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Abstract

Random planar maps are considered in the Physics literature as the discrete counterpart of
random surfaces. It is conjectured that properly rescaled random planar maps, when conditioned
to have a large number of faces, should converge to a limiting surface whose law does not
depend, up to scaling factors, on details of the class of maps that are sampled. Previous works
on the topic, starting with Chassaing & Schaeffer, have shown that the radius of a random
quadrangulation with n faces, i.e. the maximal graph distance on such a quadrangulation to
a fixed reference point, converges in distribution once rescaled by n'/# to the diameter of the
Brownian snake, up to a scaling constant.

Using a bijection due to Bouttier, di Francesco & Guitter between bipartite planar maps
and a family of labeled trees, we show the corresponding invariance principle for a class of
random maps that follow a Boltzmann distribution putting weight g, on faces of degree 2k:
the radius of such maps, conditioned to have n faces (or n vertices) and under a criticality
assumption, converges in distribution once rescaled by n'/* to a scaled version of the diameter
of the Brownian snake. Convergence results for the so-called profile of maps are also provided.
The convergence of rescaled bipartite maps to the Brownian map, in the sense introduced by
Marckert & Mokkadem, is also shown. The proofs of these results rely on a new invariance
principle for two-type spatial Galton-Watson trees.
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trees, Brownian snake, Brownian map
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1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 3

1 Introduction, motivations and main results

1.1 Motivation

An embedded graph G is an embedding of a connected graph in the 2-dimensional sphere S?, in
which edges do not intersect except possibly at their endpoints (the vertices). A face of G is a
connected component of S? \ G. Faces are homeomorphic to open disks, and the degree of a given
face is the number of edges that are included in the closure of this face, with the convention that
cut-edges are counted twice, where cut-edges are those edges whose removal disconnects the graph.
If the graph is the vertex-graph with only one vertex and no edges, we adopt the convention that
it bounds one face with degree 0. The degree of a vertex is the number of edges adjacent to that
vertex, where self-loops are counted twice, according to the usual graph-theoretic definition. Unlike
faces, it depends only on the underlying graph rather than its embedding in S?.

We say that two embedded graphs are equivalent if there exists an orientation-preserving home-
omorphism of S? that maps the first embedding to the second. Equivalence classes of embedded
graphs are called planar maps, and their set is denoted by Mjy. When considering a planar map
m € Mg, we will slightly improperly speak of its vertices, edges, faces and their respective degrees
(we should first take an element of the class m to be completely accurate). We let S(m), A(m), F/(m)
be the sets of vertices, edges and faces of m. The degree of an element v € S(m) or f € F(m) will
be denoted by deg(u), resp. deg(f). We denote the class of the vertex-graph by f.

If u,v are vertices in a planar map m € My, and eq,...,e, are oriented edges, we say that
€1,...,6n i a path from w to v of length n if the source of e; is u, the target of e, is v, and the
target of e; is the source of e;;1 for all 1 < ¢ < n — 1. The graph distance associated with a planar
map m € M, is the function dp, : S(m) x S(m) — Z; defined by letting dy, (u,v) be the least n
such that there exists a path of length n leading from u to v. This can be interpreted by saying
that we turn m into a metric space, by endowing edges with lengths all equal to 1.

Planar maps have been of particular interest to physicists in the last decade as they can be con-
sidered as discretized versions of surfaces. In order to give a mathematical ground to the ‘stochastic
quantization of 2-dimensional gravity’, in which an integral with respect to an ill-defined ‘uniform
measure’ on Riemannian surfaces is involved, a possible attempt is to replace the integral by a finite
sum over distinct ‘discrete geometries’, whose role is performed by planar maps [B]. Informally, it
is believed that

e A random map chosen in some class of planar maps with ‘size’ n (e.g. a quadrangulation with
n faces, i.e. a map whose n faces are all of degree 4), whose edge-lengths are properly rescaled,
should converge in distribution as n — oo to a limiting random ‘surface’, and

e The limiting random surface should not depend, up to scale factors, on details of the class of
maps which is randomly sampled.

The second property is called universality. A similar situation is well-known to probabilists: the
role of a ‘Lebesgue measure on paths’ is performed by Brownian motion, which is the scaling limit
of discretized random paths (random walks) whose step distributions have a finite variance.

In a pioneering work, Chassaing & Schaeffer [§] made a very substantial progress in answering
the first question, by establishing that the largest distance to the root in a uniform rooted quad-
rangulation with n faces (see definition below) divided by n!/* converges in distribution to some
random variable (which is, up to a multiplicative constant, the diameter of the range of the so-called



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 4

Brownian snake with lifetime process the normalized Brownian excursion). By using an invariance
principle for discrete labeled trees satisfying a positivity constraint, Le Gall [T5] has given an al-
ternative proof of the results of [§]. This involves a new random object, called the Brownian snake
conditioned to be positive, that was introduced in Le Gall and Weill [T6]. Marckert & Mokkadem
[19] gave a description of quadrangulations by gluing two trees, and showed that these trees con-
verge when suitably normalized as n goes to co. They introduced the notion of Brownian map,
and showed that under a certain topology, rescaled quadrangulations converge in distribution to
the Brownian map. All these results have been obtained by using bijective methods which take
their source in the work of Schaeffer [22], and which allow to study random quadrangulations in
terms of certain labeled trees. The nice feature of this method is that the labels allow to keep track
of geodesic distances to a reference vertex in the map, so that some geometric information on the
maps is present in the associated labeled trees.

On the other hand, the second question has not been addressed up to now in a purely proba-
bilistic form, and in the context of scaling limits of planar maps. Angel ] and Angel & Schramm
] give evidence that the large-scale properties of large planar maps should not depend on the local
details of the map (like the degree of faces), but these remarks hold in the context of local limits
of random maps, where all edges have a length fixed to 1 as the number of faces of the map goes
to infinity (this is an ‘infinite volume limit’), rather than in the context of scaling limits, where
edge-lengths tend to 0 as the number of faces goes to infinity (so that the total ‘volume’ is kept
finite). In a recent article, Bouttier, di Francesco and Guitter [6] have given a generalization of
Schaeffer’s bijection to general planar maps. They obtain identities for the generating series of the
most general family of (weighted) planar maps, and infer a number of clues for the universality
of the ‘pure 2D gravity’ model, e.g. by computing certain scaling exponents with a combinatorial
approach.

Their bijection suggests a path to prove invariance principles (the probabilistic word for 'uni-
versality’) for random maps. The present work explores this path in the case of bipartite maps, by
first giving a probabilistic interpretation of the identities of [6].

1.2 Boltzmann laws on planar maps

A planar map is said to be bipartite if all its faces have even degree. In this paper, we will only be
concerned with bipartite maps, notice  is bipartite with our convention.

Every edge of a map can be given two orientations. A bipartite rooted planar map is a pair
(m,e) where m is a bipartite map and e is a distinguished oriented edge of m. The basic objects
that are considered in this article are bipartite planar maps which are rooted and pointed, i.e. triples
(m, e,t) where (m, e) is a bipartite rooted planar map and v is a vertex of m. We let M be the set
of rooted, pointed, bipartite planar maps. The map { cannot be rooted and can be pointed only at
its unique vertex, but is still considered as an element of M. By abuse of notation, we will often
denote a generic element of M by m without referring to (e,t) when it is free of ambiguity.

By the bipartite nature of elements of M, we have |dm(t,u) — dm(t,v)| = 1 whenever u,v €
S(m) are neighbors. Therefore, if (m,e,t) € M\ {{}, we have either dm(r,e4) > dm(t,e_) or
dm(t,e4) < dm(r,e_), where e_ and e; are the source and the target of the oriented edge e. We
let

My ={(m,e,v) € M :dpn(r,er) > dm(r,e-)} U{T}

All probability distributions on maps in this paper are going to be defined on the set M. Notice
that an alternative definition for this set is to consider it as the set of pointed maps where a
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non-oriented edge has been distinguished.

Let q = (gi,7 > 1) be a sequence of non-negative weights such that ¢; > 0 for at least one i > 1.
By convention, let go = 1. Consider the o-finite measure Wqy on M that assigns to each map
m € M, a weight ¢; per face of degree 2i:

Wq(m) = H Qdeg(f)/2> (1)
JfE€F (m)

with the convention Wq(f) = ¢o = 1. This multiplicative form is reminiscent of the measures
associated with the so-called simply generated trees, which are of the form w(t) = [],c¢ qeow) for
any tree t, where c¢(u) is the number of children of a vertex u in t, and where (¢;,i > 0) is a
sequence of non-negative numbers [I}, p. 27-28|.

Let Zq = Wq(M) be the ‘partition function’ of q. Notice that Zg € (1, 00] since Wq(T) = 1.
If Zq < o0, we say that q is admissible, and introduce the Boltzmann distribution on M with
susceptibility q by letting

For k > 1, let N(k) = (215__11). For any weight sequence q (not necessarily admissible) define

fa(z) = Zka(k +1)gi41 € [0,00], x> 0.
£>0

The function fq : [0,00) — [0,00] is a completely positive power series, i.e. its derivatives of every
order are non-negative, and since (g;,4 > 1) is not identically zero, fq is strictly positive on (0, c0),
and strictly increasing on the interval [0, Rq|, where Ry, is the radius of convergence of fq. Moreover,
fq converges to 0o as x — oo, and the monotone convergence theorem entails that the function fq
is continuous from [0, Rq] to [0,00]. At Rq, two distinct behaviors are possible: fq(Rq) can either
be finite, so that fq jumps to +00 to the right of Ry, or infinite, in which case fq is continuous from
[0,00] to [0,00]. In the sequel, we understand that fg(Rq) € (0, 00] stands for the left-derivative of
fq at Rq (when Rq > 0).

Consider the equation
fqlz)=1-1/x, x > 0. (2)

is non-positive on (0, 1] and fq is infinite on (Rq, o0], a solution of () always
belongs to (1, Rq]. Since z +— 1 — z~! is strictly concave on (0, +00), with derivative z — 272,

and fq is convex, strictly increasing and continuous on [0, Rq|, we can classify the configurations of
solutions for () by the following four exclusive cases:

Since x — 1 — g1

1. there are no solutions

2. there are exactly two solutions 21 < 2 in (1, Rq], in which case f§(21) < 27 and fq(22) > P
3. there is exactly one solution z; in (1, Rq] with fg(21) < 22

2

4. there is exactly one solution z in (1, Rq] with fg(z) = 2~

As will be shown in Sect. B3 the admissibility of q can be formulated in terms of fq as follows.

Proposition 1 The weight sequence q is admissible if and only if Equation ([A) has at least one
solution. In this case, Zq is the solution of [@) that satisfies Z3 fi(Zq) < 1.
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In this paper, we consider case 3. above, and cases when one of the solutions of [ is equal to
Ry, as ‘non-regular’ cases. Also, note that the case 4. in the above classification plays a singular
role compared to the others. These remarks motivate the following

Definition 2 An admissible weight sequence q is said to be critical if case 4. of the above classifi-
cation is satisfied, i.e.
ZZ fc/l(ZCl) =1 (3)
Equivalently, q is critical if and only if the graphs of x — fq(z) and x — 1 —1/x are tangent to the
left of v = Zq.
We say that q is regular critical if it is critical and Zq < Ry, i.e. the graphs are tangent at Zqy
both to the left and to the right.

Notice that a critical weight sequence q is automatically regular in the case where fq(Rq) = 00;
in this case, q is regular critical if and only if Equation () admits a unique solution (because case
3. in the above classification cannot happen).

1.3 Snakes

In order to state our main theorem, we first briefly describe the limiting random objects that are
involved. Let B®*¢ be a standard Brownian excursion. Then, given B¢ we let S°*¢ be a centered
Gaussian process whose covariance function is given by

excC excC — : f BeXC < < 1. 4
cov (ST, 57X¢) il B 0<s,t< (4)

It is known (see e.g. [T4), Section IV.6]) that (B¢, S°*¢) has a continuous version, which is the one
we choose to work with. We let N(M) be the law of the pair (B®*°, $%). In the sequel, we will let
((es)o<s<1, (Ts)o<s<1) be the canonical process for the space C(R4,R)? of continuous functions with
values in R2. The process (e,r) under NV is called the ‘head of the Brownian snake’ driven by a
Brownian excursion in the literature [I8], [2 [[3]. We let

Ai(r) =supr;, A_(r)=infr; and A(r)=A4(r)—A_(r),
t>0 t>0
the positive and negative range of r, and the diameter of the range of r.

1.4 Main results

For (m,e,t) € My, let
Z(m,e,t) = max dm(t,u)
ueS(m)

be the radius of (m,e,t) € My. Also, for k € Z, let 7 (M.e9) Yo the normalized profile of the map
m, which is the probability measure on Z, such that

_ #{ue Sm) : dm(v,u) = k}
#5(m) ’

For simplicity we will usually denote these quantities by Z(m), #™. If n > 1, we also let Z™ be
the rescaled measure on R, that is defined by .#™(A) = #™(n'/*A), for A a Borel subset of R

k > 0.

j(m7e’t)(k)
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Last, if q is a regular critical weight sequence, we let
pa =2+ Z31(Zq). (5)

Letting M : My — M be the identity mapping, our main result states as follows.

Theorem 3 Let q be a reqular critical weight sequence. Then

(i) The distribution of the random wariable n=Y/*% (M), under Py(-|#F(M) = n), converges
weakly as n — oo to the law under N of

(ii) The distribution of n=*dps(v,v') under Py(-|#F (M) = n), where v' € S(M)\ {t} is picked

uniformly at random conditionally on M, converges weakly as n — oo to the law under NY of

(iii) The distribution of the random measure S M under Py(-|[#F (M) = n) converges weakly to
the law under N of the random probability measure S on R, defined by

o= [ () (- )

Notice that Boltzmann distributions always put a positive mass on the set of maps with exactly
n faces for all n, so that the conditional distributions P(-|#F (M) = n) are well-defined. There
exists also a counterpart of this result in which we condition on the number of vertices rather than
the number of faces, which states as

Proposition 4 Let q be a reqular critical weight sequence. Then the previous theorem remains
true when considering the laws Py(-|#S(M) = n) instead of Py(:|#F (M) = n), where it must be
understood that n — oo along values for which P(#S(M) = n) > 0, and the rescaling constant
(4pq/(9(Zq — 1))/ appearing in (i), (i), (iii) must be replaced by (4pq/9)"/*.

The last two results are stated under the assumption of admissibility and regular criticality
for the weight sequence. However, since the probability laws that appear in the statements are
conditioned measures, and thus make a slightly indirect use of the probability Py, this assumption
can be loosened a bit. If

ME=" = {m € My : #F(m) = n},
and q is any weight sequence, then the hypothesis Zg = = We(MI=") < oo allows to define a
probability measure on MIJ;:" by

Wa(- N ME=")

F= _
PCI n() - Zg’:n

If q is admissible, we are clearly in this case, and Pq(-|[#F(M) = n) = P(f =" but the converse
is not true: there can be (and there are in many interesting cases) weight sequences that are not
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admissible, but for which P(f:" makes sense. Now, notice that if & > 0 and aq = (ag;,i > 1), and
m e M{=",

Waq({m}) = a"Wo({m}),  Zi7"=a"Zg "
Therefore, if q is such that Zg " < o0, then aq is also such a weight sequence, and Pfq:” = P(f =n
is independent of a > 0.

In a similar way, we let Mi:" to be the set of maps with n vertices, and define as above Z(f:",
and P(f:" if the latter is finite and > 0. For 3 > 0 let 3eq = (8" "'¢;,i > 1). Then for m € Mi:",

W,@oq({m}) = H ﬁdeg(f)/271Qdeg(f)/2 = ﬁn72Wq({m})’
feF(m)

and Zg.:q" = ﬂ”*2Z§:", where we used }_ rc p(m) deg(f) = 2#A(m), and Euler’s formula #F(m) —
#A(m) + #S(m) = 2. Thus, Theorem Bl and Proposition ] can be restated as follows.

Corollary 5 (i) Let q be a weight sequence such that Z(If:" < oo for every n > 1 and such that
there exists some o, > 0 such that a.q is reqular critical. Then all conclusions of Theorem [ remain
true, when replacing the probabilities Py(:|#F(M) = n) in the statement by PE=", and where the
normalizing constant of (i), (i), (iii) is computed for the weight sequence a.q.

(i) Let q be such that Zgzn < oo and there exists some 3. > 0 with (. e q reqular critical, then
the conclusion of Proposition [J] remain true, when considering PqS:” instead of Py(-|#S(M) = n),
and computing the scaling constants for the weight sequence (. q.

It is also true that conditioning both on the number of faces and vertices is insensitive to termwise
multiplication of q by (af?~!,i > 1), so this would lead to finding a ‘critical’ curve of (o, 3.)’s
such that (a3 1g;,i > 1) is critical. We do not concentrate on this last point, as our methods are
inefficient in conditioning on both these data.

1.5 Two illustrating examples

We illustrate Theorem Bl by explicitly computing the various constants involved there in two natural
particular cases.

1.5.1 2k-angulations

Consider the case when q = ady, for some integer x > 2, and some constant o > 0. The resulting
distributions are the Boltzmann distributions on the set of maps with faces of fixed degree 2. These
distributions appear in [7] in the case k = 2 of quadrangulations (they also appear in [, but for
triangulations).

