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Invarian
e prin
iples for random bipartite planar mapsJean-François Mar
kert∗, Grégory Miermont †20th Mar
h 2006Abstra
tRandom planar maps are 
onsidered in the Physi
s literature as the dis
rete 
ounterpart ofrandom surfa
es. It is 
onje
tured that properly res
aled random planar maps, when 
onditionedto have a large number of fa
es, should 
onverge to a limiting surfa
e whose law does notdepend, up to s
aling fa
tors, on details of the 
lass of maps that are sampled. Previous workson the topi
, starting with Chassaing & S
hae�er, have shown that the radius of a randomquadrangulation with n fa
es, i.e. the maximal graph distan
e on su
h a quadrangulation toa �xed referen
e point, 
onverges in distribution on
e res
aled by n1/4 to the diameter of theBrownian snake, up to a s
aling 
onstant.Using a bije
tion due to Bouttier, di Fran
es
o & Guitter between bipartite planar mapsand a family of labeled trees, we show the 
orresponding invarian
e prin
iple for a 
lass ofrandom maps that follow a Boltzmann distribution putting weight qk on fa
es of degree 2k:the radius of su
h maps, 
onditioned to have n fa
es (or n verti
es) and under a 
riti
alityassumption, 
onverges in distribution on
e res
aled by n1/4 to a s
aled version of the diameterof the Brownian snake. Convergen
e results for the so-
alled pro�le of maps are also provided.The 
onvergen
e of res
aled bipartite maps to the Brownian map, in the sense introdu
ed byMar
kert & Mokkadem, is also shown. The proofs of these results rely on a new invarian
eprin
iple for two-type spatial Galton-Watson trees.Key Words: Random planar maps, labeled mobiles, invarian
e prin
iple, spatial Galton-Watsontrees, Brownian snake, Brownian mapM.S.C. Code: 60F17, 60J80, 05C30
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1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 31 Introdu
tion, motivations and main results1.1 MotivationAn embedded graph G is an embedding of a 
onne
ted graph in the 2-dimensional sphere S
2, inwhi
h edges do not interse
t ex
ept possibly at their endpoints (the verti
es). A fa
e of G is a
onne
ted 
omponent of S

2 \ G. Fa
es are homeomorphi
 to open disks, and the degree of a givenfa
e is the number of edges that are in
luded in the 
losure of this fa
e, with the 
onvention that
ut-edges are 
ounted twi
e, where 
ut-edges are those edges whose removal dis
onne
ts the graph.If the graph is the vertex-graph with only one vertex and no edges, we adopt the 
onvention thatit bounds one fa
e with degree 0. The degree of a vertex is the number of edges adja
ent to thatvertex, where self-loops are 
ounted twi
e, a

ording to the usual graph-theoreti
 de�nition. Unlikefa
es, it depends only on the underlying graph rather than its embedding in S
2.We say that two embedded graphs are equivalent if there exists an orientation-preserving home-omorphism of S

2 that maps the �rst embedding to the se
ond. Equivalen
e 
lasses of embeddedgraphs are 
alled planar maps, and their set is denoted by M0. When 
onsidering a planar map
m ∈ M0, we will slightly improperly speak of its verti
es, edges, fa
es and their respe
tive degrees(we should �rst take an element of the 
lassm to be 
ompletely a

urate). We let S(m), A(m), F (m)be the sets of verti
es, edges and fa
es of m. The degree of an element u ∈ S(m) or f ∈ F (m) willbe denoted by deg(u), resp. deg(f). We denote the 
lass of the vertex-graph by †.If u, v are verti
es in a planar map m ∈ M0, and e1, . . . , en are oriented edges, we say that
e1, . . . , en is a path from u to v of length n if the sour
e of e1 is u, the target of en is v, and thetarget of ei is the sour
e of ei+1 for all 1 ≤ i ≤ n − 1. The graph distan
e asso
iated with a planarmap m ∈ M0 is the fun
tion dm : S(m) × S(m) → Z+ de�ned by letting dm(u, v) be the least nsu
h that there exists a path of length n leading from u to v. This 
an be interpreted by sayingthat we turn m into a metri
 spa
e, by endowing edges with lengths all equal to 1.Planar maps have been of parti
ular interest to physi
ists in the last de
ade as they 
an be 
on-sidered as dis
retized versions of surfa
es. In order to give a mathemati
al ground to the `sto
hasti
quantization of 2-dimensional gravity', in whi
h an integral with respe
t to an ill-de�ned `uniformmeasure' on Riemannian surfa
es is involved, a possible attempt is to repla
e the integral by a �nitesum over distin
t `dis
rete geometries', whose role is performed by planar maps [3℄. Informally, itis believed that

• A random map 
hosen in some 
lass of planar maps with `size' n (e.g. a quadrangulation with
n fa
es, i.e. a map whose n fa
es are all of degree 4), whose edge-lengths are properly res
aled,should 
onverge in distribution as n → ∞ to a limiting random `surfa
e', and

• The limiting random surfa
e should not depend, up to s
ale fa
tors, on details of the 
lass ofmaps whi
h is randomly sampled.The se
ond property is 
alled universality. A similar situation is well-known to probabilists: therole of a `Lebesgue measure on paths' is performed by Brownian motion, whi
h is the s
aling limitof dis
retized random paths (random walks) whose step distributions have a �nite varian
e.In a pioneering work, Chassaing & S
hae�er [8℄ made a very substantial progress in answeringthe �rst question, by establishing that the largest distan
e to the root in a uniform rooted quad-rangulation with n fa
es (see de�nition below) divided by n1/4 
onverges in distribution to somerandom variable (whi
h is, up to a multipli
ative 
onstant, the diameter of the range of the so-
alled



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 4Brownian snake with lifetime pro
ess the normalized Brownian ex
ursion). By using an invarian
eprin
iple for dis
rete labeled trees satisfying a positivity 
onstraint, Le Gall [15℄ has given an al-ternative proof of the results of [8℄. This involves a new random obje
t, 
alled the Brownian snake
onditioned to be positive, that was introdu
ed in Le Gall and Weill [16℄. Mar
kert & Mokkadem[19℄ gave a des
ription of quadrangulations by gluing two trees, and showed that these trees 
on-verge when suitably normalized as n goes to ∞. They introdu
ed the notion of Brownian map,and showed that under a 
ertain topology, res
aled quadrangulations 
onverge in distribution tothe Brownian map. All these results have been obtained by using bije
tive methods whi
h taketheir sour
e in the work of S
hae�er [22℄, and whi
h allow to study random quadrangulations interms of 
ertain labeled trees. The ni
e feature of this method is that the labels allow to keep tra
kof geodesi
 distan
es to a referen
e vertex in the map, so that some geometri
 information on themaps is present in the asso
iated labeled trees.On the other hand, the se
ond question has not been addressed up to now in a purely proba-bilisti
 form, and in the 
ontext of s
aling limits of planar maps. Angel [4℄ and Angel & S
hramm[5℄ give eviden
e that the large-s
ale properties of large planar maps should not depend on the lo
aldetails of the map (like the degree of fa
es), but these remarks hold in the 
ontext of lo
al limitsof random maps, where all edges have a length �xed to 1 as the number of fa
es of the map goesto in�nity (this is an `in�nite volume limit'), rather than in the 
ontext of s
aling limits, whereedge-lengths tend to 0 as the number of fa
es goes to in�nity (so that the total `volume' is kept�nite). In a re
ent arti
le, Bouttier, di Fran
es
o and Guitter [6℄ have given a generalization ofS
hae�er's bije
tion to general planar maps. They obtain identities for the generating series of themost general family of (weighted) planar maps, and infer a number of 
lues for the universalityof the `pure 2D gravity' model, e.g. by 
omputing 
ertain s
aling exponents with a 
ombinatorialapproa
h.Their bije
tion suggests a path to prove invarian
e prin
iples (the probabilisti
 word for 'uni-versality') for random maps. The present work explores this path in the 
ase of bipartite maps, by�rst giving a probabilisti
 interpretation of the identities of [6℄.1.2 Boltzmann laws on planar mapsA planar map is said to be bipartite if all its fa
es have even degree. In this paper, we will only be
on
erned with bipartite maps, noti
e † is bipartite with our 
onvention.Every edge of a map 
an be given two orientations. A bipartite rooted planar map is a pair
(m, e) where m is a bipartite map and e is a distinguished oriented edge of m. The basi
 obje
tsthat are 
onsidered in this arti
le are bipartite planar maps whi
h are rooted and pointed, i.e. triples
(m, e, r) where (m, e) is a bipartite rooted planar map and r is a vertex of m. We let M be the setof rooted, pointed, bipartite planar maps. The map † 
annot be rooted and 
an be pointed only atits unique vertex, but is still 
onsidered as an element of M. By abuse of notation, we will oftendenote a generi
 element of M by m without referring to (e, r) when it is free of ambiguity.By the bipartite nature of elements of M, we have |dm(r, u) − dm(r, v)| = 1 whenever u, v ∈
S(m) are neighbors. Therefore, if (m, e, r) ∈ M \ {†}, we have either dm(r, e+) > dm(r, e−) or
dm(r, e+) < dm(r, e−), where e− and e+ are the sour
e and the target of the oriented edge e. Welet

M+ = {(m, e, r) ∈ M : dm(r, e+) > dm(r, e−)} ∪ {†}.All probability distributions on maps in this paper are going to be de�ned on the set M+. Noti
ethat an alternative de�nition for this set is to 
onsider it as the set of pointed maps where a



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 5non-oriented edge has been distinguished.Let q = (qi, i ≥ 1) be a sequen
e of non-negative weights su
h that qi > 0 for at least one i > 1.By 
onvention, let q0 = 1. Consider the σ-�nite measure Wq on M+ that assigns to ea
h map
m ∈ M+ a weight qi per fa
e of degree 2i:

Wq(m) =
∏

f∈F (m)

qdeg(f)/2, (1)with the 
onvention Wq(†) = q0 = 1. This multipli
ative form is reminis
ent of the measuresasso
iated with the so-
alled simply generated trees, whi
h are of the form w(t) =
∏

u∈t qct(u) forany tree t, where ct(u) is the number of 
hildren of a vertex u in t, and where (qi, i ≥ 0) is asequen
e of non-negative numbers [1, p. 27-28℄.Let Zq = Wq(M+) be the `partition fun
tion' of q. Noti
e that Zq ∈ (1,∞] sin
e Wq(†) = 1.If Zq < ∞, we say that q is admissible, and introdu
e the Boltzmann distribution on M+ withsus
eptibility q by letting
Pq =

Wq

Zq

.For k ≥ 1, let N(k) =
(2k−1

k−1

). For any weight sequen
e q (not ne
essarily admissible) de�ne
fq(x) =

∑

k≥0

xkN(k + 1)qk+1 ∈ [0,∞] , x ≥ 0.The fun
tion fq : [0,∞) → [0,∞] is a 
ompletely positive power series, i.e. its derivatives of everyorder are non-negative, and sin
e (qi, i > 1) is not identi
ally zero, fq is stri
tly positive on (0,∞),and stri
tly in
reasing on the interval [0, Rq], where Rq is the radius of 
onvergen
e of fq. Moreover,
fq 
onverges to ∞ as x → ∞, and the monotone 
onvergen
e theorem entails that the fun
tion fqis 
ontinuous from [0, Rq] to [0,∞]. At Rq, two distin
t behaviors are possible: fq(Rq) 
an eitherbe �nite, so that fq jumps to +∞ to the right of Rq, or in�nite, in whi
h 
ase fq is 
ontinuous from
[0,∞] to [0,∞]. In the sequel, we understand that f ′

q(Rq) ∈ (0,∞] stands for the left-derivative of
fq at Rq (when Rq > 0).Consider the equation

fq(x) = 1 − 1/x , x > 0. (2)Sin
e x 7→ 1 − x−1 is non-positive on (0, 1] and fq is in�nite on (Rq,∞], a solution of (2) alwaysbelongs to (1, Rq]. Sin
e x 7→ 1 − x−1 is stri
tly 
on
ave on (0,+∞), with derivative x 7→ x−2,and fq is 
onvex, stri
tly in
reasing and 
ontinuous on [0, Rq], we 
an 
lassify the 
on�gurations ofsolutions for (2) by the following four ex
lusive 
ases:1. there are no solutions2. there are exa
tly two solutions z1 < z2 in (1, Rq], in whi
h 
ase f ′
q(z1) < z−2

1 and f ′
q(z2) > z−2

23. there is exa
tly one solution z1 in (1, Rq] with f ′
q(z1) < z−2

14. there is exa
tly one solution z in (1, Rq] with f ′
q(z) = z−2.As will be shown in Se
t. 2.3, the admissibility of q 
an be formulated in terms of fq as follows.Proposition 1 The weight sequen
e q is admissible if and only if Equation (2) has at least onesolution. In this 
ase, Zq is the solution of (2) that satis�es Z2

qf ′
q(Zq) ≤ 1.



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 6In this paper, we 
onsider 
ase 3. above, and 
ases when one of the solutions of (2) is equal to
Rq, as `non-regular' 
ases. Also, note that the 
ase 4. in the above 
lassi�
ation plays a singularrole 
ompared to the others. These remarks motivate the followingDe�nition 2 An admissible weight sequen
e q is said to be 
riti
al if 
ase 4. of the above 
lassi�-
ation is satis�ed, i.e.

Z2
q f ′

q(Zq) = 1. (3)Equivalently, q is 
riti
al if and only if the graphs of x 7→ fq(x) and x 7→ 1− 1/x are tangent to theleft of x = Zq.We say that q is regular 
riti
al if it is 
riti
al and Zq < Rq, i.e. the graphs are tangent at Zqboth to the left and to the right.Noti
e that a 
riti
al weight sequen
e q is automati
ally regular in the 
ase where fq(Rq) = ∞;in this 
ase, q is regular 
riti
al if and only if Equation (2) admits a unique solution (be
ause 
ase3. in the above 
lassi�
ation 
annot happen).1.3 SnakesIn order to state our main theorem, we �rst brie�y des
ribe the limiting random obje
ts that areinvolved. Let Bexc be a standard Brownian ex
ursion. Then, given Bexc, we let Sexc be a 
enteredGaussian pro
ess whose 
ovarian
e fun
tion is given by
cov(Sexc

s , Sexc
t ) = inf

s∧t≤u≤s∨t
Bexc

u , 0 ≤ s, t ≤ 1. (4)It is known (see e.g. [14, Se
tion IV.6℄) that (Bexc, Sexc) has a 
ontinuous version, whi
h is the onewe 
hoose to work with. We let N
(1) be the law of the pair (Bexc, Sexc). In the sequel, we will let

((es)0≤s≤1, (rs)0≤s≤1) be the 
anoni
al pro
ess for the spa
e C(R+, R)2 of 
ontinuous fun
tions withvalues in R
2. The pro
ess (e, r) under N

(1) is 
alled the `head of the Brownian snake' driven by aBrownian ex
ursion in the literature [18, 12, 13℄. We let
∆+(r) = sup

t≥0
rt, ∆−(r) = inf

t≥0
rt and ∆(r) = ∆+(r) − ∆−(r),the positive and negative range of r, and the diameter of the range of r.1.4 Main resultsFor (m, e, r) ∈ M+, let

R(m, e, r) = max
u∈S(m)

dm(r, u)be the radius of (m, e, r) ∈ M+. Also, for k ∈ Z+ let I (m,e,r) be the normalized pro�le of the map
m, whi
h is the probability measure on Z+ su
h that

I
(m,e,r)(k) =

#{u ∈ S(m) : dm(r, u) = k}
#S(m)

, k ≥ 0.For simpli
ity we will usually denote these quantities by R(m),I m. If n ≥ 1, we also let I m
n bethe res
aled measure on R+ that is de�ned by I m

n (A) = I m(n1/4A), for A a Borel subset of R+.



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 7Last, if q is a regular 
riti
al weight sequen
e, we let
ρq = 2 + Z3

qf ′′
q(Zq). (5)Letting M : M+ → M+ be the identity mapping, our main result states as follows.Theorem 3 Let q be a regular 
riti
al weight sequen
e. Then(i) The distribution of the random variable n−1/4R(M), under Pq(·|#F (M) = n), 
onvergesweakly as n → ∞ to the law under N

(1) of
(

4ρq

9(Zq − 1)

)1/4

∆(r).(ii) The distribution of n−1/4dM (r, r′) under Pq(·|#F (M) = n), where r
′ ∈ S(M) \ {r} is pi
keduniformly at random 
onditionally on M , 
onverges weakly as n → ∞ to the law under N

(1) of
(

4ρq

9(Zq − 1)

)1/4

∆+(r).(iii) The distribution of the random measure I M
n under Pq(·|#F (M) = n) 
onverges weakly tothe law under N

(1) of the random probability measure I r on R+, de�ned by
〈I r, g〉 =

∫ 1

0
ds g

((
4ρq

9(Zq − 1)

)1/4(
rs − inf

0≤u≤1
ru

))
.Noti
e that Boltzmann distributions always put a positive mass on the set of maps with exa
tly

n fa
es for all n, so that the 
onditional distributions P (·|#F (M) = n) are well-de�ned. Thereexists also a 
ounterpart of this result in whi
h we 
ondition on the number of verti
es rather thanthe number of fa
es, whi
h states asProposition 4 Let q be a regular 
riti
al weight sequen
e. Then the previous theorem remainstrue when 
onsidering the laws Pq(·|#S(M) = n) instead of Pq(·|#F (M) = n), where it must beunderstood that n → ∞ along values for whi
h P (#S(M) = n) > 0, and the res
aling 
onstant
(4ρq/(9(Zq − 1)))1/4 appearing in (i), (ii), (iii) must be repla
ed by (4ρq/9)1/4.The last two results are stated under the assumption of admissibility and regular 
riti
alityfor the weight sequen
e. However, sin
e the probability laws that appear in the statements are
onditioned measures, and thus make a slightly indire
t use of the probability Pq, this assumption
an be loosened a bit. If

MF=n
+ = {m ∈ M+ : #F (m) = n},and q is any weight sequen
e, then the hypothesis ZF=n

q = Wq(MF=n
+ ) < ∞ allows to de�ne aprobability measure on MF=n

+ by
PF=n

q (·) =
Wq(· ∩MF=n

+ )

ZF=n
q

.If q is admissible, we are 
learly in this 
ase, and Pq(·|#F (M) = n) = PF=n
q , but the 
onverseis not true: there 
an be (and there are in many interesting 
ases) weight sequen
es that are not



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 8admissible, but for whi
h PF=n
q makes sense. Now, noti
e that if α > 0 and αq = (αqi, i ≥ 1), and

m ∈ MF=n
+ ,

Wαq({m}) = αnWq({m}) , ZF=n
αq = αnZF=n

q .Therefore, if q is su
h that ZF=n
q < ∞, then αq is also su
h a weight sequen
e, and PF=n

αq = PF=n
qis independent of α > 0.In a similar way, we let MS=n

+ to be the set of maps with n verti
es, and de�ne as above ZS=n
q ,and PS=n

q if the latter is �nite and > 0. For β > 0 let β •q = (βi−1qi, i ≥ 1). Then for m ∈ MS=n
+ ,

Wβ•q({m}) =
∏

f∈F (m)

βdeg(f)/2−1qdeg(f)/2 = βn−2Wq({m}),and ZS=n
β•q = βn−2ZS=n

q , where we used∑f∈F (m) deg(f) = 2#A(m), and Euler's formula #F (m)−
#A(m) + #S(m) = 2. Thus, Theorem 3 and Proposition 4 
an be restated as follows.Corollary 5 (i) Let q be a weight sequen
e su
h that ZF=n

q < ∞ for every n ≥ 1 and su
h thatthere exists some αc > 0 su
h that αcq is regular 
riti
al. Then all 
on
lusions of Theorem 3 remaintrue, when repla
ing the probabilities Pq(·|#F (M) = n) in the statement by PF=n
q , and where thenormalizing 
onstant of (i), (ii), (iii) is 
omputed for the weight sequen
e αcq.(ii) Let q be su
h that ZS=n

q < ∞ and there exists some βc > 0 with βc • q regular 
riti
al, thenthe 
on
lusion of Proposition 4 remain true, when 
onsidering PS=n
q instead of Pq(·|#S(M) = n),and 
omputing the s
aling 
onstants for the weight sequen
e βc • q.It is also true that 
onditioning both on the number of fa
es and verti
es is insensitive to termwisemultipli
ation of q by (αβi−1, i ≥ 1), so this would lead to �nding a `
riti
al' 
urve of (αc, βc)'ssu
h that (αcβ

i−1
c qi, i ≥ 1) is 
riti
al. We do not 
on
entrate on this last point, as our methods areine�
ient in 
onditioning on both these data.1.5 Two illustrating examplesWe illustrate Theorem 3 by expli
itly 
omputing the various 
onstants involved there in two naturalparti
ular 
ases.1.5.1 2κ-angulationsConsider the 
ase when q = αδκ, for some integer κ ≥ 2, and some 
onstant α > 0. The resultingdistributions are the Boltzmann distributions on the set of maps with fa
es of �xed degree 2κ. Thesedistributions appear in [7℄ in the 
ase κ = 2 of quadrangulations (they also appear in [4℄, but fortriangulations).In that 
ase, fq takes the simple form of a monomial fq(x) = αN(κ)xκ−1, whi
h satis�es

Rq = ∞. A

ording to Proposition 1, De�nition 2 and the fa
t that fq(Rq) = ∞, the weightsequen
e q is 
riti
al, and thus regular 
riti
al, if and only if and the system of equations
fq(z) = 1 − 1/z , z2f ′

q(z) = 1has a real solution. This system, 
onsidered in the variables α, z admits the unique solution
ακ =

(κ − 1)κ−1

κκN(κ)
, zκ =

κ

κ − 1
.
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e fq(x) in
reases stri
tly with α for every x > 0, it is straightforward to see that q is admissibleif and only if α ≤ ακ, and is (regular) 
riti
al if and only if α = ακ. In the 
riti
al 
ase α = ακ, thepartition fun
tion Zq is given by zκ as de�ned above, and ρq = κ.Noti
e that when α ≤ ακ, the 
onditional law Pq(·|#F (M) = n), as 
onsidered in Theorem 3,
oin
ides with the uniform distribution on the set
{m ∈ M+ : deg(f) = 2κ for all f ∈ F (m), #F (m) = n}of 2κ-angulations with n fa
es, sin
e Wq puts the same weight αn on all the elements of this set.At the light of the dis
ussion leading to Corollary 5, a more natural way to de�ne this uniformdistribution would have been to take the non-admissible weight sequen
e q = δκ in the �rst pla
e,so Wq puts mass 1 on every 2κ-angulation, and PF=n

q is indeed uniform.By further spe
ialization of these results to the κ = 2 
ase of quadrangulations, we 
he
kthat α2 = 1/12, Zα2δ2 = 2, whi
h is 
onsistent with the results of [7℄. Furthermore, the 
onstant
(4ρq/(Zq− 1))1/4 appearing in Theorem 3 is (8/9)1/4 for κ = 2, whi
h is 
onsistent with the resultsof [8, 15℄.1.5.2 qi = βiLet β > 0, and let qi = βi for i ≥ 1, so that the weight of a map m is

Wq({m}) =
∏

f∈F (m)

qdeg(f)/2 = β
1
2

∑
f∈F (m) deg(f) = β#A(m),(when summing the degrees of fa
es, ea
h edge is 
ounted twi
e). In this 
ase,

fq(x) =
∑

i≥0

xiβi+1N(i + 1) = β
∑

i≥0

(βx)i
(2i + 1)!

