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Invarian
e prin
iples for labeled mobilesand bipartite planar mapsJean-François Mar
kert∗, Grégory Miermont†6th April 2005Abstra
tA 
lass of labeled trees, 
alled mobiles, was introdu
ed by Bouttier-di Fran
es
o andGuitter in order to generalize the bije
tive studies of planar maps initiated by Cori-Vauquelinand S
hae�er. We prove an invarian
e prin
iple for res
aled random mobiles asso
iated withbipartite random planar maps under a Boltzmann distribution. We infer that the latter
onverge in a 
ertain sense to the Brownian map introdu
ed by Mar
kert and Mokkadem,whi
h en
ompasses results of Chassaing and S
hae�er on quadrangulations (although in aslightly di�erent 
ontext). These results are derived from a new invarian
e prin
iple for a
lass of two-type Galton-Watson trees 
oupled with a spatial motion, whi
h are shown to
onverge to the Brownian snake.KeyWords: Random planar maps, labeled mobiles, invarian
e prin
iple, spatial Galton-WatsontreesM.S.C. Code: 60F17, 60J80, 05C30
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1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 21 Introdu
tion, motivations and main results1.1 Planar mapsA planar map is a proper embedding m of a graph into the two-dimensional sphere S, 
onsideredup to any homeomorphism of the sphere. A 
onne
ted 
omponent of S \ m is homeomorphi
to a disk, and is 
alled a fa
e. The degree of a fa
e is the number of edges that 
onstitute itsboundary (with the 
onvention that an edge in
luded in a fa
e is 
ounted twi
e). In this paper,we 
onsider only bipartite planar maps, i.e. maps su
h that the degree of any fa
e is an evennumber.A pointed map is a map m in whi
h a vertex u is distinguished. When dealing with a pointedmap, we may label ea
h vertex by the length of the minimal path of edges linking this vertex tothe distinguished one (the �geodesi
 distan
e� to u). A root in a pointed map (m, u) is then adistinguished non oriented edge vw. By the bipartite nature of the map, the two ends of su
han edge have geodesi
 distan
es to u of the form k and k + 1, so the 
hoi
e of a root is the sameas that of an oriented edge starting at the vertex with least label.PSfrag repla
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ture, an element of M5. Its distinguished edge is vw, the distinguishednode is u. The degree of the fa
e where w is written is 6. On the se
ond pi
ture, the nodesare labeled by their geodesi
 distan
e to the distinguished vertex. On the last pi
ture, a labeledmobile.Among all the families of maps, one of the best known is that of quadrangulations, be
auseof the famous bije
tion of Cori & Vauquelin [10℄ between planar rooted quadrangulations andwell labeled trees, and its des
ription by S
hae�er (whi
h 
an be found in [28, 9, 22℄). Informally,well labeled trees are planar trees in whi
h nodes are labeled by integers subje
t to a positivity
onstraint. Using this bije
tion:
• Chassaing & S
hae�er [9℄ established that the longest distan
e to the root in uniform rootedquadrangulation with n fa
es divided by cn1/4 
onverges in law to the range of the Browniansnake (with lifetime pro
ess the normalized Brownian ex
ursion),
• Chassaing & Durhuus [8℄ showed that uns
aled uniform rooted quadrangulation with n fa
es
onverges lo
ally to a measure on in�nite quadrangulations,
• Mar
kert & Mokkadem [22℄ give a des
ription of quadrangulations in term of the gluing oftwo trees, and show that these trees 
onverge when suitably normalized as n goes to ∞. Theyintrodu
ed the notion of Brownian map, and show that under a 
ertain topology, res
aled quad-rangulations 
onverge weakly to the Brownian map.We refer also to Angel & S
hramm [3℄ who proved an analogous result as Chassaing & Durhuusfor rooted triangulations, but their proof is based on a Markovian 
onstru
tion of triangulationsrather than bije
tive methods.



