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BOUNDED COUNTABLE ATOMIC COMPACTNESS
OF ORDERED GROUPS.

Friedrich WEHRUNG
Université de Caen

Département de Mathématiques
14032 CAEN CEDEX, FRANCE

Abstract. We show that whenever A is a monotone σ-complete dimension group, then A+∪{∞} is

countably equationally compact, and we show how this property can supply the necessary amount of completeness

in several kinds of problems. In particular, if A is a countable dimension group and E is a monotone σ-complete

dimension group, then the ordered group of all relatively bounded homomorphisms from A to E is a monotone

σ-complete dimension group.

§0. Introduction.

By definition, an ordered abelian group is monotone σ-complete whenever every boun-
ded increasing sequence of elements admits a l.u.b. . We will be here concerned about
those monotone σ-complete groups that are in addition directed and satisfy the Riesz
interpolation property. One can then show that such groups are (strongly) Archimedean,
thus they are dimension groups [7, 8]. Monotone σ-complete dimension groups appear
naturally as ordered Grothendieck groups K0 of countably continuous regular rings and
thus intervene also in the study of Rickart C∗-algebras [7, 8, 9].

Intriguingly, there is another related large class of ordered structures, the class of
Tarski’s cardinal algebras, as well as other more general classes, as e.g. refinement algebras
[14]. Basically, these objects also appear naturally in a lot of cases as algebras of isomor-
phism types of various structures such as sets under equipotence or σ-complete Boolean
algebras. Many of their properties are already valid in the more general class of weak
cardinal algebras, defined simultaneously and independently by K.P.S. Bhaskara Rao and
R.M. Shortt on one side, the author on the other side in [11, 18, 19].

Then it is not difficult to verify that if A is an abelian ordered group, then A+ ∪{∞}
is a weak cardinal algebra if and only if A is monotone σ-complete and satisfies the finite
interpolation property, and this gives a hint that methods used for one theory can often
be used for the other. For example, norm-completeness of Archimedean abelian groups
with unit with the countable interpolation property [8] is very closely related to metric
completeness of weak cardinal algebras and more general objects [19].

There is another striking common point between the latter two results; it is that they
are particular cases of atomic compactness [1, 10, 15, 16, 17]. Since most natural ordered
groups fail to enjoy any topological compactness property under some intrinsic topology
(like e.g. the order topology), atomic compactness could be the best one can hope in that
direction. Furthermore, there are several other positive results of that flavor:
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— The characterization in [18] of injective positively ordered monoids.
— The result that divisible weak cardinal algebras (and more general objects) are

countably injective, thus countably atomic compact [20]. In particular, if A is any divisible
(not necessarily Archimedean) dimension group with the countable interpolation property,
then A+ ∪ {∞} is countably injective.

— The result that if A is a Dedekind complete f-ring, then (A,+,−, ·,∧,∨,≤) is
“boundedly atomic compact” [21, theorem 5.5].

— The more recent result [22] that if A is a Dedekind σ-complete f-ring, then
(A,+,−, ·,∧,∨,≤) is “boundedly countably atomic compact”.

In this paper, we generalize the latter result to monotone σ-complete dimension
groups. The proof we present here does not use any forcing, but is valid only for the
language (+,≤).

In section 1, we recall the classical definitions and terminology about atomic com-
pactness [1, 10, 15, 16], and we introduce bounded atomic compactness, which (roughly
speaking) is to atomic compactness what local compactness is to compactness in general
topology. Such a situation has already been encountered in [21, theorem 5.5] and [22].

In section 2, we present a proof of the fact that every monotone σ-complete dimension
group is boundedly countably atomic compact in the language (+,≤) (theorem 2.9); unlike
the proofs of atomic compactness in [21, 22], it does not use any forcing, rather relying
on the analysis of the structure of the set of solutions of a given finite linear system with
parameters from the group in question. It is our belief that there are even stronger forms
of compactness satisfied by monotone σ-complete dimension groups to be investigated yet.
Furthermore, in theorem 2.11, we prove an algebraic analogue of the classical topological
“closed projection theorem” (if K is compact, then the natural projection from X ×K to
X is closed).

In section 3, we show how bounded countable compactness can be applied to general-
ize some abstract measure extension problems (proposition 3.1) and a Hahn-Banach like
theorem for monotone σ-complete dimension groups (theorem 3.4). Some of these results
were known in the lattice case, but without the possibility to take countable suprema,
atomic compactness properties are just what is needed to overcome this difficulty.

If X and Y are two sets, then XY will denote the set of all maps from X to Y .
We will denote the set of all positive integers by ω or N, according to the case where

we consider it as an ordinal or a monoid; in the first case, recall that if n is a positive
integer, then n = {x : x < n}.

