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Abstract

We present a model of bi-phasic vesicle in the limit of large surface

tension. In this regime, the vesicle is completely stretched and well

described by two spherical caps with a fold which concentrates the

membrane stress. The conservation laws and geometric constraints

restrict the space of possible shapes to a pair of solutions labeled by a

parameter τ given by line tension/pressure. For a given τ value, the

two solutions differ by the length of the interface between domains.

For a critical value τc , the two vesicle shapes become identical and no

solution exists above this critical value. This model sheds new light on

two proposed mechanisms (osmotic shocks and molecule absorption)

to explain the budding and the fission in recent experiments.
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1 Introduction

The cell membrane is a bilayer made out of a mixture of lipid species. The

membrane is both the boundary of the cell and an interface inside the cell,

separating different compartments. This soft structure is responsible for

many biological properties. Intracellular traffic is also realized by membrane

structures: a membrane vesicle buds from one compartment, travels through

the cytosol and fuses with another compartment. Despite the fluidity of the

lipid bilayer, the cellular membrane presents a lateral inhomogeneity due

the formation of dynamical microdomains, called rafts (Simons and Ikonen,

1997). These microdomains have been shown to be rich in cholesterol and

sphingolipid (Brown and London, 2000). In vivo, the rafts have not been

directly observed but their size has been estimated to be between 20 and

700 nm (Chazal and Gerlier, 2003). A central question in membrane biology

and biophysics is to understand how this spatial organization is used by the

cell, in particular to favor interactions with proteins. Due to their size and

specific composition, it has been argued that rafts play a role in protein

docking, signaling, intracellular traffic (van Meer and Sprong, 2004) or virus

budding (Chazal and Gerlier, 2003).

Recently, a model system of Giant Unilammelar Vesicles (GUV) includ-

ing sphingomyelin-cholesterol domains was developed (Dietrich et al., 2001).

These domains, which are supposed to reproduce raft composition, are the re-

sult of a phase separation of the lipid species (Veatch and Keller, 2003). They

are more structured than the surrounding classical liquid bilayer but remain

in a liquid state. For this reason, they are called ”liquid-ordered” domains

whereas the classical membrane is called ”liquid-disordered”. A large num-
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ber of studies have focused on the thermodynamic of liquid-ordered phases,

in particular the effect of temperature or composition changes on domain

formation (de Almeida et al., 2003; Veatch and Keller, 2003). Multi-phase

vesicles are elegant and efficient tools to study the mechanical properties

of microdomains. It can be used to understand how rafts bud and make

daughter vesicles for intracellular traffic, but also how detergent addition

can isolate rafts from the cell membrane. Recent experiments have shown

that liquid-ordered domains can be separated from the initial vesicle by using

tubular deformations (Allain et al., 2004), osmotic shocks (Baumgart et al.,

2003; Bassereau and Roux, personnal communication) or absorption of ex-

ternal molecules like proteins or detergents (Staneva et al., 2004; Staneva

et al., submitted). Here, we develop a macroscopic theory for the two last

situations. Our model describes the budding preceeding the fission where the

liquid-ordered domain is lift up from the liquid-disordered vesicle.

Budding and fission have already attracted many theoretical works for

homogeneous (Jaric et al., 1995; Seifert, 1997; Dbereiner et al., 1997; Tanaka

et al., 2004; Sens, 2004) or inhomogeneous (Seifert, 1993; Jlicher and Lipowsky,

1996; Kohyama et al., 2003; Laradji and Sunil Kumar, 2004; Harden et al.,

submitted) membranes. The models vary depending on the physical interac-

tions involved but they are all based on the minimization of the bilayer energy

(Helfrich, 1973). Due to the non-linearity of the steady-shape equations, a

numerical treatment is often required. We focus our attention on multi-phase

vesicles slightly stretched, a situation often encountered in experiments. In

this case, osmotic pressure effects dominate and we show that the vesicle can

be described by two spherical caps with an elastic junction. The variational
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procedure with surface constraints allows to find two solutions for any ratio

τ = line tension/pressure less than a critical value τc. The stable solution is

the one observed experimentally. An osmotic shock increases the control pa-

rameter τ and so destabilizes the stable solution which may lead the system

to a complete fission of the neck. The case of detergents is slightly different

since it requires an energy model for molecular absorption in the membrane.

When detergent molecules are added in the membrane, they locally deform

the bilayer. According to Leibler’s model (Leibler, 1986), these curvature

defects can be taken into account by a term in the energy proportional to

both the average curvature and the concentration of molecules. Homoge-

neous concentration of molecules is favored away from the interface between

domains. At the junction, a concentration gradient appears. If the chemical

inhomogeneity is localized at the junction, the addition of molecules leads

to an increase of the effective line tension inducing a budding and a possible

separation into two independent vesicles.

Our model explains qualitatively and even quantitatively the budding

and fission created by osmotic shocks or proteins absorption. It is a physical

approach based on continuum description and its domain of validity ends at

the molecular level. Because of its simplicity, extension and application to

other processes may be achieved easily.
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2 Membrane description.