In that case, fq takes the simple form of a monomial fq(z) = aN(k)z""!, which satisfies
Ryq = o0. According to Proposition [l Definition Pl and the fact that fq(Rq) = oo, the weight
sequence q is critical, and thus regular critical, if and only if and the system of equations

2
fq(z)=1—-1/z z fél(z):l
has a real solution. This system, considered in the variables «, z admits the unique solution

N :(,‘-4—1)“_1 L "
" k"N(k) &= " k=17
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Since fq(x) increases strictly with « for every « > 0, it is straightforward to see that q is admissible
if and only if o < v, and is (regular) critical if and only if @ = . In the critical case a = «,, the
partition function Zg is given by z, as defined above, and pq = k.

Notice that when a < a,,, the conditional law Py(:|#F (M) = n), as considered in Theorem B,
coincides with the uniform distribution on the set

{m e My :deg(f) =2k for all f € F(m), #F(m) =n}

of 2k-angulations with n faces, since Wy puts the same weight o™ on all the elements of this set.
At the light of the discussion leading to Corollary Bl a more natural way to define this uniform
distribution would have been to take the non-admissible weight sequence q = J, in the first place,
so Wq puts mass 1 on every 2s-angulation, and P(f =" is indeed uniform.

By further specialization of these results to the x = 2 case of quadrangulations, we check
that ay = 1/12, Z,,s, = 2, which is consistent with the results of [7]. Furthermore, the constant
(4pq/(Zq —1))"/* appearing in Theorem Blis (8/9)'/* for k = 2, which is consistent with the results

of [8, MA].

1.5.2 ¢ =/

Let 8> 0, and let ¢; = ' for i > 1, so that the weight of a map m is

({m} H Qdeg(f)/2 = ﬁ2 ZfeF(m) deg(f) _ /B#A(m)7
fEF(m)

(when summing the degrees of faces, each edge is counted twice). In this case,

x):leﬁz+1N(z+1 ﬁz 2Z+1 :

(i+1)! (G +1)4!
>0 i>0 +

which is equal to

i = S - L (0 ),

2x = 512
We see that Rq = (43)~! and that fq(Rq) = co. Since we are looking for solutions of Equation (@),
which must be > 1, we see that the only interesting cases are when § < 1/4. More precisely, one
can check that the equation fq(2) =1 —1/z has real solutions if and only if § < 1/8, and these are
given by
1448 —+/1-383 nd 1+48+/1-283
8p 8p '

These two solutions merge into a unique solution 3/2 at # = 1/8, which is the value making q
(regular) critical. This can be double-checked by solving zzf(’l(z) = 1, whose solution is 3/(16/).
This gives Zq = 3/2 in the critical case 3 = 1/8, while pq = 27/4, and the value (4pq/9)"/* of
Proposition B is 3'/4. Conditioning with respect to the number of vertices is indeed a bit more
natural here: notice that we can rewrite q = e (8,7 > 1). We thus obtain that PqS:” is equal to

PEZ", where [ stands (a bit improperly) for the constant sequence ¢; = 3,7 > 1.
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Figure 1: Example [k drawing fq for « = 1/18,1/12,1/8 and  — 1 — 1/z (dashed) in the case
k = 2 of quadrangulations.
Example drawing fq for f=1/7,1/8,1/10 and  — 1 — 1/x (dashed)

1.6 Comments and organization of the paper

As discussed in Sect. [C5] the asymptotic behavior of the radius and profile of quadrangulations
that are uniformly chosen in the set

Q' ={me M, : #F(m) =n,deg(f) =4 for all fe F(m)}

is obtained as a particular case of Theorem [ for q = 1276,. Therefore, our results encompass in
principle the results of Chassaing and Schaeffer [§] and Le Gall [I5]. The reason why ‘in principle’
is that these two papers deal with slightly different objects, namely rooted maps which are not
pointed, and use the base point of the root edge as the reference point with respect to which geodesic
distances are measured. Considering these objects would lead us to extra non-trivial complications.
Roughly speaking, both pointing and rooting will allow us to study maps thanks to freely labeled
trees, while simple rooting leads to considerations on labeled trees with a positivity constraint on
labels. It is fortunate, however, that the scaling limits are the same for our model as in [8, [[5].
On a very informal level, this indicates that the base vertex of the root edge in a uniform rooted
quadrangulation with n faces plays asymptotically the same role as a randomly picked base vertex.
This is natural, since if we believe that a scaling limit for random maps exist, then a desirable
feature of the limit would be that it (statistically) ‘looks the same’ everywhere, and the singular
role of the root in the discrete setting should vanish as the size of the map goes to infinity. On the
other hand, we stress that rooting maps is not just a technical annoyance, but is really a crucial
requirement in the methods used in most articles on the topic.

A natural question would be to ask whether similar techniques as ours could be used to prove
similar invariance principles in non-bipartite cases (e.g. triangulations), using the more elaborate
version of Bouttier, di Francesco and Guitter’s bijection for Eulerian planar maps. Although this
makes the study slightly more intricate, this is indeed possible and will be addressed elsewhere.

The rest of the article is organized as follows. Sect.@introduces basic definitions for deterministic
and random spatial trees, and shows how the bijection of Bouttier, di Francesco and Guitter allows
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to interpret features of Boltzmann random bipartite maps in terms of functionals of certain two-
type Galton-Watson (GW) trees coupled with a spatial motion. Section Bl provides the proof of
Theorem Bl and Proposition Bl by introducing a new invariance principle for such spatial two-type
GW trees (Theorem [[), in which the increments of the spatial motion can depend both on the
type of the current vertex and on the local structure of the tree around the current vertex. This
result is interesting in its own right. The proof of this invariance principle occupies the remaining
Sections Hl and B

Finally, in Section B, we show that under the hypothesis of Theorem Bland Proposition H scaled
bipartite maps converge to the Brownian map, introduced in [[9]. This generalization is more or
less straightforward, and then we just outline the procedure leading to this result.

2 Pushing Boltzmann planar maps to two-type spatial GW trees

2.1 Planar spatial trees

Let N be the set of positive integers, and by convention let N® = {@}. We define

U=\ |n

n>0

(here and in the sequel, the symbol U stands for the disjoint union) the set of all finite words with
alphabet N, using the notation v = uy ... u € U where uy,...,ur € N. If u =wuy...up € U is such
a word, we let k = |u| be its length, with |&| = 0. If u = uy ... ug, v = vy ... vy are words, we let
uv be the concatenated word uy ...ugvy ... v, with the convention @u = u@ = u. If u = vw is a
decomposition of a word u as a concatenation, we say that v is a prefix of u, and write v - u. If
A is a subset of U and u € U, we let uA = {uv : v € A}. The set U comes with the natural total
‘lexicographical’ order =, such that v =< v if and only if either u - v, or v = wu/,v = wv’ with
nonempty words ', v" such that v} < v].

Definition 6 A (rooted, planar) tree is a finite subset t of U that contains &, and such that ui € t
(with w € U and i € N) implies that u € t and uj € t for all 1 < j <i. We let T be the set of trees.

It is well-known that this definition of rooted planar trees is equivalent to the graph-theoretic
definition (a rooted planar map with no cycle), by associating every element u € t with a vertex of
a graph, and drawing edges from the vertex associated to u to the ones associated to ul, ..., uk € t
‘from left to right’. If t # {@}, the embedded graph thus obtained is rooted at the oriented edge
from @ to 1. We call (with a slight abuse of notations) @ the root of t. We call vertices the elements
of a tree t € 7, the number |u| is called the height of u, and the order < will be called the depth-first
order on t.

The set {ui : ui € t} is interpreted as the set of children of u € t, and its cardinality is denoted
by c¢(u). If v = ui with v,u € U and i € N, we say that u is the father of v and note u = —w.
If v - wufor u,v € t, we say that v is an ancestor of u. If t € 7 and u € t is a vertex, we let
ty, = {v €U : uwv € t} be the fringe subtree of t rooted at w. It is easily seen to be an element of 7.
We also let [t], = {u} U (t \ ut,) be the subtree of t which is pruned at w.

Next, let 7g,77 be two copies of 7. The picture that we have in mind is that if t € 7; for
i € {0,1}, the ‘mark’ ¢ is interpreted as a color (white 0 or black 1) that we assign to the root. All



2 PUSHING MAPS TO TWO-TYPE TREES 12

vertices at even height |u| then earn the same color, while those at odd height earn the color i + 1
mod 2. Although we should differentiate elements of 7y, 77,7 to be completely accurate, we keep
the same notation t for elements of either of these sets. For t € 7;, we let t) = {u €t : |u| =i+ ]
mod 2} to be the set of vertices of t with color j (for example, t(©) is the set of vertices with
even height if t € 7y, and with odd height if t € 77). This notation is the only one that actually
distinguishes 7y from 77. In the sequel, we will often omit the mention of mod 2 when dealing
with marks. For example, it is understood that py, ms stand for pgmeq 2 and its mean.

The definitions of children of a vertex, fringe subtrees and pruned subtrees extend naturally to
To,71. The minor change is that if t € 7; for i € {0,1}, we take the convention that t, € 7},
(this should be clear from the intuitive picture that i is the color of vertices at even heights in t),
and if t € 7;, we still let [t], € 7; (the color of the root does not change).

Definition 7 A spatial tree is a pair (t,£) where t € T and ¢ : t — R is a labeling function that
attributes a ‘spatial position’ to every vertex. We let T be the set of spatial trees. Notice that for a
fized t € T, taking a labeling ¢ is equivalent to attributing a label £(D) to the root and determining
the increments ¢(u) — (—u),u € t \ {@}.

Again, we consider two copies Tg, Ty of T, that put white or black color on the root, and alternate
color between generations.

2.2 Two-type spatial GW trees

We now want to consider a particular family of multitype GW trees, in which vertices of type 0
only give birth to vertices of type 1 and vice-versa. The following construction and discussion on
a.s. finiteness of the tree is not the most economic one, but allows us to introduce some of the tools
that will be needed later.

Let = (1o, 1) be a pair of probability distributions on Z, with means mg and m1, respectively.
We make the basic assumption that p is non-degenerate, i.e. po(1) + p1(1) < 2, and we exclude
the trivial case mgm; = 0. We say that p is sub-critical if mgm, < 1, critical if mgm; = 1 and
supercritical if mgmq > 1.

Consider a family of independent random variables (X,,u € U) on some probability space
(Q, A, P), such that X, with |u| even all have law py and X, with |u| odd all have law p;, and
define

E={u=wu...up €U u; < Xy, 4 ,, 1 <i<k}U{o}.
It is elementary to prove that £ is a random subset of U/ that satisfies the properties of a tree. The
only difference is that it might be infinite, though every vertex still has a finite number of children
(local finiteness). We let T be the set of such possibly infinite trees which are locally finite, and keep
the notation c;(u) for the number of children of u € t € T. We also let 7y, 7; be two copies of 7,
and consider ¢ as a random element of 7. As before, if t € 7; we let () be the set {fuct:|ul+i=j
mod 2}. Notice that if t € 7y, then we have

=TI roCce(w)) T mlee(u)) =TT mpui(celu (6)
uet(0) uet(l) uet

and these probabilities sum to 1 if and only if £ is a.s. an element of 7.

Now, for t € fb, we introduce the mapping I'; : t(© — U/ that associates with t the tree having as
number of vertices #t(?), and which skips the odd generations of t, going straight from a vertex of t(©)
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VI

Figure 2: The first frame depicts a tree t € 7y: the black (resp. white) vertices stand for vertices
of t(0 (resp. t()). The second frame represents I'(t), and the third frame, I'(1t) to be introduced
later in Lemma [[4]

to its grandsons. Formally, it is defined recursively by I'(@) = @, and if v € t(O) has grandchildren
vwy, ..., vwp € t©), where wy, ..., w; are words of two letters such that w; < ... < wy, and
k= Zlgig%(v) ci(vi) is the number of grandchildren of v, then I';(vw;) = I'(v)l for 1 <1 < k. We
extend this to a mapping I'; : t — U by letting T';(u) = I';(—u) whenever u € t(1),

We simply denote the tree FE(’E) by T'(t). In particular, it is indeed an element of ’ZA', and the
root has cpg) (@) = Zlgkgce(z) ci(k) children. The tree is unmarked, because what we have done
is to get rid of the vertices with color 1. Moreover, an easy recursion shows that 2|I'; (u)| = |u| for
u € t with even height.

Now, it is elementary that I'(¢) has the same law as the random element & of T that is defined
as follows. Let (X, u € U) be an iid sequence of random variables that have same distribution as

> X (7)

1<k<Xg
where (X, u € U) are the variables used to construct {. Then let

E={u=uy...u EL{:uigyul___ukfl,l§i§kz}U{®}.

By construction, ¢ is a random variable in ’ZA', and the process (#{u € £ : |u| = n},n > 0) is a GW
process, whose offspring distribution is the law 7 of X 5. Moreover, the process is non-degenerate,
ie. (1) < 1, as is easily deduced from the non-degeneracy condition on pg,p;. In particular,
the process becomes extinct (i.e. £ is finite) a.s. if and only if the mean ™ of [ satisfies @ < 1.
For any distribution v on Z*, denote by G, the generating function of v. We see from (@) that
Gz = Gy, o G,,. Differentiating this shows that the mean of the new offspring distribution is
m = mgomi. Therefore, I'(¢) is a.s. finite if and only if mgm; < 1, and the fact that £ is locally
finite implies that the finiteness of I'(§) is equivalent to that of €.

By recalling formula (@), and considering as well the case where the roles of pg and u; are
interchanged, we have proved:

Proposition 8 The formulas

POT=t) = ] nmolee() ] mlecw), teTy

uet(0) uet®)
pOT=t) = ] molee(w) J] mle(w), ten
uet(0) uet)

both sum to 1 when adding over t € Ty resp. Ty if and only if (o, u1) is (sub)-critical. In this case,

P;EO), Plsl) are probability distributions, called the law of a(n alternating) two-type (sub)-critical GW
tree, with root of type O resp. 1.
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Notice that the case pug = pp is that of a single type GW tree, and we do re-obtain the usual
a.s. extinction criterion m < 1 where m is the expectation of p1. In the sequel, by a two-type GW
tree, we will always mean a random variable with a law of the form P;EO) or Pﬁl), as we will not be
interested in the more general non-alternating cases.

We now couple the trees with a spatial displacement, in order to turn them into random elements
of T. For our purposes, we need to consider the case when the increments of the spatial motion
depend both on the type and the degree of the neighboring vertex. To this end, let (1/6“, vEk>1)
be a family of probability distributions such that v}, v¥ are defined on R¥. Given t € 7;,i € {0, 1},
we let (Y, u € t) be a family of independent random variables, such that for u € t with ¢¢(u) = k,
Y. = (Yu1,-- -, Yur) has law v for ever u € t(0 and vf for every u € t(1). This yields a family of
random variables (Y,!,u € t\ {@}), which we use as increments of a random labeling function on t,
i.e. we set £f =0 and

0t = Z Y, u € t.

vhuvA£LD
We denote by A} the law of (£%,u € t). We let ]P’,(f,)y be the law on T; such that

PO, (dtde) = PP (dt)AL(de).

We usually let (7, L) : T; — T; be the identity mapping, so that under Pfi),,, T has distribution
P,SZ), and given T = t, the labeling L is Ab-distributed. To avoid trivial degenerate cases, we will
always implicitly suppose that there exists i € {0,1},k > 1 with x;(k) > 0 and v¥ is not the

Dirac mass at 0. We then say that the displacements laws v/* are non-degenerate. We now have all

7
the necessary background to describe the push-forward of the Boltzmann measures Py under the

bijection of Bouttier-di Francesco-Guitter.

2.3 The Bouttier-di Francesco-Guitter bijection and its consequences

The basic bijection presented in 6, Sects. 2.1 & 2.2] is a bijection between the set of pointed unrooted
bipartite planar maps (i.e. planar maps with a distinguished vertex), and the set of so-called well-
labeled mobiles. These objects are unrooted planar trees together with a bipartite coloration of
vertices (black or white say), such that white vertices carry positive integer labels, which satisfy a
set of constraints. The nice feature of this bijection, aside from providing enumerative formulas,
is that the faces of the initial map with degree k are in one-to-one correspondence with the black
vertices of the mobile with degree k/2, while the vertices of the map that are at distance d > 0
from the distinguished vertex are in one-to-one correspondence with white vertices of the mobile
with label d.

It is explained in [ Sect. 2.4] how a further rooting of the pointed map (giving a map of M)
allows to root the associated mobile at a white vertex, and lift the constraint that the labels are
positive by subtracting the label of the root vertex to all other labels (recovering the initial labels
amounts to subtracting the minimal label to every label and adding 1). We may reformulate their
result as follows.

Let T C Ty be the set of pairs (t,¢), where the mark of the root of t is 0 and where the labeling
function satisfies the following constraints:
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e / takes its values in Z,
o ((u) = L(—u) if u€tD) (ie. |uf is odd),

e if u € tM has children ul,..., uk, with k = c¢(u), then with the conventions £(u0) = £(u) =
lu(k+1)),

Uuj) — Lu —1)) € {-1,0,1,2,3,...}, 1<j<k+1. (8)

For a given t € 7, a labeling ¢ satisfying these constraints (i.e. such that (t,£) € T) is called
compatible with t, and the set of compatible labelings with t is denoted by L¢. Note that our
conventions are slightly different from those of [6], where vertices of type 1 would be unlabeled. The
difference is minor, since we consider that these vertices earn the label of their father.