Let (P,≤) be an ordered set. For all a, b in P , [a, b] will denote the interval {x ∈ P :
a ≤ x ≤ b}. If X, Y are two subsets of P , then X ≤ Y will stand for (∀x ∈ X)(∀y ∈ Y )
(x ≤ y); if X = {a} (resp. Y = {a}), we will write a ≤ Y (resp. X ≤ a); if X =
{a1, . . . , am} and Y = {b1, . . . , bn}, we will also write a1, . . . , am ≤ b1, . . . , bn. We will say
that P is directed (resp. filtered) when for all x, y in P , there exists z in P such that
x, y ≤ z (resp. z ≤ x, y). If x, xn (n ∈ ω) are elements of P , say that x =

∨
n ↑ xn

(resp. x =
∧

n ↓ xn) when (xn)n is increasing (resp. decreasing) and x is the l.u.b. (resp.
g.l.b.) of (xn)n. We will say that P is monotone σ-complete [8] when every increasing
(resp. decreasing) bounded sequence of elements of P has a l.u.b. (resp. g.l.b.).
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Formal variable symbols will be written in boldface roman letters a, b, x, y..., while
elements of a given structure will be written in math italics a, b, x, y... . Lists of variables
or of elements of a structure will often be denoted by vectors �x, �x..., or �x

(n)
if �x = (xi)i<n.

§1. Countable, bounded atomic compactness.

The goal of this section is to recall some classical definitions about (countable or
arbitrary) atomic compactness, as well as the version we shall use throughout this paper,
bounded (countable or arbitrary) atomic compactness. We refer to [1, 10, 15, 16] for more
precisions about atomic (and equational) compactness. We will be here concerned only
about models of the language (+,≤), but what follows in this section could often be easily
generalized to the case of an arbitrary first-order language; it could also be generalized to
the case of any infinite cardinal instead of just ℵ0.

Recall that an atomic formula is a formula of the form
∑

i<n pixi ≤ ∑
i<n qixi or∑

i<n pixi =
∑

i<n qixi, where pi and qi are positive integers and xi are variable sym-
bols. A formula is a well-formed expression built up from atomic formulæ and the logical
connectives and, or, ¬, ∀ and ∃.

A structure will be by definition a set A equipped with a binary operation + and a
binary relation ≤. One defines as usual formulæ with parameters from a given structure,
and the satisfaction relation A |= ϕ is to be read “A satisfies ϕ” [4]. The reduced power
∗A of A by the Fréchet filter over the integers is the quotient structure of ωA (equipped
with componentwise + and ≤) by the equivalence modulo the Fréchet filter on ω [4]. We
will as usual identify A with its image in ∗A under the natural embedding.

By analogy with equation systems, we will say that a set of formulæ is a system, then
using “solvable” instead of “satisfiable”. An atomic system is a system of atomic formulæ.
If A is a structure, then we will say that A is atomic compact (resp. countably atomic
compact) when for every system (resp. countable system) Σ of atomic formulæ of (+,≤),
possibly with parameters from A, if Σ is finitely solvable in A (i.e. every finite subsystem
of Σ is solvable in A), then Σ is solvable in A. When the formulæ that we consider are
equations, we obtain the classical definition of equational compactness [10, 16]. It is well-
known that if A is a compact structure (i.e. there exists a compact Hausdorff topology on
the underlying set for which ≤ is closed and + is continuous), then A is atomic compact.
The converse is false in a lot of [most] natural cases (see for example [5, 6, 12]).

It is well-known [16, theorem 2.3] that a structure is atomic compact if and only if it
is a retract of all its reduced powers. The following proposition is a countable analogue of
this result:

1.1. Proposition. Let A be a structure. Then the following are equivalent:

(i) A is countably atomic compact;

(ii) Let A0 and A1 be countable structures such that A0 ⊆ A and A0 ⊆ A1 ⊆ ∗A0. Then
there exists a “partial retraction” from A1 to A, i.e. a (+,≤)- homomorphism ρ from
A1 to A such that ρ�A0 = id.

Proof. (i)⇒(ii) Consider the following countable atomic system Σ, with parameters from
A0, with unknowns xa (a ∈ A1):
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Σ :




xa+b = xa + xb (all a, b in A1)
xa ≤ xb (all a, b in A1 such that a ≤ b)
xa = a (all a ∈ A0)

It is easy to see that Σ is finitely solvable in A (and even in A0); by assumption, Σ is
solvable in A. Any solution of Σ in A1A defines a partial retraction from A1 to A.

(ii)⇒(i) Let Σ be a countable atomic system with parameters from A, with unknowns
xn (n ∈ ω). There exists a countable substructure A0 of A such that all parameters in Σ
are in A0 and Σ is finitely solvable in A0. Hence, Σ is solvable in ∗A0 [16, lemma 2.2], thus
in some countable substructure A1 of ∗A0 containing A0. By assumption, there exists a
partial retraction ρ from A1 to A; the image under ρ of a solution of Σ in A1 is a solution
of Σ in A.

Note that the proof of (ii)⇒(i) above does not work when Σ consists on arbitrary
positive formulæ, even by replacing ∗A0 by a ultrapower of A0 and requiring A0 ≺ A and
A1 ≺ ∗A0. (and this is a difference with the case of full atomic compactness): indeed,
ρ[A1] does not seem a priori to be a pure substructure of A.

