have an action of the projective automorphism group

PAut(E) = Aut(E)/C∗. There is a linear map

κ : Ext2(E, E)∗0 −→ C[Ext1(E, E)]∧,

the so-called Kuranishi map, with the following properties:

1. κ is PAut(E)–equivariant.

2. Let I be the ideal generated by the image of κ. Then there are isomorphisms

of complete rings

ÔS,[q]
∼= A/I and ÔMv ,[E]

∼= (A/I)PAut(E).

3. For every linear form ϕ ∈ Ext2(E, E)∗0 one has, for e ∈ Ext1(E, E),

κ(ϕ)(e) = 1
2ϕ(e ∪ e) + higher order terms in e.

2.7. Passage to the normal cone. Let J ⊂ C[Ext1(E, E)] denote the ideal gen-

erated by the image of the quadratic part of κ:

κ2 : Ext2(E, E)∗0 −→ S2 Ext1(E, E)∗, ϕ 7→ (e 7→ 1
2ϕ(e ∪ e))

Then J is the ideal of the null-fibre F = µ−1(0) of the morphism

µ : Ext1(E, E) −→ Ext2(E, E)0, µ(e) = 1
2 (e ∪ e).

The ideals I ⊂ C[Ext1(E, E)]∧ and J ⊂ C[Ext1(E, E)] are related as follows. The

graded ring grA associated to the m-adic filtration on A = C[Ext1(E, E)]∧ is canon-

ically isomorphic to C[Ext1(E, E)]. For any ideal a ⊂ A let in(a) ⊂ grA denote the
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ideal generated by the leading terms in(f) of all elements f ∈ a. Then property 3

of the Kuranishi–map says that

J ⊂ in(I).

Hence there is the following chain of inequalities:

(2.1)

dim(F ) = dim (grA)/J

≥ dim (grA)/ in(I) = dim gr(A/I) = dim(A/I)

≥ dimExt1(E, E)− dimExt2(E, E)0,

where the last inequality comes from the fact that A is regular of dimension =

dimExt1(E, E) and I is generated by dimExt2(E, E)0 elements.

We need to describe µ in greater detail; the resulting description is similar to

Nakajima’s construction of the so-called quiver varieties [22]. Write

(2.2) E =

s⊕

i=1

Wi ⊗ Ei

with pairwise non-isomorphic stable sheaves Ei and vector spaces Wi of dimension

ni. Let Wij := Hom(Wi, Wj) and Vij := Ext1(Ei, Ej). Then

End(E) =
⊕

i

Wii, Ext1(E, E) =
⊕

i,j

Wij ⊗ Vij , Ext2(E, E) =
⊕

i

Wii.

The automorphism group

Aut(E) =
∏

i

Aut(Wi) ∼=
∏

i

Gl(ni) =: G(n)

acts on Ext1(E, E) by conjugation on the first factor in each direct summand. By

Serre-Duality, the pairing

Vij ⊗ Vji → C, e⊗ e′ 7→ tr(e′ ∪ e)

is non-degenerate and antisymmetric. This yields a symplectic form ω on Ext1(E, E)

such that Wij ⊗ Vij and Wab ⊗ Vab are perpendicular, unless i = b and j = a, in

which case

ω : (Wij ⊗ Vij)⊗ (Wji ⊗ Vji) −→ C, ω(A⊗ e, A′ ⊗ e′) = tr(A′A) tr(e′ ∪ e).

Moreover, the quadratic map µ : Ext1(E, E)→ Ext2(E, E)0 is given by

(2.3) µ




∑

ij

∑

k

Ak
ij ⊗ ek

ij



 =
∑

ij

∑

k,ℓ

Ak
ijA

ℓ
ji tr(ek

ije
ℓ
ji).

2.8. Strategy. In general we do not know how to compute the Kuranishi map

explicitly. However, the explicit description of the quadratic part µ given above

allows for a detailed study of the fibre F := µ−1(0) ⊂ Ext1(E, E). The passage

from κ to µ corresponds to the passage from the local ring ÔS,[q] to the coordinate

ring OF of its tangent cone.

In section 3 we show that under certain hypotheses the fibre F is an irreducible

normal complete intersection which is, in case (C), regular in codimension ≤ 3 and

state consequences for the local rings ORss,[q] of points [q] in closed orbits of Rss.
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Section 4 contains a basic irreducibility result for moduli spaces of sheaves on a

K3 or abelian surface.

In section 5 it is proved — under the hypothesis that the ample divisor is v–

general — that the moduli space M is a non-empty irreducible normal variety of

expected dimension, and that it is locally factorial in case (C). As an application

we show in section 6 that in case (C) the moduli space does not admit a symplectic

resolution.

3. Symplectic reduction

3.1. The symplectic momentum map. Let U be a smooth affine algebraic vari-

ety over C endowed with a symplectic form ω. Let G be a reductive group that acts

on U preserving ω. This action induces an infinitesimal action of the Lie algebra

g of G, i.e. a homomorphism of Lie algebras g → Γ(U, TU ). We denote the vector

field corresponding to A ∈ g at x ∈ U by Ax. A momentum map for the action is a

G-equivariant morphism µ : U → g∗ with the property that dµx(ξ)(A) = ω(ξ, Ax)

for all x ∈ U and ξ ∈ TxU . If a momentum map exists, it is unique up to an additive

constant in (g∗)G.

Let µ : U → g∗ be a momentum map with null-fibre F := µ−1(0).

Lemma 3.2. — Let x ∈ F be a point with stabiliser subgroup H ⊂ G. Then the

image of dµx : TxU → g∗ is (g/h)∗ = h⊥, where h ⊂ g denotes the Lie algebra of

H. In particular, if H is finite then dµx has maximal rank and F is regular at x of

dimension dim(U)− dim(G).