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 31.2 Boltzmann laws on planar mapsWe denote by M the set of bipartite pointed rooted planar maps with at least one edge, andby MF
n , MS

k and Mn,k the subsets of M 
onsisting of maps with n fa
es, k verti
es, and both
n fa
es and k verti
es, respe
tively. It is natural in our setting to add a 
emetery point in M,whi
h we 
all †, and whi
h we understand as a �map with no fa
e�. In the sequel, unless otherwisespe
i�ed, the term map is understood for �pointed, rooted, bipartite planar map�, and we willsimply write m as a shorthand for (m, u, vw).The goal of the present paper is to give asymptoti
 results generalizing [9℄ and [22℄ to severalother �Boltzmann laws� on bipartite maps 
onditioned to have a large number of fa
es or verti
es.Let q = (qi, i ≥ 1) be a sequen
e of non-negative weights non identi
ally zero. Consider the σ-�nite measure Wq on M that assigns to ea
h map m ∈ M a weight qi per fa
e of degree 2i:

Wq(m) =
∏

f∈F (m)

qdeg(f)/2 (1)where F (m) denotes the set of fa
es of m, and where deg(f) is the degree of the fa
e f . By
onvention, we set Wq(†) = 1. This multipli
ative form is reminis
ent of the measures asso
iatedwith the so-
alled simply generated trees, whi
h is of the form w(t) =
∏

u∈t qcu(t) for any tree t,where ct(u) is the number of 
hildren of u, and where (qi)i is a sequen
e of non-negative numbers(Aldous [1, p. 27-28℄). We will be interested in probability measures asso
iated with Wq inthe following way. If ZF
q,n := Wq(MF

n ) ∈ (0,+∞), we 
an 
onsider the 
onditional probabilitydistribution on MF
n

PF
q,n(·) =

Wq(· ∩MF
n )

ZF
q,n

.Similarly, we 
an 
onsider the probability distribution PS
q,k = Wq(· ∩ MS

k )/ZS
q,k as soon as

ZS
q,k = Wq(MS

k ) ∈ (0,+∞). If moreover Zq = Wq(M) is �nite, we 
an 
onsider the Boltzmannprobability distribution on M de�ned by
Pq(·) =

Wq(·)
Zq

.We will see that when 
ertain �
riti
ality� hypotheses on q are satis�ed (De�nition 1), under PS
q,kor PF

q,n several features of random maps satisfy an invarian
e prin
iple. This is summed up inSe
t. 4.4 by saying that su
h res
aled random maps 
onverge to an obje
t 
alled the Brownianmap, hen
e obtaining a generalization of [22℄. In parti
ular, we are able to give asymptoti
results for the diameter and the pro�le of a large 
lass of random maps, hen
e en
ompassing(in prin
iple) results by Chassaing and S
hae�er [9℄, whi
h are obtained in the quadrangulation
ase, where q = δ2. We also mention that it would be natural to look for asymptoti
 behaviorof maps under the 
onditioned measure Pq(· |M ∈ Mn,k), but we were not able to rule this outby our methods.Remarks. • The reason why �in prin
iple� is that Chassaing and S
hae�er work in the slightlydi�erent 
ontext of rooted maps, but whi
h are not pointed. Considering these obje
ts wouldlead us to extra non-trivial te
hni
alities. Typi
ally, pointing and rooting allows to 
onsiderfreely labeled mobiles below, while simple rooting lead to 
onsiderations on labeled mobiles witha positivity 
ondition. In a re
ent paper, Le Gall [17℄ has shown an invarian
e prin
iple onlabeled trees 
onditioned to be positive. His results imply the 
onvergen
e of res
aled uniformrooted quadrangulations to the Brownian map.
• Noti
e that the law of #F (M) under Pq always 
harges every point of Z+, so that ZF

q,n isalways non-zero. However, this is not always true for ZS
q,n. More pre
isely, if we write the



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 4support of q as (κi, i ≥ 1), then the maps m that are 
harged by Pq are exa
tly those having nifa
es of degree 2κi for some integer sequen
e (ni, i ≥ 1) with �nite support. By Euler's formula,su
h maps have 2 +
∑

i ni(κi − 1) verti
es, so that #S(m) has a maximal span h whi
h is theg.
.d. of (κi −1, i ≥ 1). In the sequel, when 
onditioning on #S(m) = n we will therefore alwaysta
itly suppose that n is 
hosen among the admissible values.1.3 Labeled mobiles, and the BdFG bije
tionConsider the in�nite regular planar tree
T∞ =