Proposition 9 (BdFG bijection [6]) There exists a bijection between the sets M. and T, which
we denote by ¥ : My — T, that sends t on {@} and satisfies the following extra properties. If
m € M+ \ {T} and (tae) = \Il(m),

o Faces f of m with degree 2k are in one-to-one correspondence with vertices u € t(1) (i.e. with
|u| odd) that have k — 1 children. In particular, #F(m) = #t(1).

o Vertices v of m such that dy(v,t) = d > 0 are in one-to-one correspondence with vertices
u €t (ie. with |u| even) with £(u)—miny e £(u')+1 = d. In particular, #S(m) = #t©) +1,

Z(m) = Iilggcé(u) — Iilel{le(u) +1, (9)
and
m L .
IB(k) = O T <# {u et@: () - {Lr/lértlf(ul) +1= k:} + 1{k20}> . k>0. (10)

A short description of ¥~! can be found in Section Bl

Except from the trivial difference explained before the statement of this proposition, the only
difference with [6, Sect. 2.4] is that the case of the vertex-map is not considered there, and the
‘mobiles’ always have at least one white vertex and one black vertex. This distinction is important
in our study, as we will see after the next proposition. The key observation of this paper is given
by the following statement, which gives the image measure of the Boltzmann distributions Py on
My by ¥. We let TI(m) = t,II'(m) = ¢ whenever ¥(m) = (t, ).

Proposition 10 Let q be an admissible weight sequence, and define two probability distributions
(Ko, 1) by
po(k) = Zalfq(Zq)ka k>0,

the geometric law with parameter fq(Zq) (as defined in the Introduction), and

_ ZgN(k + Ve

k>0.
fZa "7

pa (k)
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Also, for every k > 1, let y(’)“ be the Dirac mass at 0 € R¥, and v} be the law on ZF of (X1, X1 +
Xoy ooy X1+ Xo+ ...+ Xi) where (Xq,..., Xk11) is uniform in the set

{(9017---,96k+1) € (Z+ V{1 ta 4 o = O}'

Then the two-type GW tree associated with fig, p1 is (sub)-critical, and W(M) under Py has law

Pl

Moreover, the weight sequence q is critical in the sense of Definition@if and only if IL(M) under
Py is a critical two-type GW tree, and q is reqular critical if and only if it is critical and pn admits
small exponential moments, namely ui(exp(a-)) < oo for some a > 0.

This explains why considering { as a map is important for our concern: otherwise, the previous
statement would not be true, since the root vertex of II(M) under Py would be constrained to
have at least one child, and the tree would not enjoy the GW property (in fact it would enjoy it
everywhere but at the root, which would make the forthcoming discussion tedious). It is also this
convention that allows neat statements in Definition B and Proposition [

The first step in proving Proposition [ is to compute the cardinality of the set Ly of labelings
that are compatible with some t € 7. For such t, the constraint (B) says that for every u € t(,
the label differences ¢(uj) — (u(j —1)),1 < j < k+1 must be in Z, U{—1} and sum to 0 because
of the convention ¢(u0) = ¢(u) = ¢(u(k + 1)). This is the same as the number of k 4 1-tuples
(b(ug) —l(u(j — 1))+ 2,1 < j < k+ 1) forming a composition of the integer 2k + 2 with k + 1
positive parts. The number of such compositions is equal to (2::11) = N(k+1) with the conventions
of Sect. [l Since the label of the root of t is fixed to 0, the number of admissible labelings ¢ of t is
therefore equal to

#Ly = H N(cg(u) +1). (11)

uct®)

Next, let g = (g;,7 > 1) be any non-negative weight sequence, not necessarily admissible. Let
m € M. Then, by letting (t,¢) = ¥(m) and using Proposition @ we get that

WoM=m)=[] daestrz= [ decws1 =Wa(¥(M) = (t,0)). (12)
feF (m) uet(l)

This quantity is independent of the values taken by ¢, for any ¢ compatible with t, so by (I,

Wa(@(M) € {(t,0): L€ L)) =D ] dewsr= ] Nlee(w) + Daeyuys1-

LeLy uet(D) wetl)
Otherwise said,
Wo(M(M) =t) = [ N(eo(w) + 1)geyu+1- (13)
uct®)

We are now ready to prove Proposition [[ll Some of the computations appear implicitly in [6].

Proof of Proposition Suppose q is admissible, so Zq = Wq(M) < co. Notice that for any

tree t € 7, one has
> e(uw) =#tD > ep(u) = #tO0 1,

uct(0) uet()
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since @ is the only vertex which has no ancestor. Therefore, we may redisplay (3] as

1\ #t0-1
W(TI(M) = t) = (—) TT (2" N e (t) + Docgursn.

Za uet®
so finally
1 #t(O) Ct(u)
Py(II(M) = t) = 7 I (Za)™ N(ee(u) + 1)ge, 1. (14)
a uet®

We know that summing this formula over t € 7 gives 1. But notice that any tree t € 7y can be
written as t = {@} U 1t; U...Ukty, if k = ¢(9), and with t; € 77,1 <14 < k. So summing the last
formula over t € 7p amounts to sum over k > 0 and t(y),...,t) € 71, and factorize the term 1/Z4
that involves the root of t, so

£

#E;
L= Z_ Z H < ) N I (Za)* N (ce(u) + 1geyuy+1

k20 byt €71 i=1 uet())

(1) k

#
- 7 Z Z < q) H (Zq)Ct(U)N(Ct(u) + 1)qct(u)+1 . (15)

Zq k>0 \teTy uet(©)
But the quantity which is raised to the successive integer powers can be decomposed by a similar
method, and is equal to

k

1 #t(0)
Z(Zq)kN(k + 1) a1 Z (Z_> H (Zq)* ™ N (ce(w) + 1)dey (uy+1

k>0 teTo a et

This time, the right-most quantity which is raised to the power k is nothing but the sum of (4
over t € Ty, that is Py(M4) = 1, which we started with! Thus, the last expression is nothing but
fq(Zq). Plugging this in (I3)), this leads to

73 falZa

Zq k>0

This yields both that f(Zq) < 1 and that Z, is solution of Equation (). Therefore, the definition
of p1 in the statement of the theorem makes sense and defines a probability distribution.

With this is hand, we can re-write () and easily get
P q( H po (et (u H w1 (ce(u
u€t(©) uet®)

Since these probabilities sum to 1 when summing over t, we get that II(A/) under Py is indeed
a (sub)-critical two-type GW tree by Proposition Bl and with the claimed offspring distributions.
Obtaining the law of the labeling IT'(M) given II(M) is then easy as () may be rewritten

PA(¥O) = (2.6) = P(1i00) =) ] T (16)
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Therefore, given II(M) = t, the labeling is uniform among all compatible labelings £¢. We can re-
express this by saying that (still under Pq(-[TII(M) = t)) the increments (II'(M)(uj) — ' (M) (u(j —
1)),1 <j<ece(u)+1),u €t with the cyclic convention of (), are independent as u varies, and
uniform among all the N (c¢(u)+1) increments sequences that are respectively allowed. Equivalently,
under Py(-[II(M) = t), the increments (II'(M)(uj) —II'(M)(u),1 < j < ¢¢(u)) are independent as
u varies in t() and have the law I/ft(u) of the statement. Increments (II'(M)(uj) — IT'(M)(u),1 <
§ < ce(u)) for vertices u € t() are a.s. equal to 0, and contribute to an ‘invisible’ factor of 1 to (),
which explains the definition of 1/6“.

To prove the criticality statement, it suffices to compute the expectations mg and my of pg and
p1. The expectation of the geometric law fig is equal to Zg — 1 = Zg fq(Zq), while

1 Zafo(Zq)
LZEN(k +1 - Yq\7a/
faZa) kzzo aV Ot s == ()

mi =

The product momy is thus Z2f}(Zq), which must be < 1 (the tree is sub-critical), which shows
that Zq must be the smallest solution of (), by the classification of solutions of (@) given in the
Introduction. The weight sequence q is then critical in the sense of Definition B if and only if
momy = 1 = Z3fl(Zy), i.e. (M) under Py is critical. If q is critical, is is regular critical if and
only if Zq < Rq where Rq is the radius of convergence of fq, and it is easy to see that this is
equivalent to the fact that p;(exp(a-)) < oo for some a > 0. O

Proof of Proposition . We have already noticed that if q is admissible, then Zq satisfies ()
and is the smallest solution, i.e. the one satisfying Zéfq(Zq) <1.

Conversely, suppose that () admits a solution. Then thanks to the classification of solutions of
the Introduction, we know that one of the solutions, say z, satisfies z2f('1(z) < 1. In a similar way
as in the proof of Proposition [T, we can write (3] as

W) =t)  (1\#" LD FN(E 4+ 1) g
B = (z) fa(2) u!}l) fq(2)
= JJ wolce(w)) JT #ilee(w))
uet(0) uet)

where pf(k) = 271 fq(2)* and pf(k) = 2*N(k + 1)qri1/fq(2), for k > 0, are two probability
distributions (for pf), use the fact that fq(z) = 1 — z7!). Since moreover these distributions have
means my = z — 1 = zfq(2) and m} = zf/(2)/fq(z), whose product is z*f{(z) < 1, we finally
recognize that the image of Wq/z under II is the (probability) law of a (sub)-critical two-type GW
tree. This shows z = Z4 < 00, hence the result. O

3 An invariance principle for spatial GW trees

In view of Proposition @, and in particular the formulas (@) and (), and Proposition [, the
asymptotic behavior of the radius and profile of random maps under Pq(-|#F (M) = n) (resp.
Py(-|#S(M) = n)), with q critical boils down to that of the labels distribution in a critical spatial
GW tree with law IP)ES,),(-|#T(1) = n) (resp. IP’EB?,(-|#T(O) =n —1)). We now state an invariance
principle for such trees.
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3.1 The invariance principle

Fort € 7, let @ = u(0) < u(l) < ... < u(#t — 1) be the list of vertices of t in depth-first
order. We let Hf = |u(k)|,0 < k < #t — 1, and we construct a continuous piecewise linear process
(HE,0 <t < #t — 1) by linear interpolation between integer points. The process H* is called the
height process of t.

Next, for a labeled tree (t,¢) € T, we let (S,tf = l(u(k)),0 < k < #t — 1) be the ‘head of
the discrete snake’ associated with (t,#). We extend this process into a piecewise linear continuous

process (Sf’g, 0 <t < #t — 1) by interpolating between integer values.

Let (u0, 1) be a non-degenerate critical two-type offspring distribution, and (v¥,i € {0,1},k >

1) be a spatial displacement law. We let P = Pfi),, for simplicity. Let mg,mq, 0(2], o? be the means
and variances of g, 41, and define

1 14+ my 14+mg
025\/03 o + 02 o € (0, ). (17)
Also, for ¢ € {0,1}, k> 1 and 1 <[ <k, let Ef’l = \/vF(2?) be the square root of the variance of

the [-th component of a random vector with law v/°, and

& 1/2
oF = \Jvk(l=?) = (Z(zi“f) : (18)

=1

where |z| is the Euclidean norm of z € R¥. We define

2 m m
=1 0 1

2= |52 | e 8 mpye). 19

Recall the definition of NI, Sect.[[3l We endow C(R.,R) with the uniform topology, and C(R, R)?
with the product topology. The invariance principle states as

Theorem 11 Let (ug, 1) be a critical non-degenerate offspring distribution, and suppose it admits
some exponential moments. Let (V(])“,Vf,k > 1) be non-degenerate spatial displacement laws which
are centered (vF(x) =0), and such that there exists some n > 0 such that for i € {0,1} and k > 1,

MF ::/ |z 1k (dx) < oo.
Rk
Last, assume that for some D >0, as k — 00,
ME v MF = O(kP). (20)

Then, the constants o,% > 0 are finite, and the following convergence in distribution holds on

C(R,R)2:

T gT.L
( (#1T/21)t> ’ (#f/zl)t under PO (|#TV) = p)
" 0<t<1 "

0<t<1

(@) (2 T+ m; ) <ﬂ2(1+mj)1/4
N — &t )
0<t<1

1)
7 rt> under N\
7 ot/ 0<t<1
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where by convention, n goes to +oo along the values for which the conditioning event has positive
probability.

One of the key ingredients in the proof of this result is the forthcoming Lemma [[8 which deals
with the repartition between vertices of either type in a conditioned two-type GW tree. In order to
be able to prove Theorem Bl right away, we give a simpler statement for now. Let t € 7; for some
i€{0,1}. For 0 <k < #t—1and j € {0,1}, we let

JI (k) = Card (49 1 {u(0), ..., u(k)})

be the counting process for the ranks of the vertices of tU), when t is visited in depth-first order. We
extend it into a right-continuous non-decreasing function on [0, #t — 1] by letting Jt(j )(t) = Jt(j )([t])
The renormalized function 7,(;]) = (Jt(j)((#t — 1)t)/#tU), 0 <t < 1) is the distribution function
for the probability measure putting equal mass on each number k/(#t — 1) with k& € Z, such that
u(k) € t(). The following result says that vertices of either type are homogeneously displayed in a
GW tree conditioned to be large.

Lemma 12 Let ug, u1 be non-degenerate critical, and admitting small exponential moments. Then
fori,j € {0,1}, under PO (-|#T0U) = n), the processes (7(Tc)(t),0 <t<1),ce{0,1} converge in
probability to the identity (t,0 <t < 1), for the uniform norm.

We end the present section by showing how Theorem [l and Lemma [ allow to prove Theorem
and Proposition E

3.2 Computation of the scaling constants associated with random maps

Let q be a regular critical admissible weight sequence. Then we know that W(M) under Py has law

P;E?,Z, where i, v are defined as in Proposition [ We also know from this proposition that pg, p1

admit some exponential moments (ug because the law is geometric, and p; because q is regular
critical). Also, it is plainly non-degenerate.

On the other hand, we have to check that the yf are centered and satisfy the moments conditions
of Theorem [l For v} it is trivial (these are Dirac masses at 0). Since v} is carried by the set
[—k, k]*, it is straightforward that its marginals have moments of order 5 which decay at most like
k>

Next, we compute the constants o, associated with p,r. On the one hand, pg has mean
mo = Zq—1=m;", and variance 08 = Z4(Zq —1). Also, G, () = fq(2Zq)/fq(Zq) by definition,
and by differentiating, p; has variance

2 3
o ZalilZa) | Zy=2  ZyfqZa) | Zq-2
fCI(ZQ) (Zq - 1)2 Zq -1 (Zq - 1)2

This gives, after some simplifications,

where pq is defined at (H).
On the other hand, we have to compute Zlggk(zl{”"l)Q to give the value of ¥ (notice that
Eg’l = 0 for every k,1). Recall that v¥ is the law of (X1, X1 + Xo,..., X1 + ... + X3), where
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(X1,..., Xpy1) has a uniform law in {(z1,...,7511) € (Zy U{=1}) 121+ ... + 254 = 0}. But
then, (X1,..., Xg 1) is exchangeable, and E[X1] = (k+1) ' E[X1+...+X}41] = 0, so the variables
X;,1 <1<k are centered, as well as the marginals of v¥. Moreover, it holds by exchangeability’
that

S8 = Var (X1 4... 4+ X;) = [ Var (X1) + 1(I — 1) cov(X 1, X5).

Since Var (X7 +..., Xk11) = 0, we obtain that cov(X;, X2) = —Var (X;)/k. It remains to compute
the variance of X;. Using the interpretation in terms of compositions, one finds easily that

% —1—1\ (2 +1
I f —1<I<k. 21
(X =1) </<:—1 >/<k+1> " - ()
and then, since %(Z) = (Zﬂ)’

E((2k—X)(2k+1-X1)) Ek: 2+ 1-1) (21 _’il B 1) (241
k(k+1) N =\ ket k+1 _i:O k+1 k+1
2k +3 / 2k+1
k+2 k+1
from which we get Var (X;) = 2k/(k +2). Finally, this gives (3512 = 21(k — 1+ 1)/(k +2), and by
summing this for 1 <1 <k,
()2 k(k + 1).

We obtain

_ 73 f1(7
> = MZMl(k)k(k; 1) _ qfq(6Q)+2 _ \/%.

Finally, we obtain that the scaling constant Cq appearing in front of r in Theorem [T], for j = 1, is

ol/2

o _VEREm)t( dpg NV
a “\9Z-1)

3.3 Proof of Theorem

(i) From (@), we know that Z(M) under Pq(-|#F (M) = n) has the same law as max,er L(u) —
minger L(u) + 1, under PO (|#TM = n). In turn, this is equal to 1 + maxo<i<gr 1 sht —
ming<;<#7-1 StT 'L The convergence of the second component in Theorem [Mentails that n~'/4%(M)
converges in distribution to CqA(r), as claimed. Indeed, the convergence holds for the uniform
topology, under which the mapping f +— supg<,<; f(t) (resp. f +— info<i<1 f(¢)) is continuous.

