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A COMPACTNESS PROPERTY OF
DEDEKIND σ-COMPLETE f-RINGS.

Friedrich WEHRUNG
Université de Caen

Département de Mathématiques
14032 CAEN CEDEX, FRANCE

Abstract. We prove that Dedekind σ-complete f-rings are boundedly countably atomic compact in the

language (+,−,·,∧,∨,≤). This means that whenever Γ is a countable set of atomic formulæ with parameters from

some Dedekind σ-complete f-ring A every finite subsystem of which admits a solution in some fixed product K

of bounded closed intervals of A, then Γ admits a solution in K.

In [16, Theorem 5.5], we prove the following theorem:

(∗) Let A be a Dedekind complete f-ring. Then every system of the form

{
ϕi(�x) (all i ∈ I; the ϕi’s are atomic formulæ of (+,−, ·,∧,∨,≤))
|xj | ≤ aj (all j ∈ J ; the aj ’s are elements of A+)

every finite subsystem of which admits a solution in A, admits a solution in A.

The method of proof consists roughly speaking of forcing with the Boolean algebra of
polars of subsets of A and observing that in the Boolean universe, A becomes a linearly
ordered complete f-ring, where the usual argument of topological compactness can be per-
formed. Then the question of generalizing this result to the Dedekind σ-complete case (for
I and J countable) is natural, and it seems also natural to think that this relativization is
easily obtained by just writing in more detail the proof of the result above.

But rather surprisingly, in trying to do so, one encounters an important difficulty:
namely, one needs to be able to go from “bounded” Boolean-valued names of elements of
A to elements of A [16, Lemma 5.2], and for this, (full) conditional lateral completeness
is needed. However, this is not always the case in Dedekind σ-complete f-rings. Note that
in a similar way, Stone’s general representation theorem for Dedekind complete �-groups
[12, Theorem 3] fails to generalize to Dedekind σ-complete �-groups. Thus the step from
Dedekind completeness to Dedekind σ-completeness is not trivial.

This we do here, proving that Dedekind σ-complete f-rings satisfy the version of (∗)
above with I and J countable. There is nothing special about the cardinal ℵ0 in this proof,
and it could be generalized to any uncountable cardinal. The main idea is to combine
the proof in the complete case with the countable version of Sikorski’s extension theorem
for Boolean algebras, constructing this way something close to a Boolean-valued name
of a non-trivial ultrafilter on ω and allowing a more effective construction of a global
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solution of the atomic system under consideration (see also remark 13). The formalism
involving forcing used here could be (in a somewhat laborious way) “translated” into
a proof without forcing, at the expense of introducing very cumbersome and unnatural
notations and statements.

Note that there is a close similarity between the forcing description of an ordered
structure used here (and in [16]) and the theory of general comparability [4, 5], but the
former offers the very important additional convenience of the generic model theorem [6,
8, 16], which expresses that arguments in usual logic can be carried over to Boolean-valued
models.

We will use the notations and basic results of [16] throughout this paper, and we
refer to [3] for the basic terminology and facts about model theory, reduced powers, etc..
Furthermore, some of the ideas underlying [16] originate in [8], which the reader may want
to consult for further reference about forcing and Boolean-linear spaces; see also [6, 7].

Let (P,≤) be an ordered set. For any two subsets X and Y of P , X ≤ Y will stand
for (∀x ∈ X)(∀y ∈ Y )(x ≤ y). We will say that P has the countable interpolation property
when for any two nonempty countable subsets X and Y of P such that X ≤ Y , there
exists z in P (“interpolant”) such that X ≤ {z} ≤ Y .

We will denote by fin the Fréchet filter on ω, and for every set X, we will denote by
∗X = ωX/fin the reduced power of X by fin. For all (xn)n in ωX, we will denote by [xn]n
its image in ∗X. Furthermore, we will identify as usual X with its image by the natural
embedding from X into ∗X. It will also sometimes be convenient to identify X with its
image in ωX under the diagonal map.

Formal variable symbols will be written in boldface roman letters x, y..., while ele-
ments of a given structure will be written in math italics a, b, x, y... .

Let L be a first-order language, let M be a model of L. Recall [13] that an atomic
system with parameters from M is a set of atomic formulæ with parameters from M . Here,
instead of being concerned with atomic compactness, we will be interested in bounded
atomic compactness. This notion will be defined in the case where L has a distinguished
binary relation symbol, ≤.