A non zero directed ordered group A can never be atomic compact (consider the atomic
system { a ≤ x (all a ∈ A) ); on the other hand, the author proved [21, theorem 5.5] that
if A is a Dedekind complete f-ring, then A is “boundedly algebraically [or atomic] compact”
in the language (+,−, ·,∧,∨,≤), i.e. every finitely solvable system of the following form:

{
ϕi

(
�x
(J)

)
(all i ∈ I; the ϕi’s are atomic formulæ of the language (+,−, ·,∧,∨,≤))

|xj | ≤ aj (all j ∈ J ; the aj ’s belong to A)

is solvable.

1.2. Definition. Let A be a structure, let Σ be a system with parameters from A, with
unknowns xi (i ∈ I). Then a family (ai, bi)i∈I of elements of A×A is bounding for Σ when
the following system: {

Σ
ai ≤ xi ≤ bi (all i ∈ I)

is finitely solvable. We will say that Σ is bounding when it admits a bounding family. We
will say that A is boundedly countably atomic compact when every bounding countable
system with parameters from A is solvable in A.

For every abelian ordered group A, equip A+∪{∞} with the ordered monoid structure
extending A+ such that ∞ > 0 and (∀x)(x+∞ = ∞+x = ∞). Then we have the following

1.3. Proposition. Let A be a directed abelian ordered group. Then the following are
equivalent:

(i) A is boundedly countably atomic compact.

(ii) A+ ∪ {∞} is countably atomic compact.

(iii) A+ ∪ {∞} is countably equationally compact.
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Proof. (ii)⇒(i) is easy. Now assume (i). Put E = A+ ∪ {∞}. Let C be a countable
submonoid of E, let C ′ be a countable monoid such that C ⊆ C ′ ⊆ ∗C. Put I = {[xn]n ∈
C ′ : (∃x ∈ A+)(∀n ∈ ω)(xn ≤ x)} (set of all “bounded” elements of C ′). Then we see
as in the proof of proposition 1.1, (i)⇒(ii) (the corresponding system Σ is bounding) that
by bounded countable atomic compactness of A, there exists a partial retraction ρ from I
to A+. Thus, the extension ρ′ of ρ to E defined by ρ′(x) = ∞ if x ∈ C ′ \ I is a partial
retraction from C ′ to E (see also [21, corollary 5.6] for a similar argument). Finally,
(ii)⇔(iii) is easy, by observing that in A+ ∪ {∞}, x ≤ y is equivalent to (∃z)(x + z = y).

Note that the analogue of proposition 1.3 fails for richer languages, as e.g. for the
language (+,∧,≤) and A = R × R, with x ∧ y = min(x, y).

§2. Special sentences. Case of monotone σ-complete groups.

Recall [8] that an abelian ordered group A satisfies the interpolation property (resp.
the countable interpolation property) when for all finite (resp. countable) nonempty subsets
X and Y of A such that X ≤ Y , there exists z in A such that X ≤ z ≤ Y . Moreover, A
is unperforated when for all m ∈ N \ {0}, A satisfies (∀x)(mx ≥ 0 ⇒ x ≥ 0). A dimen-
sion group is a directed, abelian, unperforated ordered group satisfying the interpolation
property. We will say that a dimension cone is the positive cone of a dimension group.
Recall [8, theorem 16.10] that every abelian monotone σ-complete group with the (finite)
interpolation property is Archimedean and satisfies the countable interpolation property.

The following definition of special sentences matches the one in [3, p. 181] in many
aspects. The terminology “linear formula” is chosen by analogy with the already existing
term “linear system”.

2.1. Definition. A formula of the language (+,≤) is linear when it is a finite conjunction
of atomic formulæ. A special sentence is a formula of the form

(∀�x)
[
ϕ(�x) ⇒ (∃ �y)ψ(�x, �y)

]
where ϕ and ψ are linear formulæ.

A key fact for this section is the following

2.2. Proposition. There exist computable functions which to each linear formula ϕ( �x
(n)

)

associate a strictly positive integer Nϕ and a Nϕ-uple (�mj)j<Nϕ
of elements of nNϕ such

that for every dimension group A, we have

A+ |= (∀�x)


ϕ(�x) ⇐⇒ (∃j<Nϕ

yj)


�x =

∑
j<Nϕ

�mjyj





 .

(Thus, taking A = Z, we see that for all j < Nϕ, N |= ϕ(�mj)).
Proof. When ϕ is s = t where s and t are terms, this is [8, proposition 3.15] (the proof
showed in [8] is obviously effective). When ϕ is s(�x) ≤ t(�x) where s and t are terms, note
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that in every dimension cone, the formulæ ϕ(�x) and (∃y)
(
s(�x) +y = t(�x)

)
are equivalent,

and thus it suffices to apply the previous result to the formula s(�x)+y = t(�x). Now suppose
that the theorem has been proved for conjunctions of n atomic formulæ (n ∈ ω\{0}) and let
ϕ( �x

(n)
) be a conjunction of n+1 atomic formulæ. Thus ϕ is ψ∧ θ where ψ is a conjunction

of n atomic formulæ and θ is atomic. Let Nψ and �mj (j < Nψ) be associated with ψ
(induction hypothesis). Then, in every dimension cone, ϕ(�x) is equivalent to the formula

(∃j<Nψ
yj)


�x =

∑
j<Nψ

�mjyj and θ(�x)


 ,

so that it suffices to apply the case n = 1 to the atomic formula θ
(∑

j<Nψ
�mjyj

)
and

substitute back into �x the expressions found for the yj ’s.