2.1 Inhomogeneous lipid bilayer.

We consider an inhomogeneous vesicle constituted by two lipid phases: a

’liquid-ordered’ (lo) and a ’liquid-disordered’ (ld). Both phases are in the

liquid state but the (lo) domain is more structured than the (ld) phase due

to the following reasons: there are specific interactions between molecules

(Li et al., 2001) and/or there is an optimization of biphilic space packing

(Holopainen et al., 2004). Steady morphologies and their out-of-plane defor-

mations are well described by the Canham and Helfrich’s model with energy

for each phase i given by:

F i
m =

∫

S

[

2κiH
2 + κ

(i)
G K + Σi

]

dS (1)

H and K are respectively the mean and Gaussian curvature. The elastic

bending rigidity κi and Gaussian rigidity κ
(i)
G are expected to be higher in

the lo phase. Typical values can be found for example in (Lipowsky and

Sackmann, 1995): κld ≃ 20kbT and κlo ≃ 80kbT. Values of Gaussian moduli

are notoriously more difficult to measure but a recent study mentions values

of order κ
(i)
G = −0.83κi (Siegel and Kozlov, 2004). Although F i

m is a surface

integral, the Gaussian contribution to the energy is indeed a contour integral

calculated at the interface between the two domains, due to the Gauss-Bonnet

theorem.

The last contribution in Eq.1 is related to the possible extension of the

membrane. In the case of a stretched vesicle, this contribution is large com-

pared to the elastic energy and the membrane surface can be considered as

constant. This is taken into account by introducing the Lagrange multiplier
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Σi.

The total energy of the two-domain vesicle includes the energy (1) of each

phase plus two coupling terms. First, a sharp interface of vanishing thickness

exists between the lo and ld phases. Any increase of its length requires an

energy proportional to a line tension σ. Second, the vesicle membrane is

lightly permeable to the water but not to the ions or big molecules present

in the surrounding water medium. This induces an osmotic pressure P . The

energy of the coupling terms is:

Fc = σ

∫

C

dl − P

∫

dV (2)

2.2 Proteins or detergent-membrane interactions

External molecules such as proteins or detergents can be absorbed in both

phases but with different efficiencies. Their introduction in the membrane is

well described by a Landau’s approach with an optimal homogeneous con-

centration φeq. Departure from this value or inhomogeneity of concentration

φ has a cost in energy, assumed quadratic to leading order. The energy cost

is given by two positive constants in each phase: αi and βi. If the proteins are

soluble or not in the surrounding medium, we can either set the number of

these molecules in each phase or set the chemical potential µi of the phase i.

We choose to fix µi but this has no real incidence on the results since it only

affects the definition of µi. Therefore the free chemical energy of absorption

for each phase is:

F i
p =

∫

Si

(

αi

2
(φ− φeqi

)2 +
βi

2
(∇φ)2 + µiφ

)

dS +

∫

Si

ΛiHφdS (3)
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The last integral in Eq.3 represents the local distortion of the membrane

induced by the absorbed molecules (Leibler, 1986; Bickel et al., 2001). It is

proportional to the mean curvature of the membrane with a weight depending

on the local concentration φ, as suggested by S. Leibler (Leibler, 1986), Λi

being a coupling constant. The absorption process itself affects differently

the two leaflets of the vesicle. We restrict our attention to the case where

the adsorption takes place on one side only. In such case, Λi is positive on

the outer side absorption and negative on the inner side. When the two

layers are affected by absorption, two concentration fields are necessary and

our theoretical framework can be easily adapted to address such situation.

Taken into account all previous contributions, the total free energy for the

system is given by:

FTOT = F o
m + F d

m + F o
p + F d

p + Fc (4)

The usual variation procedure to identify extrema of this energy produces

the so called Euler-Lagrange equations.

2.3 Euler-Lagrange equations.

Minimization of the free energy FTOT gives the static solutions for the mem-

brane. Looking for axisymmetric shapes, we choose the cylindrical coordi-

nates and we parameterize the surface by the arc-length s. The vesicle shape

is given by r(s) and ψ(s) (see Fig. 1). We have derived the Euler-Lagrange
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equations associated with FTOT (Allain and Ben Amar, 2004). They are

ψ′′ =
sin(ψ) cos(ψ)

r2
− ψ′

r
cos(ψ) − Pr

2κi

cos(ψ) +
γ

κir
sin(ψ) +

Λi

κi

φ′(5a)

γ′ =
κi

2
ψ′2 − κ

2r2
sin(ψ)2 + Σ̃i − Pr sin(ψ) − Λiφψ

′ +
αi

2
φ2 (5b)

+
βi

2
φ′2 + µ̃iφ

φ′′ = −φ′
cos(ψ)

r
− Λi

βi

(

sin(ψ)

r
+ ψ′

)

+
αi

βi

φ+
µ̃i

βi

(5c)

r′ = cos(ψ). (5d)