1. Definition. Let Σ be an atomic system with parameters from M , with unknowns
xi (i ∈ I). Then a family (ai, bi)i∈I of elements of M × M is bounding for Σ when the
following system: {

Σ
ai ≤ xi ≤ bi (all i ∈ I)

is finitely solvable in M (thus Σ is itself finitely solvable in M). The system Σ is bounded
when it admits a bounding family. The model M is [boundedly] countably atomic compact
when every [bounded] countable atomic system with parameters from M is solvable in M .

Now we have the following analogue of [14, Theorem 2.3].

2. Proposition. Let L be a first-order language containing a distinguished relation
symbol ≤, let M be a model of L such that ≤M is a partial preordering and the operations
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in M are bounded (i.e. they send bounded sets on bounded sets). Then the following are
equivalent:

(i) M is boundedly countably atomic compact;

(ii) Let M0 and M1 be countable models such that M0 ⊆ M , M0 ⊆ M1 ⊆ ωM0 and
M1 consists only of eventually bounded sequences. Then there exists a homomorphism
r : M1/fin → M such that r|M0 = id.

Proof. (i)⇒(ii) Let N = M1/fin; thus up to natural isomorphisms, we have M0 ⊆ N ⊆
∗M0. For all a in ωM0, denote by [a] the fin-equivalence class of a. Consider the following
countable atomic system Σ, with parameters from M0, with unknowns xα (α ∈ N):

Σ :




xα = f(xα1 , . . . ,xαn
) (all n ∈ ω \ {0}, all n-ary function symbols f and all

α, αi (1 ≤ i ≤ n) in N such that α = fN (α1, . . . , αn))
R(xα1 , . . . ,xαn) (all n ∈ ω \ {0}, all n-ary relation symbols R and all

αi (1 ≤ i ≤ n) in N such that RN (α1, . . . , αn))
x[a] = a (all a ∈ M0)

For all α in N , let uα and vα in M such that for some representative sequence (an)n of
α in M1 and all but finitely many n, uα ≤ an ≤ vα. Then it is easy to see that (uα, vα)α∈N

is a bounded family for Σ. Thus, by assumption, Σ admits a solution in M , say (xα)α∈N .
Define r by r(α) = xα.

(ii)⇒(i) Let Σ be a countable atomic system with parameters from M , with unknowns
xn (n ∈ ω) and with bounding sequence (an, bn)n∈ω. There exists a countable substructure
M0 of M such that all parameters in Σ and all an, bn’s are in M0 and Σ is finitely solvable
in M0. Hence, Σ is solvable in ∗M0 [14, Lemma 2.2], with solutions xn (n ∈ ω) satisfying
an ≤ xn ≤ bn. Let N be the submodel of ∗M0 generated by M0 and {xn : n ∈ ω}; let M1

be the inverse image of N by the natural projection ωM0 → ∗M0. Then M1 is countable,
and, by the assumption on the operations, all elements of M1 are eventually bounded. By
assumption, there exists a homomorphism r from M1/fin = N to M such that r|M0 = id.
Then (r(xn))n is a solution of Σ in M .

Now we will specialize to f-rings — see [2] for reference about these objects.

Let F be a filterbasis on a set I, i.e. a nonempty set of nonempty subsets of I that is
closed under finite intersection. We will say that a subset X of I is F-measurable when X
either contains or is disjoint from an element of F . Note that F generates a ultrafilter of
the Boolean algebra of F-measurable subsets of I.

3. Lemma. Let (an)n be a bounded real sequence, let D be a subgroup of (R,+)
containing {an : n ∈ ω}, let F be a filterbasis on ω. Suppose that for all a in D, both
sets {n ∈ ω : an ≤ a} and {n ∈ ω : an ≥ a} are F-measurable. Then (an)n is convergent
relative to F .

Proof. Since (an)n∈ω is bounded, a = limF (an)n and b = limF (an)n belong to R, and
the convergence of (an)n is equivalent to the fact that b ≤ a (we always have a ≤ b). We
distinguish two cases.
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Case 1. D is discrete.

Then both a and b belong to D. Let d ∈ D ∩ R
+ be a generator of D. Since (an)n is

bounded and the an’s belong to D, there exists N ∈ N \ {0} such that for all n, we have
−Nd ≤ an ≤ Nd. Thus ω =

⋃N
k=−N Xk where we put Xk = {n ∈ ω : an = kd}. But by

assumption, all the Xk’s are F-measurable (and ω ∈ F), whence there exists k such that
Xk ∈ F . Thus for F-almost every n, we have an = kd, whence a = b = kd.

Case 2. D is dense.