(i + 1)! i!
,whi
h is equal to

fq(x) =
1

2x

∑

j≥1

(βx)j
(2j)!

j!2
=

1

2x

(
(1 − 4βx)−1/2 − 1

)
.We see that Rq = (4β)−1 and that fq(Rq) = ∞. Sin
e we are looking for solutions of Equation (2),whi
h must be > 1, we see that the only interesting 
ases are when β < 1/4. More pre
isely, one
an 
he
k that the equation fq(z) = 1− 1/z has real solutions if and only if β ≤ 1/8, and these aregiven by

1 + 4β −
√

1 − 8β

8β
and 1 + 4β +

√
1 − 8β

8β
.These two solutions merge into a unique solution 3/2 at β = 1/8, whi
h is the value making q(regular) 
riti
al. This 
an be double-
he
ked by solving z2f ′

q(z) = 1, whose solution is 3/(16β).This gives Zq = 3/2 in the 
riti
al 
ase β = 1/8, while ρq = 27/4, and the value (4ρq/9)1/4 ofProposition 4 is 31/4. Conditioning with respe
t to the number of verti
es is indeed a bit morenatural here: noti
e that we 
an rewrite q = β • (β, i ≥ 1). We thus obtain that PS=n
q is equal to

PS=n
β , where β stands (a bit improperly) for the 
onstant sequen
e qi = β, i ≥ 1.
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xFigure 1: Example 1.5.1: drawing fq for α = 1/18, 1/12, 1/8 and x 7→ 1− 1/x (dashed) in the 
ase
κ = 2 of quadrangulations.Example 1.5.2: drawing fq for β = 1/7, 1/8, 1/10 and x 7→ 1 − 1/x (dashed)1.6 Comments and organization of the paperAs dis
ussed in Se
t. 1.5.1, the asymptoti
 behavior of the radius and pro�le of quadrangulationsthat are uniformly 
hosen in the set

Qn
+ = {m ∈ M+ : #F (m) = n,deg(f) = 4 for all f ∈ F (m)}is obtained as a parti
ular 
ase of Theorem 3 for q = 12−1δ2. Therefore, our results en
ompass inprin
iple the results of Chassaing and S
hae�er [8℄ and Le Gall [15℄. The reason why `in prin
iple'is that these two papers deal with slightly di�erent obje
ts, namely rooted maps whi
h are notpointed, and use the base point of the root edge as the referen
e point with respe
t to whi
h geodesi
distan
es are measured. Considering these obje
ts would lead us to extra non-trivial 
ompli
ations.Roughly speaking, both pointing and rooting will allow us to study maps thanks to freely labeledtrees, while simple rooting leads to 
onsiderations on labeled trees with a positivity 
onstraint onlabels. It is fortunate, however, that the s
aling limits are the same for our model as in [8, 15℄.On a very informal level, this indi
ates that the base vertex of the root edge in a uniform rootedquadrangulation with n fa
es plays asymptoti
ally the same role as a randomly pi
ked base vertex.This is natural, sin
e if we believe that a s
aling limit for random maps exist, then a desirablefeature of the limit would be that it (statisti
ally) `looks the same' everywhere, and the singularrole of the root in the dis
rete setting should vanish as the size of the map goes to in�nity. On theother hand, we stress that rooting maps is not just a te
hni
al annoyan
e, but is really a 
ru
ialrequirement in the methods used in most arti
les on the topi
.A natural question would be to ask whether similar te
hniques as ours 
ould be used to provesimilar invarian
e prin
iples in non-bipartite 
ases (e.g. triangulations), using the more elaborateversion of Bouttier, di Fran
es
o and Guitter's bije
tion for Eulerian planar maps. Although thismakes the study slightly more intri
ate, this is indeed possible and will be addressed elsewhere.The rest of the arti
le is organized as follows. Se
t. 2 introdu
es basi
 de�nitions for deterministi
and random spatial trees, and shows how the bije
tion of Bouttier, di Fran
es
o and Guitter allows



2 PUSHING MAPS TO TWO-TYPE TREES 11to interpret features of Boltzmann random bipartite maps in terms of fun
tionals of 
ertain two-type Galton-Watson (GW) trees 
oupled with a spatial motion. Se
tion 3 provides the proof ofTheorem 3 and Proposition 4, by introdu
ing a new invarian
e prin
iple for su
h spatial two-typeGW trees (Theorem 11), in whi
h the in
rements of the spatial motion 
an depend both on thetype of the 
urrent vertex and on the lo
al stru
ture of the tree around the 
urrent vertex. Thisresult is interesting in its own right. The proof of this invarian
e prin
iple o

upies the remainingSe
tions 4 and 5.Finally, in Se
tion 6, we show that under the hypothesis of Theorem 3 and Proposition 4, s
aledbipartite maps 
onverge to the Brownian map, introdu
ed in [19℄. This generalization is more orless straightforward, and then we just outline the pro
edure leading to this result.2 Pushing Boltzmann planar maps to two-type spatial GW trees2.1 Planar spatial treesLet N be the set of positive integers, and by 
onvention let N
0 = {∅}. We de�ne

U =
⊔

n≥0

N
n(here and in the sequel, the symbol ⊔ stands for the disjoint union) the set of all �nite words withalphabet N, using the notation u = u1 . . . uk ∈ U where u1, . . . , uk ∈ N. If u = u1 . . . uk ∈ U is su
ha word, we let k = |u| be its length, with |∅| = 0. If u = u1 . . . uk, v = v1 . . . vk′ are words, we let

uv be the 
on
atenated word u1 . . . ukv1 . . . vk′ , with the 
onvention ∅u = u∅ = u. If u = vw is ade
omposition of a word u as a 
on
atenation, we say that v is a pre�x of u, and write v ⊢ u. If
A is a subset of U and u ∈ U , we let uA = {uv : v ∈ A}. The set U 
omes with the natural total`lexi
ographi
al' order �, su
h that u � v if and only if either u ⊢ v, or u = wu′, v = wv′ withnonempty words u′, v′ su
h that u′

1 < v′1.De�nition 6 A (rooted, planar) tree is a �nite subset t of U that 
ontains ∅, and su
h that ui ∈ t(with u ∈ U and i ∈ N) implies that u ∈ t and uj ∈ t for all 1 ≤ j ≤ i. We let T be the set of trees.It is well-known that this de�nition of rooted planar trees is equivalent to the graph-theoreti
de�nition (a rooted planar map with no 
y
le), by asso
iating every element u ∈ t with a vertex ofa graph, and drawing edges from the vertex asso
iated to u to the ones asso
iated to u1, . . . , uk ∈ t`from left to right'. If t 6= {∅}, the embedded graph thus obtained is rooted at the oriented edgefrom ∅ to 1. We 
all (with a slight abuse of notations) ∅ the root of t. We 
all verti
es the elementsof a tree t ∈ T , the number |u| is 
alled the height of u, and the order � will be 
alled the depth-�rstorder on t.The set {ui : ui ∈ t} is interpreted as the set of 
hildren of u ∈ t, and its 
ardinality is denotedby ct(u). If v = ui with v, u ∈ U and i ∈ N, we say that u is the father of v and note u = ¬v.If v ⊢ u for u, v ∈ t, we say that v is an an
estor of u. If t ∈ T and u ∈ t is a vertex, we let
tu = {v ∈ U : uv ∈ t} be the fringe subtree of t rooted at u. It is easily seen to be an element of T .We also let [t]u = {u} ∪ (t \ utu) be the subtree of t whi
h is pruned at u.Next, let T0,T1 be two 
opies of T . The pi
ture that we have in mind is that if t ∈ Ti for
i ∈ {0, 1}, the `mark' i is interpreted as a 
olor (white 0 or bla
k 1) that we assign to the root. All
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es at even height |u| then earn the same 
olor, while those at odd height earn the 
olor i + 1
mod 2. Although we should di�erentiate elements of T0,T1,T to be 
ompletely a

urate, we keepthe same notation t for elements of either of these sets. For t ∈ Ti, we let t(j) = {u ∈ t : |u| = i + j
mod 2} to be the set of verti
es of t with 
olor j (for example, t(0) is the set of verti
es witheven height if t ∈ T0, and with odd height if t ∈ T1). This notation is the only one that a
tuallydistinguishes T0 from T1. In the sequel, we will often omit the mention of mod 2 when dealingwith marks. For example, it is understood that µk,mk stand for µk mod 2 and its mean.The de�nitions of 
hildren of a vertex, fringe subtrees and pruned subtrees extend naturally to
T0,T1. The minor 
hange is that if t ∈ Ti for i ∈ {0, 1}, we take the 
onvention that tu ∈ T|u|+i(this should be 
lear from the intuitive pi
ture that i is the 
olor of verti
es at even heights in t),and if t ∈ Ti, we still let [t]u ∈ Ti (the 
olor of the root does not 
hange).De�nition 7 A spatial tree is a pair (t, ℓ) where t ∈ T and ℓ : t → R is a labeling fun
tion thatattributes a `spatial position' to every vertex. We let T be the set of spatial trees. Noti
e that for a�xed t ∈ T , taking a labeling ℓ is equivalent to attributing a label ℓ(∅) to the root and determiningthe in
rements ℓ(u) − ℓ(¬u), u ∈ t \ {∅}.Again, we 
onsider two 
opies T0, T1 of T, that put white or bla
k 
olor on the root, and alternate
olor between generations.2.2 Two-type spatial GW treesWe now want to 
onsider a parti
ular family of multitype GW trees, in whi
h verti
es of type 0only give birth to verti
es of type 1 and vi
e-versa. The following 
onstru
tion and dis
ussion ona.s. �niteness of the tree is not the most e
onomi
 one, but allows us to introdu
e some of the toolsthat will be needed later.Let µ = (µ0, µ1) be a pair of probability distributions on Z+ with means m0 and m1, respe
tively.We make the basi
 assumption that µ is non-degenerate, i.e. µ0(1) + µ1(1) < 2, and we ex
ludethe trivial 
ase m0m1 = 0. We say that µ is sub-
riti
al if m0m1 < 1, 
riti
al if m0m1 = 1 andsuper
riti
al if m0m1 > 1.Consider a family of independent random variables (Xu, u ∈ U) on some probability spa
e
(Ω,A, P ), su
h that Xu with |u| even all have law µ0 and Xu with |u| odd all have law µ1, andde�ne

ξ = {u = u1 . . . uk ∈ U : ui ≤ Xu1...ui−1 , 1 ≤ i ≤ k} ∪ {∅}.It is elementary to prove that ξ is a random subset of U that satis�es the properties of a tree. Theonly di�eren
e is that it might be in�nite, though every vertex still has a �nite number of 
hildren(lo
al �niteness). We let T̂ be the set of su
h possibly in�nite trees whi
h are lo
ally �nite, and keepthe notation ct̂(u) for the number of 
hildren of u ∈ t̂ ∈ T̂ . We also let T̂0, T̂1 be two 
opies of T̂ ,and 
onsider ξ as a random element of T̂0. As before, if t̂ ∈ T̂i we let t̂(j) be the set {u ∈ t̂ : |u|+i = j
mod 2}. Noti
e that if t ∈ T0, then we have

P (ξ = t) =
∏

u∈t(0)

µ0(ct(u))
∏

u∈t(1)

µ1(ct(u)) =
∏

u∈t

µ|u|(ct(u)), (6)and these probabilities sum to 1 if and only if ξ is a.s. an element of T0.Now, for t̂ ∈ T̂0, we introdu
e the mapping Γt̂ : t̂(0) → U that asso
iates with t̂ the tree having asnumber of verti
es #t̂(0), and whi
h skips the odd generations of t̂, going straight from a vertex of t̂(0)
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Figure 2: The �rst frame depi
ts a tree t ∈ T0: the bla
k (resp. white) verti
es stand for verti
esof t(0) (resp. t(1)). The se
ond frame represents Γ(t), and the third frame, Γ′(1t) to be introdu
edlater in Lemma 14to its grandsons. Formally, it is de�ned re
ursively by Γ(∅) = ∅, and if v ∈ t̂(0) has grand
hildren
vw1, . . . , vwk ∈ t̂(0), where w1, . . . , wk are words of two letters su
h that w1 ≺ . . . ≺ wk, and
k =

∑
1≤i≤c

t̂
(v) ct̂(vi) is the number of grand
hildren of v, then Γt̂(vwl) = Γ(v)l for 1 ≤ l ≤ k. Weextend this to a mapping Γt̂ : t̂ → U by letting Γt̂(u) = Γt̂(¬u) whenever u ∈ t̂(1).We simply denote the tree Γt̂(t̂) by Γ(t̂). In parti
ular, it is indeed an element of T̂ , and theroot has cΓ(t̂)(∅) =

∑
1≤k≤c

t̂
(∅) ct̂(k) 
hildren. The tree is unmarked, be
ause what we have doneis to get rid of the verti
es with 
olor 1. Moreover, an easy re
ursion shows that 2|Γt̂(u)| = |u| for

u ∈ t̂ with even height.Now, it is elementary that Γ(ξ) has the same law as the random element ξ of T̂ that is de�nedas follows. Let (Xu, u ∈ U) be an iid sequen
e of random variables that have same distribution as
∑

1≤k≤X∅

Xk, (7)where (Xu, u ∈ U) are the variables used to 
onstru
t ξ. Then let
ξ = {u = u1 . . . uk ∈ U : ui ≤ Xu1...uk−1

, 1 ≤ i ≤ k} ∪ {∅}.By 
onstru
tion, ξ is a random variable in T̂ , and the pro
ess (#{u ∈ ξ : |u| = n}, n ≥ 0) is a GWpro
ess, whose o�spring distribution is the law µ of X∅. Moreover, the pro
ess is non-degenerate,i.e. µ(1) < 1, as is easily dedu
ed from the non-degenera
y 
ondition on µ0, µ1. In parti
ular,the pro
ess be
omes extin
t (i.e. ξ is �nite) a.s. if and only if the mean m of µ satis�es m ≤ 1.For any distribution ν on Z
+, denote by Gν the generating fun
tion of ν. We see from (7) that

Gµ = Gµ0 ◦ Gµ1 . Di�erentiating this shows that the mean of the new o�spring distribution is
m = m0m1. Therefore, Γ(ξ) is a.s. �nite if and only if m0m1 ≤ 1, and the fa
t that ξ is lo
ally�nite implies that the �niteness of Γ(ξ) is equivalent to that of ξ.By re
alling formula (6), and 
onsidering as well the 
ase where the roles of µ0 and µ1 areinter
hanged, we have proved:Proposition 8 The formulas

P (0)
µ (T = t) =

∏

u∈t(0)

µ0(ct(u))
∏

u∈t(1)

µ1(ct(u)) , t ∈ T0

P (1)
µ (T = t) =

∏

u∈t(0)

µ0(ct(u))
∏

u∈t(1)

µ1(ct(u)) , t ∈ T1both sum to 1 when adding over t ∈ T0 resp. T1 if and only if (µ0, µ1) is (sub)-
riti
al. In this 
ase,
P

(0)
µ , P

(1)
µ are probability distributions, 
alled the law of a(n alternating) two-type (sub)-
riti
al GWtree, with root of type 0 resp. 1.
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e that the 
ase µ0 = µ1 is that of a single type GW tree, and we do re-obtain the usuala.s. extin
tion 
riterion m ≤ 1 where m is the expe
tation of µ1. In the sequel, by a two-type GWtree, we will always mean a random variable with a law of the form P
(0)
µ or P

(1)
µ , as we will not beinterested in the more general non-alternating 
ases.We now 
ouple the trees with a spatial displa
ement, in order to turn them into random elementsof T. For our purposes, we need to 
onsider the 
ase when the in
rements of the spatial motiondepend both on the type and the degree of the neighboring vertex. To this end, let (νk

0 , νk
1 , k ≥ 1)be a family of probability distributions su
h that νk

0 , νk
1 are de�ned on R

k. Given t ∈ Ti, i ∈ {0, 1},we let (Yu, u ∈ t) be a family of independent random variables, su
h that for u ∈ t with ct(u) = k,
Yu = (Yu1, . . . , Yuk) has law νk

0 for ever u ∈ t(0) and νk
1 for every u ∈ t(1). This yields a family ofrandom variables (Y t

u , u ∈ t \ {∅}), whi
h we use as in
rements of a random labeling fun
tion on t,i.e. we set ℓt∅ = 0 and
ℓtu =

∑

v⊢u,v 6=∅

Y t
v , u ∈ t.We denote by Λt

ν the law of (ℓtu, u ∈ t). We let P
(i)
µ,ν be the law on Ti su
h that

P
(i)
µ,ν(dtdℓ) = P (i)

µ (dt)Λt
ν(dℓ).We usually let (T,L) : Ti → Ti be the identity mapping, so that under P

(i)
µ,ν , T has distribution

P
(i)
µ , and given T = t, the labeling L is Λt

ν-distributed. To avoid trivial degenerate 
ases, we willalways impli
itly suppose that there exists i ∈ {0, 1}, k ≥ 1 with µi(k) > 0 and νk
i is not theDira
 mass at 0. We then say that the displa
ements laws νk

i are non-degenerate. We now have allthe ne
essary ba
kground to des
ribe the push-forward of the Boltzmann measures Pq under thebije
tion of Bouttier-di Fran
es
o-Guitter.2.3 The Bouttier-di Fran
es
o-Guitter bije
tion and its 
onsequen
esThe basi
 bije
tion presented in [6, Se
ts. 2.1 & 2.2℄ is a bije
tion between the set of pointed unrootedbipartite planar maps (i.e. planar maps with a distinguished vertex), and the set of so-
alled well-labeled mobiles. These obje
ts are unrooted planar trees together with a bipartite 
oloration ofverti
es (bla
k or white say), su
h that white verti
es 
arry positive integer labels, whi
h satisfy aset of 
onstraints. The ni
e feature of this bije
tion, aside from providing enumerative formulas,is that the fa
es of the initial map with degree k are in one-to-one 
orresponden
e with the bla
kverti
es of the mobile with degree k/2, while the verti
es of the map that are at distan
e d > 0from the distinguished vertex are in one-to-one 
orresponden
e with white verti
es of the mobilewith label d.It is explained in [6, Se
t. 2.4℄ how a further rooting of the pointed map (giving a map of M+)allows to root the asso
iated mobile at a white vertex, and lift the 
onstraint that the labels arepositive by subtra
ting the label of the root vertex to all other labels (re
overing the initial labelsamounts to subtra
ting the minimal label to every label and adding 1). We may reformulate theirresult as follows.Let T ⊂ T0 be the set of pairs (t, ℓ), where the mark of the root of t is 0 and where the labelingfun
tion satis�es the following 
onstraints:
• ℓ(∅) = 0,
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• ℓ takes its values in Z,
• ℓ(u) = ℓ(¬u) if u ∈ t(1) (i.e. |u| is odd),
• if u ∈ t(1) has 
hildren u1, . . . , uk, with k = ct(u), then with the 
onventions ℓ(u0) = ℓ(u) =

ℓ(u(k + 1)) ,
ℓ(uj) − ℓ(u(j − 1)) ∈ {−1, 0, 1, 2, 3, . . .} , 1 ≤ j ≤ k + 1. (8)For a given t ∈ T0, a labeling ℓ satisfying these 
onstraints (i.e. su
h that (t, ℓ) ∈ T) is 
alled
ompatible with t, and the set of 
ompatible labelings with t is denoted by Lt. Note that our
onventions are slightly di�erent from those of [6℄, where verti
es of type 1 would be unlabeled. Thedi�eren
e is minor, sin
e we 
onsider that these verti
es earn the label of their father.Proposition 9 (BdFG bije
tion [6℄) There exists a bije
tion between the sets M+ and T, whi
hwe denote by Ψ : M+ → T, that sends † on {∅} and satis�es the following extra properties. If

m ∈ M+ \ {†} and (t, ℓ) = Ψ(m),
• Fa
es f of m with degree 2k are in one-to-one 
orresponden
e with verti
es u ∈ t(1) (i.e. with

|u| odd) that have k − 1 
hildren. In parti
ular, #F (m) = #t(1).
• Verti
es v of m su
h that dm(v, r) = d > 0 are in one-to-one 
orresponden
e with verti
es

u ∈ t(0) (i.e. with |u| even) with ℓ(u)−minu′∈t ℓ(u′)+1 = d. In parti
ular, #S(m) = #t(0)+1,
R(m) = max

u∈t
ℓ(u) − min

u∈t
ℓ(u) + 1, (9)and

I
m(k) =

1

#t(0) + 1

(
#

{
u ∈ t(0) : ℓ(u) − min

u′∈t
ℓ(u′) + 1 = k

}
+ 1{k=0}

)
, k ≥ 0. (10)A short des
ription of Ψ−1 
an be found in Se
tion 6.Ex
ept from the trivial di�eren
e explained before the statement of this proposition, the onlydi�eren
e with [6, Se
t. 2.4℄ is that the 
ase of the vertex-map is not 
onsidered there, and the`mobiles' always have at least one white vertex and one bla
k vertex. This distin
tion is importantin our study, as we will see after the next proposition. The key observation of this paper is givenby the following statement, whi
h gives the image measure of the Boltzmann distributions Pq on

M+ by Ψ. We let Π(m) = t,Π′(m) = ℓ whenever Ψ(m) = (t, ℓ).Proposition 10 Let q be an admissible weight sequen
e, and de�ne two probability distributions
(µ0, µ1) by

µ0(k) = Z−1
q fq(Zq)k , k ≥ 0,the geometri
 law with parameter fq(Zq) (as de�ned in the Introdu
tion), and

µ1(k) =
Zk

qN(k + 1)qk+1

fq(Zq)
, k ≥ 0.