⋃

n≥0

N
n,(by 
onvention N

0 = {∅}). For u = (u1, . . . , un), v = (v1, . . . , vm) ∈ T∞, we let uv =
(u1, . . . , un, v1, . . . , vm) be the 
on
atenation of the words u and v. Re
all that a planar tree
t is a subset of T∞ 
ontaining the root-vertex ∅, and su
h that if ui ∈ t, then uj ∈ t forall 1 ≤ j ≤ i, and u ∈ t. Seen as a map, a tree is 
anoni
ally rooted on the oriented edge
(∅, 1) where 1 is the left most 
hild of ∅. We denote by T the set of planar trees. We let
cu(t) = max{i : ui ∈ t} be the number of 
hildren of u.Every tree has a 
anoni
al bipartite 
oloration of its verti
es, whi
h 
an be of two kinds ◦and •, and su
h that the root-vertex is a ◦. We let t◦ and t• be the sets of verti
es 
olored ◦and • in a tree t, respe
tively. For reason that will appear later, we 
all su
h a 
olored tree, amobile. In a rooted mobile, the root is 
anoni
ally assimilated to an unoriented edge, sin
e itnaturally inherits an orientation from the fa
t that the root vertex is a ◦.A labeled mobile is a pair (t, ℓ) where t is a mobile and ℓ : t◦ → Z is a fun
tion satisfyingthe following 
onstraint. Suppose v ∈ t• has father v0 ∈ t◦, and let v0, v1, v2 . . . , vk be theneighboring verti
es of t◦, arranged so that vi+1 is the vertex following vi when going 
lo
kwisearound v, with the 
onvention that k + 1 = 0. Then ℓ satis�es

ℓ(vi+1) ≥ ℓ(vi) − 1. (2)We let N(k) be the number of possible di�eren
es (ℓ(vi) − ℓ(vi+1), 1 ≤ i ≤ k) that respe
t this
onstraint. By adding 2 to ea
h of the numbers ℓ(vi)− ℓ(vi+1), one sees that this is the same asthe number of 
ompositions of 2k in k positive parts. Hen
e
N(k) =

(
2k − 1

k − 1

)
. (3)When dealing with rooted mobiles, we will always suppose, unless otherwise mentioned, thatthe root vertex has label 1. We let W be the set of rooted labeled mobiles, and Wn,k be thesubset of those satisfying |t•| = n and |t◦| = k. The main tool for studying the laws introdu
edabove is the bije
tion of Bouttier, Di Fran
es
o & Guitter [7℄ generalizing that of S
hae�er.Theorem 1 (Bouttier, Di Fran
es
o & Guitter [7℄) There exists a one-to-one 
orresponden
e

Φ between M and W with the following properties. It maps † to the tree {∅} with label 1, andfor any n ≥ 1 and k ≥ 2, the restri
tion of Φ to Mn,k is a bije
tion onto Wn,k−1. Next, for
m = (m, u, vw) ∈ M \ {†}, letting (t, ℓ) = Φ(m),
� ea
h vertex σ of t• 
orresponds to a fa
e f of m, and the (total) degree of σ is half the degreeof f ,
� ea
h vertex x 6= u of m 
orresponds to a vertex φ(x) of t◦,
� the graph distan
e of any vertex x 6= u of m to u is equal to 1 + ℓ(φ(x)) − infσ∈t◦ ℓ(σ).We des
ribe the bije
tion Φ in Se
tion 4.1 and show that it has some useful additional properties.Among these is the possibility to generalize the representation of quadrangulation as the gluingof two trees (given in [22℄) to bipartite maps.