(ii) Let v/ be picked at random in S(M) \ {t} conditionally on M under Py(:|#F (M) = n).
Then by Proposition @ the law of djs(¢,t’) is the same as that of 1 4+ L(V) — minycp L(v") under
PO (|#TM = n), where V is uniformly picked among the vertices of T conditionally on T, L.
To be completely rigorous, this involves an enlarging of the probability space T, and we do it in
the following convenient way. We endow the space T(® x [0,1] with the law P = PO (.|#T(1) =
n) X dz, where dx is Lebesgue measure on [0,1]. If ((T,L),U) is the identity map on this space,

'This argument was suggested by a referee
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then under IF), U is a uniform random variable in [0, 1], independent of H T,ST’L,jgg ), Then, let
U:(FO) = (jg)))_l(U), where (j(TO))_1 is the right-continuous inverse of 7&0). By definition of 79),
it holds that (#1" — 1)U}0) is the rank in depth-first order of a uniform random vertex of T'(°),

Otherwise said, u((#1 — 1)U}0)) is uniform in 7% given (T, L). Hence, the law of the distance in a
Py(-|[#F (M) = n)-chosen random map from the root to a uniformly chosen non-root vertex is the
7L (o) — min STL 4 1 under P.
#T-1)UY
On the other hand, the convergence of (7&9 ) (t),0 <t <1) to the deterministic identity function,
which is described in Lemma [ must hold jointly with that of the height and snake processes
under PO)(-|#7(M) = n). So, by Skorokhod’s representation theorem, we may find a probability
space on which the convergence holds almost-surely, that is, we can find processes (H", S™, 7”) with
the same law as

same as that of S

_ — T,L —(0)

<n 1/2H(7;¢T71)-an 1/45(#T—1).aJT ) under IP>(0)(‘|#T1 =n), (22)
and which converge uniformly a.s. to a triple (B, S,id[g 1)) where (B, S) has law NO . We take a
uniform random variable U on [0, 1], independent of all these processes, and let U™ = (J")~1(U),
which has the same law as U}O) with the above notations. Since J converges uniformly to the
identity, U, converges to U a.s., and therefore, S7;, converges a.s. to S as n — oo. Moreover,

inf S™ converges to inf S as n — oo, so finally, we obtain that n*1/4(ST’L — min STF + 1)

#T-1)U
under P converges in distribution to Sz —inf S, which has the law of Cq(ry —infr) under N x dz.
By the rerooting properties of the Brownian snake of [T9, [[6], (rs1¢ moq 1 — rt,0 < s < 1) has same
law as r under NV, for every ¢. So under NV x dux;,

—
=

rgy — inf ro=ry — inf (r —rp+ry) = — inf ro=-A_(r
v nf =1y 0Ss§1(5+Umod1 U +1U) odnt v (r),

which by symmetry has the same law as A, (r), as claimed.

(iii) For every k > 0, we have, using ([[0),
IOk = (1 + #tO) " #{u e t@ : f(u) —minl +1 = k})

whenever (t,¢) = ¥(m). We can rewrite this as

#O —(0)
T+ 0 Jy Yty -mseenmi e @

Thus, for every g which is Lipschitz and bounded,

—inf St¢ +1

nl/4

6,0
(g = / P
A prOy

9(0)

—(0)
A1) + 1 + #t(0)°

Note that because of the convergence of 79) ) in Lemma 2, the quantity #7© under P©) (-]#T(l) =
n) converges to infinity in probability. We then use again the Skorokhod representation theorem,
and suppose given processes H", S™, J" with respective laws that of @2), which converge almost
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surely for the uniform norm to (B, S,id[g ), where (B, .5) has law N Then, the measures d.J "
converge weakly to the uniform law on [0, 1]. We have

1 1
/ g(SP —inf S + n~YHdT" (t) — / g(S; — inf S)dt
0 0
1
= / (g(Sp — inf 8™ + n~Y4) — g(S; — inf S))dT" (t)
0

1
n /0 g(S; — inf §)(dT"(t) — dt)

The first term on the right-hand side converges to 0, because S™ — inf S™ converges uniformly to
S —inf S, and ¢ is Lipschitz. The second term converges to 0 because g(S; —inf S),0 <t <1 is
continuous and bounded, and dJ" converges weakly to d¢. Since fol g(S¢ — inf S)dt has the law of
(#", g) under N this ends the proof. O

Remark. A somewhat simpler proof for (ii), using (iii), could be obtained following the same lines
as Le Gall [I5]. We thought however that the present approach, which for example can be easily
extended to handle the case of several sampled points, was worth mentioning.

The proof of Proposition Hlis entirely similar to the previous proof, the only significant difference
being that one should use the probability distributions PO (:|#T(®) = n) rather than PO (-|#71) =
n). This tacitly implies that we must take n along values for which this conditioning is well-defined.
Except from that, there is a minor change due to the fact that the scaling constants in the limit are
different, namely

\/52(1+m0)1/4_ Apg 1/4
()"

Details are left to the reader.

4 Convergence of the height process

The goal of this section is to prove the convergence of the first component in Theorem [ This
involves a couple of lemmas, which we now describe.

4.1 GW forests

A forest f is a subset of U that is of the form

£=Jktg,

k

where (t(k)) is a finite of infinite sequence of trees, called the tree components of f. We let F be
the set of forests. If f € F and u € f, we define the fringe subtree f, € 7 by {v € U : uv € f} as
above, and [f], = {u} U (f \ uf,) € F the pruned forest. With this notation, observe that the tree
components of f are f1,f5,.... For f € F and u € f, we let ¢g(u) = cg, (&) be the number of children
of win f. If it is understood that w is an element of f, for f € F, we call |u| — 1 the height of w.
It differs from the convention on trees because we want the roots of the forest components to be at
height 0. For f € F and u € f, Y¢(u) be the first letter of u, i.e. the rank of the tree component of
f containing wu.



4 CONVERGENCE OF THE HEIGHT PROCESS 24

We also want to consider forests of marked trees, i.e. sets of the form (J; kt ) with t(;) € 7;,i €
{0,1}. We then define, for i € {0,1},
£0 = Jrf).
k

We let Fy be the set of forest constituted only of O-marked trees, and F; the set of forests constituted
only of 1-marked trees.

If i € {0,1}, and (p0, 11) is a subcritical pair of offspring distributions as in Sect. 22, and for
r € NU{oo}, we let P be the i image law on F; of (P( ))®r under the map

(ta),t U Kt k),

going from the set of sequences of r trees in 7; to F;. We do not refer to p in the definition of P,@,

but the value of pg, 11 should be clear according to the context. We let F': F — F be the identity
mapping.

In the sequel, if t € 7 or f € F, we let u(0) < u(l) < ... be the list of vertices of t or f in
depth-first order. Similarly, for i,j € {0,1} and t € 7; or f € F;, we let u()(0) < ul)(1) < ... be
the list of vertices of t) or £(0) listed in depth-first order. Although there is no mention of t,f in
the notation, it should be unambiguous according to the context.

4.2 Controlling the height and number of components of forests

The first technical lemma gives an exponential control on quantities related to the n first vertices
in a monotype GW forest.

Lemma 13 Let pu be a critical non-degenerate offspring distribution on Z,, i.e. p(l) < 1 and p
has mean 1. Suppose also that p has finite variance. Let Py be the law of a GW forest with and
infinite number of components and offspring distribution p (with the previous notations it is ché)
whenever pg = 1 = p, in that case, the role of i € {0,1} is irrelevant). Then, there exist constants

0 < Ch,Cy < o0 such that for every n > 0,

P (s ()] = 257 < Ca(n -+ 1) exp(~Cant). (23)
and
Poo(Yr(u(n)) > n'/#1M) < O exp(—Con™). (24)

Proof. We bound the first probability by (n + 1) maxg<g<, Poo(Ju(k)| > n1/2%7). Tt is known [I0,
Sect. 2.2| that |u(k)| has same distribution as the number of weak records for a random walk with
step distribution p(- + 1) on {—1} UZ,, from time 1 up to time k. Suppose such a random walk
(Wyp,n > 0) is defined on some probability space (ﬁ,ﬂ, ﬁ) By assumption, the step distribution
of this random walk is centered and has finite variance. Therefore, calling 79 = 0 and 73,7 > 1 the
time of the i-th weak record of (W,,,n > 0), we have from Feller [[1]| that (7, — 7;_1,7 > 1) is i.i.d.,
and the Laplace exponent of the common distribution satisfies

d(\) = —log E [exp (—A71)] o C'V\. (25)
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For some C’ > 0 Now, for k < n, we write Py (|u(k)| > m) as

P (Zm —7io1) < k) < ¢E |exp (—Z ‘Tﬂ = exp(1 — m(1/k)). (26)
i=1

i=1

which by monotonicity of ¢ is less than exp(1 — m¢(1/n)), and taking m = [n!/2t7] and using (23
gives ([23).

The proof of ([4)) is very similar. By a well-known application of the Otter-Dwass formula (see
e.g. [21, Chapter 5|), the sizes (#F, #Fs, ...) of the components of the forest F' under P, are i.i.d.
random variables with distribution

Py (#F) =n) = %ﬁ(Wn = —1).

By using once again the fact that the step distribution is centered and has finite variance, the local
limit theorem [T, Theorem XV.5.3] entails that Py (#F, = n) is equivalent to C”n=3/2, where
C" > 0 is a constant multiple of a normal density at 0. Therefore, an Abelian theorem [T, Theorem
XIII.5.5] entails that the Laplace exponent ¢ of the distribution of #F; under P, is equivalent to
A2 up to a multiplicative constant as A | 0. Noticing that {Yr(u(n)) > m} = {37 #F; < n+1},
the result is then obtained by a straightforward analog of (28), replacing P by P, (1; — Ti—1) by
#F;, and 5 by ¢. We finally adapt the constants C, Cy so that they match to both cases. O

A consequence of this is the following analogous result for two-type forests.

Lemma 14 Let (uo, p1) be a critical non-degenerate offspring distribution, and suppose po, p1 have
finite variances. Then, fori,j € {0,1}, and every n > 0, there exists some € > 0 such that for every
n large enough,

(@) () S pl/24n ) ~ _nt
P (g W01 2 20) < s, 7
and in particular,
PO ( max |u| > n1/2+n> < exp(—n®), (28)
u=uli) (n)

since Max,, 4, () () [u| < maxo<p<n w9 (k)| + 1. Moreover,
PR (Yp (P (n)) = n'/2H7) < exp(—nf). (29)

Proof. Suppose that i = j. For f € F;, define the following analog of the transformation I's : f — U

of Sect. B2 by A
Te(kv) = kg (v), kv e f@,

and Tg(v) = T¢(—w) if v € F+D 50 T skips odd generations in all of the tree components of the
forest f. We let I'(f) be its image, so that

T(f) = | JkT(fy) € F.

k>1

Notice that T'¢(u((n)) is the n 4 1-th vertex in depth-first order in I'(f). Tt is then a consequence
of the definitions of I'y, ' that

2Ce(ul? (n)| =2 = [l (n)| = 1, and Te(ul? (n)) = Tr) (Te(u® (n))). (30)
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As in the discussion leading to Proposition B under PO the tree ['(T') is a monotype critical GW
tree, and therefore, under Po(ci,), the forest I'(F') is a monotype critical GW forest. Its offspring
distribution 7z has generating function Gy = Gy, 0 G, ,,, and if pg, 1 have finite variances, we
can differentiate Gy twice to obtain that 1 itself has finite variance. Hence, Lemma [[3 applies and
gives that for every n > 0, there is some € > 0 such that for n large enough,

(@) (@) > /240 ) < _nE
P (a0 0)] = 0207} < expl-1). (31)

Therefore, using B0), up to taking a smaller e, we obtain (1) for some ¢ > 0 and all n large.
Similarly, (£9) follows by applying (B0) and 4 to I'(F') under PY.

It remains to prove the case ¢ + 1 = j. To this end, we introduce a transformation on forests
that skips the first generation. For f € F, we let n(f) be the forest with tree components
(fe1,- -+ freek), B = 1), where these tree components are put in lexicographical order of the in-
dex kl,1 <1 < ¢¢(k). For every u € f with |u| > 2, there is a unique corresponding v’ in 7(f), that
we denote m¢(u) = u'.

If f € 7, then 7(f) is considered as an element of F;y1, and we let Iy = T'r¢) o m¢, and
I''(f) = T{(f), so I' first skips the first generation of a forest, and then skips all odd generations
of the new forest (see Figure Bl where I is applied to a forest with one component). As for T, is is
easy to see that if £ € F;, then T4 (u(+1)(k)) is the k 4 1-th vertex of T'(f) in depth-first order, and
has height satisfying 2|T% (v (k))| = [ul*1(k)|, which mirrors the first half of (BI). Moreover,
we have

Yo (L (D (n))) = Te(uV(n)) = #{1 < k < TV (n)) : ce(k) = 0}, (32)

where the second term accounts for the fact that some of the tree components of f do not have
vertices of type i + 1, and thus do not count in the construction of I'(f).

Now, by construction, the law of 7(F") under P is PUTY 5o that the law of I''(F) under pY
is that of a monotype GW forest with offspring distribution 7', and Gy = Gy, 0 Gy,. We thus
obtain ([£7) by applying Lemma [[3 to IV(F') under Po(ci,), just as we did in the case ¢ = j.

Obtaining (9 is slightly more delicate, since the second half of ([B) is now replaced by (B2).
Under P, the random variables cr(k) are identically distributed with law p;, so that B(m) :=

#{1 < k < m : cp(k) = 0} is a Binomial random variable with parameters (m,u;(0)). By
Heeffding’s inequality, if B(n,p) is Binomial with parameters n > 1,0 < p < 1, we have

P(|B(n,p) — np| > y) < 2exp(—2y°/n). (33)
Therefore, for any v > 0
Py (ggg |B(k) — kpi(0)] > nt/ 2+”/2> < 2nexp(—n”/2). (34)

For simplicity, write T, = Yr(u*Y(n)) and Y, = TF/(F)(F%(U(”l)(n))). Then, [B2) gives
B(T,) =7, — T/, and since Y,, < n by definition, (B4 yields

PO (T, — T}, > nt/?11/2) < 2nexp(—n?"/2).

Finally,

PO (X 2 nl/240) < PO (Ty = 17, > n!/257/2) + PO(Y, > n!/247)2),
and both terms are < exp(—n®) for some € > 0 and n large enough, the second term because of
&) applied to the monotype GW forest I'V(F') under Po(é). O
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4.3 Ancestral decomposition of a GW forest

A key result for our study is a multitype version of an ancestral decomposition for GW trees, related
to the so-called size-biased GW distribution. Let (pg, 1) be a non-degenerate critical two-type
offspring distribution, and define the associated size-biased distributions
foky = B0®) g gy 2B sy
mo mq
Notice that these distributions do not charge {0}. The size-biased GW tree is an infinite tree (an
element of 7 with the notation of Sect. E2) containing a unique spine, i.e. an infinite injective path
starting from the root. On some probability space, let (Xu,)?u,ju,u € U) be a sequence of i.i.d.
random variables such that X, has law fi/,| (Ju| taken modulo 2), X, has law [iu|» and conditionally
on X’u, Ju is uniform in {1,2,... ,)?u} Then, let wy = &, and recursively wj1 = w;jw;,j > 0. Let
X, =X, ifuce {wp, w1, ...}, and X, = X, otherwise. Finally, let gbe the element of 7y defined
by R
E={u=uy...ux €U :y; gful___ui71,1 <i<k}u{o}.
We see that E is ‘almost’ a GW tree, except for one distinguished spine which uses the distributions

,uo, 11 instead of g, p1. In particular, under the criticality assumption, we see that all fringe subtrees
of 5 attached to the spine, i.e. of the form fw k for k # ju;, are a.s. finite, so the only infinite simple

path starting from the root in £ is a.s. (wo,w1,...). In particular the trees [E]wh are a.s. finite for
h > 0. For every h > 0, let PO be the law of ([¢]w,,ws), where we understand that [¢],, is an
element of 7j. It is a law on the set of pointed trees with ‘white’ root

T¢ = {(t,u) 1t € To,u € t}.

We let (T, V') be the identity mapping on 7. Similarly we define PMk op 717, where 7" is a copy
of 7, by switching the roles of po and . Flnally, forreN,je{l,...,r},i€{0,1} and h >0,

we let IBT(i)’j " be the law on pointed forests whose distinguished vertex is a leaf (i.e. a vertex without
children)
Fr={(f,u):feF,uef c(u) =0}

of the random variable
U k), Jw |
1<k<r

where (), k # j) are independent with distribution P and independent of (&
law P@-h. We let (F,V) be the identity mapping on F;.

j),w), which has

Lemma 15 (Ancestral decomposition for GW forests) Let (uo, p11) be a critical non-degenerate
offspring distribution. For every r € N and non-negative measurable functions G1,Ga

E® Z G1(w, [Fw)Ga(Fy)
weF
1 r PN ,
= > > (U ) EDIMG(V, )BT Gy (T)], (35)
T Mit1 57 >0

where as usual i + 1, h + i(+1) are taken modulo 2.



4 CONVERGENCE OF THE HEIGHT PROCESS

28

Proof. We treat the case i = 0 only. Let f € Fo, let u be a leaf of f and let t € 7},_;. Then, it
is enough to show the result for G1(u, f)Ga(t) = Ly, ¢4}, by linearity and monotone convergence.

In this case, the left-hand side of (BH) is equal to PT(O)(F = [f,u, t]), where [f, u, t] is the only forest

f’ € Fy containing u with [f'], = f and f/, = t. This probability is

T #yop-1(ce (v).

vef!