In the context above, �x =
∑

j<Nϕ
�mjyj will be called the general solution of ϕ(�x) in

dimension cones.

2.3. Corollary. Consider a special sentence θ

(∀ �x
(m)

)

(
ϕ(�x) ⇒ (∃ �y

(n)

)ψ(�x, �y)

)
,

where ϕ and ψ are linear formulæ. Then the following are equivalent:

(i) Every dimension cone satisfies θ;

(ii) N satisfies θ;

(iii) For all �x in mNϕ, there exists �y in n
N such that N |= ψ(�x, �y).

Proof. (i)⇒(ii), (ii)⇒(iii) are trivial. Now assume (iii). Let A be a dimension group;
we prove that A+ |= θ. So let �x in mA+ such that A+ |= ϕ(�x). Let Nϕ, �mj (j < Nϕ)
be associated with ϕ as in proposition 2.2. By proposition 2.2, there are tj (j < Nϕ) in
A+ such that �x =

∑
j<Nϕ

�mjtj . Since �mj ∈ mNϕ for all j and N |= ϕ(�mj), there are �nj

(j < Nϕ) in n
N such that for all j, N |= ψ(�mj , �nj). Put �y =

∑
j<Nϕ

�njtj . Then �y ∈ nA+

and A+ |= ψ(�x, �y).

2.4. Corollary. Let ϕ
(
x, �x

(m)
, �a
(n)

)
be a linear formula. Then for every dimension group

A and all �a in nA+, the “projection”

D =
{
x ∈ A+ : A+ |= (∃�x)ϕ(x, �x,�a)

}
is both filtered and directed.

Proof. The statement that D is always directed means that the following sentence θ is
satisfied by all dimension cones:

(∀x,y, �x, �y, �a)
[(

ϕ(x, �x, �a) and ϕ(y, �y, �a)
)

=⇒

(∃z,�z)
(
x ≤ z and y ≤ z and ϕ(z,�z, �a)

)]
6



However, θ is special, thus, by corollary 2.4, it suffices to show that θ holds in N.
However, since N is linearly ordered, this is obvious: if e.g. x ≤ y, then take z = y and
zi = yi for all i. The proof for “D is filtered” is similar.

The idea underlying the use of corollary 2.4 for the proof of bounded countable atomic
compactness of monotone σ-complete dimension groups is the following: if S(x0,x1, . . .) is
a countable bounding atomic system with parameters from a given monotone σ-complete
dimension group A, one constructs, using corollary 2.4, a bounded increasing sequence of
x0’s such that larger and larger finite subsystems of S(x0,x1,x2, . . .) are finitely solvable.
But now, we have to prove that the l.u.b. of such a sequence is in the first projection of S!
Basically, it would be good if to an increasing sequence of x0’s, one could e.g. associate
a decreasing, or increasing, sequence of x1’s; however, easy examples show that this is
not always possible. Now, thinking “with bounded variation” instead of “increasing” or
“decreasing” yields a small trick, summarized in the following proposition:

2.5. Corollary. Let ϕ
(
x, �x

(m)
, �a
(n)

)
be a linear formula; let N = Nψ where ψ is the

following linear formula:

ϕ(x, �x, �a) and ϕ(y, �y, �a) and x ≤ y.

Let A be a dimension group, let �a in nA+. Put

D =
{
x ∈ A+ : A+ |= (∃�x)ϕ(x, �x,�a)

}
,

S =
{
(x, �x) ∈ A+ × nA+ : A+ |= ϕ(x, �x,�a)

}
.

Then for all (x, �x) ∈ S and all y ∈ D such that x ≤ y, there exists �y ∈ nA+ such that
(y, �y) ∈ S and for all i < m, Nx + xi ≤ Ny + yi.

Proof. It suffices to prove that the following sentence θ holds in every dimension cone:

(∀x,y, �x, �y, �a)

[(
ϕ(x, �x, �a) and ϕ(y, �y, �a) and x ≤ y

)
=⇒

(∃�z)
(∧∧

i<m

(Nx + xi ≤ Ny + zi) and ϕ(y,�z, �a)
)]

However, θ is special, thus, by corollary 2.4, it suffices to show that it holds in N for
x, y and components of �a, �x, �y strictly less than N . If x = y then just take zi = xi (all
i < m). So suppose x < y; take zi = yi (all i < m). We verify that Nx + xi ≤ Ny + yi,
i.e. xi − yi ≤ N(y − x). However, this is the case, since xi − yi ≤ xi < N ≤ N(y − x).