Proof. The image dµx annihilates A ∈ g if and only if ω(ξ, Ax) = 0 for all ξ ∈ TxU ,

i.e. if Ax is perpendicular to TxU with respect to ω. As ω is non-degenerate, this

is equivalent to saying that Ax vanishes, hence is a tangent vector to the stabiliser

subgroup H . �

Lemma 3.3. — Let µ : U → g∗ be a momentum map with null-fibre F . Let Z ⊂ F

be the closed subset of points with non-finite stabiliser group. Let d = dim U−dim g.

1. If dim(Z) ≤ d−1, then F is a reduced complete intersection of dimension d.

2. If dim(Z) ≤ d− 2, then F is normal.

Proof. Every irreducible component of F must have dimension ≥ d since F is cut

out by dim g equations. By Lemma 3.2, F has dimension d in each point x ∈ F \Z.

If dimZ < d, then F \Z is dense in F and every irreducible component has precisely

dimension d. Hence F is a complete intersection and in particular Cohen-Macaulay

([2], Cor. III 4.5). Since F \ Z is smooth, F in addition satisfies condition R0 and

is therefore reduced ([2], Prop. VII 2.2). If in addition dim(Z) ≤ d − 2, then F is

regular in codimension 1 and normal by Serre’s criterion ([2], Cor. VII 2.13). �

3.4. The key estimate. We want to apply the lemma to the following particular

situation, that arises in the study of local rings of the moduli space of sheaves.
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Set-up: Let W1, . . . , Ws be a sequence of vector spaces, s ≥ 1. The dimensions

ni = dim(Wi) form the components of a vector n ∈ Ns
0. Furthermore, let Wij =

Hom(Wi, Wj). There is a natural symmetric pairing

Wij ⊗Wji → C, (A, B) 7→ tr(BA).

Moreover, let Vij , 1 ≤ i, j ≤ s, be vector spaces, equipped with non-degenerate

pairings

ωij : Vij ⊗ Vji → C,

that are skew-symmetric in the sense that ωij(e, e
′) = −ωji(e

′, e). Then the vector

space U(n) :=
⊕

i,j Wij ⊗Vij carries a natural symplectic form ω with the property

that Wij ⊗ Vij is perpendicular to all Wab ⊗ Vab, (a, b) 6= (j, i) and

ω :
(
Wij ⊗ Vij

)
⊗
(
Wji ⊗ Vji

)
−→ C, (A⊗ e)⊗ (A′ ⊗ e′) 7→ tr(A′A)ωij(e, e

′).

In the following arguments the vector spaces Vij are fixed and chosen once for all,

whereas the sequence of vector spaces Wi can be replaced by appropriate subspaces

etc. We will argue by induction over the dimension vector n as an element in the

monoid Ns
0. Most objects defined below will therefore be indexed by n, like the

space U(n) above, even if this is not quite accurate as they really depend on the

spaces Wi.

The group G(n) =
∏

i Aut(Wi) acts on U(n) by conjugation on the first factors in

the decomposition. The subgroup of scalars C∗ ⊂ G(n) acts trivially. Let PG(n) :=

G(n)/C∗. The action of PG(n) on U(n) preserves the symplectic structure. The

moment map for the action is

µ(n) : U(n) −→ pg(n)∗ ≃ Ker
(⊕

i

gl(ni)
tr
−−−→ C

)
,

∑

i,j,k

A
(k)
ij v

(k)
ij 7→

∑

k,ℓ

∑

i,j

A
(k)
ij A

(ℓ)
ji tr(v

(k)
ij ∪ v

(ℓ)
ji )

Let F (n) := µ(n)−1(0) ⊂ U(n) denote the null-fibre of the moment map. The

structure of F (n) depends only on n and the dimensions dij := dim(Vij). Let D

denote the matrix (dij) and let a := min{dij − 2δij}.

Proposition 3.5. — Assume that a ≥ 2. Then F (n) is an irreducible normal

complete intersection of dimension d := nt(D− I)n + 1. Moreover, F (n) is regular

in codimension ≤ 3 with the possible exception of the two cases

1. n = (1, 1), d12 = 2, and

2. n = (2), d11 = 4.

Proof. 1. Since dim(U(n)) =
∑

i,j ninjdij and since the range of µ has dimension
∑

i nini − 1, the expected dimension of F (n) is

d =
∑

i,j

ninjdij −
∑

i

nini + 1 = nt(D − I)n + 1.

Also, F (n) is a cone and hence connected. By Lemma 3.3, it suffices to show that

the locus Z of points in F (n) with non-trivial stabiliser in PG(n) has dimension
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≤ d − 4 in general and ≤ d − 3 in the two exceptional cases. This will be done by

induction on the dimension vector n ∈ Ns
0.

The induction starts with n = (0, . . . , 1, . . . , 0), in which case the statement is

trivial. So let n ∈ Ns
0 be an arbitrary element and assume that the proposition

holds for all n′ ∈ Ns
0 such that 0 <

∑
i n′

i <
∑

i ni.

2. We can analyse Z as follows: Let g ∈ G(n), g /∈ C∗, and consider the

corresponding fixed point locus F (n)g. The image G(n)F (n)g of the morphism

ϕ : G(n) × F (n)g → F (n), (g′, x) 7→ g′x, consists of all points y ∈ F whose

stabiliser subgroup G(n)y contains an element conjugate to g. Suppose that H ⊂

G(n) is a subgroup that stabilises the fixed point set F (n)g. Then we can bound

the dimension of the fibres of ϕ by dim(H). It follows that dim(G(n)F (n)g) ≤

dimF (n)g + dimG(n) − dimH . In the following we will describe a finite set of

elements g such that Z is covered by the corresponding sets G(n)F (n)g and such

that for each g one has dim(G(n)F (n)g) ≤ d− 3 or ≤ d− 4. This gives the desired

bound for dim(Z).