2 PUSHING MAPS TO TWO-TYPE TREES 16Also, for every k ≥ 1, let νk
0 be the Dira
 mass at 0 ∈ R

k, and νk
1 be the law on Z

k of (X1,X1 +
X2, . . . ,X1 + X2 + . . . + Xk) where (X1, . . . ,Xk+1) is uniform in the set

{
(x1, . . . , xk+1) ∈ (Z+ ∪ {−1})k+1 : x1 + . . . + xk+1 = 0

}
.Then the two-type GW tree asso
iated with µ0, µ1 is (sub)-
riti
al, and Ψ(M) under Pq has law

P
(0)
µ,ν.Moreover, the weight sequen
e q is 
riti
al in the sense of De�nition 2 if and only if Π(M) under

Pq is a 
riti
al two-type GW tree, and q is regular 
riti
al if and only if it is 
riti
al and µ1 admitssmall exponential moments, namely µ1(exp(a·)) < ∞ for some a > 0.This explains why 
onsidering † as a map is important for our 
on
ern: otherwise, the previousstatement would not be true, sin
e the root vertex of Π(M) under Pq would be 
onstrained tohave at least one 
hild, and the tree would not enjoy the GW property (in fa
t it would enjoy iteverywhere but at the root, whi
h would make the forth
oming dis
ussion tedious). It is also this
onvention that allows neat statements in De�nition 2 and Proposition 1.The �rst step in proving Proposition 10 is to 
ompute the 
ardinality of the set Lt of labelingsthat are 
ompatible with some t ∈ T0. For su
h t, the 
onstraint (8) says that for every u ∈ t(1),the label di�eren
es ℓ(uj)− ℓ(u(j − 1)), 1 ≤ j ≤ k + 1 must be in Z+ ∪ {−1} and sum to 0 be
auseof the 
onvention ℓ(u0) = ℓ(u) = ℓ(u(k + 1)). This is the same as the number of k + 1-tuples
(ℓ(uj) − ℓ(u(j − 1)) + 2, 1 ≤ j ≤ k + 1) forming a 
omposition of the integer 2k + 2 with k + 1positive parts. The number of su
h 
ompositions is equal to (2k+1

k+1

)
= N(k+1) with the 
onventionsof Se
t. 1. Sin
e the label of the root of t is �xed to 0, the number of admissible labelings ℓ of t istherefore equal to

#Lt =
∏

u∈t(1)

N(ct(u) + 1). (11)Next, let q = (qi, i ≥ 1) be any non-negative weight sequen
e, not ne
essarily admissible. Let
m ∈ M+. Then, by letting (t, ℓ) = Ψ(m) and using Proposition 9 we get that

Wq(M = m) =
∏

f∈F (m)

qdeg(f)/2 =
∏

u∈t(1)

qct(u)+1 = Wq(Ψ(M) = (t, ℓ)). (12)This quantity is independent of the values taken by ℓ, for any ℓ 
ompatible with t, so by (11),
Wq(Ψ(M) ∈ {(t, ℓ) : ℓ ∈ Lt}) =

∑

ℓ∈Lt

∏

u∈t(1)

qct(u)+1 =
∏

u∈t(1)

N(ct(u) + 1)qct(u)+1.Otherwise said,
Wq(Π(M) = t) =

∏

u∈t(1)

N(ct(u) + 1)qct(u)+1. (13)We are now ready to prove Proposition 10. Some of the 
omputations appear impli
itly in [6℄.Proof of Proposition 10. Suppose q is admissible, so Zq = Wq(M+) < ∞. Noti
e that for anytree t ∈ T0, one has ∑

u∈t(0)

ct(u) = #t(1) ,
∑

u∈t(1)

ct(u) = #t(0) − 1,
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e ∅ is the only vertex whi
h has no an
estor. Therefore, we may redisplay (13) as
Wq(Π(M) = t) =

(
1

Zq

)#t(0)−1 ∏

u∈t(1)

(Zq)ct(u)N(ct(u) + 1)qct(u)+1,so �nally
Pq(Π(M) = t) =

(
1

Zq

)#t(0) ∏

u∈t(1)

(Zq)ct(u)N(ct(u) + 1)qct(u)+1. (14)We know that summing this formula over t ∈ T gives 1. But noti
e that any tree t ∈ T0 
an bewritten as t = {∅} ∪ 1t1 ∪ . . .∪ ktk, if k = ct(∅), and with ti ∈ T1, 1 ≤ i ≤ k. So summing the lastformula over t ∈ T0 amounts to sum over k ≥ 0 and t(1), . . . , t(k) ∈ T1, and fa
torize the term 1/Zqthat involves the root of t, so
1 =

∑

k≥0

1

Zq

∑

t(1),...,t(k)∈T1

k∏

i=1



(

1

Zq

)#t
(1)
(i) ∏

u∈t
(0)
(i)

(Zq)ct(u)N(ct(u) + 1)qct(u)+1




=
1

Zq

∑

k≥0



∑

t∈T1

(
1

Zq

)#t(1) ∏

u∈t(0)

(Zq)ct(u)N(ct(u) + 1)qct(u)+1




k

. (15)But the quantity whi
h is raised to the su

essive integer powers 
an be de
omposed by a similarmethod, and is equal to
∑

k≥0

(Zq)kN(k + 1)qk+1



∑

t∈T0

(
1

Zq

)#t(0) ∏

u∈t(1)

(Zq)ct(u)N(ct(u) + 1)qct(u)+1




k

.This time, the right-most quantity whi
h is raised to the power k is nothing but the sum of (14)over t ∈ T0, that is Pq(M+) = 1, whi
h we started with! Thus, the last expression is nothing but
fq(Zq). Plugging this in (15), this leads to

1 =
1

Zq

∑

k≥0

fq(Zq)k.This yields both that f(Zq) < 1 and that Zq is solution of Equation (2). Therefore, the de�nitionof µ1 in the statement of the theorem makes sense and de�nes a probability distribution.With this is hand, we 
an re-write (14) and easily get
Pq(Π(M) = t) =

∏

u∈t(0)

µ0(ct(u))
∏

u∈t(1)

µ1(ct(u)).Sin
e these probabilities sum to 1 when summing over t, we get that Π(M) under Pq is indeeda (sub)-
riti
al two-type GW tree by Proposition 8, and with the 
laimed o�spring distributions.Obtaining the law of the labeling Π′(M) given Π(M) is then easy as (12) may be rewritten
Pq(Ψ(M) = (t, ℓ)) = Pq(Π(M) = t)

∏

u∈t(1)

1

N(ct(u) + 1)
. (16)



3 AN INVARIANCE PRINCIPLE FOR SPATIAL GW TREES 18Therefore, given Π(M) = t, the labeling is uniform among all 
ompatible labelings Lt. We 
an re-express this by saying that (still under Pq(·|Π(M) = t)) the in
rements (Π′(M)(uj)−Π′(M)(u(j −
1)), 1 ≤ j ≤ ct(u) + 1), u ∈ t(1), with the 
y
li
 
onvention of (8), are independent as u varies, anduniform among all the N(ct(u)+1) in
rements sequen
es that are respe
tively allowed. Equivalently,under Pq(·|Π(M) = t), the in
rements (Π′(M)(uj) − Π′(M)(u), 1 ≤ j ≤ ct(u)) are independent as
u varies in t(1) and have the law ν

ct(u)
1 of the statement. In
rements (Π′(M)(uj) − Π′(M)(u), 1 ≤

j ≤ ct(u)) for verti
es u ∈ t(0) are a.s. equal to 0, and 
ontribute to an `invisible' fa
tor of 1 to (16),whi
h explains the de�nition of νk
0 .To prove the 
riti
ality statement, it su�
es to 
ompute the expe
tations m0 and m1 of µ0 and

µ1. The expe
tation of the geometri
 law µ0 is equal to Zq − 1 = Zqfq(Zq), while
m1 =

1

fq(Zq)

∑

k≥0

kZk
qN(k + 1)qk+1 =

Zqf ′
q(Zq)

fq(Zq)
.The produ
t m0m1 is thus Z2

qf ′
q(Zq), whi
h must be ≤ 1 (the tree is sub-
riti
al), whi
h showsthat Zq must be the smallest solution of (2), by the 
lassi�
ation of solutions of (2) given in theIntrodu
tion. The weight sequen
e q is then 
riti
al in the sense of De�nition 2 if and only if

m0m1 = 1 = Z2
qf ′

q(Zq), i.e. Π(M) under Pq is 
riti
al. If q is 
riti
al, is is regular 
riti
al if andonly if Zq < Rq where Rq is the radius of 
onvergen
e of fq, and it is easy to see that this isequivalent to the fa
t that µ1(exp(a·)) < ∞ for some a > 0. �Proof of Proposition 1. We have already noti
ed that if q is admissible, then Zq satis�es (2)and is the smallest solution, i.e. the one satisfying Z2
qfq(Zq) ≤ 1.Conversely, suppose that (2) admits a solution. Then thanks to the 
lassi�
ation of solutions ofthe Introdu
tion, we know that one of the solutions, say z, satis�es z2f ′

q(z) ≤ 1. In a similar wayas in the proof of Proposition 10, we 
an write (13) as
Wq(Π(M) = t)

z
=

(
1

z

)#t(0)

fq(z)#t(1)
∏

u∈t(1)

zkN(k + 1)qk+1

fq(z)

=
∏

u∈t(0)

µ′
0(ct(u))

∏

u∈t(1)

µ′
1(ct(u))where µ′

0(k) = z−1fq(z)k and µ′
1(k) = zkN(k + 1)qk+1/fq(z), for k ≥ 0, are two probabilitydistributions (for µ′

0, use the fa
t that fq(z) = 1 − z−1). Sin
e moreover these distributions havemeans m′
0 = z − 1 = zfq(z) and m′

1 = zf ′
q(z)/fq(z), whose produ
t is z2f ′

q(z) ≤ 1, we �nallyre
ognize that the image of Wq/z under Π is the (probability) law of a (sub)-
riti
al two-type GWtree. This shows z = Zq < ∞, hen
e the result. �3 An invarian
e prin
iple for spatial GW treesIn view of Proposition 9, and in parti
ular the formulas (9) and (10), and Proposition 10, theasymptoti
 behavior of the radius and pro�le of random maps under Pq(·|#F (M) = n) (resp.
Pq(·|#S(M) = n)), with q 
riti
al boils down to that of the labels distribution in a 
riti
al spatialGW tree with law P

(0)
µ,ν(·|#T (1) = n) (resp. P

(0)
µ,ν(·|#T (0) = n − 1)). We now state an invarian
eprin
iple for su
h trees.
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e prin
ipleFor t ∈ T , let ∅ = u(0) ≺ u(1) ≺ . . . ≺ u(#t − 1) be the list of verti
es of t in depth-�rstorder. We let Ht
k = |u(k)|, 0 ≤ k ≤ #t − 1, and we 
onstru
t a 
ontinuous pie
ewise linear pro
ess

(Ht
t , 0 ≤ t ≤ #t − 1) by linear interpolation between integer points. The pro
ess Ht is 
alled theheight pro
ess of t.Next, for a labeled tree (t, ℓ) ∈ T, we let (St,ℓ

k = ℓ(u(k)), 0 ≤ k ≤ #t − 1) be the `head ofthe dis
rete snake' asso
iated with (t, ℓ). We extend this pro
ess into a pie
ewise linear 
ontinuouspro
ess (St,ℓ
t , 0 ≤ t ≤ #t − 1) by interpolating between integer values.Let (µ0, µ1) be a non-degenerate 
riti
al two-type o�spring distribution, and (νk

i , i ∈ {0, 1}, k ≥
1) be a spatial displa
ement law. We let P

(i) = P
(i)
µ,ν for simpli
ity. Let m0,m1, σ

2
0 , σ

2
1 be the meansand varian
es of µ0, µ1, and de�ne

σ =
1

2

√
σ2

0

1 + m1

m0
+ σ2

1

1 + m0

m1
∈ (0,∞]. (17)Also, for i ∈ {0, 1}, k ≥ 1 and 1 ≤ l ≤ k, let Σk,l

i =
√

νk
i (x2

l ) be the square root of the varian
e ofthe l-th 
omponent of a random ve
tor with law νk
i , and

Σk
i =

√
νk

i (|x|2) =

(
k∑

l=1

(Σk,l
i )2

)1/2

, (18)where |x| is the Eu
lidean norm of x ∈ R
k. We de�ne

Σ =

√√√√1

2

∑

k≥1

[
µ0(k)

m0
(Σk

0)
2 +

µ1(k)

m1
(Σk

1)
2

]
. (19)Re
all the de�nition of N

(1), Se
t. 1.3. We endow C(R+, R) with the uniform topology, and C(R+, R)2with the produ
t topology. The invarian
e prin
iple states asTheorem 11 Let (µ0, µ1) be a 
riti
al non-degenerate o�spring distribution, and suppose it admitssome exponential moments. Let (νk
0 , νk

1 , k ≥ 1) be non-degenerate spatial displa
ement laws whi
hare 
entered (νk
i (x) = 0), and su
h that there exists some η > 0 su
h that for i ∈ {0, 1} and k ≥ 1,

Mk
i :=

∫

Rk

|x|4+ηνk
i (dx) < ∞.Last, assume that for some D > 0, as k → ∞,

Mk
0 ∨ Mk

1 = O(kD). (20)Then, the 
onstants σ,Σ > 0 are �nite, and the following 
onvergen
e in distribution holds on
C(R+, R)2:



(

HT
(#T−1)t

n1/2

)

0≤t≤1

,




ST,L
(#T−1)t

n1/4




0≤t≤1


 under P

(i)(·|#T (j) = n)

(d)−→
n→∞



(

2
√

1 + mj

σ
et

)

0≤t≤1

,

(√
2Σ(1 + mj)

1/4

σ1/2
rt

)

0≤t≤1


 under N

(1),



3 AN INVARIANCE PRINCIPLE FOR SPATIAL GW TREES 20where by 
onvention, n goes to +∞ along the values for whi
h the 
onditioning event has positiveprobability.One of the key ingredients in the proof of this result is the forth
oming Lemma 18, whi
h dealswith the repartition between verti
es of either type in a 
onditioned two-type GW tree. In order tobe able to prove Theorem 3 right away, we give a simpler statement for now. Let t ∈ Ti for some
i ∈ {0, 1}. For 0 ≤ k ≤ #t− 1 and j ∈ {0, 1}, we let

J
(j)
t (k) = Card (t(j) ∩ {u(0), . . . , u(k)})be the 
ounting pro
ess for the ranks of the verti
es of t(j), when t is visited in depth-�rst order. Weextend it into a right-
ontinuous non-de
reasing fun
tion on [0,#t−1] by letting J

(j)
t (t) = J

(j)
t ([t]).The renormalized fun
tion J

(j)
t = (J

(j)
t ((#t − 1)t)/#t(j), 0 ≤ t ≤ 1) is the distribution fun
tionfor the probability measure putting equal mass on ea
h number k/(#t − 1) with k ∈ Z+ su
h that

u(k) ∈ t(j). The following result says that verti
es of either type are homogeneously displayed in aGW tree 
onditioned to be large.Lemma 12 Let µ0, µ1 be non-degenerate 
riti
al, and admitting small exponential moments. Thenfor i, j ∈ {0, 1}, under P (i)(·|#T (j) = n), the pro
esses (J
(c)
T (t), 0 ≤ t ≤ 1), c ∈ {0, 1} 
onverge inprobability to the identity (t, 0 ≤ t ≤ 1), for the uniform norm.We end the present se
tion by showing how Theorem 11 and Lemma 12 allow to prove Theorem3 and Proposition 4.3.2 Computation of the s
aling 
onstants asso
iated with random mapsLet q be a regular 
riti
al admissible weight sequen
e. Then we know that Ψ(M) under Pq has law

P
(0)
µ,ν , where µ, ν are de�ned as in Proposition 10. We also know from this proposition that µ0, µ1admit some exponential moments (µ0 be
ause the law is geometri
, and µ1 be
ause q is regular
riti
al). Also, it is plainly non-degenerate.On the other hand, we have to 
he
k that the νk

i are 
entered and satisfy the moments 
onditionsof Theorem 11. For νk
0 it is trivial (these are Dira
 masses at 0). Sin
e νk

1 is 
arried by the set
[−k, k]k, it is straightforward that its marginals have moments of order 5 whi
h de
ay at most like
k5. Next, we 
ompute the 
onstants σ,Σ asso
iated with µ, ν. On the one hand, µ0 has mean
m0 = Zq− 1 = m−1

1 , and varian
e σ2
0 = Zq(Zq − 1). Also, Gµ1(x) = fq(xZq)/fq(Zq) by de�nition,and by di�erentiating, µ1 has varian
e

σ2
1 =

Z2
qf ′′

q(Zq)

fq(Zq)
+

Zq − 2

(Zq − 1)2
=

Z3
qf ′′

q(Zq)

Zq − 1
+

Zq − 2

(Zq − 1)2
.This gives, after some simpli�
ations,

σ =

√
Zq ρq

2
,where ρq is de�ned at (5).On the other hand, we have to 
ompute ∑1≤l≤k(Σ

k,l
1 )2 to give the value of Σ (noti
e that

Σk,l
0 = 0 for every k, l). Re
all that νk

1 is the law of (X1,X1 + X2, . . . ,X1 + . . . + Xk), where
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(X1, . . . ,Xk+1) has a uniform law in {(x1, . . . , xk+1) ∈ (Z+ ∪ {−1})k+1 : x1 + . . . + xk+1 = 0}. Butthen, (X1, . . . ,Xk+1) is ex
hangeable, and E[X1] = (k+1)−1E[X1+. . .+Xk+1] = 0, so the variables
Xl, 1 ≤ l ≤ k are 
entered, as well as the marginals of νk

1 . Moreover, it holds by ex
hangeability1that
Σk,l

1 = Var (X1 + . . . + Xl) = l Var (X1) + l(l − 1) cov(X1,X2).Sin
e Var (X1 + . . . ,Xk+1) = 0, we obtain that cov(X1,X2) = −Var (X1)/k. It remains to 
omputethe varian
e of X1. Using the interpretation in terms of 
ompositions, one �nds easily that
P(X1 = l) =

(
2k − l − 1

k − 1

)
/

(
2k + 1

k + 1

) for − 1 ≤ l ≤ k . (21)and then, sin
e a+1
b+1

(a
b

)
=
(a+1

b+1

),
E((2k − X1)(2k + 1 − X1))

k(k + 1)
=

k∑

l=−1

(
2k + 1 − l

k + 1

)
/

(
2k + 1

k + 1

)
=

k+1∑

i=0

(
k + 1 + i

k + 1

)
/

(
2k + 1

k + 1

)

=

(
2k + 3

k + 2

)
/

(
2k + 1

k + 1

)from whi
h we get Var (X1) = 2k/(k + 2). Finally, this gives (Σk,l
1 )2 = 2l(k − l + 1)/(k + 2), and bysumming this for 1 ≤ l ≤ k,

(Σk
1)

2 =
k(k + 1)

3
.We obtain

Σ =

√√√√(Zq − 1)

2

∑

k≥1

µ1(k)
k(k + 1)

3
=

√
Z3

qf ′′
q(Zq) + 2

6
=

√
ρq

6
.Finally, we obtain that the s
aling 
onstant Cq appearing in front of r in Theorem 11, for j = 1, is

Cq =

√
2Σ(1 + m1)

1/4

σ1/2
=

(
4ρq

9(Zq − 1)

)1/4

.3.3 Proof of Theorem 3(i) From (9), we know that R(M) under Pq(·|#F (M) = n) has the same law as maxu∈T L(u) −
minu∈T L(u) + 1, under P

(0)(·|#T (1) = n). In turn, this is equal to 1 + max0≤t≤#T−1 ST,L
t −

min0≤t≤#T−1 ST,L
t . The 
onvergen
e of the se
ond 
omponent in Theorem 11 entails that n−1/4R(M)
onverges in distribution to Cq∆(r), as 
laimed. Indeed, the 
onvergen
e holds for the uniformtopology, under whi
h the mapping f 7→ sup0≤t≤1 f(t) (resp. f 7→ inf0≤t≤1 f(t)) is 
ontinuous.(ii) Let r

′ be pi
ked at random in S(M) \ {r} 
onditionally on M under Pq(·|#F (M) = n).Then by Proposition 9, the law of dM (r, r′) is the same as that of 1 + L(V ) − minv′∈T L(v′) under
P

(0)(·|#T (1) = n), where V is uniformly pi
ked among the verti
es of T (0) 
onditionally on T,L.To be 
ompletely rigorous, this involves an enlarging of the probability spa
e T, and we do it inthe following 
onvenient way. We endow the spa
e T
(0) × [0, 1] with the law P̃ = P

(0)(·|#T (1) =
n) × dx, where dx is Lebesgue measure on [0, 1]. If ((T,L), U) is the identity map on this spa
e,1This argument was suggested by a referee



3 AN INVARIANCE PRINCIPLE FOR SPATIAL GW TREES 22then under P̃, U is a uniform random variable in [0, 1], independent of HT , ST,L, J
(0)
T . Then, let

U
(0)
T = (J

(0)
T )−1(U), where (J

(0)
T )−1 is the right-
ontinuous inverse of J

(0)
T . By de�nition of J

(0)
T ,it holds that (#T − 1)U

(0)
T is the rank in depth-�rst order of a uniform random vertex of T (0).Otherwise said, u((#T −1)U

(0)
T ) is uniform in T (0) given (T,L). Hen
e, the law of the distan
e in a

Pq(·|#F (M) = n)-
hosen random map from the root to a uniformly 
hosen non-root vertex is thesame as that of ST,L

(#T−1)U
(0)
T

− min ST,L + 1 under P̃.On the other hand, the 
onvergen
e of (J
(0)
T (t), 0 ≤ t ≤ 1) to the deterministi
 identity fun
tion,whi
h is des
ribed in Lemma 12, must hold jointly with that of the height and snake pro
essesunder P