2.6. Lemma. Let ϕ
(

�x
(m)

, �a
(n)

)
be a linear formula, let A be a monotone σ-complete

dimension group, let �a in nA, let �x, �xk (k ∈ ω) be elements of A such that �x =
∨

k ↑ �xk

(resp. �x =
∧

k ↓ �xk) and for all k, A |= ϕ(�xk,�a). Then A |= ϕ(�x,�a).
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Proof. ϕ(�x,�a) is equivalent to a conjunction of formulæ of the form
∑

i<m pixi + a ≤∑
i<m qixi + b (pi, qi ∈ N and a, b ∈ A+). Since addition is distributive on countable

∨ ↑
(resp.

∧ ↓), the conclusion follows immediately.

2.7. Proposition. Let ϕ
(
x, �x

(m)
, �a
(n)

)
be a linear formula, let A be a monotone σ-complete

dimension group, let �a in nA, let a in A+. Then

Da =
{
x ∈ A+ : A |= (∃i<mxi ≤ a)ϕ(x, �x,�a)

}
is closed under countable

∨ ↑ and
∧ ↓.

Proof. We prove the result for countable
∨ ↑; the proof for countable

∧ ↓ is similar. So
let (xk)k∈ω be a countable increasing bounded sequence of elements of Da, let x =

∨
k ↑ xk.

We prove that x ∈ Da. Let N be the integer associated as in corollary 2.5 with the formula[
ϕ(x, �x, �a) and

∧∧
i<m(xi ≤ a)

]
. For all k ∈ ω, we construct inductively �xk = (xk

i )i<m

(0 ≤ xk
i ≤ a) the following way.

(•) Since x0 ∈ Da, there exists �x0 in m[0, a] such that A |= ϕ(x0, �x0,�a).

(•) Suppose that �xk has been constructed (with 0 ≤ xk
i ≤ a) and A |= ϕ(xk, �xk,�a).

Since xk ≤ xk+1 and both belong to Da, there exists, by corollary 2.5, �xk+1 in m[0, a]
such that A |= ϕ(xk+1, �xk+1,�a) and for all i < m, Nxk + xk

i ≤ Nxk+1 + xk+1
i .

Thus for all i < m, the sequence (yk
i )k where yk

i = Nxk + xk
i is increasing. But it

is bounded above (by Nx + a), thus it has a l.u.b., say yi. Let ψ
(
z, �z

(m)
, �a

)
be the linear

formula ϕ(z,�z−Nz, �a). Then for all k, we have A |= ψ(xk, �yk,�a), whence, by lemma 2.6,
A |= ψ(x, �y,�a), whence A |= ϕ(x, �x,�a) where �x = �y − Nx. Finally, for all i < m, we have
0 ≤ xk

i ≤ a, which can be written Nxk ≤ yk
i ≤ a + Nxk; taking l.u.b. in k of all members

yields Nx ≤ yi ≤ a + Nx, i.e. 0 ≤ xi ≤ a. Hence, x ∈ Da.

Now we can prove the decisive lemma:

2.8. Lemma. Let A be a monotone σ-complete dimension group, let S(x0,x1,x2, . . .) be
a bounding atomic system with parameters from A with a bounding sequence of the form
(0, an)n∈ω. Then there exists x in [0, a0] such that S(x,x1,x2, . . .) is a bounding system
with bounding family (0, an)n∈ω\{0} (so that in particular, it is finitely solvable).

Proof. Write S as a countable increasing sequence S =
⋃

n∈ω Sn of finite subsystems.
Note that each Sn can be naturally identified with a linear formula with parameters from
A. Consider the strict well-ordering ≺ on ω × ω defined by (i, j) ≺ (i′, j′) if and only if
i + j < i′ + j′ or (i + j = i′ + j′ and j < j′). Construct by ≺-induction xj

i (i, j ∈ ω) the
following way. Suppose that all xj′

i′ are constructed for (i′, j′) ≺ (i, j) in such a way that
for all these (i′, j′), xj′

i′ ∈ [0, a0] and Si′(x
j′

i′ ,x1,x2, . . .) is solvable in
∏

l≥1[0, al]. Put
n = i + j. If j = 0, then i = n and there is x0

n in [0, a0] such that Sn(x0
n,x1,x2, . . .) is

solvable in
∏

l≥1[0, al]. If j > 0, there exists by corollary 2.4 xj
i ≤ xj−1

i+1 , xj−1
i in [0, a0]

8



such that Si(x
j
i ,x1,x2, . . .) is solvable in

∏
l≥1[0, al]. The picture is as follows:

x0
0 x0

1 x0
2 x0

3 . . .

↑ ↗ ↑ ↗ ↑ ↗
...

x1
0 x1

1 x1
2 . . .

↑ ↗ ↑ ↗
...

x2
0 x2

1 . . .

↑ ↗
...

x3
0 . . .
...

In this diagram, an arrow from xj
i to xj′

i′ means that xj
i ≤ xj′

i′ . Now, for all m in ω,
put xm =

∧
k ↓ xk

m. By proposition 2.7, Sm(xm,x0,x1, . . .) is solvable in
∏

l≥1[0, al]; thus
Sm(xn,x0,x1, . . .) is solvable in

∏
l≥1[0, al] for all n ≥ m. Furthermore, it results from

the construction that (xn)n is increasing; so put x =
∨

n ↑ xn. Thus x ∈ [0, a0], and by
proposition 2.7 again, Sm(x,x0,x1, . . .) is solvable in

∏
l≥1[0, al] for all m ∈ ω. Thus x is

as required.