These equations have to be solved with the suitable boundary conditions at

the border between the two domains. To simplify the notations, we introduce

the following parameters: Σ̃i = Σi +αi/2φ
2
eqi

and µ̃i = µi−αiφeqi
. Assuming

continuity of both the radius r, the angle ψ and the molecules concentra-

tion φ, the variational procedure gives also three equations for the boundary

conditions:

κ1ψ
′(sJ − ǫ)r(sJ) + (κ1 + κG1

) sin(ψ(sJ)) − Λ1φ(sJ)r(sJ) (6a)

−κ2ψ
′(sJ + ǫ)r(sJ) − (κ2 + κG2

) sin(ψ(sJ)) + Λ2φ(sJ)r(sJ) = 0,

γ(sJ − ǫ) − γ(sJ + ǫ) + σ = 0 (6b)

β1φ
′(sJ − ǫ) − β2φ

′(sJ + ǫ) = 0. (6c)

where sJ is the arc-length at the junction, label 1 denotes the phase for

s ≤ sJ and label 2 the phase for s ≥ sJ .

Since these equations are highly non-linear, there is no exact solutions

for arbitrary values of the physical parameters. However further analytical

progress can be obtained in the limit of large pressure (stretched membrane).

Remarkably, this treatment only requires simple analytical algebra and allows

to explain experimental features such as the complete budding of the ordered
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phase obtained by different groups using either osmotic shocks (Baumgart

et al., 2003), proteins (Staneva et al., 2004) or detergent molecules (Staneva

et al., submitted)

3 Analytical treatment of the membrane shape.

We first consider a membrane without absorbed molecules. A solution of the

Euler-Lagrange equations can be easily found if we discard the contribution

from the elasticity. We use this simple solution as zeroth order and correct it

for small but not vanishing values of the bending rigidity by using boundary

layer analysis. We consider also the inclusion of molecules with no chemical

activity. They are described in the model by curvature defects. For a weak

coupling between curvature and concentration, a similar strategy is used to

understand how the molecules affect the membrane shape.

3.1 The exact zero-order model: the capillary solution.

For stretched membrane without absorbed molecules (φ = 0), it is believed

that after electro-formation of GUV vesicles the osmotic pressure dominates

the elastic energy. When κi = 0 in both phases, a solution of the Euler-

Lagrange equation is made of two spherical caps defined by a set of four

geometrical parameters: the radii of the two caps R1, R2 and the two angles

at the boundary θ1 and θ2 (see Fig. 2). The contact between the two caps

gives a first continuity relation

R1 sin θ1 = R2 sin θ2. (7)
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The Euler-Lagrange equations (Eq.5) give the values of the two Lagrange

multipliers Σi and γi, without direct information on the vesicle shape:

2Σi = PRi, (8a)

γi(s) =
PR2

i

2
sinψ cosψ. (8b)

the angle ψ being proportional to the arc-length s. Only the boundary

condition and the conservation of the area of each phase give the possibility

to fix completely the ideal shape. From Eq.6, we deduce:

R2
1 sin θ1 cos θ1 = R2

2 sin θ2 cos θ2 −
2σ

P
. (9)

The shape is controlled by the reduced line tension τ = σ/P (homogeneous

to a surface), which can be adjusted by changing the osmotic pressure. As

an example, from the figure (1b) in Baumgart et al.’s work (Baumgart et al.,

2003), reproduced here in figure 4, we calculate τ = 20.5µm2, from esti-

mated values of R1, R2, θ1 and θ2. Notice that in Baumgart’s work, label 1

correspond to the ld domain and label 2 to the lo domain.

Solving Eq.7 and 9 for the above τ -value gives two possible solutions:

R1 = 5.30µm, R2 = 10.5µm, θ1 = 1.34 and θ2 = 0.514, the measured

values (Fig. 3(a)) but also R1 = 3.97µm, R2 = 10.3µm, θ1 = 1.96 and

θ2 = 0.364 for the second solution (Fig. 3(b)). In order to explain why the

first solution is preferred in the experiment, we calculate the energy which is

restricted here to two contributions: FTOT = −PV +σl with l the perimeter

of the interface. Using a typical length scale Lr = 10µm, it is possible to

construct the dimensionless energy F̃TOT = FTOT/(πPL
3
r). Notice that the

value of Lr does not affect the physics of the problem, it is used only to have
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dimensionless lengths close to 1. So we obtain

F̃TOT = −V/πL3
r + 2τR1 sin θ1/L

3
r, (10)

which gives respectively (-1.380) compared to (-1.377), and shows that the

experimental observed solution is stable while the other one is unstable as

expected.

A systematic study of the pair of solutions for arbitrary values of τ is

straightforward and the results are presented in figure 5. Figure 5a is a

classical bifurcation diagram when a pair of solutions appears with opposite

stability. In this problem, τ is the control parameter and the energy F̃TOT is

the order parameter. These two solutions differ geometrically, the unstable

solution presenting a smaller neck compared to the stable one (obvious if

τ = 0) (see Fig 5b). As τ increases, the two solutions become geometrically

closer up to a finite value of τc = R1R2/2. Above the critical value (τ ≥

τc), there is no connected solution of the Euler-Lagrange equations but the

solution with two separated spheres remains.