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 51.4 Proje
tion of Pq, P
F
q,n, P

S
q,k on mobilesNow suppose that M is a Pq-distributed random planar map. Then by Theorem 1, letting

(T,L) = Φ(M) be the asso
iated labeled random mobile, we 
an write, for any �xed labeledmobile (t, ℓ),
Pq(Φ(M) = (t, ℓ)) =

∏
v∈t• qcv(t)+1

Zq

=

(
∏

v∈t◦

1

Zq

)(
∏

v∈t•

Z
cv(t)
q qcv(t)+1N(cv(t) + 1)

)(
∏

v∈t•

1

N(cv(t) + 1)

)
,where cv(t) denotes the number of 
hildren of the vertex v in t, and where we have used∑

v∈t• cv(t) = |t◦| − 1 for any mobile t. Now, by de�nition of Wq and the properties of theBdFG bije
tion, letting (T,L) = Φ(M), we may rephrase this by saying that under Pq, themobile T has distribution
Pq(T = t) =

(
∏

v∈t◦

1

Zq

)(
∏

v∈t•

Z
cv(t)
q qcv(t)+1N(cv(t) + 1)

)
,and the labeling L of the mobile T is uniform among all possible 
onditionally on T . Morepre
isely, given T , for ea
h v ∈ T • with father v0 and 
hildren v1, . . . , vk, the sequen
e ofdi�eren
es (L(vi + 1)−L(vi), 1 ≤ i ≤ k) is uniform among the N(k + 1) possible, independentlyover v's.Now, the �niteness of the measure Pq plainly entails that

f(x) =
∑

i≥0

xiqi+1N(i + 1) (4)is �nite at x = Zq, so we 
an de�ne a probability measure
µ•

q(k) =
Zk

qN(k + 1)qk+1

f(Zq)
, k ≥ 0, (5)and write

Pq(T = t) =
∏

v∈t◦

µ◦
q(cv(t))

∏

v∈t•

µ•
q(cv(t)), (6)where

µ◦
q(k) := Z−1

q f(Zq)k, k ≥ 0.But it is easy that this measure must itself be a probability measure sin
e Pq is one. Therefore, weget that f(Zq) = 1−Z−1
q , and µ◦

q is the geometri
 distribution with parameter 1/Zq, Therefore,we see that the study of Boltzmann random planar maps boils down to that of 
ertain two-typeGalton-Watson trees (see Se
t. 2), that 
ould be 
alled �bi-generated trees� in our 
ontext, witha 
ertain uniform labeling on their verti
es. This and the forth
oming dis
ussion in Se
t. 2motivates 
alling a weight sequen
e q 
riti
al if the asso
iated two-type Galton-Watson pro
essis, i.e. if m◦m• = 1, where m•,m◦ are the respe
tive means of µ•
q, µ◦

q. This is easily equivalentto m• = (Zq − 1)−1, and by (5) this 
an be rewritten as follows.De�nition 1 A weight q su
h that Zq < ∞ is said to be 
riti
al if
Z2

q f ′
l (Zq) = 1, (7)where f ′

l is the left-derivative of f . Equivalently, q is 
riti
al if and only if the graphs of x 7→ f(x)and x 7→ 1− 1/x are tangent at x = Zq. We say that q is regular 
riti
al if moreover the radiusof 
onvergen
e of f is > Zq, i.e. if µ•
q has small exponential moments.



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 6Our main results dealing with maps (Theorems 5, 6, 7) are proved under the assumption ofregular 
riti
ality for the weight sequen
e. Let us however dis
uss more spe
i�
ally on 
onditionedprobability measures. It is straightforward from (1) thatLemma 1 Fix n, k. For any α > 0 su
h that ZF
αq,n < ∞, the 
onditional laws PF

αq,n are allequal to a single 
ommon distribution. Similarly, for any β > 0 su
h that ZS
(βi−1qi,i≥1),k

< ∞,the 
onditional laws PS
(βi−1qi,i≥1),k

share a 
ommon value.Therefore, when we are 
on
erned with 
onditional laws PF
q,n, PS