(0)(·|#T (1) = n). So, by Skorokhod's representation theorem, we may �nd a probabilityspa
e on whi
h the 
onvergen
e holds almost-surely, that is, we 
an �nd pro
esses (Hn, Sn, J
n
) withthe same law as

(
n−1/2HT

(#T−1)·, n
−1/4ST,L

(#T−1)·, J
(0)
T

) under P
(0)(·|#T 1 = n), (22)and whi
h 
onverge uniformly a.s. to a triple (B,S, id[0,1]) where (B,S) has law N

(1). We take auniform random variable Ũ on [0, 1], independent of all these pro
esses, and let Un = (J
n
)−1(Ũ ),whi
h has the same law as U

(0)
T with the above notations. Sin
e J

n 
onverges uniformly to theidentity, Un 
onverges to Ũ a.s., and therefore, Sn
Un 
onverges a.s. to S

Ũ
as n → ∞. Moreover,

inf Sn 
onverges to inf S as n → ∞, so �nally, we obtain that n−1/4(ST,L

(#T−1)U
(0)
T

− min ST,L + 1)under P̃ 
onverges in distribution to SŨ − inf S, whi
h has the law of Cq(rU − inf r) under N
(1) ×dx.By the rerooting properties of the Brownian snake of [19, 16℄, (rs+t mod 1 − rt, 0 ≤ s ≤ 1) has samelaw as r under N

(1), for every t. So under N
(1) × dx,

rU − inf
0≤s≤1

rs = rU − inf
0≤s≤1

(rs+U mod 1 − rU + rU )
(d)
= − inf

0≤s≤1
rs = −∆−(r),whi
h by symmetry has the same law as ∆+(r), as 
laimed.(iii) For every k > 0, we have, using (10),

I
m(k) = (1 + #t(0))−1(#{u ∈ t(0) : ℓ(u) − min ℓ + 1 = k})whenever (t, ℓ) = Ψ(m). We 
an rewrite this as

#t(0)

1 + #t(0)

∫ 1

0
1{

St,ℓ
(#T−1)t

−inf St,ℓ+1=k
}dJ

(0)
t (t),Thus, for every g whi
h is Lips
hitz and bounded,

〈I m
n , g〉 =

#t(0)

1 + #t(0)

∫ 1

0
g




St,ℓ
(#T−1)t − inf St,ℓ + 1

n1/4


 dJ

(0)
t (t) +

g(0)

1 + #t(0)
.Note that be
ause of the 
onvergen
e of J

(0)
T in Lemma 12, the quantity #T (0) under P (0)(·|#T (1) =

n) 
onverges to in�nity in probability. We then use again the Skorokhod representation theorem,and suppose given pro
esses Hn, Sn, J
n with respe
tive laws that of (22), whi
h 
onverge almost



4 CONVERGENCE OF THE HEIGHT PROCESS 23surely for the uniform norm to (B,S, id[0,1]), where (B,S) has law N
(1). Then, the measures dJ

n
onverge weakly to the uniform law on [0, 1]. We have
∫ 1

0
g(Sn

t − inf Sn + n−1/4)dJ
n
(t) −

∫ 1

0
g(St − inf S)dt

=

∫ 1

0
(g(Sn

t − inf Sn + n−1/4) − g(St − inf S))dJ
n
(t)

+

∫ 1

0
g(St − inf S)(dJ

n
(t) − dt)The �rst term on the right-hand side 
onverges to 0, be
ause Sn − inf Sn 
onverges uniformly to

S − inf S, and g is Lips
hitz. The se
ond term 
onverges to 0 be
ause g(St − inf S), 0 ≤ t ≤ 1 is
ontinuous and bounded, and dJ
n 
onverges weakly to dt. Sin
e ∫ 1

0 g(St − inf S)dt has the law of
〈I r, g〉 under N

(1), this ends the proof. �Remark. A somewhat simpler proof for (ii), using (iii), 
ould be obtained following the same linesas Le Gall [15℄. We thought however that the present approa
h, whi
h for example 
an be easilyextended to handle the 
ase of several sampled points, was worth mentioning.The proof of Proposition 4 is entirely similar to the previous proof, the only signi�
ant di�eren
ebeing that one should use the probability distributions P (0)(·|#T (0) = n) rather than P (0)(·|#T (1) =
n). This ta
itly implies that we must take n along values for whi
h this 
onditioning is well-de�ned.Ex
ept from that, there is a minor 
hange due to the fa
t that the s
aling 
onstants in the limit aredi�erent, namely √

2Σ(1 + m0)
1/4

√
σ

=

(
4ρq

9

)1/4

.Details are left to the reader.4 Convergen
e of the height pro
essThe goal of this se
tion is to prove the 
onvergen
e of the �rst 
omponent in Theorem 11. Thisinvolves a 
ouple of lemmas, whi
h we now des
ribe.4.1 GW forestsA forest f is a subset of U that is of the form
f =

⋃

k

kt(k),where (t(k)) is a �nite of in�nite sequen
e of trees, 
alled the tree 
omponents of f . We let F bethe set of forests. If f ∈ F and u ∈ f , we de�ne the fringe subtree fu ∈ T by {v ∈ U : uv ∈ f} asabove, and [f ]u = {u} ∪ (f \ ufu) ∈ F the pruned forest. With this notation, observe that the tree
omponents of f are f1, f2, . . .. For f ∈ F and u ∈ f , we let cf (u) = cfu(∅) be the number of 
hildrenof u in f . If it is understood that u is an element of f , for f ∈ F , we 
all |u| − 1 the height of u.It di�ers from the 
onvention on trees be
ause we want the roots of the forest 
omponents to be atheight 0. For f ∈ F and u ∈ f , Υf (u) be the �rst letter of u, i.e. the rank of the tree 
omponent of
f 
ontaining u.



4 CONVERGENCE OF THE HEIGHT PROCESS 24We also want to 
onsider forests of marked trees, i.e. sets of the form ⋃k kt(k) with t(k) ∈ Ti, i ∈
{0, 1}. We then de�ne, for i ∈ {0, 1},

f (i) =
⋃

k

kf
(i)
k .We let F0 be the set of forest 
onstituted only of 0-marked trees, and F1 the set of forests 
onstitutedonly of 1-marked trees.If i ∈ {0, 1}, and (µ0, µ1) is a sub
riti
al pair of o�spring distributions as in Se
t. 2.2, and for

r ∈ N ⊔ {∞}, we let P
(i)
r be the image law on Fi of (P

(i)
µ )⊗r under the map

(t(1), t(2), . . .) 7→
⋃

k

kt(k),going from the set of sequen
es of r trees in Ti to Fi. We do not refer to µ in the de�nition of P
(i)
r ,but the value of µ0, µ1 should be 
lear a

ording to the 
ontext. We let F : F → F be the identitymapping.In the sequel, if t ∈ T or f ∈ F , we let u(0) ≺ u(1) ≺ . . . be the list of verti
es of t or f indepth-�rst order. Similarly, for i, j ∈ {0, 1} and t ∈ Ti or f ∈ Fi, we let u(j)(0) ≺ u(j)(1) ≺ . . . bethe list of verti
es of t(j) or f (j) listed in depth-�rst order. Although there is no mention of t, f inthe notation, it should be unambiguous a

ording to the 
ontext.4.2 Controlling the height and number of 
omponents of forestsThe �rst te
hni
al lemma gives an exponential 
ontrol on quantities related to the n �rst verti
esin a monotype GW forest.Lemma 13 Let µ be a 
riti
al non-degenerate o�spring distribution on Z+, i.e. µ(1) < 1 and µhas mean 1. Suppose also that µ has �nite varian
e. Let P∞ be the law of a GW forest with andin�nite number of 
omponents and o�spring distribution µ (with the previous notations it is P
(i)
∞whenever µ0 = µ1 = µ, in that 
ase, the role of i ∈ {0, 1} is irrelevant). Then, there exist 
onstants

0 < C1, C2 < ∞ su
h that for every η > 0,
P∞

(
max

0≤k≤n
|u(k)| ≥ n1/2+η

)
≤ C1(n + 1) exp(−C2n

η). (23)and
P∞(ΥF (u(n)) ≥ n1/2+η) ≤ C1 exp(−C2n

η). (24)Proof. We bound the �rst probability by (n + 1)max0≤k≤n P∞(|u(k)| ≥ n1/2+η). It is known [10,Se
t. 2.2℄ that |u(k)| has same distribution as the number of weak re
ords for a random walk withstep distribution µ(· + 1) on {−1} ∪ Z+, from time 1 up to time k. Suppose su
h a random walk
(Wn, n ≥ 0) is de�ned on some probability spa
e (Ω̃, Ã, P̃ ). By assumption, the step distributionof this random walk is 
entered and has �nite varian
e. Therefore, 
alling τ0 = 0 and τi, i ≥ 1 thetime of the i-th weak re
ord of (Wn, n ≥ 0), we have from Feller [11℄ that (τi − τi−1, i ≥ 1) is i.i.d.,and the Lapla
e exponent of the 
ommon distribution satis�es

φ̃(λ) = − log Ẽ [exp (−λτ1)] ∼
λ↓0

C ′
√

λ. (25)



4 CONVERGENCE OF THE HEIGHT PROCESS 25For some C ′ > 0 Now, for k ≤ n, we write P∞(|u(k)| ≥ m) as
P̃

(
m∑

i=1

(τi − τi−1) ≤ k

)
≤ e E

[
exp

(
−

m∑

i=1

τi − τi−1

k

)]
= exp(1 − mφ̃(1/k)), (26)whi
h by monotoni
ity of φ̃ is less than exp(1−mφ̃(1/n)), and taking m = ⌈n1/2+η⌉ and using (25)gives (23).The proof of (24) is very similar. By a well-known appli
ation of the Otter-Dwass formula (seee.g. [21, Chapter 5℄), the sizes (#F1,#F2, . . .) of the 
omponents of the forest F under P∞ are i.i.d.random variables with distribution

P∞(#F1 = n) =
1

n
P̃ (Wn = −1).By using on
e again the fa
t that the step distribution is 
entered and has �nite varian
e, the lo
allimit theorem [11, Theorem XV.5.3℄ entails that P∞(#F1 = n) is equivalent to C ′′n−3/2, where

C ′′ > 0 is a 
onstant multiple of a normal density at 0. Therefore, an Abelian theorem [11, TheoremXIII.5.5℄ entails that the Lapla
e exponent φ of the distribution of #F1 under P∞ is equivalent to
λ1/2 up to a multipli
ative 
onstant as λ ↓ 0. Noti
ing that {ΥF (u(n)) ≥ m} = {∑m

i=1 #Fi ≤ n+1},the result is then obtained by a straightforward analog of (26), repla
ing P̃ by P∞, (τi − τi−1) by
#Fi, and φ̃ by φ. We �nally adapt the 
onstants C1, C2 so that they mat
h to both 
ases. �A 
onsequen
e of this is the following analogous result for two-type forests.Lemma 14 Let (µ0, µ1) be a 
riti
al non-degenerate o�spring distribution, and suppose µ0, µ1 have�nite varian
es. Then, for i, j ∈ {0, 1}, and every η > 0, there exists some ε > 0 su
h that for every
n large enough,

P (i)
∞

(
max

0≤k≤n
|u(j)(k)| ≥ n1/2+η

)
≤ exp(−nε), (27)and in parti
ular,

P (i)
∞

(
max

u�u(j)(n)
|u| ≥ n1/2+η

)
≤ exp(−nε), (28)sin
e maxu�u(j)(n) |u| ≤ max0≤k≤n |u(j)(k)| + 1. Moreover,

P (i)
∞ (ΥF (u(j)(n)) ≥ n1/2+η) ≤ exp(−nε). (29)Proof. Suppose that i = j. For f ∈ Fi, de�ne the following analog of the transformation Γf : f → Uof Se
t. 2.2, by

Γf (kv) = kΓfk(v) , kv ∈ f (i),and Γf (v) = Γf (¬v) if v ∈ f (i+1), so Γ skips odd generations in all of the tree 
omponents of theforest f . We let Γ(f) be its image, so that
Γ(f) =

⋃

k≥1

kΓ(fk) ∈ F .Noti
e that Γf (u
(i)(n)) is the n + 1-th vertex in depth-�rst order in Γ(f). It is then a 
onsequen
eof the de�nitions of Γt,Γf that

2|Γf (u
(i)(n))| − 2 = |u(i)(n)| − 1 , and Υf (u

(i)(n)) = ΥΓ(f)(Γf (u
(i)(n))). (30)
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ussion leading to Proposition 8, under P (i), the tree Γ(T ) is a monotype 
riti
al GWtree, and therefore, under P
(i)
∞ , the forest Γ(F ) is a monotype 
riti
al GW forest. Its o�springdistribution µ has generating fun
tion Gµ = Gµi ◦ Gµi+1 , and if µ0, µ1 have �nite varian
es, we
an di�erentiate Gµ twi
e to obtain that µ itself has �nite varian
e. Hen
e, Lemma 13 applies andgives that for every η > 0, there is some ε > 0 su
h that for n large enough,

P (i)
∞

(
max

0≤k≤n
|ΓF (u(i)(k))| ≥ n1/2+η

)
≤ exp(−nε). (31)Therefore, using (30), up to taking a smaller ε, we obtain (27) for some ε > 0 and all n large.Similarly, (29) follows by applying (30) and (24) to Γ(F ) under P

(i)
∞ .It remains to prove the 
ase i + 1 = j. To this end, we introdu
e a transformation on foreststhat skips the �rst generation. For f ∈ F , we let π(f) be the forest with tree 
omponents

(fk1, . . . , fkcf (k), k ≥ 1), where these tree 
omponents are put in lexi
ographi
al order of the in-dex kl, 1 ≤ l ≤ cf (k). For every u ∈ f with |u| ≥ 2, there is a unique 
orresponding u′ in π(f), thatwe denote πf (u) = u′.If f ∈ Fi, then π(f) is 
onsidered as an element of Fi+1, and we let Γ′
f = Γπ(f) ◦ πf , and

Γ′(f) = Γ′
f (f), so Γ′ �rst skips the �rst generation of a forest, and then skips all odd generationsof the new forest (see Figure 2 where Γ′ is applied to a forest with one 
omponent). As for Γ, is iseasy to see that if f ∈ Fi, then Γ′

f (u
(i+1)(k)) is the k + 1-th vertex of Γ′(f) in depth-�rst order, andhas height satisfying 2|Γ′

f (u
(i+1)(k))| = |u(i+1)(k)|, whi
h mirrors the �rst half of (30). Moreover,we have

ΥΓ′(f)(Γ
′
f (u

(i+1)(n))) = Υf (u
(i+1)(n)) − #{1 ≤ k ≤ Υf (u

(i+1)(n)) : cf (k) = 0}, (32)where the se
ond term a

ounts for the fa
t that some of the tree 
omponents of f do not haveverti
es of type i + 1, and thus do not 
ount in the 
onstru
tion of Γ′(f).Now, by 
onstru
tion, the law of π(F ) under P
(i)
∞ is P

(i+1)
∞ , so that the law of Γ′(F ) under P

(i)
∞is that of a monotype GW forest with o�spring distribution µ′, and Gµ′ = Gµ1 ◦ Gµ0 . We thusobtain (27) by applying Lemma 13 to Γ′(F ) under P

(i)
∞ , just as we did in the 
ase i = j.Obtaining (29) is slightly more deli
ate, sin
e the se
ond half of (30) is now repla
ed by (32).Under P

(i)
∞ , the random variables cF (k) are identi
ally distributed with law µi, so that B(m) :=

#{1 ≤ k ≤ m : cF (k) = 0} is a Binomial random variable with parameters (m,µi(0)). ByH÷�ding's inequality, if B(n, p) is Binomial with parameters n ≥ 1, 0 < p < 1, we have
P (|B(n, p) − np| ≥ y) ≤ 2 exp(−2y2/n). (33)Therefore, for any γ > 0

P (i)
∞

(
max

1≤k≤n
|B(k) − kµi(0)| ≥ n1/2+γ/2

)
≤ 2n exp(−n2γ/2). (34)For simpli
ity, write Υn = ΥF (u(i+1)(n)) and Υ′

n = ΥΓ′(F )(Γ
′
F (u(i+1)(n))). Then, (32) gives

B(Υn) = Υn − Υ′
n, and sin
e Υn ≤ n by de�nition, (34) yields

P (i)
∞ (Υn − Υ′

n ≥ n1/2+η/2) ≤ 2n exp(−n2η/2).Finally,
P (i)
∞ (Υn ≥ n1/2+η) ≤ P (i)

∞ (Υn − Υ′
n ≥ n1/2+η/2) + P (i)

∞ (Υ′
n ≥ n1/2+η/2),and both terms are ≤ exp(−nε) for some ε > 0 and n large enough, the se
ond term be
ause of(24) applied to the monotype GW forest Γ′(F ) under P

(i)
∞ . �



4 CONVERGENCE OF THE HEIGHT PROCESS 274.3 An
estral de
omposition of a GW forestA key result for our study is a multitype version of an an
estral de
omposition for GW trees, relatedto the so-
alled size-biased GW distribution. Let (µ0, µ1) be a non-degenerate 
riti
al two-typeo�spring distribution, and de�ne the asso
iated size-biased distributions
µ̂0(k) =

kµ0(k)

m0
, µ̂1(k) =

kµ1(k)

m1
, k ≥ 0.Noti
e that these distributions do not 
harge {0}. The size-biased GW tree is an in�nite tree (anelement of T̂ with the notation of Se
t. 2.2) 
ontaining a unique spine, i.e. an in�nite inje
tive pathstarting from the root. On some probability spa
e, let (Xu, X̂u, ju, u ∈ U) be a sequen
e of i.i.d.random variables su
h that Xu has law µ|u| (|u| taken modulo 2), X̂u has law µ̂|u|, and 
onditionallyon X̂u, ju is uniform in {1, 2, . . . , X̂u}. Then, let w0 = ∅, and re
ursively wj+1 = wjjwj , j ≥ 0. Let

X̃u = X̂u if u ∈ {w0, w1, . . .}, and X̃u = Xu otherwise. Finally, let ξ̂ be the element of T̂0 de�nedby
ξ̂ = {u = u1 . . . uk ∈ U : ui ≤ X̃u1...ui−1 , 1 ≤ i ≤ k} ∪ {∅}.We see that ξ̂ is `almost' a GW tree, ex
ept for one distinguished spine whi
h uses the distributions

µ̂0, µ̂1 instead of µ0, µ1. In parti
ular, under the 
riti
ality assumption, we see that all fringe subtreesof ξ̂ atta
hed to the spine, i.e. of the form ξ̂wjk for k 6= jwj , are a.s. �nite, so the only in�nite simplepath starting from the root in ξ̂ is a.s. (w0, w1, . . .). In parti
ular the trees [ξ̂]wh
are a.s. �nite for

h ≥ 0. For every h ≥ 0, let P̂ (0),h be the law of ([ξ̂]wh
, wh), where we understand that [ξ̂]wh

is anelement of T0. It is a law on the set of pointed trees with `white' root
T ∗

0 = {(t, u) : t ∈ T0, u ∈ t}.We let (T, V ) be the identity mapping on T ∗
0 . Similarly we de�ne P̂ (1),h on T ∗

1 , where T ∗
1 is a 
opyof T ∗

0 , by swit
hing the roles of µ0 and µ1. Finally, for r ∈ N, j ∈ {1, . . . , r}, i ∈ {0, 1} and h ≥ 0,we let P̂
(i),j,h
r be the law on pointed forests whose distinguished vertex is a leaf (i.e. a vertex without
hildren)

F∗
i = {(f , u) : f ∈ Fi, u ∈ f , cf (u) = 0}of the random variable 


⋃

1≤k≤r

kξ(k), jw


 ,where (ξ(k), k 6= j) are independent with distribution P (i) and independent of (ξ(j), w), whi
h haslaw P̂ (i),h. We let (F, V ) be the identity mapping on F∗

i .Lemma 15 (An
estral de
omposition for GW forests) Let (µ0, µ1) be a 
riti
al non-degenerateo�spring distribution. For every r ∈ N and non-negative measurable fun
tions G1, G2

E(i)
r

[
∑

w∈F

G1(w, [F ]w)G2(Fw)

]

=
1

1 + mi+1

r∑

j=1

∑

h≥0

(1 + mh+1+i) Ê(i),j,h
r [G1(V, F )]E(h+i)[G2(T )] , (35)where as usual i + 1, h + i(+1) are taken modulo 2.



4 CONVERGENCE OF THE HEIGHT PROCESS 28Proof. We treat the 
ase i = 0 only. Let f ∈ F0, let u be a leaf of f and let t ∈ T|u|−1. Then, itis enough to show the result for G1(u, f)G2(t) = 1{u,f ,t}, by linearity and monotone 
onvergen
e.In this 
ase, the left-hand side of (35) is equal to P
(0)
r (F = [f , u, t]), where [f , u, t] is the only forest

f ′ ∈ F0 
ontaining u with [f ′]u = f and f ′u = t. This probability is
∏

v∈f ′

µ|v|−1(cf ′(v)).Let j = u1 be the �rst letter of u. We 
an redisplay the last expression as
∏

v∈t

µ|v|+|u|(ct(v))
∏

1≤l≤r,l 6=j

∏

v∈fl

µ|v|(cf (lv))
∏

v∈fj ,jv0u

µ|v|(cf (jv))
∏

v∈f ,v⊢u,v 6=u

µ|v|−1(cf (v))(we omit the bra
kets around the di�erent produ
ts for 
onvenien
e). Let S = {v ∈ f : ¬v ⊢ u, v 0

u} be the set of neighbors of the an
estors of u, whi
h are not an
estors of u. We re
ognize
P (0)

r (F = [f , u, t])

= P (|u|−1)(T = t)
∏

l 6=j,1≤l≤r

P (0)(T = fl)
∏

v∈S

P (|v|−1)(T = fv)
∏

v∈f ,v⊢u,v 6=u

µ|v|−1(cf (v)).We 
an also rewrite the last produ
t as
∏

v∈f ,v⊢u,v 6=u

µ̂|v|−1(cf (v))
m|v|−1

cf (v)
.After a moment's thought, we see that, letting u = ju′,

∏

v∈S

P (|v|−1)(T = fv)
∏

v∈f ,v⊢u,v 6=u

µ̂|v|−1(cf (v))

cf (v)
= P̂ (0),|u|−1((T, V ) = (fj , u

′)).On the other hand, as one 
an 
he
k from the fa
t that m0m1 = 1,
∏

v∈f ,v⊢u,v 6=u

m|v|−1 =
1 + m|u|

1 + m1and we �nally re
ognize
P (0)

r (F = [f , u, t]) =
1 + m|u|

1 + m1
P̂ (0),|u|−1((T, V ) = (fj, u

′))

×




∏

l 6=j,1≤l≤r

P (0)(T = fl)


P (|u|−1)(T = t)

=
1 + mh+1

1 + m1
Ê(0),j,h[1{u,f}(V, F )]E(h)[1{t}(T )],where h = |u| − 1, whi
h is (35). �The �rst 
orollary we infer from this is a 
ontrol on the maximum vertex degree in a two-typeGW forest.