This bifurcation diagram describing change in the topology of budding

spheres is similar to the one found in the catenoid problem where a soap film

is fixed on two parallel rings, separated by a small distance d compared to

the radius of the ring. Two different minimal surfaces (with similar catenoid

shapes) satisfy the variational equations derived from the capillary energy.

The difference between these two shapes can be measured by the perimeter

at mid-distance between the two rings. The catenoid with the smaller neck

is unstable since its area is larger and, experimentally, the other catenoid is

observed. However, as it is well known, as the distance d increases, the neck

size decreases, the catenoid is destroyed and is replaced by two independent
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disks (Ben Amar et al., 1998) with topology changes. This geometrical in-

stability is not reversible. At the fission, the neck of the catenoid is not zero

but the analytical calculation shows that the two catenoids, the stable and

the unstable, have the same shape.

In our case, we are faced with the same type of capillary instability where

there exist two similar solutions whose stabilities are governed by the energy.

As the control parameter, here the effective line tension, is increased, the

two solutions merge and a change of topology is expected at this point. We

do not know if this change is irreversible since fission requires microscopic

reorganization such as hemifission (Kozlovsky and Kozlov, 2003). Exper-

imentally, the daughter vesicles can remain connected by a small filament

of lipids but if the two vesicles move away, the process is of course not re-

versible. The critical value τc is determined by the fourth equation in Eq.9

which gives the equilibrium of the forces in the radial direction (axis r). The

term in τ = σ/P is due to the line tension and its effect is to pinch the

membrane. The two others terms (in R2
1 and R2

2) are related to the pressure

force on the membrane and are bounded. The critical value τc is the value

for the maximal force on the membrane. For higher line tension (or smaller

pressure), it is no longer possible to compensate for the line tension which

splits the system into two independent vesicles.

One important conclusion of this study is the fact that small domains are

more easily ejected. This can be validated or invalidated experimentally when

a vesicle has several lo domains of various size. This conclusion is opposite

to a floppy membrane whose shape is controlled by elasticity (Lipowsky and

Dimova, 2003). To show this, we have varied the fraction f of the upper
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domain (label 1) and we have calculated τc using the data of the experimental

example (see Fig.6). Since the two phases are equivalent when elasticity

is neglected, the results are the same for f and 1 − f . The parameter τc

increases with the size of the smallest domain. This result can be explained

by a simple argument in the limiting case of a flat domain on a flat surface.

If the radius of the domain is r, the pinching energy (due to the line tension)

is approximatively σr and the resistance energy (due to the pressure) is

approximatively Pr3. The balance of the two energies gives σ/P ≈ r2.

Therefore, it is harder to destabilize a large domain than a small one. Next,

we study the robustness of the model when elasticity is taken into account.

3.2 The elasticity localization.

Comparing the bending energy (Eq.1) to the osmotic pressure energy (Eq.2)

one finds that elastic effect can be neglected if κi << PR3
i in each phase.

However, a discontinuity of the tangent appears at the interface between the

two domains creating a singularity in the curvature. As soon as the bending

modulus is exactly zero, this discontinuity produces an infinite elastic energy

contribution, localized near the junction, in contradiction with the weakness

of elasticity. We are faced with a classical boundary layer model, as found for

example in the crumpling of an elastic plate (Ben Amar and Pomeau, 1997)

or the folding of an elastic shell (Pogorelov, 1988). For small but not zero κi

values, near the junction, the elastic effects smooth out the discontinuity by

locally modifying the shape of the membrane (see Fig. 2) on a characteristic

distance of order the elastic length le in each phase:

le =

√

κi

PRi

.
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Using typical values for giant vesicles (Baumgart et al., 2003), we get le ≃

0.5µm, which is very small compared to Ri ≃ 10µm. Therefore, we can

model our system as two spherical caps slightly distorted at the junction on

a distance of order le.

3.2.1 Fold description

Far away from the fold, the spherical solution (denoted by S) is a good

approximation but not in the close vicinity of the fold better described by a

boundary layer (denoted by B) of size l̃e = le/Ri. We define a new arclength

parameter l̃ = (s̃− s̃J)/l̃e and we decompose ψ, r and γ into

ψ = ψS + ψB(l̃) ; r = rS + l̃erB(l̃) ; γ = γS + l̃eγB(l̃). (11)

with ψS = θ1 or ψS = θ2. The quantities ψB, rB and γB must vanish far

away from the junction. Neglecting absorbed molecules, the leading order of

Eq.5 gives

ψ̈B = sinψB. (12)

This is the pendulum equation with solution:

tan(ψB/4) = tan(ψcusp/4) exp (±l̃). (13)

The plus or minus sign is required for l̃ values, negative or positive: after the

junction (s̃ ≥ s̃J , l̃ ≥ 0), or before the junction (s̃ ≤ s̃J , l̃ ≤ 0).