3. Let g = (g1, . . . , gs) ∈ G(n), g /∈ C∗. We distinguish three cases:

3.1. Case: g is semisimple. For each λ ∈ C consider the eigenspaces Wi(λ) ⊂Wi

of gi, and let ni(λ) = dim(Wi(λ)), n(λ) = (ni(λ))i. Then n =
∑

λ n(λ). There is a

decomposition

U(n)g =
⊕

λ

U(n(λ)), U(n(λ)) =
⊕

ij

Hom(Wi(λ), Wj(λ)) ⊗ Vij .

Moreover, the restriction of the momentum map to the fixed point locus splits into

a product of momentum maps for each U(n(λ)):

µ(n)|U(n)g =
∏

λ

µ(n(λ)), µ(n(λ)) : U(n(λ)) −→ pg(n(λ))∗.

It follows that

F (n)g =
∏

λ

F (n(λ)) with F (n(λ)) = µ(n(λ))−1(0).

By induction, we have

dim(F (n)g) =
∑

λ

dim(F (n(λ)) =
∑

λ

′
(
n(λ)t(D − I)n(λ) + 1

)
,

where
∑

′ indicates that we only sum over all λ with n(λ) 6= 0.

Next, U(n)g is stabilised by H =
∏

λ G(n(λ)), a subgroup in G(n) of codimension

ntn −
∑

λ n(λ)tn(λ). We obtain the following upper bound for the dimension of

G(n)F (n)g :

dim(G(n)F (n)g) ≤
∑

λ

′
(
n(λ)t(D − 2I)n(λ) + 1

)
+ ntn.



10 D. KALEDIN, M. LEHN, AND CH. SORGER

Note that ν := |{λ | n(λ) 6= 0}| ≥ 2, since g /∈ C∗. The difference of dim(G(n)F (n)g)

to the expected dimension of F (n) is therefore bounded below by

∆ :=
(
nt(D − 2I)n + 1

)
−
∑

λ

′
(
n(λ)t(D − 2I)n(λ) + 1

)

=
∑

λ6=µ

n(λ)t(D − 2I)n(µ)− (ν − 1)

≥ 2ν(ν − 1)− (ν − 1) = (2ν − 1)(ν − 1) ≥ 3.

Clearly, ∆ ≥ 4 for ν ≥ 3. Assume that ν = 2, say with the distinct eigenvalues λ

and λ′. Then

∆ ≥ 2
∑

i,j

ni(λ
′)nj(λ

′′)(dij − 2δij)− 1 ≥ 2a
∑

i

ni(λ
′)
∑

i

ni(λ)− 1.

Thus ∆ = 3 implies a = 2 and
∑

i ni(λ) = 1 =
∑

i ni(λ
′). Hence there are only the

following exceptional cases:

1. s = 1, n = 2, d11 = 2 + 2δ11 = 4, or

2. s = 2, n = (1, 1) and d12 = d21 = 2.

If a point f ∈ F (n) is fixed by a semisimple element, it is also fixed by a whole

subtorus T ⊂ G(n). Up to a conjugation, there is only a finite number of such

subtori Ti ⊂ G(n). Choosing an element gi ∈ Ti in each of these subtori, we see

that the union of all sets G(n)F (n)g , g semisimple, is covered by the finite union of

all sets G(n)F (n)gi .

3.2. Case: g is unipotent. We may write g = 1 + h, with a non-zero nilpotent

element h = (h1, . . . , hs) ∈
⊕

i End(Wi). Let K
(ℓ)
i := ker(hℓ

i) ⊂ Wi and mi(ℓ) :=

dimK
(ℓ)
i for all ℓ ∈ N0. There is a filtration

0 = K
(0)
i ⊂ K

(1)
i ⊂ . . . = Wi.

For each level ℓ > 0 we choose a graded complement W
(ℓ)
i to hK

(ℓ+1)
i + K

(ℓ−1)
i in

K(ℓ) and let n
(ℓ)
i = dim W

(ℓ)
i . (We note that this is an instance of the so-called

Jacobson-Morozov-Deligne filtration associated to a nilpotent element, see [8, 1.6];

the spaces W
(ℓ)
i are the primitive subspaces with respect to an sl2-triple containing

h.)

Suppose that A = (Aij) ∈
⊕

ij Hom(Wi, Wj) commutes with h. Then Aij is

completely determined by its value on the spaces W
(ℓ)
i , ℓ ∈ N, and conversely, any

value of Aij : W
(ℓ)
i → K

(ℓ)
j can be prescribed. The composition with the canonical

projection K
(ℓ)
j → W

(ℓ)
j defines a homomorphism A

(ℓ)
ij : W

(ℓ)
i −→ W

(ℓ)
j , and the

map

Φ :




⊕

ij

Hom(Wi, Wj)




g

−→
⊕

ℓ




⊕

ij

Hom(W
(ℓ)
i , W

(ℓ)
j )



 , (Aij) 7→ (A
(ℓ)
ij ),

is a ring homomorphism. Let

ΦV : U(n)g =




⊕

i,j

Wij ⊗ Vij




g

−→
⊕

ℓ

U(n(ℓ)) =
⊕

ℓ

⊕

i,j

Hom(W
(ℓ)
i , W

(ℓ)
j )⊗ Vij
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be analogously defined. Then ΦV (F (n)g) ⊂
∏

ℓ F (n(ℓ)), and the fibres of ΦV have

dimension
∑

ℓ n(ℓ)tD(m(ℓ) − n(ℓ)). By induction, this yields the bound

dim(F (n)g) ≤
∑

ℓ

dim(F (n(ℓ)) + dim(ker(ΦV ))

=
∑

ℓ

′
(
n(ℓ)t(D − I)n(ℓ) + 1

)
+
∑

ℓ

n(ℓ)tD(m(ℓ) − n(ℓ)),

where
∑

′ signifies summation over all ℓ with n(ℓ) 6= 0. Moreover, the centraliser

H ⊂ G(n) of g is an open subset in
(
⊕

i

End(Wi)

)g

∼=
⊕

ℓ

⊕

i

Hom(W
(ℓ)
i , K

(ℓ)
i )

and therefore has dimension dim(H) =
∑

ℓ n(ℓ)tm(ℓ). Connecting these pieces of

information we obtain

dim(G(n)F (n)g) ≤ dim(F (n)g) + dim(G(n)) − dim(H)

≤
∑

ℓ

′
(
n(ℓ)t(D − I)n(ℓ) + 1

)
+
∑

ℓ

n(ℓ)tD(m(ℓ) − n(ℓ))

+ntn−
∑

ℓ

n(ℓ)tm(ℓ).