4 CONVERGENCE OF THE HEIGHT PROCESS 29Lemma 16 Assume that the pair (µ0, µ1) is non-degenerate, 
riti
al and has some exponentialmoments. Then for every η > 0 there exists ε > 0 su
h that for n large enough, and i, j ∈ {0, 1},
P (i)
∞

(
max

u�u(j)(n)
cF (u) ≥ nη

)
≤ exp(−nε). (36)Proof. Let η > 0. Then by using Lemma 14, the left hand side of (36) is equal to

P (i)
∞

(
max

u�u(j)(n)
cF (u) ≥ nη, max

u�u(j)(n)
|u| ≤ n1/2+η,ΥF (u(j)(n)) ≤ n1/2+η

)
+ R(n)

≤ P
(i)

[n1/2+η ]

(
max

|u|≤n1/2+η
cF (u) ≥ nη

)
+ R(n), (37)where R(n) ≤ exp(−nε) for some ε > 0 and n large enough. But then,

P
(i)

[n1/2+η ]

(
max

|u|≤n1/2+η
cF (u) ≥ nη

)
≤ E

(i)

[n1/2+η]

(
∑

u∈F

1{|u|≤n1/2+η}1{cF (u)≥nη}

)
,and applying Lemma 15 to G1(u, f) = 1{|u|≤n1/2+η} and G2(t) = 1{ct(∅)≥nη}, this is equal to

1

1 + mi+1

[n1/2+η ]∑

j=1

[n1/2+η]∑

h=0

(1 + mh+i+1)µh+i([n
η,∞))

≤ Cn1+2η (µ0([n
η,∞)) ∨ µ1([n

η,∞))) , (38)for some C > 0. But sin
e µ0, µ1 have some exponential moments, it holds that µi([n
η,∞)) ≤

exp(−anη), for some a > 0, and n large enough. Combined with (38) and (37), this yields (36). �4.4 An estimate for the size of GW treesIn order to pass from statements on forests to statements on 
onditioned trees, we need to estimatethe number of verti
es of either type in two-type GW trees.Lemma 17 Let (µ0, µ1) be a 
riti
al non-degenerate o�spring distribution, and suppose that µ0 and
µ1 have �nite varian
es. Then for i, j ∈ {0, 1}, there exists a �nite 
onstant Cij > 0 su
h that

n3/2P (i)(#T (j) = n) −→ Cij,where it is understood that n goes to in�nity along values for whi
h the quantity on the left-handside is stri
tly positive.Proof. Suppose i = j = 0. Then P (0)(#T (0) = n) = P (0)(#Γ(T ) = n), where Γ denotes themapping that skips odd generations, as usual, so Γ(T ) under P (0) is a (monotype) GW tree whoseo�spring distribution µ has generating fun
tion Gµ = Gµ0 ◦ Gµ1 It results that µ is 
riti
al, non-degenerate, and has �nite varian
e (by di�erentiating twi
e Gµ). The 
on
lusion follows from theOtter-Dwass formula and the lo
al limit theorem that we used in the proof of Lemma 14: we have
P (0)(#T (0) = n) = n−1P̃ (Wn = −1) ∼ C00n

−3/2 where W under P̃ is a random walk with stepdistribution µ(· + 1). The 
ase i = j = 1 is similar.



4 CONVERGENCE OF THE HEIGHT PROCESS 30It remains to deal with the 
ase i = 0, j = 1. In that 
ase, we have
P (0)(#T (1) = n) =

∑

r≥1

P (0)(cT (∅) = r)P (1)(#T (1) = n|cT (∅) = r)

=
∑

r≥1

P (0)(cT (∅) = r)P (1)
r (#F (1) = n),where P

(1)
r is the law of a two-type forest with `bla
k' roots and r tree 
omponents. Using again themap Γ on all the tree 
omponents, we see that this probability is the same as the probability that amonotype GW forest with r tree 
omponents has n verti
es, where the o�spring distribution µ′ hasgenerating fun
tion Gµ1 ◦Gµ0 . The Otter-Dwass formula shows that this is equal to rn−1P̃ (W ′

n =

−r), where W ′ under P̃ is a random walk with step distribution µ′ (whi
h has �nite varian
e).Hen
e,
n3/2P (0)(#T (1) = n) =

∑

r≥1

rµ0(r)n1/2P̃ (W ′
n = −r).To 
on
lude, noti
e that∑r rµ0(r) = m0, and that the lo
al limit theorem of [11, Theorem XV.5.3℄shows that n1/2P̃ (W ′

n = −r) 
onverges to a limit C > 0 (a multiple of a Gaussian density evaluatedat 0), while remaining uniformly bounded as r varies. By the dominated 
onvergen
e theorem, itresults that n3/2P (0)(#T (1) = n) 
onverges to Cm0 = C01. �This estimate allows to use a 
onditioning argument similar to that used in [17℄, whi
h will beillustrated in the proof of the next lemma. This idea is the following: if An is a set of trees su
hthat P (i)(An) ≤ exp(−nε) for large n, and some ε > 0, then
P (i)(An|#T (j) = n) =

P
(i)
∞ (F1 ∈ An,#F

(j)
1 = n)

P
(i)
∞ (#F

(j)
1 = n)

,whi
h by Lemma 17 is less than exp(−nε/2) for all n large. Thus, we 
an obtain a similar exponential
ontrol of the event An under the law P (i)(·|#T (j) = n).4.5 The `
onvergen
e of types' lemmaThe goal of this se
tion is to give the asymptoti
 repartition of verti
es of either 
olor in largetwo-type GW forests. This is known as the `
onvergen
e of types' theorem in the literature onmultitype GW pro
esses, and we propose a new approa
h to it.For t ∈ T0 ⊔ T1, let
G

(i)
t (n) = #

{
u ∈ t : u ≺ u(i)(n)

}
, 0 ≤ n ≤ #t(i) − 1.Noti
e that u(1)(n) is not 
ounted in the set. We also let by 
onvention G

(i)
t (#t(i)) = #t− 1. Thede�nition of G

(i)
f

(k) is similar for a forest f ∈ F0 ⊔ F1.Lemma 18 Assume that (µ0, µ1) are non-degenerate 
riti
al o�spring distribution, that admitssome exponential moments. Then, for any γ > 0 there exists ε > 0 su
h that for any i, j ∈ {0, 1},for every n large enough,
P (i)
∞

(
sup

0≤k≤n

∣∣∣G(j)
F (k) − (1 + mj)k

∣∣∣ > n1/2+γ

)
≤ exp(−nε) , (39)



4 CONVERGENCE OF THE HEIGHT PROCESS 31and similarly, if besides c ∈ {0, 1}, for n large enough,
P (i)

(
sup

0≤k≤#T (j)

∣∣∣G(j)
T (k) − (1 + mj)k

∣∣∣ > n1/2+γ

∣∣∣∣#T (c) = n

)
≤ exp(−nε) (40)where we take the 
onvention that the 
onditional probability on the left-hand side is 0 if P (i)(#T (c) =

n) = 0.Proof. Let f ∈ F0. Noti
e that
G

(1)
f (m) = Υf (u

(1)(m)) +

m−1∑

k=0

(1 + cf (u
(1)(k)))1{u(1)(k)0u(1)(m)} (41)

+

m−1∑

k=1

(1 + c′f (u
(1)(k)))1{u(1)(k)⊢u(1)(m)} ,where, for u ⊢ u(1)(m) in f (1),

c′f (u) = #{v : ¬v = u, v ≺ u(1)(m)}.Indeed, in (41), are 
ounted the number of (type 0) roots of the forest f before attaining u(1)(m),and the terms (1+ cf (u
(1)(k))) 
ome from 
ounting verti
es of f by groups of parents of type 1, andtheir 
hildren of type 0. One should be 
areful, however, that if the parent of a group is an an
estorof u(1)(m), then its 
hildren that appear after u(1)(m) in depth-�rst order should not be 
ounted,hen
e the terms c′f . This shows that

max
0≤k≤n

∣∣∣∣∣G
(1)
f (k) −

k∑

l=1

(1 + cf (u
(1)(l)))

∣∣∣∣∣ ≤ Υf (u
(1)(n)) + max

0≤k≤n

k∑

l=0

(1 + cf (u
(1)(l)))1{u(1)(l)⊢u(1)(k)}.Moreover, we 
laim the variables cF (u(1)(n)), n ≥ 0 under P

(0)
∞ are i.i.d. with law µ1. We brie�ysket
h the argument: let Rn be the ve
tor of Z

N
+ su
h that Rn(k) is the number of younger brothersof the an
estor of u(n) with height k ≥ 1, i.e. those brothers whi
h have not yet been visited at step

n of the depth-�rst exploration (Rn(k) = 0 for k > |u(n)|). Then, under P
(0)
∞ , ((Rn, |u(n)|), n ≥ 0)is a Markov 
hain, the dis
rete analog of the exploration pro
ess of [10℄. Its step transitions aregiven as follows: 
onditionally on (Rn, |u(n)|) = ((r1, . . . , rh, 0, . . .), h), (Rn+1, |u(n + 1)|) is equalto ((r1, . . . , rh, c − 1, 0, . . .), h + 1) with probability µh(c) for c ≥ 1, and is equal to ((r1, . . . , rk −

1, 0, . . .), k) with probability µh(0), where k = sup{l ≥ 1 : rl > 0} (and ((0, . . .), 0) if Rn = 0).One sees that the variables cF (u(1)(n)), n ≥ 0 
an be re
overed from this pro
ess by introdu
ingthe su

essive times where |u(n)| is odd whi
h are stopping times, and an appli
ation of the strongMarkov property yields the result.Therefore,
P (0)
∞

(
max

0≤k≤n

∣∣∣∣∣

k∑

l=1

(1 + cF (u(1)(l))) − (1 + m1)k

∣∣∣∣∣ ≥ n1/2+η

)
≤ exp(−nε),for some ε > 0 and all n large enough, where we have used a standard moderate deviation inequalityfor i.i.d. random variables that admit some exponential moments (see [20, Theorem 2.6℄).



4 CONVERGENCE OF THE HEIGHT PROCESS 32Therefore, by further using Lemmas 14 and 16, if we let An = {max0≤k≤n |G(1)
F (k)−(1+m1)k| ≥

n1/2+γ}, and Bn = {max0≤k≤n |
∑k

l=0(1 + cF (u(1)(l))) − (1 + m1)k| ≤ n1/2+η}, it holds that
P (0)
∞ (An) = R(n)

+ P (0)
∞

(
An, Bn, max

u�u(1)(n)
|u| ≤ n1/2+η ,ΥF (u(1)(n)) ≤ n1/2+η, max

u�u(1)(n)
cF (u) < nη

)
,where R(n) ≤ exp(−nε) for some ε > 0 and n large enough. But on the event that maxu�u(1)(n) |u| ≤

n1/2+η and maxu�u(1)(n) cF (u) < nη we have for n large,
max

0≤k≤n

k∑

l=0

(1 + cF (u(1)(l)))1{u(1)(l)⊢u(1)(k)} ≤ n1/2+η(1 + nη) ≤ n1/2+3η.If we 
hoose 3η < γ, we �nally obtain that for n large, An is disjoint from the interse
tion
Bn ∩

{
max

u�u(1)(n)
|u| ≤ n1/2+η

}
∩
{

ΥF (u(1)(n)) ≤ n1/2+η
}
∩
{

max
u�u(1)(n)

cF (u) < nη

}
,so that for n large, P

(0)
∞ (An) = R(n) ≤ exp(−nε).The 
ase i = j = 0 is similar but easier, as the term Υf (u

(1)(n)) of (41) does not appear anymore.Details are left to the reader.We now pass to the 
onditioned statements. We apply the 
onditioning argument mentioned inSe
t. 4.4. We �rst treat the 
ase c = j = 0. Using Lemma 17, for some 
onstant C > 0

P (i)
∞

(
sup

0≤k≤#F (0)

∣∣∣G(0)
F (k) − (1 + m0)k

∣∣∣ > n1/2+γ

∣∣∣∣#F
(0)
1 = n

)

=
P

(i)
∞

(
sup0≤k≤n

∣∣∣G(0)
F (k) − (1 + m0)k

∣∣∣ > n1/2+γ ,#F
(0)
1 = n

)

P (i)(#T (0) = n)

≤ Cn3/2P (i)
∞

(
sup

0≤k≤n

∣∣∣G(0)
F (k) − (1 + m0)k

∣∣∣ > n1/2+γ

)
≤ exp(−nε) ,for some ε > 0 and all n large. Noti
e the little artifa
t here: rather than 
onsidering a single tree,we have 
onsidered a forest whose �rst 
omponent is 
onditioned. This yields the wanted result(40) for j = c = 0, by restri
ting the sup to 0 ≤ k ≤ #F (0) − 1, but it also gives us a little more:namely that P (i)(|G(0)

F (#F
(0)
1 ) − (1 + m0)#F

(0)
1 | ≥ n1/2+γ |#F

(0)
1 = n) ≤ e−nε for large n. Sin
e

G
(0)
F (#F

(0)
1 − 1) ≤ #F1 ≤ G

(0)
F (#F

(0)
1 ), this shows that P (i)(|#T − (1 + m0)n| ≥ n1/2+γ |#T (0) =

n) ≤ e−nε for large n. Sin
e #T (0) + #T (1) = #T ,
P (i)(|#T (1) − m0n| ≥ n1/2+γ |#T (0) = n) ≤ e−nε (42)for large n. Thanks to this 
ontrol on the number of verti
es of type 1, we obtain for large n,

P (i)

(
max

0≤k≤#T (1)

∣∣∣G(1)
T (k) − (1 + m1)k

∣∣∣ > n1/2+γ

∣∣∣∣#T (0) = n

)

≤
P

(i)
∞

(
max0≤k≤(m0+ε′)n

∣∣∣G(1)
F (k) − (1 + m1)k

∣∣∣ > n1/2+γ
)

+ exp(−nε)

P (i)(#T (0) = n)
,



4 CONVERGENCE OF THE HEIGHT PROCESS 33where 0 < ε′, and the exp(−nε) term bounds the probability that #T (1) is larger than n(m0 + ε′).This expression is less than exp(−nε′′) for some ε′′ and large n be
ause of the un
onditioned 
ontrol(39) on G
(1)
F (noti
e that the maximum is taken over 1 ≤ k ≤ Dn for some 
onstant D > 0 ratherthan 1, but this does not matter up to a 
hange in the 
onstant γ). The remaining 
ases for j, c aresymmetri
. �Proof of Lemma 12. >From Lemma 18, we obtain that (G

(j)
T ([#T (j)t])/#T (j), 0 < t ≤ 1)
onverges in probability to the fun
tion ((1 + mj)t, 0 ≤ t ≤ 1) under P (i)(·|#T (c) = n), for theuniform norm. In fa
t, it holds that (G

(j)
T ([#T (j)t])/#T, 0 < t ≤ 1) 
onverges in probability tothe identity fun
tion, be
ause #T (j)/#T 
onverges to (1 + mj)

−1 under P (i)(·|#T (c) = n) as wasshown in the proof of the previous lemma. On the other hand, the pro
ess J
(c)
T of Lemma 12 is theright-
ontinuous inverse fun
tion of (G

(c)
T ([#T (c)t])/#T, 0 < t ≤ 1) (this motivates our 
onvention

G
(c)
T (#T (c)) = #T − 1), so it also 
onverges in probability to the identity fun
tion for the uniformnorm, as 
laimed. �4.6 Convergen
e of the height pro
essThe last ingredient that we need is the fa
t that the height pro
ess of a monotype GW forest with

r 
omponents, 
onditioned by the number of its verti
es, 
onverges to a s
aled Brownian ex
ursion.The 
ase r = 1 is known (see Aldous [2℄, Mar
kert & Mokkadem [17℄, and Duquesne [9℄). Theresult for r ≥ 1 is suggested in [21, Chapter 5℄. Re
all that when µ0 = µ1 = µ, the index i inthe probability P (i) be
omes irrelevant, so we let Pr be the law of a (monotype) GW forest witho�spring distribution µ and r tree 
omponents.Theorem 19 Let µ be a 
riti
al non-degenerate o�spring distribution, admitting small exponentialmoments, and let σµ be its varian
e. Then for any r > 0, the pro
ess (n−1/2HF
(n−1)t, 0 ≤ t ≤ 1)under Pr(·|#F = n) 
onverges in distribution for the uniform topology to 2σ−1

µ e under N
(1).Proof. We �rst note that under P (·|#T = n + 1, cT (∅) = r), the forest 1T1 ∪ . . . ∪ rTr has samedistribution as F under Pr(·|#F = n). Thus, under Pr(·|#F = n), the height pro
ess of F has samelaw as the pro
ess obtained by 
on
atenation of HT1 , . . . ,HTr under P (·|#T = n+1, cT (∅) = r), sothe res
aled pro
ess n−1/2HF

(n−1)· under Pr(·|#F = n) has same law as (n−1/2HT
((n−1)t+1)/n −1, 0 ≤

t ≤ 1) under P (·|#T = n + 1, cT (∅) = r).Let n1, . . . , nr be positive integers with sum n, and let t1, . . . , tr ∈ T be su
h that #tj = nj.Using the bran
hing properties of GW trees, we have
P ((T1, . . . , Tr) = (t1, . . . , tr) | cT (∅) = r,#Tj = nj, 1 ≤ j ≤ r) =

r∏

i=1

P (T = ti|#T = ni) , (43)so that given #Ti = ni, 1 ≤ i ≤ r, under P (·|#T = n + 1, cT (∅) = r) the Ti's are independent GWtrees, respe
tively 
onditioned to have size ni. We next 
laim that for every ε > 0, and every r su
hthat µ(r) > 0,
P

(
max

i≤cT (∅)
#Ti/n ≤ 1 − ε

∣∣∣∣#T = n + 1, cT (∅) = r

)
→

n→∞
0 , (44)whi
h will be proved later on.



4 CONVERGENCE OF THE HEIGHT PROCESS 34Let T⋆ be the largest tree among the Ti's under P (·|#T = n + 1, cT (∅) = r) (or the �rst largesttree, if several trees have the maximal size). A

ording to (43), (44), and by the known r = 1 
aseof the theorem, (n−1/2HT⋆

(#T⋆−1)t, 0 ≤ t ≤ 1) 
onverges in distribution to 2σ−1
µ e under N

(1). Sin
ethe number of individuals of the r− 1 other subtrees is o(n) in probability, the maximal height of avertex of these trees is o(n1/2) in probability (e.g. by Lemma 13), from whi
h it easily follows that
n−1/2‖HT⋆

(#T⋆−1)· − HT
n·‖∞ goes to 0 in probability under P (·|#T = n + 1, cT (∅) = r), whi
h yieldsthe wanted result.To argue (44), we �rst observe that the same statement holds without 
onditioning on cT (∅).Indeed, the known r = 1 
ase of the theorem shows that under P (·|#T = n+1), (n−1/2HT

nt, 0 ≤ t ≤
1) 
onverges in distribution for the uniform topology to 2σ−1

µ e. Re
all that the Brownian ex
ursionis a.s. stri
tly positive on (0, 1), and let (ti, 1 ≤ i ≤ cT (∅)) be the ordered list of integers su
h that
HT

ti = 1 (and tcT (∅)+1 = #T − 1). Then the lengths of the intervals ([ti, ti+1], 1 ≤ i ≤ cT (∅))),is exa
tly (#Ti, 1 ≤ i ≤ cT (∅)). Now, if fn is a sequen
e of 
ontinuous fun
tions 
onverging forthe uniform topology to f whi
h is positive on (0, 1), then for any ǫ > 0, for n large enough, fnis positive on (ǫ, 1 − ǫ), and it follows that P (∃i : ti/n ∈ (ε, 1 − ε)|#T = n + 1) → 0, whi
h isequivalent to the wanted property (observe t1/n → 0 while tcT (∅)+1/n = 1).On the other hand, for �xed r ∈ N, P (cT (∅) = r|#T = n + 1) = µrPr(#F = n)/P (#T =
n + 1) → rµr as n → ∞, by the Otter-Dwass formula and the lo
al limit theorem, as in Lemma 17.Sin
e∑r rµr = 1, the law of cT (∅) under P (.|#T = n+1) 
onverges weakly. Equation (44) is nowan elementary 
onsequen
e of this and the previous paragraph. �We are now ready to prove the �rst half of Theorem 11, whi
h we state as:Proposition 20 Let (µ0, µ1) be non-degenerate, 
riti
al and admit some exponential moments.Then the pro
ess (n−1/2HT

(#T−1)t, 0 ≤ t ≤ 1) under P (i)(·|#T (j) = n) 
onverges in distribution tothe pro
ess 2σ−1
√

1 + mje under N
(1).Proof. Suppose �rst that i = j = 0 and re
all the de�nition of the mapping Γt, for t ∈ T0. Under

P (0), we know that Γ(T ) is a monotype GW tree with o�spring distribution µ and Gµ = Gµ0 ◦Gµ1 .Moreover, under P (0)(·|#T (0) = n), Γ(T ) has the law Pµ(·|#T = n) of a 
onditioned monotypeGW tree, be
ause ΓT maps ea
h vertex of T (0) to a vertex of Γ(T ) in a one-to-one way.On the other hand, the formula Gµ = Gµ0 ◦ Gµ1 and the fa
t that µ0 and µ1 admit someexponential moments entail that µ itself admits exponential moments. Therefore Theorem 19 appliesand it holds that under P (0)(·|#T (0) = n), (n−1/2H
Γ(T )
(n−1)t, 0 ≤ t ≤ 1) 
onverges in distribution to

2σ−1
µ e under N

(1). We 
an 
ompute σµ by di�erentiating twi
e Gµ, and we �nd
σ2

µ = m0σ
2
1 + m2

1σ
2
0. (45)Next, for every t ∈ T0, it is an elementary exer
ise to 
he
k that

∣∣∣∣H
t
k − 2H

Γ(t)