From Eq.4 and 12, we derive the elastic energy in each phase:

FB

2πPR3
i

= l̃e sin θi

{

2

(

1 − cos
ψcusp − θi

2

)

(14)

+ sin θi

[

sin θi − sin

(

ψcusp + θi

2

)]}

.
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The elastic energy (Eq.14), localized at the junction is proportional to the

interface length (2πrJ = 2π sin θi in dimensionless parameters) and has the

same effect as a line tension. Adding the two contributions, we obtain in

physical units:

σcusp =
√

κ1PR1

{

2

[

1 − cos(
ψcusp − θ1

2
)

]

(15)

+ sin θ1

[

sin θ1 − sin

(

ψcusp + θ1
2

)]}

+

√

κ2PR2

{

2

[

1 − cos
ψcusp − θ2

2
)

]

+ sin θ2

[

sin θ2 − sin

(

ψcusp + θ2
2

)]}

The value of ψcusp is fixed by the boundary conditions (Eq.6)

ψcusp = 2 arccos







√
R1κ1 cos

(

θ1

2

)

+
√
R2κ2 cos

(

θ2

2

)

√

R1κ1 +R2κ2 + 2
√
R1R2κ1κ2 cos

(

θ1−θ2

2

)







(16)

As expected ψcusp depends on the ratio of both rigidities. However, it can

not be easily measured since the size of the fold is very small compared to

the vesicle size.

The parameter σcusp measures the strength of elasticity on our spherical-

cap system. Note that its contribution is angular dependent. Elasticity

contributes to the line tension and gives an effective line tension σ̃ = σ +

σcusp. However, the total line tension is now a function of all the physical

constants (σ, P , κo and κd) which makes it difficult to estimate. Typical

values of the elastic line tensions are σcusp ≃ 10−14N/m (see Fig. 9), for

σ ≃ 10−13N/m. However, the effect of σcusp on the membrane stability is

given by the dimensionless number

n =
σcusp

(Pτc − σ)
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which measure the relative effect of the elastic contribution with respect to

the distance at the bifurcation point. In our case, we get an important effect

with n = 38% and the contribution of the elasticity to the total energy (about

4%) is not enough to affect the zero-order solution, but can be important for

the fission of the vesicle.

3.2.2 Effect on the membrane shape.

The elastic terms can be taken into account by defining an effective line

tension. Therefore, the previous results and the capillary solution are still

valid but with a new control parameter given by τ̃ = (σ + σcusp)/P . Note

that the critical value τc at the bifurcation is still the same.

A variation of the control parameter τ̃ modifies the angles θ1, θ2 and ψcusp

and then the elastic line tension σcusp. The figure 7 shows the values of the

reduced line tension of the fold (σ̃cusp = σcusp/P ) versus the reduced total

line tension τ̃ . The solid line is σ̃cusp for the low energy solution. The dashed

line is σ̃cusp for the high energy solution. The line tension of the fold must

be smaller than the total line tension σ + σcusp since the line tension σ due

to the interface is positive. Therefore, some shapes are no longer physically

allowed for the unstable solution. The figure 8 shows the energies of the

vesicle versus the control parameter τ̃ for the allowed solutions.

We have investigated the effect of the size f of the domain 1 on the

elastic contribution. In the capillary model, the two domains are equivalent

and τc is the same for f and 1 − f . The elasticity breaks this symmetry

since the two domains are no more equivalent: the lo domain (here label 2) is

harder to bend than the ld one (here label 1). The figure 9 shows the elastic
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line tension versus the fraction f of the domain 1. Notice that the elastic

line tension is negative for large domains, meaning that the elasticity fights

against pinching.

3.3 Budding by molecule insertion

The two-cap model remains a solution of the Euler-Lagrange equations when

molecules are added uniformly. Eq.5 connect the concentration of molecules

to the chemical potential (µi) and modify the area Lagrange multiplier Σi:

µi = 2
Λi

Ri

− αi(φi − φeqi
) (17a)

2ΣiR
2
i = PR3

i − 2ΛiφiRi + α(φ2
i − φeqi

2)R2
i (17b)

γi =
PR2

i

2
sinψ cosψ (17c)

In a previous paper, we have shown that the two-cap solutions may be unsta-

ble either above a critical homogeneous concentration given by φ̄ci
= PR2

i /Λi

or for very strong coupling Λ2
i /κiαi >> 1 (Allain and Ben Amar, 2004). This

instability characterizes each phase individually and not the junction between

phases. Here, we focus on the junction and the experimental conditions are

assumed to be below these instability thresholds.