q,k, we will suppose that thereexists some α > 0 su
h that Zαq < ∞ and αq is regular 
riti
al, respe
tively that there existssome β > 0 su
h that Z(βi−1qi,i≥1) < ∞ and (βi−1qi, i ≥ 1) is 
riti
al, and fo
us on this 
riti
alweight. This 
hanges f respe
tively to αf and f(β ·). It is also true that 
onditioning both onthe number of fa
es and verti
es is insensitive to termwise multipli
ation of q by (αβi−1, i ≥ 1),so this would lead to �nding a 
urve of (α, β)'s su
h that (αβi−1qi, i ≥ 1) is 
riti
al. We do not
on
entrate on this last point, as our methods are une�
ient in 
onditioning on both these data.1.5 Overview of results and organization of the paperIt is therefore natural from (6), and the 
onditional law of the labeling L dis
ussed above, tolook for a general invarian
e prin
iple for labeled two-type Galton-Watson trees together witha bran
hing spatial motion. We 
all su
h random labeled trees �two-type dis
rete snakes�. Thetrees we are interested in have an anti-diagonal mean matrix, i.e. parti
les of a type give birthex
lusively to parti
les of the other type. In Se
tion 3, we show su
h an invarian
e prin
iple underfairly general hypotheses, namely that the (
riti
al) o�spring distribution has small exponentialmoments and that the spatial displa
ement between verti
es, whi
h need not have the same lawfor ea
h type, and may depend on the number k of 
hildren of the 
urrent vertex, has momentsof order 4 + ε that vary at most polynomially with k. Under these hypotheses, it is shown inCorollary 3 and Theorem 4 that 
riti
al res
aled dis
rete snakes 
onverge to the Brownian snake(see [11℄ and de�nitions below) driven by a Brownian ex
ursion distributed a

ording to the It�ex
ursion measure, while 
onditioned dis
rete snakes 
onverge to the Brownian snake driven bya standard Brownian ex
ursion. The invarian
e prin
iple is proved in Se
tions 2 and 3 and isinteresting in its own right. It uses an an
estral de
omposition of trees (Se
t. 2.4) with a markedvertex, that was 
onsidered in a di�erent form and 
ontext in [15℄. This invarian
e prin
ipleimproves over past literature [19, 13, 14℄ in two ways:
• First, it allows two types instead of only one, so that Theorem 2 below showing that theunlabeled 
riti
al two-type trees with �nite varian
e 
onverge to the Brownian 
ontinuum randomtree generalizes previous results [2, 19, 11℄, although we expe
t that the assumption of smallexponential moments 
ould be relaxed to a plain se
ond moment 
ondition. See [23℄ for thegeneral irredu
ible multitype 
ase.
• Se
ond, it allows the spatial displa
ement to depend on the lo
al stru
ture of the tree, namelyof the type and the number of neighbors of the di�erent verti
es, whi
h seems not to havebeen 
onsidered before. Ex
ept for the exponential moment assumptions, we expe
t that thehypotheses of the invarian
e prin
iple are 
lose to the best possible, see [14℄.We spe
ialize the invarian
e prin
iple to the distributions µ◦

q, µ•
q above and the parti
ularlabeling of mobiles asso
iated with Boltzmann random maps in Theorem 5, Se
t. 4.2. We usethis result in Se
t. 4.4 to show that su
h random maps 
onverge on
e properly res
aled to theBrownian map. As a 
orollary, we obtain for example the following generalization of the result of[9℄. Let N(de) be the It� measure of the standard re�e
ted Brownian motion, i.e. N is supportedby 
ontinuous fun
tions on some 
ompa
t subset [0, ζ] of R+ with ζ > 0, with zero value at theboundary and positive on (0, ζ). We let N(de,dr) be the It� measure of the head of the asso
iated



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 7Brownian snake, i.e. with �rst marginal N and su
h that given e, the se
ond marginal is the lawof a 
entered Gaussian pro
ess with 
ovarian
e cov(rs, rs′) = minu∈[s∧s′,s∨s′] eu. Similarly, we let
N

(1)(de,dr) be the law of the head of the snake driven by a standard Brownian ex
ursion, i.e.the same distribution as above but where N(de) is repla
ed by the law N (1)(de) of the standardBrownian ex
ursion with unit duration.Now suppose that q is a regular 
riti
al weight sequen
e, and let
ρq = 2 + Z3

qf ′′(Zq). (8)Let R(m) be the radius of m ∈ M, i.e. the maximal distan
e of a vertex to the distinguishedpoint. ThenCorollary 1 (i) For any a > 0 and under Pq, the law of the res
aled radius R(M)/n given
R(M) > an 
onverges weakly to