Towards a contradiction, assume that a < b. Since D is dense, there exists d in D
such that 0 < d < b − a. Since (an)n is bounded, there exists N in N \ {0} such that for
all n, we have −Nd ≤ an ≤ Nd. Thus ω =

⋃N−1
k=−N Xk where we put Xk = {n ∈ ω : kd ≤

an ≤ (k + 1)d}. Since the Xk’s are by assumption F-measurable, there exists k such that
Xk ∈ F . It follows that kd ≤ a < b ≤ (k + 1)d, which contradicts the fact that d < b − a.

Thus in both cases, a = b, which completes the proof.

Note that in the context of Lemma 3, one cannot necessarily conclude that limF an

belongs to D; thus if one is restrained to state Lemma 3 “inside D”, as it will be the case
in Lemma 9, the conclusion has to be restated as “(an)n is a F-Cauchy sequence”.

4. Lemma. Let E be a Boolean algebra satisfying the countable interpolation property.
Then E is countably atomic compact in the language (∧,∨,¬,≤).

Note: the converse is trivial, thus we have equivalence.

Proof. It suffices to prove that E is countably injective, i.e. for every subalgebra A of a
countable Boolean algebra B, every homomorphism from A to E extends to a homomor-
phism from B to E (this is in fact equivalent to countable atomic compactness, since every
extension of Boolean algebras is pure). Furthermore, an easy induction argument shows
that it suffices to consider the case where B is monogenic over A, i.e. B is generated by
A ∪ {b} for some b ∈ B. Then, for an extension as desired to exist, it is necessary and
sufficient [9, Corollary 5.8] that there exists β in E such that for all x in A, x ≤ b (resp.
x ≥ b) implies f(x) ≤ β (resp. f(x) ≥ β). But by the countable interpolation property,
such a β always exists.

Recall [9, 5.26 and 5.27] that an example of a non σ-complete Boolean algebra with the
countable interpolation property is the quotient Boolean algebra P(ω)/fin of the powerset
algebra P(ω) by the equivalence modulo finite sets.

Now, in the sequel, let A be a Dedekind σ-complete f-ring. Thus A is Archimedean,
thus commutative [2]. For every subset X of A, we put as usual ⊥X = {y ∈ A :
(∀x ∈ X)(|x|∧|y| = 0)}, the polar of X. The polars of subsets of A form a complete Boolean
algebra under inclusion, say B. For all p ∈ A+, denote by [p] the natural image of p in B,
viz. [p] = ⊥⊥{p}. Let B be the σ-complete subalgebra of B generated by {[p] : p ∈ A+}.
As in [16, sections 4 and 5], A is equipped with a structure of B-valued model of the theory
of linearly ordered commutative rings, defined by ‖a ≤ b‖ = ⊥{(a − b)+} for all a, b in A;
note that ‖a ≤ b‖ = ⊥[(a− b)+] ∈ B. Furthermore, there is no loss of generality in assum-
ing that elements of A are atoms of the universe and that the B-valued universe extends the
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B-valued A [16, Lemmas 2.1 and 2.2]; then, such statements as ‖Ǎ is Archimedean‖ = 1
[16, Lemma 4.13] (Ǎ is the canonical name for A) become meaningful.

5. Lemma. For every u in B, we have u + ⊥u = A.

Proof. Let B′ = {u ∈ B : u + ⊥u = A}. We prove that B′ contains B.
First, for all p in A+, [p] ∈ B′ since A, being a Dedekind σ-complete �-group, is

projectable [2, Proposition 11.2.3]. It is also clear that B′ is closed under ‘complementation’
u �→ ⊥u. Finally, let (un)n∈ω be a sequence of elements of B′, let u =

∨
n un. We prove

that u ∈ B′. It suffices to prove that for all a in A+, there exists x in u such that a−x ∈ ⊥u.
For all n, let xn be the unique element of un such that a−xn ∈ ⊥un. For all n, 0 ≤ xn ≤ a,
so that x =

∨
n xn exists and belongs to [0, a]. For all n, 0 ≤ a − x ≤ a − xn ∈ ⊥un, so

that a − x ∈ ⋂
n ⊥un = ⊥u. On the other hand, xn ∈ un ⊆ u for all n, whence x ∈ u.

Thus we have proved that B′ is a σ-subalgebra of B containing {[p] : p ∈ A+}; thus
it contains B.

For every u in B and every a in A, denote by a|u the unique element x of u such that
a − x ∈ ⊥u.