3.3.1 Fold description

The interface is the place where strong gradients of molecule distribution are

found with typical lengthscale given by

lc =

√

βi

αi

which must be compared to the vesicle lengthscale Ri. We focus on the case

where lc << Ri so that concentration gradients are also localized at the fold
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in the elastic boundary layer. For distances larger than lc, the concentration

of molecules is constant and reaches the value φ̄i that we choose as unit in

each phase: so φ̃i = φi/φ̄.

Far away from the fold, the sphere (denoted by S) is solution but not in

the vicinity of the fold, better described by a boundary layer (denoted by B).

As previously (Eq.11), we define:

l̃ =
(s̃− s̃J)

l̃e
; ψ = ψS + ψB(l̃) ; r = rS + l̃erB(l̃) ;

γ = γS + l̃eγB(l̃) and φ̃ = 1 + φ̃B.

To describe the fold, we need three dimensionless parameters

l̃c =

√

β

αR2
i

1

l̃e
, λ̃e =

Λiφ̄i

PR2
i

1

l̃e
et λ̃c =

Λi

αφ̄iRi

1

l̃e
. (18)

The conditions for the stability of both phases are λ̃e . 1 and λ̃eλ̃c . 1.

Expanding the shape equations (Eq.5) to leading order gives:

ψ′′

B = sinψB + λ̃eφ̃
′

B, (19a)

l̃2c φ̃
′′

B = φ̃B − λ̃cψ
′

B. (19b)

The fold energy in the phase i is given by the leading orders of Eq.4:

Fi = πl̃erJPR
3
i





∫

B

ψ′

B

2
dl̃ − sinψS

∫

B

(sinψ − sinψS)dl̃ − 2λ̃e

∫

B

ψ′

Bdl̃

+4λ̃e

∫

B

φ̃Bdl̃ − 2λ̃e

∫

B

φ̃Bψ
′

Bdl̃ +
λ̃e

λ̃c

∫

B

φ̃2
Bdl̃ + l̃2c

λ̃e

λ̃c

∫

B

φ′

B

2
dl̃



 .(20)

The energy is the same for both phases. The sum of the two energies is pro-

portional to rJ , the interface length, and defines a new effective line tension

σcusp.
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The uniform insertion of molecules in the vesicle modifies only the La-

grange multipliers which have no direct physical content, despite the modifi-

cation of the energy level of the system. The two-spherical cap zeroth order

solution remains valid without modification of the geometrical parameters

such as radii and angles at the junction. Therefore, we conclude that the

bifurcation diagram remains unchanged, except for the values of the energy,

with the same threshold value found previously. For τ ≤ τc, two ideal solu-

tions still exist, the stable one being observed experimentally. Only gradients

which appear at the interface modify the cusp shapes and we need to evaluate

if they are responsible for a change in the line tension value.

The equations (19) have no explicit solution but some interesting limits

can be considered. We focus here on three independent limits: λ̃e << 1,

λ̃c << 1 and l̃c << l̃e.

First case (λ̃e << 1): the elastic coupling length is small. This limit de-

couples Eq.19a at zero order, giving exactly the same solution as the case

without molecule. Eq.19b allows to calculate the molecule distribution but

as the terms in λ̃e can be neglected in the energy (Eq.20), the effect of the

molecules is negligible. The elastic line tension is not modified by molecule

addition.

Second case (λ̃c << 1): the weak chemical coupling length. This limit de-

couples Eq.19b, leading to φ̃B = φ̃B0
exp (±l̃/l̃c) with φ̃B0

the molecule excess

at the interface, given by the boundary conditions (Eq.6). In physical units

and taking into account both sides of the fold, we get for the increase of the

line tension:

δσcusp =

√
α1β1α2β2

2(
√
α1β1 +

√
α2β2)

(φ̄2 − φ̄1)
2 (21)
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The molecule absorption increases the effective line tension, which may in-

duce the fission. This effect is only due to chemical gradients near the inter-

face. It increases with the number of molecules added to the system.

Third case (l̃c << 1): the case of a small chemical length. The molecule

concentration has two very different lengthscales: lc and le. The chemical

length lc contributes to the junction between the two domains and can be

treated as a boundary layer. However, the associated energy is proportional

to lc and is then negligible. For size larger than lc, Eq.19 becomes:

φ̃B = λ̃cψ
′

B, (22a)

(1 − λ̃cλ̃e)ψ
′′

B = sinψB. (22b)

and the effective line tension in the phase i is:

σcusp =

√

κiPR3
i

2



(1 − λ̃eλ̃c)

∫

B

ψ′

B

2
dl̃ − sinψS

∫

B

(sinψB − sinψS)dl̃

+4λ̃eλ̃c

∫

B

ψ′

Bdl̃ − 2λ̃e

∫

B

ψ′

Bdl̃



 . (23)

Taking into account the first and second terms leads to the elastic line ten-

sion (Eq.15) with a multiplicating factor
√

1 − λ̃eλ̃c in both phases. Note

that λ̃eλ̃c ≥ 1 is not possible in our framework, since the cost associated

with the concentration gradients β are neglected (Allain and Ben Amar,

2004). This first contribution indicates that addition of molecules decreases

the line tension associated with the elastic fold but since it does not depend

on the concentration it just implies a renormalization of the bending rigidity

(Leibler, 1986). The third term, proportional to λ̃eλ̃c also decreases the line

tension but does not depend on the molecules concentration. Using physical
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units, the last integral contributes to the line tension by a term proportional

to the concentration of added molecules:

Λ1φ1(θ1 − ψcusp) + Λ2φ2(ψcusp − θ2).