N

((
4ρq

9Zq

)1/4

∆ ∈ ·
∣∣∣
(

4ρq

9Zq

)1/4

∆ > a

)
,where ∆ = max r − min r is the diameter of the Brownian snake(ii) As n → ∞, under PF

q,n,
R(M)

n1/4

weakly−−−−→
n→∞

(
4ρq

9(Zq − 1)

)1/4

∆ under N
(1).(iii) As n → ∞, under PS

q,n,
R(M)

n1/4

weakly−−−−→
n→∞

(
4ρq

9

)1/4

∆ under N
(1).1.6 Two examplesWe 
on
lude this se
tion by giving expli
itly the 
onstants mentioned above in two parti
ular
ases.1.6.1 2κ-angulationsLet κ ≥ 2 be an integer, and 
onsider the 
ase when q = αδκ, for some 
onstant α > 0. Theresulting distributions are the Boltzmann distributions on the set of maps with fa
e degree �xedand equal to 2κ, as in [8℄ in the 
ase κ = 2 of quadrangulations (su
h distributions also appearin [4℄ for triangulations). Then f(x) = αN(κ)xκ−1, and the equations f(z) = 1 − 1/z and

z2f ′(z) = 1 are solved by Z = κ/(κ − 1) and determine a unique value for α. We thus haveobtained the value ακ of α, whi
h makes q 
riti
al, i.e.
ακ =

(κ − 1)κ−1

κκN(κ)
,while the partition fun
tion is Zακδκ = κ/(κ− 1). Obviously, ακ is also the largest allowed valuefor α > 0 that makes Wq a �nite measure, i.e. so that f(z) = 1 − 1/z admits a solution.In parti
ular we 
he
k α2 = 1/12, Zα2δ2 = 2, as in [8℄, and ρq = κ. Noti
e also that the
onstant appearing in (ii), Corollary 1 is (8/9)1/4 in this 
ase, as in [9℄. Noti
e that 
onditioningon the number of verti
es is equivalent in this 
ase thanks to Euler's formula (up to trivialrenormalization 
onstants).
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ase κ = 2 of quadrangulations.Example 1.6.2: drawing f for β = 1/7, 1/8, 1/10 and x 7→ 1 − 1/x (dashed)1.6.2 qi = βiLet β > 0, and let qi = βi, so that the weight of a map m is β#A(m), where A(m) is the set ofedges of m. In this 
ase,
f(x) =

∑

i≥0

xiβi+1N(i + 1) =
2β√

1 − 4βx
(
1 +

√
1 − 4βx

)is de�ned for x < (4β)−1, and the only interesting 
ases in our setting are for β < 1/4. Now, theequation f(z) = 1 − 1/z has two real solutions > 1 when β < 1/8, and these are given by
1 −

√
1 − 8β + 4β

8β
and 1 +

√
1 − 8β + 4β

8β
.These two solutions merge into a unique one at β = 1/8, whi
h is of 
ourse the value making q
riti
al, as 
an be double-
he
ked by solving z2f ′(z) = 1, whose solution is 3/(16β). This gives

Zq = 3/2 in the 
riti
al 
ase, while ρq = 27/4. The 
onditional version with respe
t to thenumber of verti
es 
an be seen as the �nite measure putting weight 8−#A(m) on ea
h element mof MS
n (i.e. q = 8−11) 
onditioned with respe
t to the number of verti
es ; noti
e that in this
ase a 
onditional version with respe
t to the number of fa
es does not exist sin
e ZF

α1,n = ∞for all n, α > 0.2 Criti
al two-type dis
rete snakes2.1 Planar treesWe begin with some generalities on planar trees and forests. Re
all the de�nitions of Se
t. 1. Welet |u| be the length of the word u ∈ T∞, whi
h is also the height (graph distan
e to the root)of u if 
onsidered as a vertex of some tree. For t a tree and n ≥ 0, let t|n = {u ∈ t : |u| ≤ n}be the restri
tion of t to the n �rst generations. For u ∈ t we let tu = {v ∈ T∞ : uv ∈ t} bethe fringe subtree of t rooted at u, and [t]u = t \ {uv : v ∈ tu \ {∅}} the pruned subtree. For
u = i1 . . . in ∈ t, we let uj = i1 . . . ij and [[∅, u]] = {∅, u1, . . . , un} be the an
estral line of u ba
kto the root.