J
(0)
t

(k)−1

∣∣∣∣ ≤ 2

∣∣∣∣H
Γ(t)

J
(0)
t

(k)−1
− H

Γ(t)

J
(0)
t

(k)

∣∣∣∣+ 1 (46)for every 0 ≤ k ≤ #t − 1, with the 
onvention that H
Γ(t)

#t(0)
= 0.Lemma 12 states that the pro
ess J

(0)
T = (J

(0)
T ([(#T −1)t])/#T (0), 0 ≤ t ≤ 1) 
onverges in prob-ability to the identity (t, 0 ≤ t ≤ 1). This 
onvergen
e holds jointly with that of (n1/2H

Γ(T )
(n−1)t, 0 ≤
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t ≤ 1) to a res
aled Brownian ex
ursion. Skorokhod's representation theorem ensures that thereexists a probability spa
e on whi
h random pro
esses (Hn, Jn) 
onverge a.s. to (B, (t, 0 ≤ t ≤ 1))for the uniform norm, where Hn, Jn have same law as

(n−1/2H
Γ(T )

(#T (0)−1)t
, 0 ≤ t ≤ 1) , J

(0)
Tunder P (0)(·|#T (0) = n) , and B has same law as 2σ−1

µ e under N
(1). Then, the 
omposed fun
tion

(Hn
(nJn(t)−1)/(n−1), 0 ≤ t ≤ 1) 
onverges a.s. uniformly to B, whi
h says that n−1/2H

Γ(T )

(nJ
(0)
T −1)

under
P (0)(·|#T (0) = n) 
onverges to 2e/σµ under N

(1). Also, it holds that sup0≤t≤1 |Hn
(nJn(t)−1)/(n−1) −

Hn
nJn(t)/(n−1)| 
onverges to 0 a.s.. This, paired with Equation (46), implies that for every ε > 0,

P (0)

(
sup

0≤t≤1

1√
n

∣∣∣∣H
T
(#T−1)t − 2H

Γ(T )

nJ
(0)
T (t)−1

∣∣∣∣ > ε

∣∣∣∣#T (0) = n

)
−→
n→∞

0.Finally, this entails that (n−1/2HT
(#T−1)t, 0 ≤ t ≤ 1) 
onverges to 4σ−1

µ e under N
(1). The resultfollows from the fa
t that 4σ−1

µ = 2σ−1
√

1 + m0, as is easily 
he
ked from (17) and (45).We next treat the 
ase where i = 0, j = 1. We apply the transformations π,Γ′ of Lemma 14,that skips the �rst generation, and then squeezes odd generations. Re
all that π,Γ′ were de�nedon forests, and that they take values in the set of forests (even if the initial forest has only one
omponent). Noti
e that if t ∈ T0, then 1t = {1u : u ∈ t} ∈ F0. Under P (0), the forest π(1T ) is aGW forest with a random number of 
omponents, whi
h is given by cT (∅) and is independent of the
omponents of π(1T ), and it holds that the law of π(1T ) under P (0)(·|#T (1) = n) is the probabilitymeasure dµ0(r)P
(1)
r (df) on F0, 
onditioned on the event #F (1) = n. Then, Γ′(1T ) under this lawis a monotype GW forest with law dµ0(r)Pr(df) given #F = n, where Pr is the law of a GW forestwith r trees and o�spring distribution µ′ whose generating fun
tion is Gµ1 ◦ Gµ0 .Noti
e that under P (0)(·|#T (1) = n, cT (∅) = r), the forest π(1T ) has law P

(0)
r (·|#F (1) = n).Therefore, under P (0)(·|cT (∅) = r,#T (1) = n), we obtain that Γ′(1T ) has law Pr. By Theorem19, under this law, the pro
ess n−1/2H

Γ′(1T )
(n−1)· 
onverges to a Brownian ex
ursion s
aled by 2/σµ′ =√

1 + m1/σ. One 
he
ks that a 
ompanion formula to (46) holds, namely that
∣∣∣∣H

t
k − 2H

Γ′(t)

J
(1)
t

(k)−1

∣∣∣∣ ≤ 2

∣∣∣∣H
Γ′(1t)

J
(1)
t

(k)−1
− H

Γ′(1t)

J
(1)
t

(k)

∣∣∣∣+ 2 , (47)for 0 ≤ k ≤ #t − 1, with the 
onvention that H
Γ′(1t)
−1 = H

Γ′(1t)

#t(1)
= 0. The same arguments as inthe 
ase i = j = 0 entail that (n−1/2HF

(#F−1)t, 0 ≤ t ≤ 1) under P
(0)
r (·|#F (1) = n) 
onverges to aBrownian ex
ursion s
aled by 2

√
1 + m1/σ.To 
omplete the proof, sin
e we are dealing with a random number of 
omponents, whose lawdepends on n, i.e. a mixture in r of the laws P (0)(·|cT (∅) = r,#T (1) = n), it su�
es to use that

cT (∅) 
onverges in distribution under P (0)(·|#T (1) = n), as seen in the proof of Theorem 19. �A remarkable di�eren
e between Proposition 20 and Theorem 19 is that in Proposition 20, we
ondition only on the total number of a portion of the verti
es of T , instead of the total size ofthe tree. We have seen that this is the right 
onditioning to do when 
onsidering random maps
onditioned on the number of fa
es, or verti
es, but one may wonder whether the result is still trueunder the probability laws P (i)(·|#T = n), with di�erent s
aling 
onstants (this would allow to
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onsider random maps 
onditioned by the number of edges). We expe
t this to be true, but themethods that are used in the present work are powerless to address this issue.Let us end this se
tion with a result on the in
rements of the height pro
esses .Lemma 21 Let µ be a (monotype) non-degenerate 
riti
al o�spring distribution. Then for every�xed r ≥ 1, for every γ > 0, under Pr(·|#F = n), the quantity n−γ sup0≤k≤#F−1 |HF
k − HF

k+1|
onverges to 0 in probability, with the 
onvention that HF
#F = 0.Proof. Using the same argument as in the proof of Theorem 19, we may prove the statement under

P (·|#T = n), that is for a single GW tree 
onditioned to have n verti
es. The positive jumps ofthe height pro
ess of any tree are +1, and then, only the negative jumps have to be 
ontrolled. Forelementary symmetry reasons, the largest negative jump in HT , plus 1, has the same law as thelargest number of 
onse
utive steps +1 in HT . But, in a non-
onditioned GW tree, a run of steps+1 in the height pro
ess has a geometri
 distribution: the probability that a run has length k is
µ0(1 − µ0)

k−1, and the di�erent runs are independent.Denote by G1, G2, . . . , GK the sizes of su

essive runs of +1 in the height pro
ess, where Kis random and is bounded above by n under P (·|#T = n). Let γ > 0 be �xed. Thanks to the
onditioning argument (the Otter-Dwass formula and the lo
al limit theorem), sin
e the fun
tionmax is non-de
reasing, we have
P

(
sup

0≤k≤#T−1
|HT

k − HT
k+1| ≥ nγ/2

∣∣∣∣#T = n

)
= O

(
n3/2P∞

(
sup

1≤k≤n
Gk

)
≥ nγ/2 + 1

)

= O(n5/2P∞(G1 ≥ nγ/2 + 1))and sin
e µ0 ∈ (0, 1), this is bounded by exp(−nǫ) for some ǫ > 0, for n large enough. �5 Convergen
e of the label pro
essThe proof of the 
onvergen
e of the se
ond 
omponents in Theorem 11 will be done by showingthat their �nite marginal distributions 
onverge, 
ombined by a tightness argument.5.1 Controlling the bran
hing in 
onditioned treesThe 
onvergen
e of �nite-marginal distributions �rst needs some improvements and variationsaround Lemma 16.Lemma 22 A 
onditioned version of Lemma 16 holds: for i, j ∈ {0, 1},
P (i)

(
max
u∈T

cT (u) ≥ nη
∣∣#T (j) = n

)
≤ exp(−nε). (48)Proof. We have

P (i)
∞

(
max

u�u(j)(n)
cF (u) ≥ nη

∣∣∣∣#F
(j)
1 = n

)
≤

P
(i)
∞

(
maxu�u(j)(n) cF (u) ≥ nη

)

P (i)(#T (j) = n)
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h is smaller than exp(−nε) for all large n, by Lemmas 16 and 17. Sin
e u � u(j)(n) for every
u ∈ F1 given {#F

(j)
1 = n}, this entails (48). �Let t ∈ Ti, u ∈ t, 0 ≤ h ≤ |u|, k ≥ 1, 1 ≤ l ≤ k. We de�ne

A
(j)
t (u, k, l, h) = #{v ⊢ u : ct(v) = k, u ∈ vltvl, v ∈ t(j), |v| > |u| − h}.the number of an
estors of u whi
h are at distan
e at most h from u, with type j, k 
hildren,and su
h that u is a des
endant of the l-th of these 
hildren. We let A

(j)
f (u, k, l, h) be the similarquantity for a forest f ∈ F0 ⊔F1 and u ∈ f . Note that if maxu cf (u) ≤ K then Af (u, k, l, h) = 0 forany k > K, any l, h and any u ∈ f .Lemma 23 Let (µ0, µ1) be a non-degenerate 
riti
al o�spring distribution admitting some expo-nential moments. For every γ > 0, M > 0, and i, j, c ∈ {0, 1}, there exists ε > 0 su
h that, for nlarge enough

P (i)


 sup

k≥1,1≤l≤k
sup

u∈T,nγ≤h≤|u|

∣∣∣A(j)
T (u, k, l, h) − µj(k)

2mj
h
∣∣∣

h1/2+γk−M
≥ 1

∣∣∣∣#T (c) = n


 ≤ exp(−nε).Proof. Let γ > 0, M > 0 be �xed, and 
hoose η < γ2/M . By Lemmas 22, 18 and the 
onditioningargument, we know that P (i)(maxu∈T cT (u) ≤ nη,#T ≤ Cn|#T (c) = n) ≥ 1 − exp(−nε) for some
onstants C, ε, and n large enough. Sin
e A

(j)
t (u, k +1, l, h) = 0 whenever maxu∈t ct(u) ≤ k, on theevent {maxu∈t ct(u) ≤ nη,#T ≤ Cn} we have

sup
k>nη,1≤j≤k

sup
u∈T,nγ≤h≤|u|

kMh−1/2−γ

∣∣∣∣A
(j)
T (u, k, l, h) − µj(k)

2mj
h

∣∣∣∣ ≤ sup
k≥nη

|u|1/2−γ µj(k)

2mj
kM .Sin
e µj has small exponential moments and |u| ≤ #T ≤ Cn, this is smaller than n1/4+γ when n islarge enough.We now estimate A

(j)
T (u, k, l, h) for k ≤ nη. We start with 
onsidering forests. Let k ≤ nη, and

1 ≤ l ≤ k be �xed, and C be the same 
onstant as above. By using Lemma 14,
P (i)
∞


 sup

u�u(j)(Cn),|u|≥h≥nγ

∣∣∣A(j)
T (u, k, l, h) − µj(k)h

2mj

∣∣∣
h1/2+γk−M

≥ 1


 (49)

≤ P
(i)

[n1/2+η ]


 sup

u�u(j)(Cn),nγ≤h≤|u|

∣∣∣A(j)
T (u, k, l, h) − µj(k)h

2mj

∣∣∣
h1/2+γk−M

≥ 1,Bn


+ exp(−nε)



5 CONVERGENCE OF THE LABEL PROCESS 38where Bn = {supu≺u(j)(Cn) |u| ≤ n1/2+η,ΥF (u(j)(Cn)) ≤ n1/2+η}. The probability on the right-hand side 
an be bounded as follows, using Lemma 15:
P

(i)

[n1/2+η ]


 sup

u�u(j)(Cn),nγ≤h≤|u|≤n1/2+η

∣∣∣A(j)
T (u, k, l, h) − µj(k)h

2mj

∣∣∣
h1/2+γk−M

≥ 1


 (50)

≤ E
(i)

[n1/2+η]



∑

u∈F

1 sup
nγ≤h≤|u|

∣∣∣A(j)
T (u, k, l, h) − µj(k)h

2mj

∣∣∣
h1/2+γk−M

≥ 1



1{

sup
u∈F (j) |u|≤n1/2+η

}




≤ (1 ∨ mi)n
1/2+η

[n1/2+η ]∑

h′=nγ

P̂ (i),h′


 sup

nγ≤h≤h′

∣∣∣A(j)
T (V, k, l, h) − µj(k)h

2mj

∣∣∣
h1/2+γk−M

≥ 1


 .Then, we argue that A

(j)
T (V, k, l, h) under P̂ (i),h′ is a Binomial random variable B(m, p) with pa-rameters p = µj(k)/mj and either m = [h/2 + 1] or m = [(h + 1)/2] depending on the parity of

i, j, h, h′. H÷�ding's inequality (33) entails that
P̂ (i),h′


 sup

nγ≤h≤h′

∣∣∣A(j)
T (V, k, l, h) − µj(k)h

2mj

∣∣∣
h1/2+γk−M

≥ 1




≤
∑

nγ≤h≤h′

P̂ (i),h′

(∣∣∣∣A
(j)
T (V, k, l, h) − µj(k)h

2mj

∣∣∣∣ ≥ k−Mh1/2+γ

)

≤ 2h′ max
nγ≤h≤h′

exp(−k−2Mh1+2γ/(2m)) ≤ 2h′ exp(−n−2Mη+2γ2
/2).Finally, the expression (50) is bounded by

Kn1/2+η

[n1/2+η ]∑

h′=nγ

h′ exp(−n−2Mη+2γ2
/2) + exp(−nε),for some K > 0 and large n, and this is ≤ exp(−nε′), for large n and some ε′ > 0.This entails that

P (i)
∞


 sup

k≤nγ ,1≤l≤k
sup

u≺u(j)([Cn]),|u|≥h≥nγ

∣∣∣A(j)
T (u, k, l, h) − µj(k)h

2mj

∣∣∣
h1/2+γk−M

≥ 1


 ≤ exp(−nε′′),for some ε′′ > 0 and n large. To obtain the 
onditioned statement, we apply our 
onditioningargument on
e again. By de�nition of C, P (i)(#T > Cn|#T (c) = n) ≤ exp(−nε) for large n. so

P (i)


 sup

k≤nη ,1≤l≤k
sup

u∈T,nγ≤h≤|u|

∣∣∣A(j)
T (u, k, l, h) − µj(k)

2mj
h
∣∣∣

k−Mh1/2+γ
≥ 1

∣∣∣∣#T (c) = n




≤ P (i)(T (c) = n)−1

×


P (i)

∞


 sup

k≤nη,1≤l≤k
sup

u≺u(j)([Cn]),nγ≤h≤|u|

∣∣∣A(j)
F (u, k, l, h) − µj(k)h

2mj

∣∣∣
k−Mh1/2+γ

≥ 1


+ exp(−nε)




≤ C ′n3/2(exp(−nε′′) + exp(−nε)) ,for some 
onstant C ′ > 0, whi
h yields the result. �



5 CONVERGENCE OF THE LABEL PROCESS 395.2 A bound on the Hölder norm of the height pro
essThe se
ond ingredient whi
h is required to prove Theorem 11 is the following result, showing thatthe α-Hölder norm of the height pro
ess under P (i)(·|#T (j) = n) is tight for any α < 1/2.We start by stating a monotype version of the result we need:Proposition 24 Let µ be a non-degenerate 
riti
al o�spring distribution whi
h admits some expo-nential moments. Let Pr be the law of a (monotype) GW forest with o�spring distribution µ and r
omponents. Then for every r ≥ 1, ε > 0 and α ∈ (0, 1/2), there exists C > 0 su
h that
sup
n∈N

Pr

(
sup

0≤s 6=t≤1

|HF
(n−1)s − HF

(n−1)t|√
n|s − t|α > C

∣∣∣∣#F = n

)
≤ ε. (51)Proof. We 
laim that it is su�
ient to prove the statement for r = 1, by using an argument similarto that of the proof of Theorem 19 for the more general r ≥ 1 
ase. Indeed, under Pr(·|#F = n),re
all that n−1/2HF

(n−1)· has same law as the 
on
atenation of the paths (n−1/2HTi

(n−1)t, 0 ≤ t ≤
(#Ti − 1)/n − 1), 1 ≤ i ≤ r under P (·|#T = n + 1, cT (∅) = r), under whi
h the trees Ti, 1 ≤ i ≤ rare mixtures of independent GW trees 
onditioned by their sizes, and hen
e have α-Hölder norm ≤ Cwith high probability by the r = 1 
ase. Now, it is elementary to 
he
k that if (#Ti)

−1/2HTi

(#Ti−1)·has α-Hölder norm ≤ C, then the same is true of (n−1/2HTi

(n−1)t, 0 ≤ t ≤ (#Ti−1)/(n−1)), be
ause
n ≥ #Ti, and the 
on
atenation of the paths still has α-Hölder norm ≤ 21−αC, hen
e giving theresult for r ≥ 1.Hen
e, we are down to show that for every ε > 0 and α ∈ (0, 1/2), there exists C > 0 su
h that

sup
n∈N

P

(
sup

0≤s 6=t≤1

|HT
(n−1)s − HT

(n−1)t|√
n|s − t|α > C

∣∣∣∣#T = n

)
≤ ε. (52)We de�ne the depth-�rst traversal, or 
ontour order of a tree t as a fun
tion:

Ft : {0, ..., 2#t − 2} → { verti
es of t },whi
h we regard as a walk around t, as follows: Ft(0) = ∅, and given Ft(i) = z, 
hoose, if possible,and a

ording to the depth-�rst order the smallest 
hild w of z whi
h has not already been visited,and set Ft(i + 1) = w. If not possible, let Ft(i + 1) be the father of z.For any 0 ≤ k ≤ 2#t − 2, set Ĥt(k) = |Ft(k)|. The 
ontour pro
ess (Ĥt
s , 0 ≤ s ≤ 2#t − 2)is then obtained by interpolating linearly the sequen
e (Ĥt(k)) between integer abs
issa. For anytree t ∈ T , Ht is a simple fun
tion of Ĥt: let mt(0) = 0, and for any i ≥ 1, mt(i) = min{j, j >

mt(i − 1), Ĥt(j) > Ĥt(j − 1)}, then Ht(k) = Ĥt(mt(k)). In fa
t, mt(k) = inf{j, Ft(j) = u(k)}.One may 
he
k indu
tively on k that,
mt(k) + Ht(k) = 2k for any k ≥ 0. (53)We will prove (52), using a similar property for the 
ontour pro
ess. The �rst arguments 
an befound in [13, Lemma 1℄. Gittenberger [12℄ proved (in a stronger form) that for all s, t, a > 0

P

(∣∣∣∣∣
ĤT

(2n−2)s − ĤT
(2n−2)t√

n

∣∣∣∣∣ ≥ a

∣∣∣∣#T = n

)
≤ C1|s − t|−1 exp

(
−C2a|s − t|−1/2

)
,
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h gives, for any p > 0, E(|n−1/2(ĤT
(2n−2)s−ĤT

(2n−2)t)|p |#T = n) ≤ C(p)|s−t|p/2−1. By applyingthe `uniform' version of Kolmogorov's 
riterion given in [23, Theorem 3.4.16℄ to this estimate forlarge enough p, this ensures that for every α < 1/2, the family (n−1/2ĤT
(2n−2)·) is uniformly Hölder
ontinuous under P (·|#T = n) with exponent α (we write α-UHC), i.e. for every ǫ > 0 there existsa �nite real number Cǫ su
h that, for every n,

P

(∣∣∣∣∣
ĤT

(2n−2)s − ĤT
(2n−2)t√

n

∣∣∣∣∣ ≤ Cǫ|t − s|α for all s, t ∈ [0, 1]

∣∣∣∣#T = n

)
≥ 1 − ǫ.On the other hand, by a slight adaptation of the se
ond proof of Lemma 1 in [13℄, we get that theProposition holds with the hypothesis α < 1/4 instead of α < 1/2. Indeed, the argument given in[13℄, whi
h deals with the 
ontour pro
ess, entirely rests on an exponential inequality linking thispro
ess to the so-
alled `depth-�rst walk', and a

ording to [17, Theorem 2℄, this inequality is alsosatis�ed for the height pro
ess instead of the 
ontour.We now argue that if (n−1/2ĤT

(2n−2)·) is β-UHC and (n−1/2HT
(n−1)·) is α-UHC for any β <

1/2, α < 1/4, then (n−1/2HT
(n−1)·) is α-UHC for any α < 1/2, whi
h will end the proof. Assumethat n−1/2|ĤT

(2n−2)s − ĤT
(2n−2)t| ≤ c1|t− s|1/2−a and n−1/2|HT

(n−1)s −HT
(n−1)t| ≤ c2|t− s|α−b, for any

s, t ∈ [0, 1], and for some α < 1/2 (this is true for α = 1/4, and any a, b > 0 with probability 
loseto 1, for some c1 and c2.) Now, let s and t be su
h that (n − 1)s and (n − 1)t are two di�erentintegers. We have
∣∣∣∣∣
HT

(n−1)s − HT
(n−1)t√

n

∣∣∣∣∣ =

∣∣∣∣∣
ĤT

mT ((n−1)s) − ĤT
mT ((n−1)t)√

n

∣∣∣∣∣

≤ c1

∣∣∣∣
mT ((n − 1)s) − mT ((n − 1)t)

2n − 2

∣∣∣∣
1/2−aBy (53), this is smaller than

c1

∣∣∣∣∣s − t +
HT

(n−1)t − HT
(n−1)s

2n − 2

∣∣∣∣∣

1/2−a

≤ c1

∣∣∣∣|s − t| + c2
|t − s|α−b

√
n

∣∣∣∣
1/2−a

≤ c1

∣∣∣|t − s| + c2|t − s|α−b+1/2
∣∣∣
1/2−asin
e n−1/2 ≤ |t − s|1/2. For s, t ∈ [0, 1], |t − s| ≤ |t − s|α−b+1/2, and then (n−1/2HT

(n−1)·) is
(α−b+1/2)(1/2−a)-UHC. Sin
e this holds for any a > 0 and b > 0, and sin
e φ : α 7→ (α+1/2)1/2is in
reasing and 
ontra
ting, (n−1/2HT

(n−1)·) is c-UHC for any c smaller than the �xed point of φwhi
h is 1/2. �Proposition 25 Let (µ0, µ1) be a 
riti
al non-degenerate o�spring distribution that admits someexponential moments. Let i, j ∈ {0, 1}. Then for every ε > 0, α ∈ (0, 1/2), there exists C > 0 with
sup
n∈N

P (i)

(
sup

0≤s 6=t≤1

|HT
(#T−1)s − HT

(#T−1)t|√
n|s − t|α > C

∣∣∣∣#T (j) = n

)
≤ ε.