Now, let us study B-valued names of subsets of ω. In general, for every B-valued name
X, we have ‖X ⊆ ω̌‖ = ‖X = X ′‖ where X ′ = {(ň, ‖ň ∈ X‖) : n ∈ ω}. In that sense,
B-valued names of subsets of ω can be identified with sequences of elements of B (just as
subsets of ω can be identified with sequences of elements of {0, 1}). For every sequence
�u = (un)n∈ω of elements of B, let X�u = {(ň, un) : n ∈ ω} be the B-valued name associated
with �u.

Now, suppose that �u ∈ ωB. Let (an)n∈ω be a bounded sequence of elements of A; we
construct a name for

∧
n∈X�u

an. Put a =
∨

n an (any upper bound of the an’s would do).
For all n, let xn = an|un + a|⊥un (use Lemma 5). Since (an)n is bounded, x =

∧
n xn

exists. In the sequel, we will denote this x by
∧�u(an)n.

6. Lemma. ‖X�u �= ∅‖ ≤ ‖x =
∧

n∈X�u
an‖. Furthermore, if

∨
n un = 1, then x is the

largest element y of A such that for all n, un ≤ ‖y ≤ an‖.
Proof. Let u = ‖X�u �= ∅‖, v = ‖x =

∧
n∈X�u

an‖. Note that u =
∨

n un. For all n, we
have x|un ≤ xn|un = an|un, whence un ≤ ‖x ≤ an‖, whence

‖(∀n ∈ X�u)(x ≤ an)‖ =
∧
n∈ω

(un → ‖x ≤ an‖) = 1.

On the other hand, let y in A. Let w = ‖(∀n ∈ X�u)(y ≤ an)‖. We prove that
u ∧ w ≤ ‖y ≤ x‖. We have w =

∧
n∈ω(un → ‖y ≤ an‖) ∈ B. Let b be a lower bound

of {an : n ∈ ω}, let z = y|w + b|⊥w. Since w ≤ ‖z = y‖ and ⊥w ≤ ‖z = b‖, we have
‖(∀n ∈ X�u)(z ≤ an)‖ = 1, i.e. for all n, un ≤ ‖z ≤ an‖. Thus for all n, un ≤ ‖z ≤ a‖,
thus u ≤ ‖z ≤ a‖, thus z′ ≤ a where z′ = z|u + a|⊥u. For all n, we have

z′|un = z|un ≤ an|un = xn|un,

and
z′|⊥un ≤ a|⊥un = xn|⊥un,
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whence z′ ≤ xn. Thus, z′ ≤ x, whence u ≤ ‖z ≤ x‖, whence u ∧w ≤ ‖y ≤ x‖. So we have
proved that

u ≤
∥∥(∀y ∈ Ǎ)

(
(∀n ∈ X�u)(y ≤ an) ⇒ y ≤ x

)∥∥,

which completes the first part of the proof.
As to the second part of the proof (in the case

∨
n un = 1), note first that for all n,

un ≤ ‖x ≤ an‖. If y satisfies this property, then we have ‖(∀n ∈ X�u)(y ≤ an)‖ = 1,
whence, by the previous conclusion, ‖y ≤ x‖ = 1, whence y ≤ x.

Similarly, if (an)n is a bounded sequence of elements of A and �u ∈ ωB, one can define
canonically x =

∨�u(an)n, in such a way that ‖X�u �= ∅‖ ≤ ‖x =
∨

n∈X�u
an‖.

Now, let A0 be a countable f-subring of A; identify A0 with its image in ωA0 under the
diagonal map, and let A1 be a countable f-subring of ωA0 containing A0 and consisting only
of bounded sequences. We shall prove that there is a f-ring homomorphism ρ : A1/fin → A
such that ρ|A0 = id; this will suffice (by Proposition 2) to prove the countable bounded
atomic compactness of (A,+,−, ·,∧,∨,≤).

Let B0 be the subalgebra of B generated by {[p] : p ∈ A0}, let B1 be the subalgebra
of ωB0 generated by all sequences (‖an ≤ a‖)n and (‖an ≥ a‖)n for a ∈ A0, (an)n ∈ A1

and let B2 be the subalgebra of ωB0 generated by B1 and all
∨

n≥m un where m ∈ ω
and (un)n ∈ B1. Thus B0, B1 and B2 are countable, and B0 ⊆ B1 ⊆ B2 ⊆ ωB0. Since
B is σ-complete, there exists by Lemma 4 a homomorphism r′ : B2 → B such that r′

factors through fin, yielding a homomorphism from B2/fin to B, and r′|B2∩B = id. Let
r = r′|B1 . Note that for all �u = (un)n in B1 and all m in ω, we have, putting ū =

∨
n≥m un,

that un ≤ ū for all n ≥ m, thus �u ≤ ū (mod fin) and �u ∈ B1 ⊆ B2 and ū ∈ B2, thus
r(�u) = r′(�u) ≤ r′(ū) = ū =

∨
n≥m un.