2 CRITICAL TWO-TYPE DISCRETE SNAKES 9The depth-�rst order on a planar tree is the order relation ≺ indu
ed by the lexi
ographi
alorder. We let u(k) be the k-th vertex in depth-�rst order. We also de�ne the depth-�rst traversal,or 
ontour order of a tree t with n edges as a fun
tion:
Ft : {0, ..., 2n} → { verti
es of t },whi
h we regard as a walk around t, as follows: Ft(0) = ∅, and given Ft(i) = z, 
hoose, ifpossible, and a

ording to the depth-�rst order the smallest 
hild w of z whi
h has not alreadybeen visited, and set Ft(i + 1) = w. If not possible, let Ft(i + 1) be the father of z.A forest is a �nite or in�nite sequen
e of trees f = (t1, t2, . . .). The depth-�rst order on fis naturally de�ned as the linear order mat
hing both the depth-�rst order on ea
h ti and theorder in whi
h the ti appear. We de�ne similarly as above f |n, fu, [f ]u, u(k) for a forest f .Finally, for a forest f = (t1, t2, . . .), we let H f

k = |u(k)| and Ĥ f (k) = |Ff (k)|, and de�ne theheight pro
ess (H f
s , s ≥ 0) and the 
ontour pro
ess (Ĥ f

s , s ≥ 0) by interpolating linearly betweeninteger abs
issa. We also let Λf
k = max{i ≥ 1 : u(k) ∈ ti} and Λ̂f

k = max{i ≥ 1 : F f (k) ∈ ti}.See Fig. 3.PSfrag repla
ements H f Ĥ f

Figure 3: A forest, its height pro
ess, and its 
ontour pro
ess. On this example Λf
7 = 3 and

Λ̂f
7 = 12.2 Prerequisites on monotype Galton-Watson treesFor µ a probability measure on the set of nonnegative integers, we denote by Pµ the law of asingle type GW tree with o�spring distribution µ. We denote by (H) the 
onditions that µ isnon-degenerate, 
riti
al and has small exponential moments, namely:

(H) :=





µ(0) + µ(1) 6= 1∑
k≥0 kµ(k) = 1there exists a > 0 s.t. ∑k≥0 eakµ(k) < +∞.We denote by Pµ

r the law of a forest with r ∈ Z+ ∪ {∞} trees, in whi
h the r trees are Pµdistributed and independent.We begin by giving some results on monotype forests that will be 
ru
ial for further study.The following result improves over known tightness results for the res
aled height pro
ess ofa Galton-Watson forest. Its proof as well as those of Lemma 2 and 3 are postponed to theAppendix at the end of the paper.Proposition 1 Suppose (H). Under Pµ
∞, for every A > 0, α ∈ (0, 1/2), the α-Hölder norm of

(n−1/2HF
ns, 0 ≤ s ≤ A) is uniformly tight in n, namely, for every ε > 0 there exists C > 0 su
hthat

sup
n∈N

Pµ
∞

(
sup

0≤s 6=t≤A

|HF
ns − HF

nt|√
n|s − t|α > C

)
≤ ε.Moreover, the same 
on
lusion holds for the 
ontour pro
ess Ĥ.



2 CRITICAL TWO-TYPE DISCRETE SNAKES 10Noti
e that the 
onditioned analog of this proposition, i.e. under the probability laws Pµ(·||T | =
n) instead, and in the 
ase of the 
ontour pro
ess, is a 
onsequen
e of the work of Gittenberger[13℄. In the un
onditioned 
ase, to the best of our knowledge, Proposition 1 has not been shownbefore. Our proof is partly inspired by [11, Theorem 1.4.4℄, whi
h is a kind of 
ontinuous 
oun-terpart of the present proposition.The two following lemmæ will allow to give bounds on the maximal vertex-height and thenumber of trees visited before the An-th vertex of a forest in depth-�rst order.Lemma 2 Let µ be a distribution satisfying (H). In a Pµ