5 CONVERGENCE OF THE LABEL PROCESS 41Proof. We prove this only for i = 0, j = 1, whi
h is the hardest 
ase of both. We �x α ∈ (0, 1/2).We assume that (#T − 1)s and (#T − 1)t are integer. Re
all the notation J
(1)
T (k), 0 ≤ k ≤ #T − 1,and extend this into a fun
tion (J

(1)
T (t) = J

(1)
T ([t]), 0 ≤ t ≤ #T − 1). We bound

∣∣∣∣∣
HT

(#T−1)s − HT
(#T−1)t√

n

∣∣∣∣∣ ≤

∣∣∣∣∣∣∣

HT
(#T−1)s − 2H

Γ′(1T )

J
(1)
T ((T−1)s)−1√

n

∣∣∣∣∣∣∣

+2

∣∣∣∣∣∣∣

H
Γ′(1T )

J
(1)
T ((#T−1)s)−1

− H
Γ′(1T )

J
(1)
T ((#T−1)t)−1√

n

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

HT
(#T−1)t − 2H

Γ′(1T )

J
(1)
T ((#T−1)t)−1√

n

∣∣∣∣∣∣∣
. (54)Re
all from the proof of Proposition 20 that the law of π(1T ) under P (0)(·|#T (1) = n) is a mixtureof the form dλn(r)P

(1)
r (dt|#F (1) = n), where the laws λn, n ≥ 1 are tight, and that Γ′(1T ) is amonotype GW forest with a λn-distributed number of tree 
omponents and 
onditioned to have nverti
es. Therefore, by Proposition 24, with probability > 1 − ε and for some C > 0, the middleterm of (54), is bounded by

C

∣∣∣∣∣
J

(1)
T ((#T − 1)s) − J

(1)
T ((#T − 1)t)

n − 1

∣∣∣∣∣

α

≤ C

∣∣∣∣
(#T − 1)s − (#T − 1)t

n − 1

∣∣∣∣
α

,sin
e J (1) is a 
ounting pro
ess. This is ≤ C ′|t − s|α with probability 1− 2ε for some C ′ > 0, validfor all n large (by Lemma 18).Next, using (47), the two other terms of (54) are bounded above by a 
onstant multiple of
n−α sup

0≤k≤#T−1
nα−1/2

∣∣∣HΓ′(1T )
k − H

Γ′(1T )
k+1

∣∣∣ ,with the 
onvention that the se
ond term in the absolute value is 0 if k = #T − 1. By Lemma 21,under P (0)(·|#T (1) = n), the quantity in the supremum 
onverges to 0 in probability. Thus, for every
n large, and s 6= t su
h that (#T − 1)s, (#T − 1)t are integers, we have under P (0)(·|#T (1) = n),�xing ε > 0, for all large n and with probability ≥ 1 − ε,

∣∣∣∣∣
HT

(#T−1)s − HT
(#T−1)t√

n

∣∣∣∣∣ ≤ n−α + C ′|s − t|α ≤ D−α(#T − 1)−α + C ′|s − t|α ≤ C ′′|s − t|α,where we have used that with high probability, #T ≤ Dn for some 
onstant D > 0, see the proofof Lemma 18, and the fa
t that (#T − 1)−1 ≤ |s − t| for our 
hoi
e of s, t. Finally, this showsthe result for all s, t in {k(#T − 1), k ∈ Z+} and large n, and the result follows from the followingelementary lemma, and then taking C ′′ even larger to �t to all n ≥ 1. The 
ase i = j, whi
h weleave to the reader, is similar but easier sin
e it makes use only of trees and the mapping Γ, ratherthan forests and the mapping Γ′. �Lemma 26 Let α ∈ (0, 1). If f(k/n), 0 ≤ k ≤ n satis�es |f(k/n) − f(k′/n)| ≤ C((k − k′)/n)α forevery 0 ≤ k, k′ ≤ n, then the linear interpolation (f(t), 0 ≤ t ≤ 1) satis�es |f(t)−f(s)| ≤ 3C|s− t|αfor every 0 ≤ s, t ≤ 1.
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essThe �rst step of the proof of Theorem 11 isProposition 27 Under the hypotheses of Theorem 11, for i, j ∈ {0, 1}, the sequen
e of laws of thepro
esses (n−1/4ST,L
(#T−1)s, s ≥ 0) under P

(i)(·|#T (j) = n) for n ≥ 1, is tight in C([0, 1]).Proof. Our proof follows 
losely the arguments of [18, 13℄. In the sequel, ε > 0 will be a generi
small number, whi
h may vary from a line another. Our goal is to show that there exists C1, β > 0su
h that for n large enough,
P

(i)


 sup

0≤s,t≤1

|ST,L
(#T−1)s − ST,L

(#T−1)t|
|t − s|β ≤ C1n

1/4

∣∣∣∣#T (j) = n


 ≥ 1 − ε. (55)Sin
e the moment 
ondition (20) is satis�ed, there are 
onstants η,C2,D > 0 su
h that Mk

0 ∨Mk
1 ≤

C2k
D for every k ≥ 1, where Mk

c = νk
c (|x|4+η). We �rst 
hoose α < 1/2 so that α(4 + η) > 2 and

M > D + 2. We know from Proposition 25 that there exists C3 > 0 su
h that
P

(i)

(
sup

0≤s,t≤1

|HT
(#T−1)s − HT

(#T−1)s|
n1/2|s − t|α ≤ C3

∣∣∣∣#T (j) = n

)
≥ 1 − ε, (56)for all n. Let Bn be the interse
tion of the 
orresponding event and of the events

{#T (j) = n} ,

{
max
u∈T

cT (u) ≤ nγ

}
, {#T ≤ C4n} ,and 


 max

k≥1,1≤l≤k
max
h≥nγ

max
c∈{0,1}

∣∣∣A(c)
T (u, k, l, h) − µc(k)h

2mc

∣∣∣
h1/2+γk−M

≤ 1



where γ is su
h that (D+3)γ < 1/2−α, and C4 > 0 is 
hosen so that the probability P (i)(Bn|#T (j) =

n) is ≥ 1 − ε for large n, whi
h is possible by Lemmas 16, 18 and Proposition 23.Noti
e that by de�nition of ST,L and Lemma 26, it su�
es to show (55) for all n large and
s 6= t su
h that (#T − 1)s and (#T − 1)t are integers, whi
h we suppose from now on. We let
m = (#T − 1)s,m′ = (#T − 1)t, and u = u(m + 1), u′ = u(m′ + 1).By de�nition, ST,L

m − ST,L
m′ = L(u) − L(u′). If we let Yv = L(v) − L(¬v), and if ǔ = ǔ(m,m′)denotes the most re
ent 
ommon an
estor to u and u′ (i.e. their longest 
ommon pre�x), we have
ST,L

m − ST,L
m′ =

∑

v⊢u,|v|>|ǔ|

Yv −
∑

v⊢u′,|v|>|ǔ|

Yv.It is then 
lassi
al that the number RT (m,m′) = |u| + |u′| − 2|ǔ(m,m′)| of terms involved in thesetwo sums, whi
h informally is the length of the path of edges going from u to u′ in T , is boundeda

ording to the formula
∣∣RT (m,m′) − |HT

m + HT
m′ − 2ȞT

m,m′ |
∣∣ ≤ 2, (57)where ȞT

m,m′ is the in�mum of HT between the points m and m′. Indeed, if u is an an
estor of
u′ or 
onversely, then this expression is exa
tly |HT

m − HT
m′ | = |u − u′|, and otherwise, assuming
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m < m′, ȞT

m,m′ is equal to the height of the �rst 
hild v of ǔ su
h that u′ ∈ vTv, hen
e is |ǔ| + 1.In parti
ular, on Bn, it holds that
RT (m,m′) ≤ C5

√
n|s − t|α (58)for some C5 > 0, for all s 6= t ∈ {k(#T − 1)−1, 0 ≤ k ≤ #T − 1}, and with probability ≥ 1 − ε.Re
all that under P

(i), given T , the in
rements of the label pro
ess Yu = L(v) − L(¬v), v ∈ T(with the 
onvention Y∅ = 0) are su
h that (Yv1, . . . , YvcT (v)), v ∈ T are independent with respe
tivelaws ν
cT (v)
|v|+i . By splitting the involved sums a

ording to the shape of T , we obtain, whenever

u = ǔl(m)w and u′ = ǔl(m′)w′ for l(m), l(m′) ∈ N and w,w′ ∈ U ,
ST,L

m − ST,L
m′ = (Yǔl(m) − Yǔl(m′)) (59)

+
∑

k≥1

∑

1≤l≤k

∑

c∈{0,1}

∑

v⊢u,v 6=u,v∈T (c)

Yvl1{|v|>|ǔ|,cT (v)=k,u∈vlTvl}

−
∑

k≥1

∑

1≤l≤k

∑

c∈{0,1}

∑

v⊢u′,v 6=u′,v∈T (c)

Yvl1{|v|>|ǔ|,cT (v)=k,u′∈vlTvl}Noti
e that the last sum of the se
ond line has A
(c)
T (u, k, l, h) terms (resp. A

(c)
T (u′, k, l, h′) in thethird line) where h = |u| − |ǔ| − 1 (resp. h′ = |u′| − |ǔ| − 1). Moreover, all the terms involved in thetwo last lines of (59) are independent and independent of the terms of the �rst line, with respe
tivelaws the l-th marginal of νk

c . The only two terms that bear some dependen
e are the ones displayedon the �rst line.We now use an inequality due to Rosenthal [20, Theorem 2.10℄, whi
h states that if X1, . . . ,Xnare independent and 
entered (but not ne
essarily identi
ally distributed) under some probabilitylaw P̃ , then there exist universal 
onstants C(p), p ≥ 2 su
h that
Ẽ[|X1 + . . . + Xn|p] ≤ C(p)np/2−1

n∑

k=1

Ẽ[|Xk|p]. (60)This gives, still denoting h = |u| − |ǔ| − 1, h′ = |u′| − |ǔ| − 1, and for p = 4 + η,
E

(i)
[∣∣∣ST,L

m − ST,L
m′

∣∣∣
p ∣∣T

]

≤ C(p)RT (m,m′)p/2−1 ×




E
(i)[|Yǔl(m) − Yǔl(m′)|p|T ]

+
∑

1≤k≤nγ

∑
1≤l≤k

∑
c∈{0,1} A

(c)
T (u, k, l, h)νk

c (|xl|p)
+
∑

1≤k≤nγ

∑
1≤j≤k

∑
c∈{0,1} A

(c)
T (u′, k, l, h′)νk

c (|xl|p)




≤ C(p)C2RT (m,m′)p/2−1 ×




2pcT (ǔ)D

+
∑

1≤k≤nγ kD
∑

1≤l≤k

∑
c∈{0,1} A

(c)
T (u, k, l, h)

+
∑

1≤k≤nγ kD
∑

1≤l≤k

∑
c∈{0,1} A

(c)
T (u′, k, l, h′)


 , (61)whi
h we want to bound on Bn. On the latter event, we have cT (ǔ)D ≤ nDγ , and by (58) it holds thatfor n large, and every s, t (satisfying the above 
onstraints) the quantity 2pC(p)C2RT (m,m′)p/2−1cT (ǔ)Dis bounded by

C6n
p/4−1/2+Dγ |s − t|αp/2−α ≤ C6n

p/4|s − t|αp/2nDγ−1/2|s − t|−α, (62)
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p/2−1
5 . On the event Bn, and by the assumption on s, t, |s − t| ≥ #T−1 ≥

(C2n)−1, so if we 
ombine this with the fa
t that Dγ− 1/2 < −α, we obtain that there exists ε > 0with nDγ−1/2|s − t|−α ≤ C
Dγ−1/2
2 n−ε. Sin
e this quantity 
onverges to 0 uniformly on s, t, thisshows that 2pC(p)C2RT (m,m′)p/2−1cT (ǔ)D is bounded by np/4|s − t|α for every s, t and n largeenough.We are now fa
ing several possibilities in handling the rest of (61). On the event that h ≤ nγ ,the term A(c)(u, k, l, h) is bounded by nγ , and therefore, on Bn,

C(p)C2RT (m,m′)p/2−1
∑

1≤k≤nγ

kD
∑

1≤l≤k

∑

c∈{0,1}

A
(c)
T (u, l, k, h)

≤ 2C(p)C2C
p/2−1
5 np/4−1/2|s − t|αp/2−αn(D+3)γ .This quantity is analogous to (62), and by our 
hoi
e of γ, it is bounded by np/4|s− t|αp/2 for large

n, by the same argument as above.Alternatively, on the event that h ≥ nγ and on Bn, we 
an bound A
(c)
T (u, k, l, h) above by thequantity hµc(k)/(2mc) + h1/2+γk−M . Sin
e by de�nition h ≤ RT (m,m′), sin
e µ0, µ1 have someexponential moments, and sin
e by our 
hoi
e of M the sequen
e kD−M+1, k ≥ 1 is summable, itfollows that there exists some 
onstant 0 < C7 < ∞ su
h that on Bn ∩ {h ≥ nγ},

∑

k≤nγ

kD
∑

1≤l≤k

∑

c∈{0,1}

A
(c)
T (u, l, k, h) ≤ C7RT (m,m′) + C7RT (m,m′)1/2+γ ≤ 2C7RT (m,m′),be
ause RT (m,m′) is an integer and γ < 1/2. Still on the event h ≥ nγ , it follows that the middleterm of (61) is bounded by

2C(p)C2C7RT (m,m′)p/2 ≤ 2C(p)C2C7C5n
p/4|s − t|αp/2.Putting things together, we obtain the existen
e of a 
onstant C8 > 0 su
h that for every large

n, the middle term of (61) is bounded by C8n
−p/4|s − t|αp/2 (on Bn, and whenever h ≥ nγ or

h ≤ nγ). For the same reason, the third term of (61) is bounded by the same quantity, and fromthe dis
ussion on the term involving cT (ǔ)D we �nally obtain that for some C9 > 0 and n large, forevery s, t ∈ {k(#T − 1), 0 ≤ k ≤ #T − 1},
E

(i)






∣∣∣ST,L
m − ST,L

m′

∣∣∣
n1/4




p ∣∣∣∣Bn


 ≤ C9|s − t|αp/2.By applying Lemma 26, and sin
e αp/2 > 1, we have obtained that there exists a �nite 
onstant

C10 > 0 and η′ > 0 su
h that for every 0 ≤ s, t ≤ 1 and n large enough,
E

(i)







∣∣∣ST,L
(#T−1)s − ST,L

(#T−1)t

∣∣∣
n1/4




4+η ∣∣∣∣Bn


 ≤ C10|s − t|1+η′

.Sin
e P (i)(Bn|#T (j) = n) → 1 as n → ∞, and by Kolmogorov's 
riterion [23, Theorem 3.4.16℄, thisis enough to 
on
lude that (55) holds with any 0 < β < η′/(4 + η). This ends the proof. �
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onvergen
eThe goal of this se
tion is to prove the followingProposition 28 Let (µ0, µ1) be non-degenerate 
riti
al and admitting some exponential moments.Consider non-degenerate spatial displa
ement laws νk
0 , νk

1 , k ≥ 1 that are 
entered, and suppose thatthe hypotheses of Theorem 11 hold. Then the 
onvergen
e of �nite-dimensional marginals holdsfor the label pro
ess, i.e. the se
ond 
omponent in Theorem 11, jointly with the 
onvergen
e indistribution of the height pro
ess.In fa
t, this statement is true under the slightly weaker hypothesis that the varian
e Σk
0 ∨Σk

1 ofthe spatial displa
ement is a O(kD) for some D > 0, and does not really require the full 4+η momenthypothesis of Theorem 11. However, this extra assumption is going to simplify the beginning ofthe proof, where we use the result of Proposition 27. Noti
e that the 
onstant Σ of Theorem 11is �nite be
ause of the hypothesis on the growth of the moments of order 4 + η implies that thegrowth of Σk
i is at most polynomial, and sin
e µ0, µ1 have some exponential moments, the sums∑

k≥1(Σ
k
i )

2µi(k) are �nite.The intuition for the proof of one-dimensional 
onvergen
e is the following. Given the heightpro
ess HT , if we take the path from the root to the vertex en
oded by a given time t, then thispath has length of about HT
(#T−1)t whi
h is of the order of h = Cn1/2Bt, where B is a Brownianex
ursion and C is a s
aling 
onstant. Among the verti
es of this an
estor line, we know fromLemma 23 that a proportion µj(k)/2mj are of type j, have k 
hildren, and have the property that

u is a des
endant of the l-th of these 
hildren; these will 
ontribute to a spa
ial displa
ement whosedistribution is the l-th marginal of νk
j . Sin
e the varian
e of this is (Σk,l

j )2, it has to be expe
ted thatthe total spatial displa
ement, on
e res
aled by n1/4 will be asymptoti
ally Gaussian with varian
e
Σ2CBt, where Σ is de�ned at (19).Proof of Proposition 28. We make a preliminary remark. Be
ause we already know that thelaws of (n−1/4ST,L

(#T−1)t, 0 ≤ t ≤ 1) under P (i)(·|#T (j) = n) form a tight family, the family of laws of
((n−1/2HT

(#T−1)t)0≤t≤1, (n
−1/4ST,L

(#T−1)t)0≤t≤1) under P (i)(·|#T (j) = n) is also tight. Hen
e, up toextra
ting a subsequen
e, we know that these two pro
esses jointly 
onverge to some limit, whose�rst 
omponent is a s
aled Brownian ex
ursion thanks to Proposition 20. To prove the proposition,it su�
es to show that the only possible limiting distribution is the (properly s
aled) head of theBrownian snake N
(1). So, we take su
h a subsequen
e in the �rst pla
e, assume 
onvergen
e indistribution to some pro
ess (B,S′), and our goal is to show that given B, S′ has the law des
ribedaround (4) up to s
aling 
onstants. Let 0 < t1 < t2 < . . . < tq < 1 be some �xed real numbers. Wewill prove that (n−1/2HT

(#T−1)t)0≤t≤1, (n
−1/4ST,L

[(#T−1)tr ])1≤r≤q) under P (i)(·|#T (j) = n) 
onvergesin distribution to the 
orresponding marginal of the head of Brownian snake, whi
h is su�
ient to
on
lude. Throughout the proof, we will assume q ≥ 2.Thanks to Skorokhod's representation theorem, we may assume that the 
onvergen
e of thepro
esses (n−1/2HT
(#T−1)t, 0 ≤ t ≤ 1) to a s
aled Brownian ex
ursion is almost-sure. That is,we 
an assume that we are given a sequen
e (Hn, n ≥ 1) of pro
esses on some probability spa
e

(Ω,F , P ), with same respe
tive laws as (n−1/2HT
(#T−1)t, 0 ≤ t ≤ 1) under P (i)(·|#T (j) = n), andwhi
h 
onverges a.s. for the supremum norm to a pro
ess (Bt, 0 ≤ t ≤ 1), whi
h has same law as

2σ−1
√

1 + mje under N
(1). For every n ≥ 1, the fun
tion Hn determines a unique random tree T nwhose height pro
ess is √nHn((#T n − 1)−1k), 0 ≤ k ≤ #T n − 1 (noti
e that #T n − 1 is the square



5 CONVERGENCE OF THE LABEL PROCESS 46of the slope of Hn at time 0+). By Lemma 23 and the Borel-Cantelli lemma, it holds that, a.s., forany γ > 0 and n large enough,
max

c∈{0,1}
sup

{k≥1,1≤k≤l}
sup

{u∈T n,nγ≤h≤|u|}

∣∣∣A(c)
T n(u, k, l, h) − µc(k)

2mc
h
∣∣∣

h1/2+γk−M
≤ 1 . (63)Next, the times t1, . . . , tq determine verti
es ur

n = u([(#T − 1)tr]), 1 ≤ r ≤ q in T n. We let ǔn(r, r′)be the most re
ent 
ommon an
estor to ur
n, ur′

n in T n. We re-index the set Vn = {ur
n, 1 ≤ r ≤

q, ǔn(r, r′), 1 ≤ r, r′ ≤ q} as {vw
n , w ∈ T̃ n}, where T̃ n ∈ T , and in su
h a way that the depth-�rstorder and genealogi
al stru
ture on T̃ n is 
ompatible with the depth-�rst order and genealogi
alstru
ture on Vn. Spe
i�
ally, we let v∅

n be the least element of Vn, whi
h is the most re
ent 
ommonan
estor to all of u1
n, . . . , uq

n, then re
ursively, vw1
n , vw2

n , . . . are the des
endants of vw
n in Vn, rankedin depth-�rst order, and su
h that no an
estor of vwl

n whi
h is younger than vw
n belongs to Vn.By 
onvention, we let v¬∅

n = ∅. Our aim is now to explain that the sequen
e (T̃n, n ≥ 1) isasymptoti
ally 
onstant a.s., and equal to some random tree, whi
h has n leaves and is binary, i.e.verti
es have either no 
hild or two 
hildren. Informally, this implies that for large enough n, the�geometry� of the list of random variables involved in the 
omputations of the labels of the verti
esin Vn is eventually �xed.We de�ne random times sw
n , sw, w ∈ T̃ n re
ursively as follows (these times will be de�ned onlyfor n large enough). Let

s∅

n = inf

{
t ∈ [t1, tq] : Hn

t = min
t1≤s≤tq

Hn
s

}
,and let s∅

n be the 
orresponding quantity with a sup in pla
e of the inf. Noti
e that, Hn
s∅
n

onvergesto mint1≤s≤tq Bs > 0 a.s. Sin
e lo
al minima of a Brownian ex
ursion are a.s. pairwise distin
t, itis then elementary to dedu
e that s∅

n , s∅
n → s∅ where by de�nition s∅ is the only time in [t1, tq]where B attains mint1≤s≤tq Bs. Moreover, a.s., t1 < . . . < tr < s∅ < tr+1 < . . . < tq for some