Now we can give the main theorem of this section.

2.9. Theorem. Every monotone σ-complete dimension group is boundedly count-
ably atomic compact. Equivalently, for every monotone σ-complete dimension group A,
(A+ ∪ {∞},+,≤) is countably equationally (atomic) compact.

Proof. Let A be a monotone σ-complete dimension group, let S(x0,x1,x2, . . .) be a
countable bounding system with parameters from A. We show that S admits a solu-
tion in A. By appropriate translations of the variables, we may assume without loss of
generality that S admits a bounding sequence of the form (0, an)n. Now, using lemma
2.8, it is easy to construct inductively a sequence (xn)n in

∏
n[0, an] such that for all

n, S(x0, . . . , xn,xn+1,xn+2, . . .) admits (0, al)l>n as a bounding family (thus is finitely
solvable). Since every subsystem of S involves only finitely many unknowns, (xn)n is a
solution of S in

∏
n[0, an].

Another fact is that in proposition 2.7, the restriction that 0 ≤ xi ≤ a may be removed
as far as formulæ of the language (+,≤) are concerned (see the following counterexample
2.12 for a richer language).

2.10. Lemma. Let ϕ( �x
(m)

, �a
(n)

) be a linear formula, let A be a monotone σ-complete

dimension group, let �a ∈ nA+. Put a = Nϕ

∑
j aj . Then

A+ |=
[
(∃�x)ϕ(�x,�a) ⇒ (∃�x)

(∧∧
i<m

(0 ≤ xi ≤ a) and ϕ(�x,�a)

)]
.

Proof. Put N = Nϕ. Let θ be the following statement:

(∀�x, �a)


ϕ(�x, �a) ⇒ (∃ �y)

∧∧
i<m


(

0 ≤ yi ≤ N
∑
j<n

aj

)
and ϕ(�y, �a)







9



Since θ is a special sentence, it suffices to prove that θ is satisfied by N, and further-
more, it suffices to verify θ for xi, aj < N (corollary 2.3). So suppose that xi, aj < N for
all i < m, j < n and that N satisfies ϕ(�x,�a). If aj = 0 for all j, put yi = 0 for all i;
otherwise, take yi = xi for all i. Then in both cases, 0 ≤ yi ≤ N

∑
j aj and ϕ(�y,�a).

2.11. Theorem. Let ϕ
(
x, �x

(m)
, �a
(n)

)
be a linear formula, let A be a monotone σ-complete

dimension group, let �a in nA. Then

D =
{
x ∈ A : A |= (∃�x)ϕ(x, �x,�a)

}
is closed under countable

∨ ↑ and
∧ ↓.

Proof. We prove for example that D is closed under countable
∨ ↑; the proof for

∧ ↓ is
similar. So let x in A, xk (k ∈ ω) in D such that x =

∨
k ↑ xk. We prove that x ∈ D.

Since A is directed, one can assume without loss of generality that x0 ≥ 0 and aj ≥ 0 for
all j < n, whence x ≥ 0 and xk ≥ 0 for all k. Furthermore, for all y in A+, we have

y ∈ D ⇐⇒ A |= (∃�z,�t ≥ 0)ϕ(y,�z−�t,�a).

Thus there exists a linear formula ψ(x, �x
(2m)

, �a
(n)

) such that D∩A+ = {y ∈ A+ : A+ |=
ψ(y, �x,�a)}. By lemma 2.10, if N = Nψ, we also have

D =
{

y ∈ A+ : A+ |=
(
∃i<2mxi ≤ N

(
y +

∑
j<n

aj

))
ψ(y, �x,�a)

}
.

Thus for all k in ω, xk ∈ Da where a = N
(
x +

∑
j<n aj

)
and

Da =
{
y ∈ A+ : A+ |= (∃i<2mxi ≤ a)ψ(y, �x,�a)

}
By proposition 2.7, x ∈ Da, whence x ∈ D.

2.12. Example. The analogue of theorem 2.11 may fail for richer languages. Let L =
(+, ·,≤) where + and · are binary operation symbols and ≤ is a binary relation symbol.
Consider the natural realization of R as a model of L. Then

D = {x ∈ R : R |= (∃y)(x · y = 1)}

is not closed under countable increasing supremum or infimum.

2.13. Question. Let A be a monotone σ-complete dimension group. Is the structure
(A ∪ {∞},+,≤) countably positive compact? Positive formulæ are as usual those which
are built up only from the connectors and, or, ∃, ∀ (no negation). The answer to this
question is affirmative for Dedekind complete �-groups by [21, corollary 5.6] (atomic com-
pactness implies positive compactness, [16], but observe that the proof does not apply to
the countable case).
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2.14. Question. Is there a “compactness-like” statement which characterizes monotone
σ-complete dimension groups? See [21, proposition 5.8] for a related statement.