The difference of the last expression to the expected dimension of F (n) is

∆ :=
[
nt(D − I)n− ntn + 1

]
−
∑

ℓ

′
[
n(ℓ)t(D − I)m(ℓ) − n(ℓ)tn(ℓ) + 1

]
.

Note that the two bracketed expressions are not quite symmetric to each other due

to the presence of m(ℓ) instead on n(ℓ). We can get rid of n and m(ℓ) due to the

relations

m(ℓ) =
∑

k

n(k) min{k, ℓ}, n =
∑

k

n(k)k,

and can rewrite the bound ∆ in terms of the n(k) as follows:

∆ =
∑

ℓ,k

n(k)t(D− I)n(ℓ)
(
kℓ−min{k, ℓ}

)
−
∑

k,ℓ

n(k)tn(ℓ)kℓ+
∑

k

′
(
n(k)tn(k)−1

)
+1

Reorganise the sum in collecting those terms that contain n(1):

∆ = 1 +
[
− 1 + 2n(1)t

∑

k≥2

(
(k − 1)(D − 2I)− I

)
n(k)

]
+
∑

k≥2

′
(
n(k)tn(k) − 1

)

+
∑

k,ℓ≥2

n(k)t
(
(kℓ−min{k, ℓ})(D − 2I)−min{k, ℓ}I

)
n(ℓ)

Here the second summand [. . .] appears only if n(1) 6= 0. Note that there always is

at least one index k ≥ 2 with n(k) 6= 2, since h 6= 0. This shows that all summands

in the last expression for ∆ are non-negative.

The minimal contribution of a non-zero vector n(k), k 6= 2, to ∆ is

k((k − 1)a− 1)

(
∑

i

n
(k)
i

)2

≥ 2.
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Thus we always have ∆ ≥ 3, and even better: ∆ ≥ 4 in all cases except

a = 2, n(2) = (1), n(k) = 0 for all k 6= 2.

In this case s = 1, n = (2), and d11 = 4, which is the same exceptional case as

before.

As in the semisimple case, the union of all sets G(n)F (n)g, g unipotent, is covered

by a finite number of such sets. In fact, this is even easier to see: up to conjugation

there are only finitely many different nilpotent elements h and hence only finitely

many different subschemes G(n)F (n)1+h ⊂ Z.

3.3. Case: g ∈ G(n) \ C∗ arbitrary. Consider the multiplicative Jordan decom-

position g = su, where s is semisimple, u is unipotent and s and u commute. Any

endomorphism that commutes with g also commutes with s and u. This implies

that F (n)g ⊂ F (n)s ∩ F (n)u, so that the general case is covered by 3.1. and 3.2.

above. �

3.6. Return from the normal cone. Let v0 ∈ Heven(X, Z) be a primitive Mukai

vector satisfying (∗). Let v = mv0 for some multiplicity m ∈ N. We keep the

notation introduced earlier.

Proposition 3.7. — Let H be an arbitrary ample divisor. Let E =
⊕s

i=1 E⊕ni

i be

a polystable sheaf whose stable direct summands Ei satisfy the condition

(3.1) v(Ei) ∈ Nv0

Consider a point [q : H → E] ∈ Rss and a slice S ⊂ Rss to the orbit of [q] as above.

Then OS,[q] is a normal complete intersection domain of dimension

dimExt1(E, E)− dimExt2(E, E)0 = 1 +
∑

i,j

ni(dim Ext1(Ei, Ej)− δij)nj ,

that has property R3 in all cases except the following two:

1. s = 1, n1 = 2, dimExt1(E1, E1) = 4,

2. s = 2, n1 = n2 = 1, dimExt1(E1, E2) = 2.

Proof. Recall the notation introduced in sections 2.6 and 2.7. By Proposition 3.5,

F = µ−1(0) = Spec(grA/J) is a normal complete intersection variety of dimension

dim(F ) = 1 +
∑

i,j

ni(dimExt1(Ei, Ej)− δij)nj

= dimExt1(E, E)− dimExt2(E, E)0.

Therefore, we must have equality at all places in inequality (2.1). Furthermore, since

F = Spec(grA/J) is reduced and irreducible, the equality of dimensions implies

J = in(I). It follows that

gr(ÔS,[q]) = gr(A/I) = grA/ in(I) = Γ(F,OF )

is a normal complete intersection. In particular, gr(ÔS,[q]) is Cohen-Macaulay, hence

satisfies Sk for all k ∈ N. Unless we are in the two exceptional cases, gr(ÔS,[q]) is
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smooth in codimension 3. Now remark that gr(ÔS,[q]) = gr(OS,[q]) ([1], 10.22) and

then use the following proposition which shows thatOS,[q] itself is a normal complete

intersection which, unless we are in the two exceptional cases, satisfies R3. �

Proposition 3.8. — Let B be a noetherian local ring with maximal ideal m and

residue field B/m ∼= C. Let grB denote the graded ring associated to the m-adic

filtration of B. Then dim(B) = dim(grB), and if grB is an integral domain or

normal or a complete intersection then the same is true for B. Moreover if grB

satisfies Rk and Sk+1 for some k ∈ N then B satisfies Rk.