Now, we shall define something as close as possible to the B-valued name of a ultrafilter
on ω: it will be

F =
{(

X�u, r(�u)
)

: �u ∈ B1

}
.

7. Lemma. ‖F is a filterbasis on ω̌‖ = 1.
Proof. Let �1 be the constant sequence with value 1. Then F(X�1) = 1, whence ‖ω̌ ∈
F‖ = ‖X�1 ∈ F‖ = 1. Furthermore,

‖∅ /∈ F‖ =
∧

�u∈B1

(
F(X�u) → ‖X�u �= ∅‖

)
=

∧
�u∈B1

(
r(�u) →

∨
n

un

)
= 1.

Finally, let �u and �v in B1. Put �w = �u ∧ �v (i.e. for all n, wn = un ∧ vn). It is easy to
see that ‖X�w = X�u ∩X�v‖ = 1. Thus, r(�u)∧ r(�v) = r(�w) ≤ ‖X�u ∩X�v ∈ F‖. This proves
that ‖(∀X,Y ∈ F)(X ∩ Y ∈ F)‖ = 1.

Now, let B1 = {�uk : k ∈ ω} be an enumeration of B1. Fix in Lemmas 8 and 9 an
element (an)n of A1. For all k, put vk = r(�uk) and yk =

∧�uk

(an)n. The sequence (yk)k is
bounded (it lies in [

∧
n an,

∨
n an]), so that one can define a =

∨�v(yk)k.

8. Lemma. ‖a = limF (an)n‖ = 1.
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Proof. We prove that ‖a =
∨

X∈F
∧

n∈X an‖ = 1. Let us first prove that∥∥∥∥∥(∀X ∈ F)

(
a ≥

∧
n∈X

an

)∥∥∥∥∥ = 1.

For this, it suffices to prove that for all �u in B1, we have r(�u) ≤
∥∥∥a ≥ ∧

n∈X�u
an

∥∥∥, i.e. for
all k in ω, vk ≤ ‖a ≥ yk‖. But this comes from Lemma 6.

Conversely, let b in A. We prove that∥∥∥∥∥(∀X ∈ F)

( ∧
n∈X

an ≤ b

)∥∥∥∥∥ ≤ ‖a ≤ b‖.

Let u be the left-hand side. Then we have

u =
∧
k∈ω

(
r(�uk) → ‖yk ≤ b‖

)
∈ B.

Thus (Lemma 5) we can define c = b|u + (
∨

n an) |⊥u. Then we have∥∥∥∥∥(∀X ∈ F)

( ∧
n∈X

an ≤ c

)∥∥∥∥∥ = 1,

whence for all k in ω, vk ≤ ‖yk ≤ c‖. Since
∨

k vk = 1, we obtain by Lemma 6 (analogue
for ≥) that a ≤ c, so that u ≤ ‖a ≤ b‖.
9. Lemma. ‖(an)n is a F − Cauchy sequence‖ = 1.

The reason why we state this lemma with Cauchy sequences rather than with conver-
gent sequences is that we do not know at that point whether Ǎ is complete in the B-valued
universe (see also the comments following the proof of Lemma 3).
Proof. Since the following holds




‖(an)n is bounded‖ = 1,
‖Ǎ is Archimedean linearly ordered‖ = 1,
‖Ǎ0 is a subgroup of Ǎ‖ = 1,
‖(∀n ∈ ω̌)(an ∈ Ǎ0)‖ = 1,

it suffices by Lemma 3 to prove that the following holds:{
‖(∀x ∈ Ǎ0)({n : an ≤ x} is F−measurable)‖ = 1,
‖(∀x ∈ Ǎ0)({n : an ≥ x} is F−measurable)‖ = 1.