2.15. Question. It is easy to verify that any boundedly countably atomic compact
dimension group satisfies the countable interpolation property. Is the converse true (at
least for Archimedean groups)?

§3. Consequences of bounded countable atomic compactness.

We choose in this chapter two kinds of problems that can be formulated in terms of
equations-and-inequalities systems. The first kind has been studied in [13] and it deals
with extensions of semigroup-valued charges. By definition, if A is a Boolean algebra
and E is a preordered commutative monoid, µ : A → E is a charge when µ(0) = 0 and
whenever x, y are disjoint elements of A, then µ(x ∨ y) = µ(x) + µ(y). If A and B are
Boolean subalgebras of some Boolean algebra C and µ : A → E and ν : B → E are
charges, then µ and ν are said to be consistent when for all x ∈ A and y ∈ B, x ≤ y (resp.
x ≥ y, x = y) implies that µ(x) ≤ ν(y) (resp. µ(x) ≥ ν(y), µ(x) = ν(y)). This does not
imply in general that µ and ν admit a common extension to a E-valued charge on C, but
there are important cases where it does. In [13, theorem 3.2], the class of those positively
preordered commutative monoids E such that any two consistent E-valued charges with
finite domains admit a common extension is characterized by a very simple finite set of
conditions. Among these conditions is “minimality” of the preordering, i.e. for all x,
y in E, x ≤ y if and only if there exists z such that x + z = y. Structures with this
“grid property” are for example all abelian groups (with the coarse preordering), but also
A+ ∪ {∞} where A is any interpolation group. Now, in the case where (A+ ∪ {∞},+,≤)
is atomic compact, the extension property is satisfied in the general case, i.e. any two
consistent A+ ∪ {∞}-valued charges admit a common extension; this includes the case
where A is a Dedekind complete �-group [21, corollaries 5.6, 5.7]. Now, when A is just
monotone σ-complete, this may fail, but the argument above is easily seen to work in the
case where only countable systems are involved. Thus we get the following

3.1. Proposition. Let A be a boundedly countably atomic compact interpolation group.
Then A+ ∪ {∞} has the 2-charge extension property for countable charges. This holds in
particular when A is a monotone σ-complete dimension group.

Another field of application of the results of previous chapter lies in the generalization
of the results of [8, pp. 37-43] about relatively bounded homomorphisms. First recall the

3.2. Definition. Let X and Y be ordered sets. A map f : X → Y is relatively bounded
when for every bounded subset W of X, f [W ] is bounded in Y .

Then we can obtain the following analogue of [8, proposition 2.25].

3.3. Proposition. Let A be a countable dimension group, let E be a boundedly countably
atomic compact dimension group, let f in HomZ(A, E). Then f is relatively bounded if
and only if there are positive homomorphisms g and h such that f = g − h. This holds
in particular when A is a countable dimension group and E is a monotone σ-complete
dimension group.
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Proof. If f = g − h with positive g, h, then it is immediate that f is relatively bounded.
So suppose now that f is relatively bounded. For all a in A+, there exists ϕ(a) in E+ such
that (∀x ∈ [0, a])

(
0 ≤ f(x) ≤ ϕ(a)

)
. We need a

Claim. Let G be a dimension group, let m, n in ω \ {0}, ai (i < m) in G, �pj = (pij)i<m

in m
N (all j < n), bj (j < n) in G+ such that for all I ⊆ m and all j < n,

∑
i∈I pijai ≤ bj .

Then the following system with unknowns xi (i < m) is solvable:{
0, ai ≤ xi (all i < m)∑

i<m pijxi ≤ bj (all j < n)

Proof of claim. By corollary 2.3, it is sufficient to prove the claim in the case where
G = Z. But in this case, put xi = max(ai, 0). Then for all i < m, we have 0, ai ≤ xi.
Furthermore, let j < n. Put I = {i < m : ai ≥ 0}. Then

∑
i<m pijxi =

∑
i∈I pijai ≤ bj .

Hence, (xi)i<m is a solution of the system. Claim

Now, consider the following atomic system S, with unknowns xa, a ∈ A+:

S :
{

0, f(a) ≤ xa ≤ ϕ(a) (all a ∈ A+)
xa+b = xa + xb (all a, b in A+)

We prove that S is finitely solvable. So let P be a finite subset of A+, and consider the
following finite system SP :

SP :
{

0, f(a) ≤ xa ≤ ϕ(a) (all a ∈ P )
xa+b = xa + xb (all a, b in P )

Let S′
P be the system {xa+b = xa + xb (all a, b in P ) . It is a finite equation system

with unknowns xa (a ∈ Q) where Q = P ∪ (P + P ). By proposition 2.2, S′
P admits

a general solution xa =
∑

k<N naktk in all dimension cones. In particular, for all a, b
in P and all k < N , we have na+b,k = nak + nbk. Furthermore, since (xa �→ a) is a
solution of S′

P in A+ and A is a dimension group, there are bk (k < N) in A+ such that
(∀a ∈ Q)

(
a =

∑
k<N nakbk

)
. Now consider the following system R with unknowns yk

(k < N):