It is positive when the molecules are inserted in the outer monolayer of the

membrane (positive Λ), which is the case found in the experiments. However,

if the molecules are added in the inner monolayer, it becomes negative and

budding and pinching are inhibited. In conclusion, the net effect of molecule

insertion is a decrease of the line tension at low concentration, then a possibly

increase as the concentration increases if the molecules are inserted from the

outer monolayer.

3.3.2 Budding process

The absorption of molecules does not change the zeroth order shape equations

of the stretched vesicle. It modifies the shape of the fold near the interface

giving a new contribution to the effective line tension. If the absorption takes

place in the external leaflet, it contributes to an increase of the line tension.

This increase puts the system closer to the bifurcation point controlled by the

parameter τ̃ = (σ+σcusp)/P and induces a budding of the smaller phase: as τ̃

increases, the neck radius decreases (see Fig. 5b) and the small domain seems

to lift up. If the concentration is high enough so that τ̃ > τc, the budding is

automatically followed by a fission process, creating two separated vesicles,

one for each phase. If the concentration is not high enough, the lift-up will

stop before the change of topology. In the meantime, it is possible that the

vesicle looses some of its molecules and retracts to its initial configuration.

This reversibility is impossible when fission is complete for two reasons: first,
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the system relaxes the Gaussian elastic energy and two daughter vesicles may

be energetically favored, second due to thermal fluctuations, the vesicles move

away from each other and the coalescence process is unlikely. The fact that

the fission occurs proves that the time scale for fission is much smaller than

the possible rearrangement of molecules between the leaflets

Figure 11 reproduces experimental results from Staneva et al. (Staneva

et al., 2004), showing fission of a liquid-ordered domain induced by Phos-

pholipase A2 proteins addition. The vesicle is obtained by electro-formation

(the electrode is visible on the left of the pictures). It is composed by a

45:45:10 mol/mol mixture of phosphatidylcholine (PC), sphingomyelin (SM)

and cholesterol (Chol). The vesicles includes one liquid-ordered domain visi-

ble in fluorescence microscopy (not reproduced here): a small fraction (10%)

of the PC is replaced by a fluorescent lipid analog and is excluded from the lo

phase, which appears as a dark circle. The proteins are injected in the neigh-

borhood of the vesicle by a micropipette (visible on the right of the first

picture). Phospholipase A2 activity transforms the PC lipids into LysoPC, a

conical molecule, by cutting one of the two hydrophobic tails. Fission occurs

about 10 seconds after protein injection.

Similar fission process have been observed when detergents like LysoPC,

Triton X100 or Brij 98 are added in important quantities near a similar

vesicle (Staneva et al., submitted). However, in this case, the fission is not

always complete: the daughter vesicles may remain connected by a small lipid

filament, as also observed in (Tanaka et al., 2004). This is not in contradiction

with our model since the fission process requires to split the lipid bilayers

at the molecular level, which is out of reach of our treatment. This level
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requires a microscopic description as done in (Kozlovsky and Kozlov, 2003).

The fission process prefers small domains, as predicted by our model. If the

concentration in detergents is not high enough or if the Phospholipase A2 is

not activated, the liquid-ordered domains bud without complete fission. It is

also possible to observe a relaxation of the vesicle, which recovers its initial

shape.

4 Conclusion

Our model explains why ejection of a domain from an inhomogeneous vesicle

can be achieved by osmotic shocks or molecule absorption. It is based on

physical stability concepts in the spirit of the existence and stability anal-

ysis of the well-known catenoid. We predict a complete irreversible fission

above a critical parameter. From a macroscopic point of view, the complete

fission is favored, it decreases the total energy of the system at the threshold

of stability because of the Gaussian energy. This fission can be inhibited if

a membrane thread exists between the two phases. The existence of such

a thread is out of reach of our approach. If it does not exist, the vesicles

separate from each other. If it exists and if the experimental forcing relaxes,

the two vesicles may fuse in principle. The experiments discussed here are

in favor of a complete fission mechanism. For simplicity, the model is re-

stricted to two domains of different sizes: extension to multi-phase domains

complicates the geometry but will not change the physical results.
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(s)ψr(s)

s
φ

z
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Figure 1: General parameterization of an axisymmetric vesicle in cylindrical

coordinates. The dashed curve is the membrane. The parameterization is

done by the arc-length s. The shape of the membrane is given by r(s) and

ψ(s). The two domains have the same parameterization.
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Figure 2: Schematic representation of a axisymmetric vesicle, including the

four parameters R1, R2, θ1 and θ2 used in the vesicle description. The circle

details the fold near the interface, where the elastic properties can no longer

be neglected.
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Figure 3: Black and white version of figure (1b) from Baumgart et al.’s work