Let us prove e.g. the first statement; the proof of the second statement is similar. So
let x in A0, we prove that

‖{n : an ≤ x} is F−measurable‖ = 1.
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For all n, put un = ‖an ≤ x‖; note that �u = (un)n belongs to B1. Then we have
‖X�u = {n : an ≤ x}‖ = 1. Furthermore, we have

{
r(�u) ≤ ‖X�u ∈ F‖,
r(¬�u) ≤ ‖X¬�u ∈ F‖,

whence, since ‖X¬�u = ω̌ \ X�u‖ = 1,

{
r(�u) ≤ ‖{n : an ≤ x} ∈ F‖,
r(¬�u) ≤ ‖ω̌ \ {n : an ≤ x} ∈ F‖.

Since r(�u) ∨ r(¬�u) = 1, we can conclude.

Now, from Lemmas 8 and 9, we deduce immediately the following

10. Lemma. For all (an)n in A1, there exists a [unique] a in A such that
‖a = limF (an)n‖ = 1.

(The uniqueness is trivial, see [16, Proposition 4.3]).

Now, Lemma 10 allows us to define a map ρ from A1/fin to A the following way: if
(an)n ∈ A1, then ρ

(
[an]n

)
= the unique a in A such that ‖a = limF (an)n‖ = 1; it is clear

that ρ is well-defined.

11. Lemma. ρ is a f-ring homomorphism from A1/fin to A and ρ|A0 = id.

Proof. Let us prove e.g. that ρ is a ∧-homomorphism; the proofs for +, −, ·, ∨, ≤ are
similar. So let (an)n, (bn)n, (cn)n in A1 such that for all but finitely many n, cn = an ∧ bn.
Let a = ρ([an]n), b = ρ([bn]n), c = ρ([cn]n). Since ‖ ∧ is continuous‖ = 1, we have
‖c = limF (an)n ∧ limF (bn)n‖ = 1, thus ‖c = a ∧ b‖ = 1, thus c = a ∧ b [16, Proposition
4.5].

Now, we can deduce immediately the

12. Theorem. Every Dedekind σ-complete f-ring is boundedly countably atomic compact
in the language (+,−, ·,∧,∨,≤).

13. Remark. Theorem 12 has the following immediate consequence:
Let A be an Archimedean f-ring, let Ā be the free Dedekind σ-complete f-ring above

A. Then every countable bounded atomic system in A admits a solution in Ā.

If Σ is the atomic system under consideration, then the solutions of Σ in Ā will be
generalized terms of countable length (of the language (+,−, ·,∧,∨) and countable meet
and join) in the parameters and partial solutions of Σ; these expressions will also yield
solutions of Σ in any Dedekind σ-complete f-ring containing A. This conclusion provides
additional information that [16, Theorem 5.5] (Dedekind complete case) does not provide,
since there are e.g. no free countably generated Dedekind-complete f-rings.

14. Example. Let S be the positive cone of a dense linearly ordered abelian group
satisfying the countable strict interpolation property (i.e. if X and Y are two nonempty
countable subsets of S such that X < Y , then there exists z in S such that X < {z} < Y );
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one can for example take S to be any ω1-saturated elementary extension of (R+,+,≤),
although this is not the “cheapest” method from the axiomatic point of view. Let A be
the set of all formal linear combinations x =

∑
ξ<α xξX

sξ where X is an indeterminate,
the xξ’s are reals, α is a countable ordinal and (sξ)ξ<α is a strictly decreasing α-sequence
of elements of S; we identify X0 to 1. We leave as an exercise the proof of the fact
that with componentwise addition and “polynomial-like” (convolution) product (so that
Xa · Xb = Xa+b), A has a natural structure of commutative linearly ordered ring with
the countable interpolation property, whose positive cone consists of those x as above such
that x = 0 or x0 > 0 (thus for every ε > 0 in S, R < Xε). However, the following system
with unknown x, {

Xx ≥ 1
nx ≤ 1 (all n ∈ N)

is finitely solvable in A, though not solvable. Note that replacing S by R
+ in the previous

construction yields a linearly ordered ring without the countable interpolation property
(the sets N and {X1/n : n ∈ N \ {0}} cannot be interpolated in this structure), although
the “set of exponents” R

+ has the countable interpolation property.

15. Question. Does the conclusion of Theorem 12 still hold for abelian (at least Archime-
dean) �-groups satisfying the countable interpolation property? (By the previous example,
this fails for f-rings).

16. Question. Using the method of [16, Corollary 5.6], it is not difficult to prove that
if A is a Dedekind σ-complete f-ring, then A+ ∪ {∞} is countably atomic compact in the
language (+,∨,≤). Does this still hold for positive compactness? This is true for (full)
Dedekind completeness by [16, Corollary 5.6] and [14, Theorem 2.3]. The reader can find
some more results (similar to the ones in this paper) in [17].
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