R :
{

0, f(bk) ≤ yk (all k < N)∑
k<N nakyk ≤ ϕ(a) (all a ∈ Q)

Let a ∈ Q, I ⊆ N . We have
∑

k∈I nakf(bk) = f
(∑

k∈I

nakbk︸ ︷︷ ︸
∈[0, a]

)
≤ ϕ(a), so that the

condition of the claim is satisfied. Therefore, R admits a solution, say (yk)k<N . For all
a ∈ Q, put xa =

∑
k<N nakyk. Then for all a ∈ P , xa ≥ 0, xa ≥ ∑

k<N nakf(bk) = f(a),
and xa ≤ ϕ(a). Furthermore, for all a, b in P , we have (∀k < N)(na+b,k = nak + nbk),
whence xa+b = xa +xb. Thus (xa)a∈Q is a solution of SP . Therefore, S is finitely solvable,
hence bounding with bounding family (0, ϕ(a))a∈A+ . By assumption, S admits a solution,
say (xa)a∈A+ . The map a �→ xa extends naturally to a positive homomorphism g from A
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to E, and by assumption, f ≤ g. Then g and h = g − f satisfy the required conditions.
The final conclusion comes from theorem 2.9.

When A and E are directed abelian ordered groups, equip as in [8] HomZ(A, E) with
the partial ordering ≤+ whose positive cone consists on the positive homomorphisms.
The set Hom∗

Z
(A, E) of all relatively bounded homomorphisms from A to E is an ideal of

HomZ(A, E). The first statement of the following theorem is a Hahn-Banach like theorem
for boundedly countably atomic compact dimension groups.

3.4. Theorem. Let A be a countable dimension group, let E be a boundedly countably
atomic compact dimension group. Then the following holds:

(a) Let X and Y be nonempty, countable sets of maps from A+ to E such that X ≤ Y
and the following holds:

(i) (∀f ∈ X)(∀a, b ∈ A+)
(
f(a + b) ≤ f(a) + f(b)

)
;

(ii) (∀g ∈ Y )(∀a, b ∈ A+)
(
g(a + b) ≥ g(a) + g(b)

)
.

Then there exists h in HomZ(A, E) such that

(∀f ∈ X)(∀g ∈ Y )
(
f ≤ h�A+ ≤ g

)
.

(b) Suppose that E is monotone σ-complete. Then HomZ(A, E) is a monotone σ-complete
interpolation group and Hom∗

Z
(A, E) is a monotone σ-complete dimension group.

Proof. (a) Consider the following atomic system S, with unknowns xa (a ∈ A+):

S :
{

f(a) ≤ xa ≤ g(a) (all f ∈ X, g ∈ Y , a ∈ A+)
xa+b = xa + xb (all a, b in A+)

We show that S is finitely solvable. So let X0 ⊆ X, Y0 ⊆ Y , P ⊆ A+ be finite and
nonempty, and consider the following system S0:

S0 :
{

f(a) ≤ xa ≤ g(a) (all f ∈ X0, g ∈ Y0, a ∈ P )
xa+b = xa + xb (all a, b in P )

We prove that S0 admits a solution. Consider first the following system S1:

S1 : {xa+b = xa + xb (all a, b in P ).

Let Q = P ∪ (P +P ), and let xa =
∑

k<N naktk be the general solution of S1 in dimension
cones; thus for all a, b in P and k < N , we have na+b,k = nak+nbk. Furthermore, (xa �→ a)
is a solution of S1 in A+; therefore, there are bk (k < N) in A+ such that for all a ∈ Q,
we have a =

∑
k<N nakbk. Now, since E satisfies the interpolation property, there are ck

(k < N) in E such that for all f ∈ X0, g ∈ Y0 and k < N , we have f(bk) ≤ ck ≤ g(bk).
For all a ∈ Q, let xa =

∑
k<N nakck. We check that (xa)a∈Q is a solution of S0.
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(•) Let f ∈ X0, g ∈ Y0, a ∈ P . Then we have

f(a) = f
(∑

k<N

nakbk

)
≤

∑
k<N

nakf(bk)

≤
∑
k<N

nakck

= xa

≤
∑
k<N

nakg(bk)

≤ g
(∑

k<N

nakbk

)
= g(a).

(•) Let a, b in P . Since for all k < N , we have na+b,k = nak + nbk, we have xa+b =
xa + xb.

Thus (xa)a∈Q is a solution of S0. But X and Y are nonempty, thus S is bounding.
By assumption, S admits a solution (xa)a∈A+ . The map a �→ xa extends naturally to a
homomorphism h from A to E. Then h satisfies the required condition.

(b) Let f , f ′, g, g′ in HomZ(A, E) such that f, f ′ ≤+ g, g′. By (a), there exists
h in HomZ(A, E) such that f, f ′ ≤+ h ≤+ g, g′. Therefore, HomZ(A, E) satisfies the
interpolation property. Furthermore, it is immediate (taking componentwise suprema and
infima) that HomZ(A, E) is monotone σ-complete. The conclusion follows from the fact
that Hom∗

Z
(A, E) is an ideal of HomZ(A, E), directed by proposition 3.3.
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