(Baumgart et al., 2003). The picture is a two-photon microscopy image,

showing equatorial section of GUVs with two coexisting domains. The lo

domain appears in grey here and the ld in dark. Scale bar, 5 µm. Reproduced

from (Baumgart et al., 2003) with the authorizations of the authors and

editor.
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aL bL

Figure 4: The two solutions of the E.-L. equations (Eq.7 and 9) for τ =

20.5µm2. The two pictures have the same scale. (a) Experimental solution

(Baumgart et al., 2003), with R1 = 5.3µm, R2 = 11µm, θ1 = 1.3 and

θ2 = 0.51. The associated dimensionless energy, given by Eq.10 is F̃TOT =

−1.380. (b) Calculated solution with R1 = 4.0µm, R2 = 10µm, θ1 = 2.0

and θ2 = 0.36. The dimensionless energy of vesicle (b) is F̃TOT = −1.377,

meaning that the solution is experimentally unstable.
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Figure 5: Dimensionless energies F̃TOT (figure a) and interface radius rJ

(figure b) of the solutions of the E.L. equations (Eq.7 and 9) versus the

control parameter τ = σ/P . The calculation has been done with the area

A1 = 136µm2 and A2 = 1296µm2. In both figures, the solid line corresponds

to the stable solution, experimentally observable, the dashed line to the un-

stable solution and the dotted line to τ̃ = τ̃c, the critical value of the control

parameter. For τ̃ ≥ τ̃c, there is no longer a solution. Four pictures of vesicles

showing the shape transformation with τ have been added.
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Figure 6: Values of the critical control parameter τc versus the fraction f

of the upper domain (label 1). The calculation has been done with a fixed

total area Atot = A1 +A2 = 1433µm2. The areas of the domains are given by

A1 = f Atot and A2 = (1 − f)Atot. The dashed line shows the fraction 0.5.
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Figure 7: Reduced fold line tension σcusp versus the reduced total line tension

τ̃ for the two possible solutions of Eq.9. The solid line corresponds to the

stable solution, the dashed line to the unstable solution. The fold line tension

has been calculated using Eq.15 and 16. The parameters are A1 = 136µm2,

A2 = 1296µm2 (the fixed area of each phase), P = 10−2Pa, κ1 = 10−19J

and κ2 = 10−18J . The dotted line separates the possible solutions from the

impossible one. For σ̃cusp above this line, the line tension associated to the

fold is greater than the total line tension, requiring a negative line tension at

the junction between the two domains, which is impossible.
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Figure 8: Dimensionless energies F̃TOT of the solutions of the E.L. equa-

tions (Eq.7 and 9) versus the control parameter τ̃ including the effect of the

elastic fold. The parameters are A1 = 136µm2, A2 = 1296µm2, P = 10−2Pa,

κ1 = 10−19J and κ2 = 10−18J . The solid line corresponds to the stable

solution,the dashed line to the unstable solution, the dotted line to τ̃ = τc,

the critical value of the control parameter. For τ̃ ≥ τc, there is no longer a

solution.
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Figure 9: Fold line tension σcusp for the critical value of the total line tension

τ̃ = τ̃c, versus the fraction f of the liquid-ordered domain. The calculation

has been done with a fixed total area Atot = A1 + A2 = 1433µm2, the other

parameters being P = 10−2Pa, κ1 = 10−19J and κ2 = 10−18J . The areas of

the domains are given by A1 = f Atot and A2 = (1− f)Atot. The dashed line

shows the fraction 0.5 and the dotted line σ̃cusp = 0. The lo and ld domains

(resp. label 2 and 1) do not have the same effect since the elastic moduli are

not equal. Contrary to a true line tension, this effective line tension can be

negative for f near 0.5.
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Figure 10: Angles θ1, θ2 and ψcusp for τ̃ = τ̃c, the critical value of the

control parameter, versus the fraction f of the liquid-ordered domain. The

calculation has been done with a fixed total area Atot = A1 +A2 = 1433µm2,

the other parameters being P = 10−2Pa, κ1 = 10−19J and κ2 = 10−18J .

Label 1 corresponds to the ld domain and label 2 to the lo. The areas of the

domains are given by A1 = f Atot and A2 = (1 − f)Atot. The stars are for

the angle θ1, the circles for θ2 and the triangles for ψcusp. The angle ψcusp

is always closer from the angle θ2 since the liquid-ordered domain is hard to

bend.
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Figure 11: Ejection of a liquid-ordered domain induced by proteins Phospho-

lipase A2. The domain is visible on fluorescence microscopy (not reproduced

here). The proteins are injected by micropipette (figure a). The liquid-

ordered domain buds (figure b and c) before the fission (figure d). Repro-

duced form (Staneva et al., 2004) with the authorization of the editor. Bar:

20 µm.
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