Proof. The assertion about integrality and normality is Krull’s theorem (see [20]

(17.D) Thm 34). The assertions about complete intersections and the property Rk

are due to Cavaliere and Niesi ([6], Theorems 3.4 and 3.13). �

Lemma 3.9. — The assumption (3.1) in Proposition 3.7 is satisfied in any of the

following two situations:

1. H is v–general.

2. E = E⊕m
0 for some stable sheaf E0 with v(E0) = v0.

The exceptions of Proposition 3.7 are met in case (B) only, i. e. if 〈v0, v0〉 = 2 and

m = 2.

Proof. Under the assumption that H is v–general one has v(Ej) = rjv0 for some

rj ∈ N and all direct summands Ej of E. Then dim Ext1(Ei, Ej) = rirj〈v0, v0〉 ≥ 2.

Thus Proposition 3.7 applies. �

Proposition 3.10. — 1. Let H be a v–general ample divisor. Then Rss is normal

and locally a complete intersection of dimension 〈v, v〉+ 1 + N2. In case (C) it has

property R3 and hence is locally factorial.

2. Suppose that E = E⊕m
0 for some stable sheaf E0 with v(E0) = v0. Let H

be an arbitrary ample divisor. In case (C), there is an open neighbourhood U of

[E] ∈Mv such that π−1(U) ⊂ Rss is locally factorial of dimension 〈v, v〉+ 1 + N2.

Proof. 1. Let [q] ∈ Rss be a point with closed orbit, and let S ⊂ Rss be a PAut(E)–

equivariant subscheme as in subsection 2.5. By Lemma 3.9 and Proposition 3.7, the

local ring OS,[q] is a normal complete intersection that has property R3 in case (C).

But being normal or locally a complete intersection or having property Rk are open

properties [EGA IV 19.3.3, 6.12.9]. Hence there is an open neighbourhood U of [q]

in S that is normal, locally a complete intersection, and has property R3 in case (C).

The natural morphism PGl(N)× S → Rss is smooth. Therefore every closed orbit

in Rss has an open neighbourhood that is normal, locally a complete intersection,

and has property R3 in case (C). Finally, every PGl(N)–orbit of Rss meets such an

open neighbourhood. It follows that Rss is normal, locally a complete intersection.

In case (C), Rss is regular in codimension 3 and hence locally factorial due to the

following theorem of Grothendieck.

2. The second assertion follows analogously. �
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Theorem 3.11. (Grothendieck [12] Exp. XI Cor. 3.14) — Let B be noetherian

local ring. If B is a complete intersection and regular in codimension ≤ 3, then B

is factorial.

4. A basic irreducibility result

The following theorem generalises a beautiful result of Mukai [21].

Theorem 4.1. — Let X be a projective K3 or abelian surface with an ample divisor

H. Let Mv be the moduli space of semistable sheaves associated to a vector v ∈

Heven(X, Z). Suppose that Y ⊂ Mv is a connected component parametrising stable

sheaves only. Then Mv = Y .

Proof. 1. Since all points in Y correspond to stable sheaves, Y is smooth of expected

dimension dim(Y ) = 2 + 〈v, v〉. Fix a point [F ] ∈ Y and suppose that there is a

point [G] ∈Mv \ Y . We shall exploit a beautiful old idea of Mukai [21]: assume for

a moment that there were a universal family F ∈ Coh(Y ×X). Let p : Y ×X → Y

and q : Y × X → X be the projections. We may then compare the relative Ext-

sheaves Ext•p(q
∗F, F) and Ext•p(q

∗G, F). Since F and G are numerically equal on X ,

the same is true for the classes of the Ext-sheaves according to the Grothendieck-

Riemann-Roch theorem. This will lead to a contradiction.

2. In general, there is no universal family, but the following construction will be

sufficient:

Lemma 4.2. — There is a smooth projective variety Y ′ that parametrises a family

F of stable sheaves on X with Mukai vector v such that the classifying morphism

f : Y ′ → Y is surjective, generically finite, and étale over a neighbourhood of [F ].

Proof. Let R′ := Y ×Mv
Rss. Then R′ → Y is a PGl(N)–principal fibre bundle,

locally trivial in the étale topology. Moreover, there is a universal epimorphism

OR′ ⊠ H → F′. We form the quotient P := (PN−1 × R′)// Gl(N). Then P is a

smooth projective variety, and the natural morphism P → Y is locally a product

in the étale topology with fibres isomorphic to PN−1. The center C∗ ⊂ Gl(N) acts

trivially on the family OPN−1(−1) ⊠ F′. Therefore, this sheaf descends to a family

FP on P ×X . Let L be a very ample line bundle on P . Choose a linear subspace

Z ⊂ P(H0(P, L)) of codimension N − 1 in such a way that Y ′ := Z ∩ P is smooth

and f : Y ′ → Y is étale over a neighbourhood of [F ]. Finally, let F := FP |Y ′×X . �

3. Let f : Y ′ → Y and F be chosen as in the lemma and let p : Y ′×X → Y ′ and

q : Y ′×X → X denote the two projections. Moreover, let f−1([F ]) = {p1, . . . , pn}.

As G represents a point in M \ Y and hence is not isomorphic to any of the

stable sheaves E, [E] ∈ Y , one has Hom(G, E) = 0 = Ext2(G, E) for all [E] ∈ Y .