1 ≤ r ≤ q − 1, and for n large enough it also holds that t1 < . . . < tr < s∅
n ≤ s∅

n < tr+1 < . . . < tq.We let r = r1, q − r = r2, t11 = t1, . . . , t
1
r1

= tr and t21 = tr+1, . . . , t
2
r2

= tq.Then, given
sw
n , sw

n , sw, (tw1
1 , . . . , tw1

rw1
), (tw2

1 , . . . , tw2
rw2

),have been de�ned, where w is a word with letters in {1, 2}, we distinguish two 
ases. If rw1 > 1, let
sw1
n = inf

{
t ∈ [tw1

1 , tw1
rw1

] : Hn
t = min

tw1
1 ≤s≤tw1

rw1

Hn
s

}
,and let sw1

n be the 
orresponding quantity with a sup in pla
e of the inf. For the same reasonsas above it holds that sw1
n , sw1

n → sw1 where sw1 is the only time in [tw1
1 , tw1

rw1
] where B attains

mintw1
1 ≤s≤tw1

rw1
Bs. Moreover, a.s., tw1

1 < . . . < tw1
r < sw1 < tw1

r+1 < . . . < tw1
rw1

for some 1 ≤ r ≤
rw1 − 1, and for n large enough it also holds that tw1

1 < . . . < tw1
r < sw1

n ≤ sw1
n < tr+1 < . . . < tw1

rw1
.We let

rw11 = r , rw12 = rw1 − r , tw11
1 = tw1

1 , . . . , tw11
rw11

= tw1
r and tw12

1 = tw1
r+1, . . . , t

w12
rw12

= tw1
rw1

.De�nitions are similar for sw2
n , sw2

n , sw2, (tw21
1 , . . . , tw21

rw21
), (tw22

1 , . . . , tw22
rw22

) whenever rw2 > 1. In the
ase rw1 = 1, we simply let sw1
n = (#T n − 1)−1[(#T n − 1)tw1

1 ], and sw1 = tw1
1 , and similarly if

rw2 = 1.
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tion of this re
ursive 
onstru
tion, noti
e that the set of w ∈ U su
h that sw
n is de�nedis exa
tly T̃ n, whi
h is therefore independent of n (provided n is large enough), and equal to somebinary tree T̃ . Moreover, it holds that ||vw

n | −
√

nHn
sw
n
| ≤ 1 for every w ∈ T̃ , by the same argumentsas those leading to (57).Now, we reintrodu
e the labels in T n by assuming that (Ω,F , P ) also supports random vari-ables (Y n

vl , 1 ≤ l ≤ cT n(v)), v ∈ T n used as spatial displa
ements, that are, 
onditionally on T n,independent and independent of B with respe
tive laws ν
cTn(v)
i+|v| . We let Ln be the asso
iated labelon T n with Ln(∅) = 0, and we use a trun
ation pro
edure, that is we 
hoose C large and write(remembering (59))

Ln(u) = LC
n (u) + L̃C

n (u) , u ∈ T,where
LC

n (u) =
∑

v⊢u

Y n
v 1{|v|>0,cT (v)≤C},and L̃C

n (u) is the similar sum with cT (v) > C instead. Then, the random variables LC
n (vw

n ) −
LC

n (v¬w
n ), w ∈ T̃ 
an be written in the form

Y n
v¬w

n l(w)1{cTn (v¬w
n )≤C} +

∑

v⊢vw
n ,|v|>|v¬w

n |+1

Y n
v 1{cTn (v)≤C},whenever l(w) ∈ N is su
h that vw

n ∈ v¬w
n l(w)T n

v¬w
n l(w). Noti
e that given T n, all these terms areindependent as w ranges in T̃ , ex
ept maybe for the �rst term whi
h is displayed to the left of thesum. Sin
e we res
ale by n−1/4, this term disappears in the limit (note that its varian
e is bounded)so that (n−1/4(LC

n (vw
n )−LC

n (v¬w
n )), w ∈ T̃ ), has same limit as the ve
tor of independent 
omponents(given T n)


n−1/4

∑

v⊢vw
n ,|v|>|v¬w

n |+1

Y n
v 1{cTn (v)≤C}, w ∈ T̃


 (64)

=


n−1/4

C∑

k=1

k∑

l=1

∑

c∈{0,1}

∑

{v⊢vw
n ,|v|>|v¬w

n |+1}

Y n
v 1{cTn (v)=k,vw

n ∈vlT n
vl}

, w ∈ T̃


 .By de�nition there are A

(c)
T n(vw

n , k, l, hw
n ) terms in the last sum, where hw

n = |vw
n | − |v¬w

n | − 1. Sin
e
n−1/2hw

n has same limit as |Hn
sw
n
− Hn

s¬w
n

| as n → ∞, whi
h is given by Bsw − Bs¬w , and whi
h is
> 0 a.s., we obtain that asymptoti
ally hw

n > nγ for any �xed 0 < γ < 1/2. Therefore, by (63) itholds that a.s., for any ε > 0, any k ≤ C, l ≤ k and for n large
(1 − ε)

µc(k)

2mc
(Bsw − Bs¬w)n1/2 ≤ A

(c)
T n(vw

n , k, l, hw
n ) ≤ (1 + ε)

µc(k)

2mc
(Bsw − Bs¬w)n1/2.It then follows from the 
entral limit theorem applied to (64) that given B (of whi
h T̃ is a measur-able fun
tional), the ve
tor n−1/4(LC

n (vw
n )−LC

n (v¬w
n ), w ∈ T̃ ) 
onverges in distribution to a randomve
tor (NC(w), w ∈ T̃ ), where the 
omponents NC(w) are independent, 
entered, Gaussian andhave varian
es

Var NC(w) = (Bsw − Bs¬w)
1

2

C∑

k=1

k∑

l=1

∑

c∈{0,1}

(Σk,l
c )2

µc(k)

mc
=: (Bsw − Bs¬w)Σ2

C .
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e that Σ2
C ↑ Σ2 as C ↑ ∞, so (NC(w), w ∈ T̃ ) in turn 
onverges in distribution to a randomve
tor whi
h 
onditionally on B is 
onstituted of independent Gaussian 
omponents (N(w), w ∈ T̃ ),with respe
tive varian
es Σ2(Bsw − Bs¬w) as C → ∞.Assume for a moment that for every ε > 0, a.s.,

lim
C→∞

lim sup
n→∞

P

(
max
w∈T̃

|L̃C(vw
n ) − L̃C(v¬w

n )| > εn1/4
∣∣B
)

= 0. (65)>From the fa
t that Ln(vw
n ) − Ln(v¬w

n ) = LC(vw
n ) − LC(v¬w

n ) + L̃C(vw
n ) − L̃C(v¬w

n ), this impliesthat 
onditionally on B, n−1/4(Ln(vw
n ) − Ln(v¬w

n ), w ∈ T̃ ) 
onverges to (N(w), w ∈ T̃ ). Indeed, itis an elementary exer
ise that if Xn = XC
n + Y C

n ∈ R
d, where XC

n → XC as n → ∞, XC → Xas C → ∞, both in distribution, and limC lim supn P (|Y C
n | > ε) = 0, then Xn → X as n → ∞ indistribution.It follows that 
onditionally on B, the ve
tor n−1/4(Ln(ur

n), 1 ≤ n ≤ q) is asymptoti
ally aGaussian ve
tor (S(t1), . . . , S(tq)), sin
e
Ln(ur

n) =
∑

w′⊢w

(Ln(vw′

n ) − Ln(v¬w′

n )),whenever ur
n = vw

n . Moreover, still given B, we have that if tr = sw, tr′ = sw′ , then
cov(Str , Str′ ) = cov

(
∑

w′′⊢w

N(w′′),
∑

w′′⊢w′

N(w′′)

)
.By independen
e of the N(w) given B, if w ∧ w′ is the most re
ent 
ommon an
estor to w,w′, weobtain

cov(Str , Str′ ) = Var

(
∑

w′′⊢w∧w′

N(w′′)

)
= Σ2Bsw∧w′ = Σ2B̌(tr, tr′) ,as sw∧w′ is the unique point of [min(sw, sw′

),max(sw, sw′
)] su
h that Bsw∧w′ = B̌(sw, sw′

). Sin
e Bhas same law as 2σ−1
√

1 + mje under N
(1), it follows that B,S has the 
laimed law.To prove (65), noti
e that sin
e given B, the set T̃ is �nite, it su�
es to prove the result forsome �xed w ∈ T̃ . Now, 
onditionally on B,Tn, the sequen
e (L̃C

n (v), v ⊢ vw
n ), where the an
estorsof vw

n are ranked in depth-�rst order, has independent and 
entered in
rements so by Cheby
hev'sinequality,
P
(
|L̃C

n (vw
n ) − L̃C

n (v¬w
n )| > εn1/4|B,Tn

)
≤ n−1/2ε−2E

[
|L̃C

n (vw
n ) − L̃C

n (v¬w
n )|2 |B,Tn

]
.By the independen
e of in
rements of the spatial displa
ement,

E
[
|L̃C

n (vw
n ) − L̃C

n (v¬w
n )|2 |B,Tn

]
=
∑

k>C

∑

1≤l≤k

∑

c∈{0,1}

A
(c)
t (vw

n , k, l, hw
n )(Σk,l

c )2,where hw
n = |vw

n |− |v¬w
n |. Now, we know that n−1/2hn

w 
onverges to Bsw −Bs¬w > 0 as n → ∞, andtherefore, by (63) for γ = 1/8 and n large enough, it holds that the last expression is bounded by(for any C1 > Bsw)
C1

√
n
∑

k>C

∑

c∈{0,1}

µc(k)

2mc
(Σk

c )
2 + n3/8

∑

k>C

∑

c∈{0,1}

k−M (Σk
c )

2,
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ond term is bounded by C2n
3/8 for some 
onstant C2 > 0, be
ause µc has some expo-nential moments, and Σk

c = O(kD) for some D > 0. Finally, we obtain that
P

(
max
w∈T̃

|L̃C
n (vw

n ) − L̃C
n (v¬w

n )| > εn1/4 |B
)

≤ #T̃ ε−2
∑

k>C

∑

c∈{0,1}

µc(k)

2mc
(Σk

c )
2 + C2n

−1/8.Letting n → ∞, this 
onverges to
#T̃ ε−2

∑

k>C

∑

c∈{0,1}

µc(k)

2mc
(Σk

c )
2,whi
h in turn has limit 0 as C → ∞, implying (65). �6 Convergen
e to the Brownian mapThe aim of this se
tion is to dis
uss the 
onvergen
e of bipartite maps to the Brownian map,introdu
ed in Mar
kert & Mokkadem [19℄. We refer to this paper to the 
onstru
tion of the notionsof abstra
t maps, and to the 
ombinatorial 
onsiderations leading the authors in a �rst step to showthat any quadrangulation is a tree D, (the doddering tree of [19℄) glued with the help of a se
ondtree G (the gluer tree of [19℄), and to show that this 
onstru
tion passes to the 
ontinuous limit in a
ertain sense. The major part of the 
onstru
tion in [19℄ may be generalized without any problemto bipartite maps; in what follows, we will mainly point out the di�eren
es in the 
onstru
tion. Wewould like to stress on the fa
t that the des
ription of the maps in term of trees provides someinformation that are not 
ontained in the pro�le alone.The �rst and major di�eren
e with the study of quadrangulation, is the used of the BdFG'sbije
tion, instead of the S
hae�er's one.6.1 Bipartite maps des
ribed by a pair of treesWe �rst present in a few words the appli
ation Ψ−1 of Bouttier & al. [6℄.Re
all the 
onsiderations of Se
tion 2.3, and 
onsider a planar embedding of some (t, ℓ) ∈ T inthe plane, with at least two verti
es. We let v and w be the verti
es of this embedded graph that
orrespond to the words ∅, 1, and root the graph at the edge (vw). Until the end of the paper, weslightly improperly keep the notations t, t(0), t(1), ℓ for this embedded (rooted) graph, the verti
esat even (resp. odd) heights, and a label fun
tion de�ned on t(0) (the labels of t(1) are not used inthe 
onstru
tion).The 
onstru
tion of (m, e, r) = Ψ−1(t, ℓ) is done as follows. First add −min ℓ+1 to the labels ofthe verti
es of t(0). Ea
h vertex u of t(0) with k neighbors determines k 
orners whi
h are delimitedby the k edges emanating from u. To ea
h su
h 
orner C 
orresponding to a vertex of t(0) withlabel l ≥ 2, we asso
iate its su

essor s(C) de�ned as the �rst en
ountered 
orner of t(0) with label

l−1 when going 
lo
kwise around the tree (there is always a su

essor). Then, we draw a blue edgebetween ea
h 
orner of t(0) with label l ≥ 2 and its su

essor within the external fa
e of t and insu
h a way that no two edges interse
t, whi
h is always possible. Finally, we add in 
omplement ofthe graph in the plane, an extra vertex r, and add a blue edge between ea
h the 
orners of t(0) withlabel 1 and r. The map (m, e, r) is the map having as set of edges the blue edges, and e is the �rstedge of m that starts from v to the left of (vw), oriented so that (m, e, r) ∈ M+.
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567Figure 3: Illustration of Ψ−1. The bla
k verti
es 
orresponds to the elements of t(1), the labeledverti
es to the elements of t(0). The two arrows explain how to 
hoose the root of m. It remains toremove the labels, the bla
k verti
es and the dotted lines.Re
all the de�nition of the depth �rst traversal Ft introdu
ed in the proof of Proposition 24,and of the 
ontour pro
ess Ĥt. The durations of Ft and Ĥt is 2(#t − 1). The verti
es of t(0) arevisited at times 0, 2, . . . , 2(#t − 1). The labels of the verti
es of t(0) are en
oded thanks to
Rt,ℓ(k) = ℓ(Ft(2k)) for 0 ≤ k ≤ #t − 1.We extend Rt,ℓ linearly between su

essive integers. We haveCorollary 29 Let q be a regular 
riti
al weight sequen
e. Theorem 11 still holds with n−1/4RT,L((#T−

1)t.) instead of n−1/4ST,L
(#T−1)t, with the 
onstants given in Se
tion 3.2.This result is a 
onsequen
e of two 
lassi
al steps: �rstly, let Rt,ℓ be the linear interpolation of

Rt,ℓ(k) = ℓ(Ft(k)), the label pro
ess asso
iated with the depth �rst traversal (here take again the
onvention that a vertex of t(1) has the same label as its father). The uniform distan
e between
n−1/4ST,L

(#T−1)t
and n−1/4RT,L(2(#T − 1)t) goes to 0 in probability. Se
ondly, for any integer k,

Rt,ℓ(k) = Rt,ℓ(2k). This shows that the uniform distan
e between n−1/4RT,L((#T − 1)t) and
n−1/4RT,L(2(#T − 1)t) goes to 0 in probability.For θ ∈ {0, 2, . . . , 2(#t−1)−2}, we denote by t(θ) the element of T obtained from t by rerootingat the edge (Ft(θ), Ft(θ + 1)), and with label fun
tion ℓ − ℓ(Ft(θ)). The label of the root-vertex of
t(θ) is 0, and t and t(θ) are equal as unrooted unlabeled trees. Let ⊕ denote the addition modulo
2(#t − 1). For any 0 ≤ i ≤ 2(#t − 1),

Ĥt(θ)(i) = Ĥt(θ ⊕ i) + Ĥt(θ) − 2min
{
Ĥt(j), (θ ⊕ i) ∧ θ ≤ j ≤ (θ ⊕ i) ∨ θ

}
,and for any 0 ≤ i ≤ #t− 1,

Rt(θ)(i) = ℓ(Ft(θ ⊕ 2i)) − ℓ(Ft(θ)) = Rt ((θ ⊕ 2i)/2) − Rt (θ/2) .When exploring t(θ), v is visited at time 2#t − θ and w at time 2#t − θ + 1. Hen
e, the variable
X(θ) = 2#t − θ su�
es to re
onstitute v and w.We now exhibit the two trees from whi
h the des
ription of bipartite maps 
an be done.
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ross, and in su
h away that the edge (Nj , Nj′) surrounds from above the edges that start from abs
issas lying between
j and j′. The set of verti
es and edges thus drawn is a tree whi
h we 
all D, see Figure 5 and [19℄for a proof. Up to a time inversion, the pro
ess Rt(Θt) + 1 is the height pro
ess of D.
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4210567 Figure 5: The tree D.We denote by G the tree t(Θt), whose 
ontour pro
ess is Ĥt(Θt) . Ea
h vertex of D (but the root)
orresponds to a 
orner of a vertex in G(0): for j ≥ 1, the vertex Nj of D 
orresponds to the vertexvisited at time 2j for the 
ontour order in G. To get m, some verti
es of D have to be identi�ed:glue the verti
es of D that 
orrespond to 
orners of the same vertex of G in su
h a way that theedges do not interse
t. A ni
e way to do this is to draw D on the 
ontour pro
ess of G as on Figure6: pla
e the root of D in the plane (not on the graph of ĤG). Then, for 0 ≤ i ≤ #t − 2, pla
e the
i + 1th vertex of D on the 2#t − 2i − 2 th 
orner of G(0). Then, use a deformation of the plane inorder to glue together the 
orners of G, 
orresponding to the same verti
es. They are spe
i�ed byhorizontal dotted lines on Figure 6. The variable X(Θt) �nally allows to �nd the root of m.Some 
hanges appear when 
ompared to [19℄. Here the maps are both rooted and pointed insteadof being only rooted (the variable X(Θt) allows to handle this), here, the natural traversal for bothtrees is the 
lo
kwise traversal, and here #D = #G instead of #D = 2#G for quadrangulations.Also, when 
onditioning by the number of fa
es (or verti
es), the size of D and G are random,whereas they are deterministi
 in the 
ase of quadrangulations. Last, only half of the verti
es of Gare used here instead of all of them.It is then possible to adapt the notion of abstra
t maps introdu
ed in [19℄ in order to handle
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es: a 
omponent en
oding the distinguished point is added, the 
ontour pro
esses
an be taken in the spa
e of 
ontinuous fun
tion with 
ompa
t support instead of C[0, 1], and the
onvention on the traversal order on trees 
an be adapted to the present setting. Apart from thesete
hni
alities, it remains to get the asymptoti
s of the two trees D and G under the 
onsidereddistributions PF=n

q or PS=n
q .Let H be the states spa
e of the tour of the Brownian snake (it is the states spa
e of (e, r) asde�ned around formula (4), see [18, 19℄ for more details). We re
all the operation of rerooting of anormalized labeled tree (see [19, 15℄) de�ned for any θ ∈ [0, 1] by

J (θ) : H −→ [0, 1] × H

(ζ, f) 7−→ J (θ)(ζ, f) = (ζ(θ), f (θ))
,where for any x ∈ [0, 1],

f (θ)(x) = f(θ + x) − f(θ),

ζ(θ)(x) = ζ(θ + x) + ζ(θ) − 2ζ̌(θ ⊕ x, θ),
(66)where the additions in the arguments are modulo 1. This may be understood as follows. Suppose

(ζ, f) is the en
oding of a labeled tree (t, ℓ): ζ is the (renormalized) 
ontour pro
ess of t, and fis the (renormalized) label pro
ess asso
iated with (t, ℓ). Then (ζ(θ), f (θ)) is the en
oding of thelabeled tree (t′, ℓ′) whi
h is obtained from (t, ℓ) by rerooting t on the 
orner that is visited at time
θ, and adding −f(θ) to all label (this �xes ℓ′(root(t′)) = 0). We are parti
ularly interested by thererooting on I(f) = inf Argmin f , the �rst minimum of the label pro
ess:

Φ : H −→ [0, 1] × H

(ζ, f) 7−→ (I(f), (ζ+, f+)) :=
(
I(f), (ζ(I(f)), f I(f))

)
.The appli
ation Φ is invertible. Note that it would not be without the �rst 
oordinate I(f). Thepair (e+, r+) 
orresponds to the head of the Brownian snake (e, r) under N

(1). We refer to Le Gall& Weill [16℄ and Le Gall [15℄ for properties of (e+, r+) and its o

urren
e as a limit of 
onditionedspatial trees.Lemma 30 Under N
(1), I(r) is uniform on [0, 1] and independent of (e+, r+).Proof. First, a

ording to Lemma 16 in [19℄ (see also [16, [Prop. 2.5℄), # Argmin r = 1 a.s.. Thelaw of (e, r) is preserved by rerooting (see [19℄) and I(r(θ)) = I(r)− θ mod 1. Then I(r) is uniform



REFERENCES 53in [0,1℄. Now, let us 
he
k the independen
e. Suppose that r rea
hes its minimum on
e. For any
x ∈ [0, 1), Φ(e(x), r(x)) = (θ − x mod 1, (e+, r+)). Hen
e, in ea
h 
lass stable by rerooting, thepositive representative (e+, r+) is independent of I(r). �The asymptoti
s of the treesD and G, that are su�
ient to get a generalization of the 
onvergen
eof res
aled bipartite maps to the Brownian maps, are given by the following proposition:Proposition 31 Let q be a regular 
riti
al weight sequen
e. Under PF=n

q (resp. PS=n
q ), the pro
ess(

ΘT
2(#T−1) ,

Ĥ
T(ΘT )(2(#T−1).)

n1/2 , R
T(ΘT )((#T−1).)

n1/4

) 
onverges in distribution to
(

U,
4√

(Zq − 1)ρq

e+,

(
4ρq

9(Zq − 1)

)1/4

r+

) under N
(1)

(resp. (U,
4

√
ρq

e+,

(
4ρq

9

)1/4

r+

) under N
(1)

)
,where U is an uniform random variable independent of (e+, r+), with the 
onstants given in Se
tion3.2.Proof. First, under PF=n

q (resp. PS=n
q ), the pro
ess Φ

(
ĤT (2(#T−1)·)

n1/2 , R̂T (2(#T−1)·)

n1/4

) 
onverges indistribution to
Φ

(
4√

(Zq − 1)ρq

e,

(
4ρq

9(Zq − 1)

)1/4

r

) under N
(1)

(resp. Φ

(
4

√
ρq

e,

(
4ρq

9

)1/4

r

) under N
(1)

)
.Indeed, the appli
ations Argmin and then Φ are 
ontinuous on the spa
e of 
ontinuous fun
tionsthat rea
h their minimum on
e, and r rea
hes a.s. its minimum on
e (see [16, 19℄). The 
on
lusionfollows from Theorem 11 and Lemma 30. �A
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