Let j = uy be the first letter of u. We can redisplay the last expression as

T eotce@) T TTwmetee@) T mwleGv) ]

vet 1<i<r,l#7 vef; vef;,juFu vef,vhu,v#u

ol —1(ce(v))

(we omit the brackets around the different products for convenience). Let S ={v € f: —v bt u,v ¥

u} be the set of neighbors of the ancestors of u, which are not ancestors of u. We recognize

PO(F = [f,u,t])
pu=D (T = ¢) H PO(T = 1) H PUI=D(T = £) H

1#7,1<I<r veES vef vhu,v#£u

We can also rewrite the last product as
M| -1

ce(v)

[T Ao

vef vhu,v#u

After a moment’s thought, we see that, letting u = ju/,

H P(|v|71)(T _ fv) H M — ﬁ(o)y\uFl((T’ V) _ (fj,u/)).

veS vef vhuv#£u Cf(v)

On the other hand, as one can check from the fact that mgmq = 1,

1+ My
H My|—1 =

vef,vhu,v#u 14+my
and we finally recognize
14+myy ~
PO(p —If — Tl oy ul-1 = (F: u'
T ( [7u7t]) 1+m1 (( 7V) (]7u))

< JI POT=1)|Pl-(T=1

1£4,1<1<r
1+ mpp

= O L, (V, F)EW (L (T)),

1+ my
where h = |u| — 1, which is (B3).

o1 (ce(v))-

O

The first corollary we infer from this is a control on the maximum vertex degree in a two-type

GW forest.
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Lemma 16 Assume that the pair (po, 1) is non-degenerate, critical and has some exponential
moments. Then for every n > 0 there exists € > 0 such that for n large enough, and i,j € {0, 1},

PO < max cp(u) > n"> < exp(—nf). (36)

u=u() (n)

Proof. Let n > 0. Then by using Lemma [}, the left hand side of (B8 is equal to

P ( max cp(u) >n", max |u| < 0?7 Tpw(n) < n1/2+’7> + R(n)

u=uli) (n) u=ul?) (n)
(4)
S P[n1/2+n] <|ugrlzzli3{2+n CF(U) 2 n77> + R(n)’ (37)

where R(n) < exp(—n®) for some ¢ > 0 and n large enough. But then,

P[E;Li/2+n] <|u2§?{2+7l CF(U) > nn> < E[(:L)1/2+’7} (Z ]l{|u§n1/2+n}]l{cp(u)2nn}> )
- uekF

and applying Lemma [[3 to G1(u, f) = Lyjyj<n1/24ny and Ga(t) = T{cy(2)>nn}, this is equal to

1 [n1/2+7l} [n1/2+n}
1+ mis1 ]Z; hZ;) (L4 Mpgig1) phri([n”, 00))
< Cn'? (uo([n", 00)) V p1([n, ), 38)

for some C' > 0. But since pug, 1 have some exponential moments, it holds that p;([n",00)) <
exp(—an™), for some a > 0, and n large enough. Combined with ([BX) and @), this yields Bf). O

4.4 An estimate for the size of GW trees

In order to pass from statements on forests to statements on conditioned trees, we need to estimate
the number of vertices of either type in two-type GW trees.

Lemma 17 Let (ug, p1) be a critical non-degenerate offspring distribution, and suppose that pg and
w1 have finite variances. Then for i,j € {0,1}, there exists a finite constant Ci; > 0 such that

n32pO(#10) = ) — Cij,

where it is understood that n goes to infinity along values for which the quantity on the left-hand
side is strictly positive.

Proof. Suppose i = j = 0. Then PO(#T©) = pn) = PO(HI(T) = n), where I' denotes the
mapping that skips odd generations, as usual, so I'(T") under P(“) is a (monotype) GW tree whose
offspring distribution i has generating function Gy = Gy, o G, It results that 7 is critical, non-
degenerate, and has finite variance (by differentiating twice Gg). The conclusion follows from the
Otter-Dwass formula and the local limit theorem that we used in the proof of Lemma [[4k we have
PO(#TO) = pn) = n~1P(W,, = —1) ~ Coon~?/2 where W under P is a random walk with step
distribution fi(- + 1). The case i = j = 1 is similar.
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It remains to deal with the case ¢ = 0,7 = 1. In that case, we have

PO#TM =n) = Y PO(cr(e) = r) PO HTY = njer (o) =)
r>1

= S PO(er(o) = r) PO #FD = n),

r>1

where Pr(l) is the law of a two-type forest with ‘black’ roots and r tree components. Using again the
map " on all the tree components, we see that this probability is the same as the probability that a
monotype GW forest with 7 tree components has n vertices, where the offspring distribution 7’ has
generating function G, o G,,. The Otter-Dwass formula shows that this is equal to rn_llg(le =
—r), where W’ under P is a random walk with step distribution 77’ (which has finite variance).
Hence,
32 PO (#TM) = p) = Z 7o (T) nl/Qﬁ(Wrg = —r).
r>1

To conclude, notice that ) rpug(r) = mg, and that the local limit theorem of [T}, Theorem XV.5.3|
shows that n'/2P(W/ = —r) converges to a limit C' > 0 (a multiple of a Gaussian density evaluated
at 0), while remaining uniformly bounded as r varies. By the dominated convergence theorem, it
results that n®/2PO) (#T(1) = n) converges to Cmgy = Coy. O

This estimate allows to use a conditioning argument similar to that used in [I7], which will be
illustrated in the proof of the next lemma. This idea is the following: if A, is a set of trees such
that P"(A,) < exp(—n®) for large n, and some & > 0, then

_ POF € A #FP =n)

PO(A,|#TY) = n) : .
PR =)

)

which by Lemma [[Mis less than exp(—ne/ 2) for all n large. Thus, we can obtain a similar exponential
control of the event A, under the law P® (.|#T0) = n).

4.5 The ‘convergence of types’ lemma

The goal of this section is to give the asymptotic repartition of vertices of either color in large
two-type GW forests. This is known as the ‘convergence of types’ theorem in the literature on
multitype GW processes, and we propose a new approach to it.

For t € 7o U Ty, let
Ggi)(n):#{uét:u<u(i)(n)} , 0<n<#t0 1.

Notice that u(!)(n) is not counted in the set. We also let by convention G,Ei)(#t(i)) = #t — 1. The
definition of GEZ)(k) is similar for a forest f € Fy LI Fi.

Lemma 18 Assume that (ug,p1) are non-degenerate critical offspring distribution, that admits

some exponential moments. Then, for any v > 0 there exists € > 0 such that for any i,5 € {0,1},
for every n large enough,

PC@ ( sup
0<k<n

GO (k) — (1 + mj)k( > nl/W) < exp(—nf), (39)
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and similarly, if besides ¢ € {0,1}, for n large enough,

p® sup
0<k<#T ()

Gywy41+mﬁﬂ>nV“v

#T() = n) < exp(—n°) (40)

where we take the convention that the conditional probability on the left-hand side is 0 if P(i)(#T(C) =
n) =0.

Proof. Let f € Fy. Notice that

G(m) = eV (m)+ > (1 + o (u™ (8)) L0 (ypead (41)
k=0
m—1
+ ) (4 @D DT (0 yeu myy -
k=1

where, for u F uM (m) in £,
¢ (u) = #{v: v =u,v < uM(m)}.

Indeed, in (@), are counted the number of (type 0) roots of the forest f before attaining u (m),
and the terms (1 + c¢(u(M) (k))) come from counting vertices of f by groups of parents of type 1, and
their children of type 0. One should be careful, however, that if the parent of a group is an ancestor
of u)(m), then its children that appear after u(Y) (m) in depth-first order should not be counted,
hence the terms ¢;. This shows that

k

k
(1) 1) 1)
Or%l]?%Xn G ; 1 + Cf )) § Tf(u (n)) + Orélkagxn l_o(l + Cf(u (l)))]l{u(l)(l)l—u(l)(k;)}'

Moreover, we claim the variables cp(u(!)(n)),n > 0 under PCES) are i.i.d. with law p;. We briefly
sketch the argument: let R, be the vector of ZL such that R, (k) is the number of younger brothers
of the ancestor of u(n) with height k£ > 1, i.e. those brothers which have not yet been visited at step
n of the depth-first exploration (R, (k) = 0 for & > |u(n)|). Then, under PéS), ((Rn, |u(n)|),n > 0)
is a Markov chain, the discrete analog of the exploration process of [I}]. Its step transitions are
given as follows: conditionally on (R, |u(n)|) = ((r1,...,71,0,...),h), (Rpt1,|u(n + 1)|) is equal
to ((r1,...,7h,c— 1,0,...), h + 1) with probability px(c) for ¢ > 1, and is equal to ((ry,...,rx —
1,0,...),k) with probability up(0), where & = sup{l > 1 : r; > 0} (and ((0,...),0) if R, = 0).
One sees that the variables cx(u!)(n)),n > 0 can be recovered from this process by introducing
the successive times where |u(n)| is odd which are stopping times, and an application of the strong
Markov property yields the result.

Therefore,

21+CF ))—(1+m1)k

> n1/2+77> < exp(—na),

for some € > 0 and all n large enough, where we have used a standard moderate deviation inequality
for i.i.d. random variables that admit some exponential moments (see [20), Theorem 2.6]).
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Therefore, by further using Lemmas [l and [[A] if we let A,, = {maxp<x<p |Gg)(k:) —(14+mq)k| >
n!/247}, and By, = {maxocren | (1 + er(uM (1)) = (1+ma)k| < n'/2F7}, it holds that

PQ(Ay) = R(n)

+ PO (An,Bn, max |u| <02 Tew®(n)) <n'/? max  cp(u) < n") ,
u=u) (n) u=u (n)

where R(n) < exp(—n®) for some € > 0 and n large enough. But on the event that max, 1), [u| <
n/2t1 and max, <, (1) () cr(u) < n' we have for n large,

k

max > (14 e (D D)L en euen gy < /2L ) < 01/,

If we choose 31 < v, we finally obtain that for n large, A, is disjoint from the intersection

B, N { max |u| < n1/2+77} N {Tp(u(l)(n)) < n1/2+77} N { max cp(u) < n”} ,

u=uM (n) u=zuV)(n)

so that for n large, pY (A,) = R(n) < exp(—n®).

The case i = j = 0 is similar but easier, as the term Y¢(u(!) (n)) of (@) does not appear anymore.
Details are left to the reader.

We now pass to the conditioned statements. We apply the conditioning argument mentioned in
Sect. 4l We first treat the case ¢ = j = 0. Using Lemma [[Q, for some constant C' > 0

Pc@ ( sup #Fl(o) = n)

0<k<#F(0)
G (k) — (1+ mo)k‘ > nt/2+y 2 p© = n)
PO (#T0) = n)

G (k) = (1+mo)k| > nl/2)

Py (Sup0§k§n

IN

cn®?pl) ( sup

G;Q)(k) -1+ mo)k‘ > n1/2+7> < exp(—n°),
0<k<n

for some £ > 0 and all n large. Notice the little artifact here: rather than considering a single tree,
we have considered a forest whose first component is conditioned. This yields the wanted result
Ed) for j = ¢ = 0, by restricting the sup to 0 < k < #F© — 1, but it also gives us a little more:
namely that P(i)(|G§9)(#F1(O)) -1+ mo)#Fl(O)| > n1/2+7|#F1(0) =n) < e for large n. Since
GO#FY —1) < #F < G (#FY), this shows that PO (AT — (1 + mo)n| > n/2H7|#T0) =
n) < e for large n. Since #T©) 4 #T() = 4T

€

PO(ETD — mgn| > 27 TO = ) < ¢ (42)

for large n. Thanks to this control on the number of vertices of type 1, we obtain for large n,
p < max #T(O) = n)

0<k<#T(1)

24 <max0§k§(mo+€/)" G (k) — (14 ml)k‘ - nl/%w) T exp(—n)
< 7
< PO (#TO) = ) ’

G (k) = (1+ma)k| > /20
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where 0 < &', and the exp(—n®) term bounds the probability that #7(1) is larger than n(mg + ).
This expression is less than exp(—n?") for some £” and large n because of the unconditioned control
B9 on Gg) (notice that the maximum is taken over 1 < k < Dn for some constant D > 0 rather
than 1, but this does not matter up to a change in the constant ). The remaining cases for j, ¢ are
symmetric. O

Proof of Lemma >From Lemma [[§, we obtain that (Gg)([#T(j)t])/#T(j),O <t<1)
converges in probability to the function ((1 +m;)t,0 < ¢t < 1) under PO (:|#T() = n), for the
uniform norm. In fact, it holds that (Gg?)([#T(j)t]) J#T,0 < t < 1) converges in probability to
the identity function, because #TW) /#T converges to (14 m;)~" under PO (-|#T() = n) as was
shown in the proof of the previous lemma. On the other hand, the process 7&5) of Lemma [ is the
right-continuous inverse function of (Ggf)([#T(C)t]) J#T,0 <t < 1) (this motivates our convention
G(Tc)(#T(C)) = #T — 1), so it also converges in probability to the identity function for the uniform
norm, as claimed. O

4.6 Convergence of the height process

The last ingredient that we need is the fact that the height process of a monotype GW forest with
r components, conditioned by the number of its vertices, converges to a scaled Brownian excursion.
The case 7 = 1 is known (see Aldous [2], Marckert & Mokkadem [I7], and Duquesne [9]). The
result for » > 1 is suggested in [2I, Chapter 5|. Recall that when pg = p; = p, the index @ in
the probability P(®) becomes irrelevant, so we let P, be the law of a (monotype) GW forest with
offspring distribution p and r tree components.

Theorem 19 Let i be a critical non-degenerate offspring distribution, admaitting small exponential

moments, and let o, be its variance. Then for any r > 0, the process (n*1/2H5171)t,0 <t<1)

under P.(-|#F = n) converges in distribution for the uniform topology to 20’;16 under NI,

Proof. We first note that under P(:|#T = n+ 1,cp (&) = r), the forest 177 U ... U rT, has same
distribution as F' under P,.(:|#F = n). Thus, under P,(:|#F = n), the height process of F' has same
law as the process obtained by concatenation of H™', ..., H* under P(-|#T = n+1,cr(2) =7), so
the rescaled process n_l/QH(I;_l)_ under P,.(-|#F = n) has same law as (n_l/QHan_l)tH)/n —-1,0<
t <1)under P(:|#T =n—+ 1,cp(2) =r).

Let ny,...,n, be positive integers with sum n, and let t1,...,t, € 7 be such that #t; = n,;.
Using the branching properties of GW trees, we have

T

P((Theo T) = (b1 o) [ er(2) = 14Ty = njy 1 < j <) = [[ P(T =t #7 =), (43)

i=1

so that given #7T; = n;,1 < i <r,under P(:|#T =n+1,cr (&) = r) the T;’s are independent GW
trees, respectively conditioned to have size n;. We next claim that for every € > 0, and every r such
that p(r) > 0,

P< max #ﬂ/ngl—e#T:n—i—l,cT(Q):r) — 0, (44)

i<cp(9) n—oo

which will be proved later on.
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Let T} be the largest tree among the T;’s under P(-|#T =n+1,cp(&) = r) (or the first largest
tree, if several trees have the maximal size). According to ([3)), (), and by the known r = 1 case
of the theorem, (n*1/2H£;T*71)t,0 <t < 1) converges in distribution to 20;16 under NM. Since
the number of individuals of the r — 1 other subtrees is o(n) in probability, the maximal height of a
vertex of these trees is o(n!/?) in probability (e.g. by Lemma [[J), from which it easily follows that
n*I/QHH(?ﬁTFl)_ — HI'||s goes to 0 in probability under P(-|#T = n + 1, cr(@) = r), which yields
the wanted result.

To argue (), we first observe that the same statement holds without conditioning on cp ().
Indeed, the known r = 1 case of the theorem shows that under P(-|#T = n+1), (n~Y2HL, 0 <t <
1) converges in distribution for the uniform topology to 20’;16. Recall that the Brownian excursion
is a.s. strictly positive on (0, 1), and let (¢;,1 < i < ¢p(&)) be the ordered list of integers such that
H' =1 (and te, (@41 = #T — 1). Then the lengths of the intervals ([t;,;41],1 < i < ep(9))),
is exactly (#7;,1 < i < ep(@)). Now, if f, is a sequence of continuous functions converging for
the uniform topology to f which is positive on (0,1), then for any e > 0, for n large enough, f,
is positive on (€,1 — €), and it follows that P(3i : t;/n € (,1 —¢€)|#T = n+ 1) — 0, which is
equivalent to the wanted property (observe ¢1/n — 0 while t., (g)11/n = 1).

On the other hand, for fixed r € N, P(cp(@) = r|#T =n+ 1) = u, P.(#F = n)/P(#T =
n+1) — ru, as n — oo, by the Otter-Dwass formula and the local limit theorem, as in Lemma [7
Since ), rp, = 1, the law of c¢p(@) under P(.|#7T = n+ 1) converges weakly. Equation (B is now
an elementary consequence of this and the previous paragraph. O

We are now ready to prove the first half of Theorem [l which we state as:

Proposition 20 Let (po, 1) be non-degenerate, critical and admit some exponential moments.

Then the process (n_l/zH@T_l)t,O <t < 1) under PO(|#TY) = n) converges in distribution to

the process 2071, /1 + mj;e under N,

Proof. Suppose first that ¢ = j = 0 and recall the definition of the mapping I'y, for t € 75. Under
PO we know that I'(T’) is a monotype GW tree with offspring distribution 7 and Grp =Gy oGy, .
Moreover, under PO)(-|#T©) = n), T(T) has the law P;(-|#T = n) of a conditioned monotype
GW tree, because I'r maps each vertex of T() to a vertex of I'(T) in a one-to-one way.