It follows that Ext0p(q
∗G, F) and Ext2p(q

∗G, F) vanish and that W := Ext1p(q
∗G, F)

is a locally free sheaf on Y ′ of rank 〈v, v〉 = dim(Y )− 2.
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If G is replaced by F the situation gets more complicated as the dimension of the

Ext-groups jumps on the fibre T . There is a complex of locally free OY ′–sheaves

(4.1) 0 −→ A0 α
−−→ A1 β

−−→ A2 −→ 0

with the property that Exti
p

S
(t∗

X
q∗G, t∗XF) ∼= hi(t∗(A•)) for every base change

(4.2)

S ×X
tX−−→ Y ′ ×X

q
−→ X

pS

y p

y
S

t
−→ Y ′.

Lemma 4.3. — The degeneracy locus of α and β is the union of the reduced points

p1, . . . , pn. Moreover, rkα(pi) = rkA0−1 and rkβ(pi) = rkA2−1 for i = 1, . . . , n.

Proof. For all [E] ∈ Y , E 6∼= F , one has Hom(F, E) = 0 = Ext2(F, E). This implies

that α and β have maximal rank on Y ′ \ {p1, . . . , pn}. Moreover, Hom(F, F ) =

C = Ext2(F, F ), and this gives the second assertion of the lemma. It remains to

show that the degeneracy locus is reduced. Recall that tangent vectors in T[F ]Y

correspond bijectively to elements γ ∈ Ext1(F, F ). Let Fγ be the infinitesimal

extension of F over Spec C[ε] corresponding to γ. The extension

(4.3) 0 −→ F
ε
−→ Fγ −→ F −→ 0

induces a long exact sequence

−→ Exti(F, F ) −→ Exti
Spec C[ε](F ⊗ C[ε], Fγ) −→ Exti(F, F )

∂
−−→ Exti+1(F, F ) −→

where the boundary operator is given by ∂(e) = γ∪e. Now γ∪− : C = End(F, F )→

Ext1(F, F ) is clearly injective, and γ ∪ − : Ext1(F, F ) → Ext2(F, F ) is surjec-

tive since the symplectic form on Ext1(F, F ) is non-degenerate. It follows that

Ext0(F, F ) ∼= Ext0Spec C[ε](F ⊗C[ε], Fγ) and Ext2Spec C[ε](F ⊗C[ε], Fγ) ∼= Ext2(F, F ).

If the degeneracy locus of α resp. β were not reduced, the corresponding Ext groups

should be bigger than C for at least one γ. The calculation shows that this is not

the case. �

4. Let σ : Z → Y denote the blow-up of Y in [F ] with exceptional divisor D

and similarly ϕ : Z ′ → Y ′ the blow-up of Y ′ in all points pi with corresponding

exceptional divisors Di.

(4.4)

D ⊂ Z
g
←− Z ′ ⊃ Diy σ

y ϕ

y
y

[F ] ∈ Y
f
←−− Y ′ ∋ pi

According to the lemma, the degeneracy locus of both ϕ∗(α) and ϕ∗(β) is precisely

the smooth divisor D′ = D1 ∪ . . . ∪Dn. Therefore these maps factor as follows:

(4.5) ϕ∗A0 ⊂ A′0 α′

−−→ ϕ∗A1 β′

−−→ A′2 ⊂ ϕ∗A2,
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where A′0 and A′2 are locally free, α′ and β′ are homomorphisms of maximal

rank. Moreover, the line bundles L := ϕ∗A2
/
A′2 and M := A′0

/
ϕ∗A0 on D′ are

characterised by the canonical isomorphisms

L⊗OD′
∼= Ext2D′(q∗F,OD ⊠ F|f−1([F ])×X) ∼= Ext2(F, F )⊗C OD′

and

Tor
OZ′

1 (M,OD′) ∼= Ext0D′(q∗F,OD ⊠ F|f−1([F ])×X) ∼= Hom(F, F ) ⊗C OD′ ,

implying

(4.6) L ∼=

n⊕

i=1

ODi
and M ∼=

n⊕

i=1

ODi
(Di).

5. Let W ′ denote the middle cohomology of the complex

0 −→ A′0 α′

−−→ ϕ∗A1 β′

−−→ A′2 −→ 0.

W ′ is locally free of rank dimY − 2. We obtain the following equation of Chern

classes in H∗(Z ′, Z):

(4.7) ϕ∗c(A1 −A0 −A2) = c(W ′ + M − L).

On the other hand, as c(F ) = c(G) in H∗(X, Z), the Grothendieck-Riemann-Roch

Theorem yields the following identity in H∗(Y ′, Z):

(4.8) c(A1 −A0 −A2) = c(Ext•p(q
∗F, F)) = c(Ext•p(q

∗G, F)) = c(W ).

Combining (4.7) and (4.8), we conclude that

(4.9) c(W ′) = ϕ∗c(W ) · c(L−M) ∈ H∗(Z ′, Z)

Moreover,

c(L−M) =

n∏

i=1

c(ODi
)

c(ODi
(Di))

=

n∏

i=1

1

c(OZ′ (−Di))c(OZ′ (Di))
= 1 +

∞∑

k=1

n∑

i=1

D2k
i .

The product of any cohomology class in H∗(Y ′, Z) of positive degree with any of

the classes Di is zero. It follows that

c2k(W ′) = ϕ∗c2k(W ) +

n∑

i=1

D2k
i for all k > 0.

The key point now is that both W and W ′ are vector bundles of rank dim(Y )− 2,

so that the Chern classes cdim(Y )(W ) and cdim(Y )(W
′) vanish (cf. [19], Lemma 4).

We get the contradiction

0 =

n∑

i=1

D
dim(Y )
i = −n.

This finishes the proof of Theorem 4.1. �

Theorem 4.4. — Let v0 be a primitive Mukai vector satisfying condition (∗) and

(∗∗). Let v = mv0 and let H be a v–general ample divisor. Then Mv is a normal

irreducible variety of dimension 2 + 〈v, v〉.
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This theorem is due to Yoshioka [28] in the case of torsion free sheaves. Using

the local information obtained in Proposition 3.10, the basic irreducibility result of

Theorem 4.1, we can give a simple direct proof.

Proof. By Proposition 3.10, Rss is normal. As a GIT-quotient of a normal scheme,

Mv is also normal. If m = 1, all points in Mv = Mv0
correspond to stable sheaves

and hence Mv is smooth. By Theorem 4.1, Mv0
is irreducible. By (∗∗), Mv0

is

non-empty.

Assume now that m ≥ 2 and that the assertion of the theorem has been proved

for all moduli spaces Mm′v0
, 1 ≤ m′ < m. For any decomposition m = m′ + m′′

with 1 ≤ m′ ≤ m′′, consider the morphism

ϕ(m′, m′′) : Mm′v0
×Mm′′v0

−→Mmv0
, ([E′], [E′′]) 7→ [E′ ⊕ E′′],

and let Y (m′, m′′) ⊂ Mv denote its image. The subschemes Y (m′, m′′), 1 ≤ m′ ≤

m′′, are the irreducible components of the strictly semistable locus of Mv. Since all

Y (m′, m′′) are irreducible by induction and intersect in the points of the form [E⊕m
0 ],

[E0] ∈ Mv0
, the strictly semistable locus is connected. Since Mv is normal, the

connected components are irreducible. In particular, there is exactly one component

that meets the strictly semistable locus. Theorem 4.1 excludes the possibility of a

component that does not meet the strictly semistable locus. �

5. Factoriality of moduli spaces

Proposition 5.1. — Let v0 be a primitive Mukai vector satisfying (∗). Let v = mv0

for some m ∈ N0. Assume that

– either E = E⊕m
0 , for some E0 stable with v(E0) = v0, and H is arbitrary,

– or E is arbitrary polystable with v(E) = v, and H is v–general.

Assume further that case (C) applies. Then Mv is locally factorial at [E] if and only

if the isotropy subgroup PGl(N)[q] ∼= PAut(E) of any point [q] in the closed orbit

in π−1([E]) ⊂ Rss acts trivially on the fibre L([q]) for every PGl(N)-linearised line

bundle L on an invariant open neighbourhood of the orbit of [q].

Proof. This is Drezet’s Théorème A [10]. In Drezet’s situation the Quot scheme

Rss is smooth. However, all his arguments go through under the weaker hypothesis

that Rss is locally factorial in a PGl(N)–equivariant open neighbourhood of the

closed orbit in the fibre π−1([E]). But this is true under the given hypothesis due

to Proposition 3.10 �

Corollary 5.2. — Let E0 be a stable sheaf with Mukai vector v(E0) = v0 satisfying

(∗) and assume that v = mv0 satisfies (C). Then Mv is locally factorial at [E⊕m
0 ].

Proof. The isotropy subgroup of any point [q] in the closed orbit in π−1([E⊕m
0 ]) ⊂

Rss is isomorphic to PGl(m) and therefore has no non-trivial characters. Hence

the action of PGl(m) on L([q]) is necessarily trivial (notations as in Proposition

5.1). �
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Theorem 5.3. — Let v0 be a primitive Mukai vector satisfying (∗) and (∗∗). As-

sume that v = mv0, m ∈ N, satisfies (C) and let H be a v–general ample divisor.

Then Mv is locally factorial.

Proof. Let [E] ∈ Mv be an arbitrary point that is represented by the polystable

sheaf E =
⊕s

i=1 E
⊕

ni

i , and let [q : H → E] be a point in the closed orbit in

π−1([E]) ⊂ Rss. Since H is v–general, the Mukai vectors of the stable direct

summands Ei have the form

v(Ei) = miv0, mi ∈ N,

s∑

i=1

mini = m.

We repeat the construction in section 2.5 for each of the Mukai vectors miv0, i =

1, . . . , s. Note that we can choose a sufficiently large integer k that works for all

Mukai vectors simultaneously. Let Pi(z) = −mi〈v0, v(OX(−zH)〉, Ni = Pi(k) and

Hi = OX(−kH)⊕Ni . Then N =
∑

i niNi and H =
⊕

iH
⊕ni

i . Moreover there are

parameter spaces Rss
i ⊂ QuotX,H(Hi, Pi) with PGl(Ni)-actions and quotient maps

πi : Rss
i →Mmiv0

. Finally there is a canonical map

Φ :
∏

i

Rss
i −→ Rss,

(
[Hi → Fi]

)
i
7→
[
H =

⊕

i

H⊕ni

i →
⊕

i

F⊕ni

i ].

Let Z denote the image of Φ. It has the following properties:

• By Theorem 4.4, the moduli spaces Mmiv0
are irreducible. It follows that

the schemes Rss
i and Z are irreducible, too.

• Z contains the point [q] and as well a point [q′ : H → E⊕m
0 ] for some stable

sheaf E0 with v(E0) = v0.

• The group G :=
(∏

i Gl(ni)
)
/C∗ ⊂ PGl(N) fixes Z pointwise. It equals the

stabiliser subgroup of [q] and is contained in the stabiliser subgroup of [q′].

Now let L be a PGl(N)–linearised line bundle on Rss. The group G acts on L|Z with

a locally constant character, which must in fact be constant, since Z is connected.

Moreover, the action is trivial at the point [q′] according to the proof of Corollary

5.2. Thus the character is trivial everywhere on Z and in particular at [q]. According

to Drezet’s criterion (Proposition 5.1), Mv is locally factorial at [E]. �

Remark 5.4. It is also known that the moduli space of semi-stable torsion free

sheaves on the projective plane is locally factorial by the work of Drezet [9]. However

it may be false for other surfaces as has been observed by Le Potier: the moduli

space MP1×P1(2, 0, 2) is not locally factorial at the point represented by O(1,−1)⊕

O(−1, 1) (see [10], p. 106).

6. Symplectic resolutions

Let v0 be a primitive Mukai vector satisfying (∗) and (∗∗). Let v = mv0 and let

H be a v–general divisor. Recall that the following three cases are possible:

(A) m = 1.