On the other hand, the formula Gz = G, o G,, and the fact that po and p; admit some
exponential moments entail that 7z itself admits exponential moments. Therefore Theorem [@applies

and it holds that under PO (|47 = n), (n_l/zH(Fn(Q)t,O <t < 1) converges in distribution to

20, Le under NO. We can compute oy by differentiating twice G, and we find

0% = moo? + miod. (45)

Next, for every t € 7y, it is an elementary exercise to check that

¢ opT® o)
=2t 1O k)

701 +1 (46)

' <2 ‘HF((O? ~H
JO (k)1
for every 0 < k < #t — 1, with the convention that H;(tt(g)) =
(

Lemma [[Astates that the process 7T0) = (J:(FO) ([((#T —1)t])/#T© 0 < t < 1) converges in prob-

ability to the identity (¢,0 <t < 1). This convergence holds jointly with that of (nl/QH(l;(z)t, 0<

0.
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t < 1) to a rescaled Brownian excursion. Skorokhod’s representation theorem ensures that there
exists a probability space on which random processes (H",J") converge a.s. to (B, (¢,0 <t < 1))
for the uniform norm, where H™, J” have same law as

_ 0
D, o<tsy, T

under PO (.|#T©) = p) | and B has same law as QUEle under N Then, the composed function
(H&J"(t)fl)/(nflyo <t < 1) converges a.s. uniformly to B, which says that n*1/2H(Fq()O)71) under

PO(#TO) = n) converges to 2e/o; under N(V). Also, it holds that SUPg<<1 ]H(an H—1)/(n—1) ~

H:;J"(t)/(n—l)| converges to 0 a.s.. This, paired with Equation (@), implies that for every ¢ > 0,
PO ( sup o™ ‘ S PO n> .0,
0<t<1 nJr (t)— n—0o0

Finally, this entails that (n *1/2H(7;#T 0 <t < 1) converges to 40§1e under N The result

follows from the fact that 407" = V= 20~1\/TF my, as is easily checked from ([[7) and (@H).

We next treat the case where i = 0,7 = 1. We apply the transformations 7, I” of Lemma [[4,
that skips the first generation, and then squeezes odd generations. Recall that 7, were defined
on forests, and that they take values in the set of forests (even if the initial forest has only one
component). Notice that if t € 7g, then 1t = {lu: u € t} € Fy. Under P, the forest 7(17) is a
GW forest with a random number of components, which is given by ¢ (@) and is independent of the
components of w(17"), and it holds that the law of 7(17") under PO (.|#T(1) = n) is the probability
measure d,uo(r)P,gl)(df) on Fp, conditioned on the event #F(1) = n. Then, IV(1T) under this law
is a monotype GW forest with law dug(r) P, (df) given #F = n, where P, is the law of a GW forest
with 7 trees and offspring distribution 77’ whose generating function is G, o G,.

Notice that under PO #TW = n, cp(@) = r), the forest 7(17T) has law p° ( |#FM = n).
Therefore, under PO)(-|cr(@) = r,#T™M = n), we obtain that I'(17T) has law P.. By Theorem
[, under this law, the process n=Y/2H (Z(le)) converges to a Brownian excursion scaled by 2/ o =
m /o. One checks that a companion formula to (Ef) holds, namely that

IV (t) I"(1t)

t_ —
Hy 2HJ£1)(R)7 ‘HJ(I) . HJ,E”(k) + 2, (47)
for 0 < k < #t — 1, with the convention that HF (16 _ H;;((ll? = (0. The same arguments as in

the case i = j = 0 entail that (n~'/2HE, 0 <t <1) under PT(O)(-\#F(I) = n) converges to a

(#F-1)t?
Brownian excursion scaled by 2v/1 4+ m1/o.

To complete the proof, since we are dealing with a random number of components, whose law
depends on n, i.e. a mixture in 7 of the laws PO)(-|cr(@) = 7, #TW = n), it suffices to use that
cr(2) converges in distribution under PO ((|[#7(1) = n), as seen in the proof of Theorem [@ [

A remarkable difference between Proposition and Theorem is that in Proposition B0l we
condition only on the total number of a portion of the vertices of 7', instead of the total size of
the tree. We have seen that this is the right conditioning to do when considering random maps
conditioned on the number of faces or vertices, but one may wonder whether the result is still true
under the probability laws P®)(- \#T = n), with different scaling constants (this would allow to
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consider random maps conditioned by the number of edges). We expect this to be true, but the
methods that are used in the present work are powerless to address this issue.

Let us end this section with a result on the increments of the height processes .

Lemma 21 Let p be a (monotype) non-degenerate critical offspring distribution. Then for every
fized v > 1, for every v > 0, under P.(-[#F = n), the quantity n™7 supg<p<pp_1 |HF — H,f+1]
converges to 0 in probability, with the convention that HaI;F = 0.

Proof. Using the same argument as in the proof of Theorem [[d, we may prove the statement under
P(-|#T = n), that is for a single GW tree conditioned to have n vertices. The positive jumps of
the height process of any tree are 41, and then, only the negative jumps have to be controlled. For
elementary symmetry reasons, the largest negative jump in H”, plus 1, has the same law as the
largest number of consecutive steps +1 in H”. But, in a non-conditioned GW tree, a run of steps
+1 in the height process has a geometric distribution: the probability that a run has length £ is
po(1 — po)*~1, and the different runs are independent.

Denote by G1,Ga,...,Gk the sizes of successive runs of +1 in the height process, where K
is random and is bounded above by n under P(:|#7T = n). Let v > 0 be fixed. Thanks to the
conditioning argument (the Otter-Dwass formula and the local limit theorem), since the function

max is non-decreasing, we have
#T = n) = O <n3/2Poo ( sup Gk> > /2 4 1)
1<k<n

= O(n°?Py(G1 >n"?+1))

P sup |HP — HE | > n/?
0<kE<#T-1

and since pg € (0,1), this is bounded by exp(—n€) for some € > 0, for n large enough. O

5 Convergence of the label process

The proof of the convergence of the second components in Theorem [ will be done by showing
that their finite marginal distributions converge, combined by a tightness argument.

5.1 Controlling the branching in conditioned trees

The convergence of finite-marginal distributions first needs some improvements and variations
around Lemma

Lemma 22 A conditioned version of Lemma[IA holds: fori,j € {0,1},

ueT

P <maX cr(u) > nn‘#T(j) = n> < exp(—n°). (48)

Proof. We have

pY <maxuju(j)(n) cp(u) > n")
POHTU) = n)

PO < max cp(u) >n"
u=uli) (n)

#FY = n) <
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which is smaller than exp(—n®) for all large n, by Lemmas [ and [ Since u < 1) (n) for every
u € F given {#Fl(]) = n}, this entails ([E). O

Let t € T, u € t,0<h<|ul,k>1,1<1[<k. We define
Aﬁj)(u, k,Lh) = #{vk u:e(v) = ku € vity,v € t9) [v] > |u] — h}.

the number of ancestors of u which are at distance at most h from w, with type j, k children,
and such that w is a descendant of the [-th of these children. We let Agj )(u, k,l,h) be the similar
quantity for a forest f € Fy L F; and u € f. Note that if max, cg(u) < K then Ag(u, k,l,h) = 0 for
any k > K, any [, h and any u € f.

Lemma 23 Let (uo, 1) be a non-degenerate critical offspring distribution admitting some expo-
nential moments. For every v > 0, M > 0, and i,j,c € {0,1}, there exists € > 0 such that, for n
large enough

AD (u, k1, h) — “"—(k)h‘

2m;

P sup sup

>1 #T(c) =n | <exp(—n%).
k>1,1<I<k ue€T,nY <h<|ul hl/2+7 =M ‘

Proof. Let v > 0, M > 0 be fixed, and choose < v2/M. By Lemmas P2, [8 and the conditioning
argument, we know that P® (max,er er(u) < n, #T < Cn|#T(©) = n) > 1 — exp(—n®) for some
constants C, e, and n large enough. Since A,(;j)(u, k+1,1,h) = 0 whenever maxyet ¢¢(u) < k, on the
event {maxyc¢ ct(u) < n'l, #1 < Cn} we have

sup sup KR [ AD (k1) — BB < g g2 B8 g
' T 2m; ey
k>n",1<j<k ucT nY <h<|u| m; k>nn m;

Since p; has small exponential moments and |u| < #T' < Cn, this is smaller than n'/4+7 when n is
large enough.

We now estimate A(Tj)(u, k,l,h) for k < n". We start with considering forests. Let & < n", and
1 <1 <k be fixed, and C be the same constant as above. By using Lemma [[4],

AP, 1, ) = 0

2m;

Py sup BL/247 M

oo .
u=ul9) (Cn),|u[>h>n7

‘ > 1 (49)

2m;

hl/2+v—M

AP, b1, 1) — 150"

(%)
< P[n1/2+n] _ Sup
u=u) (Cn),n7<h<|ul

> 1,8, | +exp(—n°)
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where B, = {Sup, () (cn) [ul < /21 Y p(u9) (Cn)) < n'/?*1}. The probability on the right-
hand side can be bounded as follows, using Lemma

j i(k)h

pY su >1 50
[n1/2+7’} uju(j)(Cn)7n7§1t/)’b§|u‘§nl/2+" h1/2+'7]§;_M — ( )
j (k)h
< g% 1 ‘Ag)(u’ LR — >1%1
— [n1/2+n] 1; n“fil/iI;Iu\ hl/2+v—M - {SupuEF(j) |u\§n1/2+’7}
[n/247) |AD WV, k1) — 1408
< (1Vmy)nt/2 P ~ "l
< (AVm)n ,;w o AT 2

Then, we argue that AFE,Z)(V, k,l, h) under P@ g a Binomial random variable B(m,p) with pa-
rameters p = p;(k)/m; and either m = [h/2 4+ 1] or m = [(h + 1)/2] depending on the parity of
i,j,h,h'. Heeffding’s inequality (B3)) entails that

4DV, k1, ) — 140

2my

-

pli).h’
F mSSL;LI;h’ W12y =M B
S : (k)R
- (i),h () _ (k)b > —Mp1/24+y
< Y P <AT (V. k,1,h) o, >k Mp
nY<h<h'
< 2K f?i‘}éh,eXp(—k‘QMh””/(?m)) < 20 exp(—n~2MTE /2),

Finally, the expression (B is bounded by
[n?/2+7]
Knt/24n Z h' exp(—n72M"+272/2) + exp(—n®),
h'=n"
for some K > 0 and large n, and this is < exp(—nsl), for large n and some &’ > 0.
This entails that

J

AP (1, ) — 1400

1"

>1| <exp(—n®),

PC@ sup sup

k<n Y, 1<I<k u<u@) ([Cn)), Jul>h>n hl/2tv M

for some ¢’ > 0 and n large. To obtain the conditioned statement, we apply our conditioning
argument once again. By definition of C, PO (#T > Cn|#T(9) = n) < exp(—n?) for large n. so
AP (b1, 1) — 590

2m;

p® sup sup

> 1'#T(C) =n
k<nn 1<I<k ueT,nY<h<|u|

—Mp1/2+~

< §=l0) (T(C) — n)—l
AP (1,1, 1) — 1500

2m;

‘ > 1] +exp(—nF)

X Po(é) sup sup

) —Mp1/2
k<nn 1<I<k y=<u() ([Cn]),nY<h<|ul k h1/2+7

< C'2(exp(—n") + exp(—n)),

for some constant C’ > 0, which yields the result. O
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5.2 A bound on the H6lder norm of the height process

The second ingredient which is required to prove Theorem [l is the following result, showing that
the a-Holder norm of the height process under PO (-|[#T0) = n) is tight for any o < 1/2.

We start by stating a monotype version of the result we need:

Proposition 24 Let u be a non-degenerate critical offspring distribution which admits some expo-
nential moments. Let P, be the law of a (monotype) GW forest with offspring distribution p and r
components. Then for every r > 1, ¢ >0 and o € (0,1/2), there exists C > 0 such that

( ’H(I;fl)s B H(}:Lfl)t

sup P,
neN

sup
o<s#t<1  V/nls —t®

| >C‘#F:n> <e. (51)

Proof. We claim that it is sufficient to prove the statement for » = 1, by using an argument similar
to that of the proof of Theorem [[U for the more general r > 1 case. Indeed, under P,(:|#F = n),
recall that n_l/QH(I;_l). has same law as the concatenation of the paths (n_l/QH(j;i_l)t,O <t<
(#T; —1)/n—1),1 <i <runder P(:|#T =n+1,cp(=&) = r), under which the trees T;,1 <i <r
are mixtures of independent GW trees conditioned by their sizes, and hence have a-Hoélder norm < C

with high probability by the r = 1 case. Now, it is elementary to check that if (#ﬂ)*l/QH@T__l).
has a-Hélder norm < C, then the same is true of (n_l/QHE‘Ci_l)t, 0<t<(#T;,—1)/(n—1)), because
n > #T;, and the concatenation of the paths still has a-Holder norm < 2'7¢C, hence giving the
result for r» > 1.

Hence, we are down to show that for every ¢ > 0 and « € (0,1/2), there exists C' > 0 such that

’H(I;L—l)s B H(j;z—l)t’
sup P sup > C‘#T =n| <e. (52)
neEN 0<s#£t<1 Vnls —t|®

We define the depth-first traversal, or contour order of a tree t as a function:
Fy : {0,...,24#t — 2} — { vertices of t },

which we regard as a walk around t, as follows: F;(0) = @, and given Fy(i) = z, choose, if possible,
and according to the depth-first order the smallest child w of z which has not already been visited,
and set Fy(i + 1) = w. If not possible, let Fy(i + 1) be the father of z.

For any 0 < k < 24t — 2, set H®(k) = |F.(k)|. The contour process (HE,0 < s < 2#t — 2)
is then obtained by interpolating linearly the sequence (I:T t(k)) between integer abscissa. For any
tree t € T, H* is a simple function of H®: let mg(0) = 0, and for any i > 1, my(i) = min{j,j >
me(i — 1), HY(j) > H(j — 1)}, then H(k) = H(mg(k)). In fact, me(k) = inf{j, Ft(j) = u(k)}.
One may check inductively on k that,

my (k) + H* (k) = 2k for any k > 0. (53)

We will prove (B2), using a similar property for the contour process. The first arguments can be
found in [I3, Lemma 1]. Gittenberger [I2] proved (in a stronger form) that for all s, ¢, a > 0

HY . —HT
p (' (2n—2)s (2n—2)t

>a

vn

#T = n) < Cils — 1] exp (~Caals —1?)
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which gives, for any p > 0, E(\n*1/2(I?I(Enﬁ)s—ﬁ[(gnﬁ)t)\p [#T =n) < C(p)|s—t[P/>~1. By applying
the ‘uniform’ version of Kolmogorov’s criterion given in [Z3, Theorem 3.4.16] to this estimate for
large enough p, this ensures that for every a < 1/2, the family (n~'/2H (7;1%2)_) is uniformly Holder
continuous under P(-|#7T = n) with exponent a (we write a-UHC), i.e. for every € > 0 there exists

a finite real number C, such that, for every n,

I?[T B gT
P (‘ (2n—2)s (2n—2)t

vn

On the other hand, by a slight adaptation of the second proof of Lemma 1 in [I3], we get that the
Proposition holds with the hypothesis o« < 1/4 instead of o < 1/2. Indeed, the argument given in
[13], which deals with the contour process, entirely rests on an exponential inequality linking this
process to the so-called ‘depth-first walk’, and according to [I7, Theorem 2|, this inequality is also
satisfied for the height process instead of the contour.

*1/21?1(7;71_2)_) is 8-UHC and (nil/QH(j;l_l).) is a-UHC for any [ <
1/2,a0 < 1/4, then (n~Y2HT

(nil)_) is a-UHC for any a < 1/2, which will end the proof. Assume
that n*1/2]ﬁT H

(2n—2)s — (En_Q)t\ < ¢|t —s|Y/?7% and n*1/2\H5_1)8 - H&_l)tl < ot — 5170, for any
s,t € [0,1], and for some v < 1/2 (this is true for « = 1/4, and any a,b > 0 with probability close
to 1, for some ¢; and cp.) Now, let s and t be such that (n — 1)s and (n — 1)t are two different

integers. We have

< Ce|t — s|* for all s,t € [0,1]‘#T:n> >1—ce

We now argue that if (n

T T 7T 7T
H(nfl)s B H(nfl)t _ HmT((nfl)s) HmT((nfl)t)
vn vn
_|mrln = 1)s) = mr((n = 1) [
- 2n — 2
By (&3), this is smaller than
T T 1/2-a b 11/2—a
c1ls—t+ H(nfl)t _H(nfl)s <c|ls—t +027‘t_8‘ '
2n — 2 - vn

1/2—a
< o (yt — 8|+ ot — s\a*"“/?(

since n~1/2 < |t — s|V/2. For s,t € [0,1], |t —s| < |t — s|*"*F1/2 and then (nil/QH(j;hl)_) is
(—b+1/2)(1/2—a)-UHC. Since this holds for any a > 0 and b > 0, and since ¢ : & — (a+1/2)1/2
is increasing and contracting, (n~'/2H (Tn—1)~) is c-UHC for any ¢ smaller than the fixed point of ¢
which is 1/2. O

Proposition 25 Let (uo, p1) be a critical non-degenerate offspring distribution that admits some
exponential moments. Let i,7 € {0,1}. Then for every e > 0, € (0,1/2), there exists C > 0 with

< |H7;;ET—1 - HC;ET—l)t| ;
sup P sup ( Js ( > C"#T(J) =n| <e.
neN 0<s#£t<1 Vnls —t|®
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Proof. We prove this only for i = 0, j = 1, which is the hardest case of both. We fix a € (0,1/2).
We assume that (#7 —1)s and (#71 — 1)t are integer. Recall the notation Jj(})(k:), 0<k<#T-1,
and extend this into a function (Jél)(t) = J:(pl)([t]), 0<t<#T —1). We bound

HT, —2m" 07
H@T&)s - H(@Tq)t - (#T-1)s TV (T-1)s)—1
Vn - NG
I'(17) _gan T o aT)
JP(#T-Ds) -1 I (#T-1)0)-1 (#T-1)t IV (#r-1)H-1 A
+2 7 + NG : (54)

Recall from the proof of Proposition Bl that the law of 7(17") under PO (-[#7(") = n) is a mixture
of the form d)\n(T)Pr(l)(dt]#F(l) = n), where the laws \,,n > 1 are tight, and that IV(17) is a
monotype GW forest with a A,-distributed number of tree components and conditioned to have n
vertices. Therefore, by Proposition B4l with probability > 1 — e and for some C' > 0, the middle
term of (B4)), is bounded by

e
e

IW(HT - 1)s) — I (HT - )

n—1

(#T —1)s — (#T = 1)t

n—1

C

<c|

since J() is a counting process. This is < C’|t — s|* with probability 1 — 2¢ for some C’ > 0, valid
for all n large (by Lemma [[F]).
Next, using (), the two other terms of (B4l) are bounded above by a constant multiple of
« na—l/? HF,(lT) _ HF,(lT)

n- sup k B+l |0
0<k<#T—1

with the convention that the second term in the absolute value is 0 if k = #7 — 1. By Lemma 1],
under P© (-]#T(l) = n), the quantity in the supremum converges to 0 in probability. Thus, for every
n large, and s # t such that (#T — 1)s, (#1 — 1)t are integers, we have under PO (\|#T(1) = n),
fixing € > 0, for all large n and with probability > 1 — ¢,

T T
H(#T—l)s o H(#T—l)t
vn

<n 4+ CNs—t|* < D YNH#T —1)"*+ s —t|* < C"|s — t|%,

where we have used that with high probability, #17 < Dn for some constant D > 0, see the proof
of Lemma [[¥ and the fact that (#7 — 1)~! < |s — t| for our choice of s,¢. Finally, this shows
the result for all s,¢ in {k(#T — 1),k € Z} and large n, and the result follows from the following
elementary lemma, and then taking C” even larger to fit to all n > 1. The case ¢ = j, which we
leave to the reader, is similar but easier since it makes use only of trees and the mapping I', rather
than forests and the mapping I". O

Lemma 26 Let o € (0,1). If f(k/n),0 <k <n satisfies |f(k/n) — f(K'/n)| < C((k —K')/n)* for
every 0 < k, k" <n, then the linear interpolation (f(t),0 <t <1) satisfies |f(t)— f(s)| < 3C|s—t|*
for every 0 < s,t < 1.
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5.3 Tightness of the label process

The first step of the proof of Theorem [[]is

Proposition 27 Under the hypotheses of Theorem [T, for i,j € {0,1}, the sequence of laws of the
processes (n_1/45(7;§’£[_1)5, s > 0) under PO (|#TU) = n) for n > 1, is tight in C([0,1]).

Proof. Our proof follows closely the arguments of [I8], [[3]. In the sequel, ¢ > 0 will be a generic
small number, which may vary from a line another. Our goal is to show that there exists Cq, 5 > 0
such that for n large enough,

1S 15 = Syl
p) gt (#Tﬁf_ s|z§#T71)t <Ot Hrd) =n | >1-e (55)

Since the moment condition (20 is satisfied, there are constants 7, C, D > 0 such that Mé“ \% Mf <
CokP for every k > 1, where M* = v¥(|z|**7). We first choose o < 1/2 so that a(4 4+ n) > 2 and
M > D + 2. We know from Proposition B3l that there exists C3 > 0 such that

; |H(7;¢T71)s o H&Tfl)s| ;
PO [ sup < Cy|#TV) =n | >1—¢, (56)
0<s,t<1 nt/2|s — t|>

for all n. Let B,, be the intersection of the corresponding event and of the events

{#1TV) = n} {maXCT(u) < n”} . {#T < Cyn},

ueT

and

A (b, 1, ) — 5001
max max Imax c

<1
E>1,1<I<k h>n" c€{0,1} hl/2+y =M

where v is such that (D43)y < 1/2—a, and C; > 0is chosen so that the probability P (B, |#T0) =
n) is > 1 — e for large n, which is possible by Lemmas [[@] [[§ and Proposition

Notice that by definition of S”** and Lemma B8 it suffices to show (BH) for all n large and
s # t such that (#T — 1)s and (#T1 — 1)t are integers, which we suppose from now on. We let
m = (#T — 1)s,m' = (#T — 1)t, and u = u(m + 1),v' = u(m’ +1).

By definition, Si" — S;‘CL’,L = L(u) — L(u'). If we let Y,, = L(v) — L(-w), and if @ = a(m,m’)
denotes the most recent common ancestor to u and ' (i.e. their longest common prefix), we have

T oT.L
COUIC O S A S
vhu,|v|>| ] v/ o> ||

It is then classical that the number Ryp(m,m') = |u| + |u'| — 2|u(m,m’)| of terms involved in these
two sums, which informally is the length of the path of edges going from w to u' in T', is bounded
according to the formula

|Rp(m,m') — |H}, + Hy, — QH,{WH <2, (57)

where I:IZL 18 the infimum of H T hetween the points m and m/. Indeed, if u is an ancestor of
u’ or conversely, then this expression is exactly |HL, — HL,| = |u — /|, and otherwise, assuming
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m < m/, HT . is equal to the height of the first child v of % such that u’ € vT,, hence is || + 1.
In particular, on B, it holds that

Ry(m,m') < Csy/nls —t|* (58)

for some C5 > 0, for all s #t € {k(#T —1)71,0 < k < #T — 1}, and with probability > 1 — ¢.

Recall that under P, given T the increments of the label process Y, = L(v) — L(-v),v € T
(with the convention Yy = 0) are such that (Yy1,...,Y,c, (), v € T are independent with respective

y Lvep
i

v[+i
u=ul(m)w and v = al(m’)w for I(m),l(m") € N and w,w" € U,

laws v By splitting the involved sums according to the shape of T, we obtain, whenever

SEE—SUE = (Yaim) — Yaromr)) (59)

+Z Z Z Z Yorl{jo] > al,er(v)=kueviT,}

k>11<I<k c€{0,1} vhu,v£u,peT(®)

D IDIDD > YorLgjof>al,er (v)=k,w cviTy}

k>11<I<k ce{0,1} vku’ w#u’ ,weT (c)

Notice that the last sum of the second line has A(Tc) (u,k,l,h) terms (resp. Agﬁ)(u’,k:,l, h') in the
third line) where h = |u| — || — 1 (resp. b/ = |[u/| — || — 1). Moreover, all the terms involved in the
two last lines of (BY) are independent and independent of the terms of the first line, with respective
laws the [-th marginal of *. The only two terms that bear some dependence are the ones displayed
on the first line.

We now use an inequality due to Rosenthal [20], Theorem 2.10|, which states that if X;,..., X,
are independent and centered (but not necessarily identically distributed) under some probability
law P, then there exist universal constants C'(p),p > 2 such that

BlIX) + ...+ X,P) < o>~ 3 Bl X, ). (60)
k=1

This gives, still denoting h = |u| — |@| — 1,h' = |u/| — |u| — 1, and for p =4 + 7,

E®) HSZ;L = s 1]
ED[|Yaymy — Yaim) PI T
< C(p)Rr(m, m/)p/2—1 X + Zlgkgm Zlglgk ZCG{O,I} Agf)(% k.l h)’/f(‘xl‘p)
+ Zlgkgm Zlgjgk Zce{O,l} Agrc) (u', K, 1, h’)”§(|$l )
2P cr ()P
C(p)CaRr(m,m P21 x |+ cpen kP Xicick > ce{01} Agrc) (u, k.1, h) , (61)
+ 2 1<k<n kP D1<i<k 2ce{0,1} A(Tc) (W, k1,1

which we want to bound on B,,. On the latter event, we have ez ()" < n7, and by (&5 it holds that
for n large, and every s, t (satisfying the above constraints) the quantity 2°C(p)Cy Ry (m, m/)?/>~ ey ()
is bounded by

IN

D

Can/4—1/2+D'y’$ _ t,ap/?—oc < Cﬁﬂp/4‘8 o t‘ap/ZnD'y—l/Z‘s o t‘—a’ (62)
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where Cs = 2PC(p)CgC§/271. On the event B, and by the assumption on s,t, [s — t| > #T~1 >
(Can)~1, so if we combine this with the fact that Dy —1/2 < —a, we obtain that there exists ¢ > 0
with nD7*1/2\s -t < C’QD“/_l/Zn*e. Since this quantity converges to 0 uniformly on s,t, this
shows that 2PC(p)CoRy(m, m')P/*tep(a)P is bounded by nP/4|s — | for every s,t and n large
enough.

We are now facing several possibilities in handling the rest of ([&Il). On the event that h < n7,
the term A (u, k,1,h) is bounded by n?, and therefore, on B,,,

C(p)CoRr(m,m/ P> 1 3" kP 3" N AP (u, 1k, 1)

1<k<nY  1<I<kc€{0,1}

< 20(p)CyCEP P12 5 — gjep/2man(D43)y,

This quantity is analogous to [B2), and by our choice of =, it is bounded by n?/4|s — t|*P/? for large
n, by the same argument as above.

Alternatively, on the event that A > n? and on B,,, we can bound Ag,f) (u, k,l, h) above by the
quantity hue(k)/(2me) + hY/2H7E=M | Since by definition h < Ry (m,m’), since pg, 1 have some
exponential moments, and since by our choice of M the sequence kP~M+1 L > 1 is summable, it
follows that there exists some constant 0 < C7 < oo such that on B, N {h > n7},

SR ST S APk h) < CrRe(m,m') + CrRy(m,m')Y/**7 < 207 Ry (m,m'),
k<nY 1<i<k ce{0,1}

because Ry(m,m’) is an integer and v < 1/2. Still on the event h > n?, it follows that the middle
term of (B is bounded by

2C (p)CoCr7 Ry (m,m/)P/* < 2C (p)CoCrCsnP!Y|s — t[°P/2.

Putting things together, we obtain the existence of a constant Cg > 0 such that for every large
n, the middle term of [@I) is bounded by Cgn~?/4|s — t|*?/? (on B,, and whenever h > n? or
h < n7). For the same reason, the third term of (EIl) is bounded by the same quantity, and from
the discussion on the term involving cz()” we finally obtain that for some Cy > 0 and n large, for
every s,t € {k(#T —1),0 < k < #T — 1},

‘S,:QL — TN’

E® 7

‘Bn < Cyls — t]oP/2,

By applying Lemma B0l and since ap/2 > 1, we have obtained that there exists a finite constant
C1o > 0 and 7' > 0 such that for every 0 < s,¢ < 1 and n large enough,

T.L T.L 44
S(#Tq)s B S(#Tq)t‘

E® 7

'Bn < 010’8 — t’lJrnl.

Since PO (B, |#TV) =n) — 1 as n — oo, and by Kolmogorov’s criterion [23, Theorem 3.4.16], this
is enough to conclude that (BH) holds with any 0 < 8 < 7'/(4 +n). This ends the proof. O
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5.4 Finite-dimensional convergence

The goal of this section is to prove the following

Proposition 28 Let (uo, 1) be non-degenerate critical and admitting some exponential moments.
Consider non-degenerate spatial displacement laws 1/(’]“, Vf, k > 1 that are centered, and suppose that
the hypotheses of Theorem [ hold. Then the convergence of finite-dimensional marginals holds
for the label process, i.e. the second component in Theorem [, jointly with the convergence in
distribution of the height process.

In fact, this statement is true under the slightly weaker hypothesis that the variance E’g v ¥k of
the spatial displacement is a O(k”) for some D > 0, and does not really require the full 4+, moment
hypothesis of Theorem [l However, this extra assumption is going to simplify the beginning of
the proof, where we use the result of Proposition 27 Notice that the constant ¥ of Theorem [Tl
is finite because of the hypothesis on the growth of the moments of order 4 + n implies that the
growth of Ef is at most polynomial, and since pg, 1 have some exponential moments, the sums
> o1 (E8)20;(k) are finite.

The intuition for the proof of one-dimensional convergence is the following. Given the height
process H”', if we take the path from the root to the vertex encoded by a given time ¢, then this
path has length of about H&Tﬂ)t which is of the order of h = Cn'/2B,, where B is a Brownian
excursion and C' is a scaling constant. Among the vertices of this ancestor line, we know from
Lemma B3 that a proportion f;(k)/2m; are of type j, have k children, and have the property that
u is a descendant of the [-th of these children; these will contribute to a spacial displacement whose

distribution is the [-th marginal of 1/;-“. Since the variance of this is (E?’l)2, it has to be expected that

the total spatial displacement, once rescaled by n!/4 will be asymptotically Gaussian with variance
¥2C By, where ¥ is defined at ().

Proof of Proposition We make a preliminary remark. Because we already know that the
laws of (n=1/4STE 0 <t <1)under PO(|#TW = n) form a tight family, the family of laws of

#T-1)t°
((n_l/zH@T_l)t)ogtgl, (”_1/45&%—1)9%&1) under PO (| #T0) = n) is also tight. Hence, up to

extracting a subsequence, we know that these two processes jointly converge to some limit, whose
first component is a scaled Brownian excursion thanks to Proposition Bl To prove the proposition,
it suffices to show that the only possible limiting distribution is the (properly scaled) head of the
Brownian snake N(I). So, we take such a subsequence in the first place, assume convergence in
distribution to some process (B, S’), and our goal is to show that given B, S’ has the law described
around (H) up to scaling constants. Let 0 <t <to < ... < tq < 1 be some fixed real numbers. We
will prove that (n_l/QH@T_l)t)ogtgl, (n_l/ﬂtSiiT—l)tT])lSTSQ) under PO (-|[#T0) = n) converges
in distribution to the corresponding marginal of the head of Brownian snake, which is sufficient to
conclude. Throughout the proof, we will assume ¢ > 2.

Thanks to Skorokhod’s representation theorem, we may assume that the convergence of the

processes (nil/QH&Tfl)t,O < t < 1) to a scaled Brownian excursion is almost-sure. That is,

we can assume that we are given a sequence (H™,n > 1) of processes on some probability space
(Q, F, P), with same respective laws as (n_l/QH&Til)t,O <t < 1) under PO(:|#TV) = n), and
which converges a.s. for the supremum norm to a process (B, 0 < ¢t < 1), which has same law as
2071 /1 + mje under N (1), For every n > 1, the function H" determines a unique random tree 7™

whose height process is /nH"((#T™ —1)7'k),0 < k < #T™ — 1 (notice that #7™ — 1 is the square
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of the slope of H™ at time 0+). By Lemma P3 and the Borel-Cantelli lemma, it holds that, a.s., for

any v > 0 and n large enough,

AF) (u, b, 1) — 2B
max sup sup <1. 63
c€{0,1} {k>1,1<k<I} {ueT"n7<h<|u|} hi/2+v =M (63)

Next, the times ¢1,. .., t, determine vertices u;, = u([(#T — 1)t,]),1 <r < ¢ in T™. We let u,(r,r")
be the most recent common ancestor to ul,,u!, in T". We re-index the set V" = {u!,1 < r <
q,Un(r,r"), 1 < ' < q} as {0, w € T"}, where 7" € T, and in such a way that the depth-first
order and genealogical structure on T" is compatible with the depth-first order and genealogical
structure on V. Speciﬁcally, we let vZ be the least element of V™, which is the most recent common
ancestor to all of ul, ..., uf, then recursively, vl v%2 ... are the descendants of v in V", ranked
in depth-first order, and such that no ancestor of v"! which is younger than v belongs to V".
By convention, we let v;¥ = @. Our aim is now to explain that the sequence (Tn,n > 1) is
asymptotically constant a.s., and equal to some random tree, which has n leaves and is binary, i.e.
vertices have either no child or two children. Informally, this implies that for large enough n, the
“geometry” of the list of random variables involved in the computations of the labels of the vertices

in V" is eventually fixed.