(B) m = 2 and 〈v0, v0〉 = 2.
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(C) m ≥ 3, or m = 2 and 〈v0, v0〉 ≥ 4.

In case (A) the moduli space Mv consists only of stable sheaves. It is irreducible

and smooth of dimension 2 + 〈v, v〉. Mukai [21] has defined a symplectic structure

on Mv.

Proposition 6.1. — Assume that m ≥ 2. The singular locus Mv,sing of Mv is non-

empty and equals the semistable locus. The irreducible components of Mv,sing corre-

spond to integers m′, 1 ≤ m′ ≤ m/2, and have codimension 2m′(m−m′)〈v0, v0〉−2,

respectively. In particular, codimMv,sing = 2 in case (B) and ≥ 4 in case (C).

Proof. Recall the varieties Y (m′, m′′) introduced in the proof of Theorem 4.4. The

union of the Y (m′, m′′) is the strictly semistable locus. The maps

ϕ(m′, m′′) : Mm′v0
×Mm′′v0

→ Y (m′, m′′)

are finite and surjective, hence

codim(Y (m′, m′′)) = 2 + m2〈v0, v0〉 − (2 + m′2〈v0, v0〉)− (2 + m′′2〈v0, v0〉)

= 2m′m′′〈v0, v0〉 − 2.

Clearly, the codimension 2 is attained only if m′ = m′′ = 1 and 〈v0, v0〉 = 2, which

is case (B). As Mv is smooth in all stable points, it remains to show that the strictly

semistable points are really singular. For this it suffices to show that Mv is singular

at a generic point [E = E′⊕E′′] ∈ Y (m′, m′′), where E′ and E′′ are stable sheaves

with v(E′) = m′v0 and v(E′′) = m′′v0. In this case, PAut(E) ∼= C∗, Ext2(E, E)0 ∼=

C, and the Kuranishi map Ext2(E, E)0 → C[Ext1(E, E)]∧ is completely described

by an invariant function f ∈ C[Ext1(E, E)]∧. It follows, that

ÔMv ,[E]
∼=
(
C[Ext1(E, E)]∧

)C∗/
(f).

Now C∗ acts on the four summands of

Ext1(E, E) = Ext1(E′, E′)⊕ Ext1(E′, E′′)⊕ Ext1(E′′, E′)⊕ Ext1(E′′, E′′)

with weights 0, 1, −1, and 0. It follows that

Ext1(E, E)//C∗ = Ext1(E′, E′)× C × Ext1(E′′, E′′),

where C ⊂M(d, C) is the cone of matrices of rank ≤ 1 and

d = dim Ext1(E′, E′′) = m′m′′〈v0, v0〉 ≥ 2.

Since the quotient of a singular local ring by a non-zero divisor cannot become

regular, ÔMv ,[E] is singular. �

Theorem 6.2. — Suppose that v belongs to case (C). Then Mv is a locally factorial

symplectic variety of dimension 2+ 〈v, v〉. The singular locus is non-empty and has

codimension 4. All singularities are symplectic, but there is no open neighbourhood

of a singular point in Mv that admits a projective symplectic resolution.
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Proof. We have already seen that Mv is a locally factorial variety. Mukai [21]

constructed a non-degenerate 2-form on M s
v . This form is closed even if M s

v is not

projective ([13] Prop. 10.3.2). By Flenner’s theorem [11] this form extends to any

resolution of the singularities of Mv. Hence the singularities are symplectic in the

sense of Beauville [5]. Now let [E] ∈Mv be a singular point and let U ⊂Mv be an

open neighbourhood of [E]. A projective symplectic resolution of U is a projective

resolution σ : U ′ → U of the singularities of U such that the restriction of the

symplectic form on M s
v to U reg extends to a symplectic form on U ′. In such a

case the morphism σ would have to be semismall according to a result of Kaledin,

[14] Lemma 2.11. As the singular locus of U has codimension ≥ 4 according to

Proposition 6.1, the exceptional locus of σ has codimension ≥ 2 in U ′. On the other

hand OMv ,[E] is factorial by Theorem 5.3. This implies that the exceptional locus

must be a divisor (see [7] no. 1.40 p. 28). �

Remark 6.3. — 1) The completion of a factorial local ring is not factorial in general.

The local rings of the moduli spaces of type (C) provide nice examples of this

phenomenon. Pushing the arguments in the previous proof a bit further, one sees

that

ÔMv ,[E]
∼= C[Ext1(E′, E′)⊕ Ext1(E′′, E′′)]∧ ⊗̂ B,

where B is the completed coordinate ring of the cone C0 ⊂ C ⊂M(d, C) of traceless

matrices of rank ≤ 1, with d ≥ 4. But ÔMv ,[E] cannot be factorial: the vertex of C0

is an isolated singularity of codimension ≥ 6, and there are two small symplectic

resolutions T ∗P(Ext1(E′, E′′)) → C0 ← T ∗P(Ext1(E′′, E′)). We see that in this

case OM,[E] is factorial due to Theorem 5.3, but ÔM,[E] is not. Geometrically, what

happens is this: an irreducible Weil divisor becomes reducible after completion;

while the whole thing still is a Cartier divisor, some of its newly acquired irreducible

components need not be.

2) On the other hand, for polystable sheaves E⊕m
0 with E0 stable and v(E0)

satisfying (∗), the completed local ring ÔMv ,[E⊕m
0

] is factorial. In fact, the proof of

proposition 3.7 shows that ÔS,[q] is factorial. Moreover, the stabiliser is isomorphic

to PGl(m) hence has no non-trivial characters. Under these conditions one can

show that the invariant ring (ÔS,[q])
PGl(m) ≃ ÔMv ,[E⊕m

0
] is also factorial.
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