We define random times si, s*, w € " recursively as follows (these times will be defined only
for n large enough). Let

%) : n
=inft et H} = H;
Sn m { S [ 1,0 ] t t1r<nslgtq } ’
and let 52 be the corresponding quantity with a sup in place of the inf. Notice that, H". .5 converges
to ming, <s<¢, Bs > 0 a.s. Since local minima of a Brownian excursion are a.s. pairwise dlstlnct it

is then elementary to deduce that 52,59 — s where by definition s< is the only time in [tl,t ]

n’n

where B attains ming, <s<¢, Bs. Moreover, a.s., {1 < ... <t < 9 <ty < ... < tq for some
1 <r <gq—1,and for n large enough it also holds that t; < ... <t <sZ <37 <t. .1 <...< tg.
We let r =ry,q — 7 =19, t :tl,...,til =t, and t%:t7‘+17...7t22 = t4.
Then, given
SWUEY, sV, (B0t (B2,

have been defined, where w is a word with letters in {1,2}, we distinguish two cases. If 1,1 > 1, let

sWl = inf {t ey, t¥! ] H = min Hg} ,

" twl <g<gwl
1 =55 Twl

and let %! be the corresponding quantity with a sup in place of the inf. For the same reasons
as above it holds that s¥!,3%! — s“! where s“! is the only time in [t ,t¥1] where B attains

n ren Twl
wl wl wl wl’
mlnt?lgsg%l Bs. Moreover, a.s., t7" < ... < /" < s¥ < tr+1 < ..o<tp for some 1 < r <
Tw1 — 1, and for n large enough it also holds that t¥1 < ... < ¥l < sﬁl <SSl <ty <<t
We let
_ _ wll _ jwl wll wl wl2 wl2 wl
Twll =T, Twl2 =Twl =7, t =1t ...t =t and ] —tr+1, costy s =t

Definitions are similar for s%2,5w2 w2 (w2 . ,t},"f;l) (t922, ... t222)) whenever ryo > 1. In the

case rp1 = 1, we simply let s¥! = (#T" — D)7H(#T™ — 1)t¥], and s¥! = %1 and similarly if
Tw2 = 1.
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By inspection of this recursive construction, notice that the set of w € U such that s is defined
is exactly Tv’i, which is therefore independent of n (provided n is large enough), and equal to some
binary tree T'. Moreover, it holds that |[vy'| — /nHw| < 1 for every w € T, by the same arguments
as those leading to (B1).

Now, we reintroduce the labels in 7™ by assuming that (2, F, P) also supports random vari-
ables (Y);,1 <1 < epn(v)),v € T™ used as spatial displacements, that are, conditionally on T,

independent and independent of B with respective laws Vfi‘r:}(‘v). We let L,, be the associated label

on T" with L, (&) = 0, and we use a truncation procedure, that is we choose C' large and write

(remembering (BJ))) N
Ln(u) = LS (u) + L (u) uweT,

where

LS (u) =) Y ys0,00)<C

vhu

and L (u) is the similar sum with ¢y(v) > C instead. Then, the random variables LS (v¥) —
LE (v,"),w € T can be written in the form

Vi liemem<ey + O Y@<y

vEvY || >|v,w |41

whenever [(w) € N is such that v € v;wl(w)T;Lwl(w). Notice that given 77, all these terms are

independent as w ranges in f, except maybe for the first term which is displayed to the left of the
sum. Since we rescale by n=1/4, this term disappears in the limit (note that its variance is bounded)
so that (n~V/4(LS (v¥) — LS (v;")), w € T), has same limit as the vector of independent components
(given T™)

n71/4 Z Yvn]l{cTn (v)<C}, W € j: (64)

vEoR | >|vyw |41

C k
= n_1/4 Z Z Z Z Yvn]l{CT” (v)=k vy vlT]}}> w e T

k=11=1 c€{0,1} {vFvR,[v|>|vy*[+1}

By definition there are Agﬁ,)l (v, k,1,hY) terms in the last sum, where AY = |vY| — |v,;*| — 1. Since
n~Y/2h% has same limit as |Hgw — Hi-w| as n — oo, which is given by Bsw — Bs-w, and which is
> 0 a.s., we obtain that asymptotically AY > n? for any fixed 0 < v < 1/2. Therefore, by (B3] it

holds that a.s., for any € > 0, any & < C,[ < k and for n large

(1—¢) pe(k) (Bgw — Beu)n!/? < A (0¥ k1, hY) < (1+¢) pelk) (Bgw — Bg-w)n'/?.
2me 2me
It then follows from the central limit theorem applied to (B4l that given B (of which T is a measur-
able functional), the vector n~YA(LE (1) — LE (v;*), w € T) converges in distribution to a random
vector (NY(w),w € T), where the components N¢(w) are independent, centered, Gaussian and
have variances

C k
1 pre(k)
Var N%(w) = (Byw = Byw)5 3% D (B0)70= =i (Bow — Byw) 5.
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Notice that $2 T ¥2 as C' T o0, so (N (w),w € T) in turn converges in distribution to a random
vector which conditionally on B is constituted of independent Gaussian components (N (w),w € T'),
with respective variances %2(Bsw — By-w) as C' — oo.

Assume for a moment that for every ¢ > 0, a.s.,

lim limsup P (max]LC( Wy — LE (0" > €n1/4‘B> 0. (65)
—X0 n—oo weT
>From the fact that L,(v?) — L,(v;") = LE(?) — Lg(v;w) + LC(wY) — ZC(U,:“’)N7 this implies
that conditionally on B, n=Y4(L, (v¥) — L,(v;"),w € T) converges to (N(w),w € T). Indeed, it
is an elementary exercise that if X,, = ch + Ync € R4, where ch — X%asn — 00, X¢ - X
as C' — oo, both in distribution, and lim¢ limsup,, P([Y;%| > €) = 0, then X,, — X as n — oo in
distribution.
It follows that conditionally on B, the vector n~V4(L,(u?),1 < n < q) is asymptotically a
Gaussian vector (S(t1),...,S5(ty)), since

Ln(uy) = Z (Ln(vy)) = La(v,")),
w'Fw

whenever u;, = v,Y. Moreover, still given B, we have that if ¢, = st = sw,, then

cov(S;,, St ,) = cov ( Z N(w"), Z N(w”)) :

w!'w w!' Fw’

By independence of the N(w) given B, if w A w’ is the most recent common ancestor to w,w’, we
obtain

cov(Sy,, S, ) = Var ( Z N(w”)> = Y?Bunw = 22 Bty t,r),
w' FwAw’

as s“ is the unique point of [min(s®, s*"), max(s*, s*)] such that B unw = B(sY, s*"). Since B

has same law as 26~ /1 +m je under N ) it follows that B, S has the claimed law.

To prove ([65]) notice that since given B, the set T is finite, it suffices to prove the result for
some fixed w € T'. Now, conditionally on B,T", the sequence (LC( ),v = vY), where the ancestors
of vY are ranked in depth-first order, has 1ndependent and centered increments so by Chebychev’s
inequality,

P (IZS ) — IS ()| > e/ B, T) < 0~ 2B [|Z () — LS ()2 B.T7]
By the independence of increments of the spatial displacement,

B[ILS ) - LS P IB. T =30 > 3 APk L) (R,

k>C1<i<k c€{0,1}

where hY = |v¥| — [v,;"’|. Now, we know that n~/2h% converges to Byw — Bg~w > 0 as n — oo, and
therefore, by (B3]) for v = 1/8 and n large enough, it holds that the last expression is bounded by
(for any C; > Bgw)

Cl\/_z Z ,Uc +”3/82 Z k’M(Ef)2

kE>C ce{0, 1} k>C ce{0,1}
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and the second term is bounded by Con®/8 for some constant Cy > 0, because . has some expo-
nential moments, and ¥ = O(kP) for some D > 0. Finally, we obtain that

P (max ILC () — LS (v,)] > en!/* yB> <H#Te?D N M(zﬁ)ﬂ + Con~ V8,
wel k>C ce{0,1} 2me

Letting n — o0, this converges to

47y Y ey

k>C ce{0,1}

which in turn has limit 0 as C' — oo, implying (B3). O

6 Convergence to the Brownian map

The aim of this section is to discuss the convergence of bipartite maps to the Brownian map,
introduced in Marckert & Mokkadem [I9]. We refer to this paper to the construction of the notions
of abstract maps, and to the combinatorial considerations leading the authors in a first step to show
that any quadrangulation is a tree D, (the doddering tree of [I9]) glued with the help of a second
tree G (the gluer tree of [T9]), and to show that this construction passes to the continuous limit in a
certain sense. The major part of the construction in [I9] may be generalized without any problem
to bipartite maps; in what follows, we will mainly point out the differences in the construction. We
would like to stress on the fact that the description of the maps in term of trees provides some
information that are not contained in the profile alone.

The first and major difference with the study of quadrangulation, is the used of the BAFG’s
bijection, instead of the Schaeffer’s one.

6.1 Bipartite maps described by a pair of trees

We first present in a few words the application U~! of Bouttier & al. [A].

Recall the considerations of Section EZJ, and consider a planar embedding of some (t,£) € T in
the plane, with at least two vertices. We let v and w be the vertices of this embedded graph that
correspond to the words @, 1, and root the graph at the edge (vw). Until the end of the paper, we
slightly improperly keep the notations t,t(®, t(1) ¢ for this embedded (rooted) graph, the vertices
at even (resp. odd) heights, and a label function defined on t(©) (the labels of t() are not used in
the construction).

The construction of (m,e,t) = UL(t, £) is done as follows. First add —min £+ 1 to the labels of
the vertices of t(©). Each vertex u of t(©) with k neighbors determines k corners which are delimited
by the k edges emanating from u. To each such corner C' corresponding to a vertex of t(¥) with
label [ > 2, we associate its successor s(C') defined as the first encountered corner of t(©) with label
[ —1 when going clockwise around the tree (there is always a successor). Then, we draw a blue edge
between each corner of t(0) with label [ > 2 and its successor within the external face of t and in
such a way that no two edges intersect, which is always possible. Finally, we add in complement of
the graph in the plane, an extra vertex t, and add a blue edge between each the corners of t(0) with
label 1 and . The map (m, e, t) is the map having as set of edges the blue edges, and e is the first
edge of m that starts from v to the left of (vw), oriented so that (m,e,t) € M.
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Figure 3: Tllustration of W~!. The black vertices corresponds to the elements of t™), the labeled
vertices to the elements of t(9). The two arrows explain how to choose the root of m. It remains to
remove the labels, the black vertices and the dotted lines.

Recall the definition of the depth first traversal Fj introduced in the proof of Proposition 4],
and of the contour process H*. The durations of Fy and H* is 2(#t — 1). The vertices of t(*) are
visited at times 0,2,...,2(#t — 1). The labels of the vertices of t(9) are encoded thanks to

RY(k) = ((Fy(2k)) for 0 < k < #t — 1.
We extend R linearly between successive integers. We have

Corollary 29 Let q be a reqular critical weight sequence. Theorem I still holds with n*1/4RT’L((#T—
1)t.) instead of n_1/45(§’£p_1)t, with the constants given in Section [Z4.

This result is a consequence of two classical steps: firstly, let R*‘ be the linear interpolation of
RYY(k) = £(Fy(k)), the label process associated with the depth first traversal (here take again the
convention that a vertex of t(1) has the same label as its father). The uniform distance between
n*1/45@1%_1)t and n~VARTL(2(#T — 1)t) goes to 0 in probability. Secondly, for any integer k,
RY(k) = R%‘(2k). This shows that the uniform distance between n~Y*RTE((#T —1)t) and
n~VART-L(2(#T — 1)t) goes to 0 in probability.

For 6 € {0,2,...,2(#t—1)—2}, we denote by t ) the element of T obtained from t by rerooting
at the edge (Fy(0), Fy(0 + 1)), and with label function ¢ — ¢(F¢(0)). The label of the root-vertex of
t(g) is 0, and t and t(g) are equal as unrooted unlabeled trees. Let © denote the addition modulo
2(#t — 1). For any 0 <i < 2(#t — 1),

o (i) = A4 @) + H4(8) — 2min {ﬁt(j), Oai)AO<j<(B@i)V e} ,
and for any 0 <1 < #t — 1,
RO (i) = 0(F (0 @ 24)) — L(Fy(0)) = RY ((0 @ 2i)/2) — R*(6/2).

When exploring t(g), v is visited at time 2#t — 6 and w at time 2#t — 6 + 1. Hence, the variable
X (0) = 24t — 0 suffices to reconstitute v and w.

We now exhibit the two trees from which the description of bipartite maps can be done.
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Figure 4: Rerooting on the first minimum.

Let ©¢ = inf{f, ((F;(0)) = min¢(Fy)}, be the first visit time of a vertex with minimum label
(this vertex is then a vertex of t(¥)). The labeled tree t(e,) has non negative labels and U—L(t) will
be built from (O, t(e,)) (see Figure H).

Add in the plane the point u = Ngg = (#t,0), and for 1 < i < #t — 1 draw the vertex
N; = (i,R%®) (7). Then, for 1 < j < #t — 1, an edge is added between the vertices N; and Ny,
where ;' is the successor of j, in t(e,)- The edges are drawn so that they do not cross, and in such a
way that the edge (N;, ;) surrounds from above the edges that start from abscissas lying between
j and j'. The set of vertices and edges thus drawn is a tree which we call D, see Figure B and [T9]
for a proof. Up to a time inversion, the process R¥©e) + 1 is the height process of D.

Figure 5: The tree D.

We denote by G the tree t(g,), whose contour process is Ht®©0 . Each vertex of D (but the root)

corresponds to a corner of a vertex in G(O: for j > 1, the vertex N; of D corresponds to the vertex
visited at time 2j for the contour order in G. To get m, some vertices of D have to be identified:
glue the vertices of D that correspond to corners of the same vertex of G in such a way that the
edges do not intersect. A nice way to do this is to draw D on the contour process of G as on Figure
place the root of D in the plane (not on the graph of ﬁg) Then, for 0 < i < #t — 2, place the
i + 1th vertex of D on the 2#t — 2i — 2 th corner of G(°). Then, use a deformation of the plane in
order to glue together the corners of G, corresponding to the same vertices. They are specified by
horizontal dotted lines on Figure Bl The variable X () finally allows to find the root of m.

Some changes appear when compared to [T9]. Here the maps are both rooted and pointed instead
of being only rooted (the variable X (0) allows to handle this), here, the natural traversal for both
trees is the clockwise traversal, and here #D = #G instead of #D = 2#¢G for quadrangulations.
Also, when conditioning by the number of faces (or vertices), the size of D and G are random,
whereas they are deterministic in the case of quadrangulations. Last, only half of the vertices of G
are used here instead of all of them.

It is then possible to adapt the notion of abstract maps introduced in [I9] in order to handle
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Figure 6: Drawing D on G.

these differences: a component encoding the distinguished point is added, the contour processes
can be taken in the space of continuous function with compact support instead of C[0,1], and the
convention on the traversal order on trees can be adapted to the present setting. Apart from these
technicalities, it remains to get the asymptotics of the two trees D and G under the considered
distributions PX=" or P;=".

Let H be the states space of the tour of the Brownian snake (it is the states space of (e,r) as

defined around formula (#]), see [I8, [[9] for more details). We recall the operation of rerooting of a
normalized labeled tree (see [I9, [[5]) defined for any 6 € [0, 1] by

JO . H — [0,1] xH
& ) — JOWC ) =D, r0)>

where for any x € [0, 1],

fO@ = fO+2)-f6), (66)
(@) = ¢(O+z)+C0)—20(0 @ x,0),

where the additions in the arguments are modulo 1. This may be understood as follows. Suppose
(¢, f) is the encoding of a labeled tree (t,¢): (¢ is the (renormalized) contour process of t, and f
is the (renormalized) label process associated with (t,£). Then (¢(?, f®)) is the encoding of the
labeled tree (t’,¢') which is obtained from (t,¢) by rerooting t on the corner that is visited at time
0, and adding —f () to all label (this fixes ¢'(root(t’)) = 0). We are particularly interested by the
rerooting on I(f) = inf Argmin f, the first minimum of the label process:

d: H — [0,1]xH
(G ) — TN, F) = (L(f), U, f1D).

The application ® is invertible. Note that it would not be without the first coordinate I(f). The
pair (e*, 1) corresponds to the head of the Brownian snake (e,r) under N(M). We refer to Le Gall
& Weill [T6] and Le Gall [T5] for properties of (et,r") and its occurrence as a limit of conditioned
spatial trees.

Lemma 30 Under N I(r) is uniform on [0,1] and independent of (et,rF).

Proof. First, according to Lemma 16 in [I9] (see also [I6], [Prop. 2.5]), # Argminr = 1 a.s.. The
law of (e,r) is preserved by rerooting (see [T9]) and I(x®) = I(r) =6 mod 1. Then I(r) is uniform
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in [0,1]. Now, let us check the independence. Suppose that r reaches its minimum once. For any
z € [0,1), ®(e® @) = (@ — 2 mod 1, (e, r)). Hence, in each class stable by rerooting, the
positive representative (e,r") is independent of I(r). O

The asymptotics of the trees D and G, that are sufficient to get a generalization of the convergence
of rescaled bipartite maps to the Brownian maps, are given by the following proposition:

Proposition 31 Let q be a regular critical weight sequence. Under P(f:” (resp. PqS:”), the process

grer) . Ter - o
<2(#92,T_1), a TY(L?%T 1)'), R Tn(l(ﬁfT 1)')> converges in distribution to

1/4
U 4 et 40q / r under N
"V Zg—1Dpq \9(Zq—1)

4 4p 1/4
resp. | U, —pe+, <7q> rt under N ,
v Pa

where U is an uniform random variable independent of (e™,r™), with the constants given in Section

E3

Proof. First, under P(f:" (resp. P(f:"), the process ® <HT(27(:1¢/€_1)'), RT(QSﬁ/ZZ—l)')) converges in

distribution to

1/4
d 1 e, 10q r under N
vV (Za—1)pq 9(Zq—1)

1/4
(resp. d (\/i_e, <4%> r) under N(1)> )
Pq

Indeed, the applications Argmin and then ® are continuous on the space of continuous functions
that reach their minimum once, and r reaches a.s. its minimum once (see [I6, M9)]). The conclusion
follows from Theorem [[1l and Lemma B0 O
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