∞-forest, for every A > 0, η > 0, thereexists ε > 0 su
h that for n large enough,
Pµ
∞

(
max{|u|, u ≺ u([An])} ≥ n1/2+η

)
≤ exp(−nε).Lemma 3 Let µ be a distribution satisfying (H) and F be a µ-forest with n1/2+η trees. For any

η > 0 and A > 0, there exists ε > 0, su
h that for n large enough
Pµ

[n1/2+η ]
(|F| ≤ An) < exp(−nε)We �nish this se
tion by stating Aldous-Le Gall's theorems for 
onvergen
e of the heightpro
ess for 
onditioned tree (see also [19℄), and for forests, that 
an be found respe
tively in[2, 11℄.Proposition 2 Under hypotheses (H):(i) Under Pµ

∞, (
HF

ns√
n

,
ΛF

ns√
n

)

s≥0

weakly−−−−→
n→∞

(
2

σ
|Bs|, σL0

s

)

s≥0

,for the uniform topology on 
ompa
t subsets of [0,∞), where σ2 is the varian
e of µ and B is astandard Brownian motion with lo
al time pro
ess at 0 given by (L0
s, s ≥ 0) (whi
h is normalized tobe the density at 0 of the o

upation measure of B before time s). Moreover, the same 
on
lusionholds for the pro
esses ĤF

2ns, Λ̂
F
2ns instead of HF

ns,Λ
F
ns.(ii) Under Pµ(· | |T | = n), whenever the 
onditioning event has positive probability, the pro
ess

(
HT

ns√
n

, 0 ≤ s ≤ 1

)
weakly−−−−→
n→∞

(
2

σ
es, 0 ≤ s ≤ 1

)for the uniform topology, where e is a standard Brownian ex
ursion. The same result holds with
ĤT

2ns instead of HT
ns.2.3 Two-type Galton-Watson treesLet (µ◦, µ•) be a pair of integer valued probability distributions with means m◦ and m•, respe
-tively. We denote by (H1) the set of assumptions :

(H1) :=





µ◦(0) + µ◦(1) + µ•(0) + µ•(1) 6= 1,
m◦m• = 1,there exists α > 0 su
h that ∑k≥0 eαkµ◦(k) < ∞,

∑
k≥0 eαkµ•(k) < ∞.We 
onsider two-type {◦, •} GW trees with laws P ◦ and P • in whi
h :� the an
estor has type ◦ for P ◦ and • for P •,� an individual of type ◦ gives birth ex
lusively to individuals of type • a

ording to the law µ◦,



2 CRITICAL TWO-TYPE DISCRETE SNAKES 11� an individual of type • gives birth ex
lusively to individuals of type ◦ a

ording to the law µ•,� the progeny of distin
t individuals are independent random variables.Under the assumption (H1), under P ◦ or under P •, T is a.s. �nite (see Proposition 5). Sothe law P ◦ is 
hara
terized by
P ◦(T = t) =

∏

u∈t,|u| evenµ◦(cu(t))
∏

u∈t,|u| oddµ•(cu(t)) , t ∈ T.(For P • repla
e in the last formula ◦ by • and • by ◦).NotationIn the sequel, unless otherwise mentioned the probability P will denote P ◦, i.e. the law of a treerooted at a ◦ individual. We will then denote by t◦ and t• the sets of verti
es of t with evenresp. odd height.Similarly, for r ∈ N∪ {∞} we let Pr be the law of a forest 
onstituted of r independent GWtrees, all rooted at a ◦ individual. In parti
ular, P1 is naturally identi�ed with P ◦.2.4 An
estral de
omposition of a Galton-Watson treeA key result for our study is a multitype version of an an
estral de
omposition for Galton-Watsontrees, related to the so-
alled size-biased Galton-Watson distribution. Let
µ̂◦(k) =

kµ◦(k)

m◦
, µ̂•(k) =

kµ•(k)

m•
, k ≥ 0be the size-biased versions of the probabilities µ◦, µ•. The size-biased Galton-Watson tree isan in�nite tree 
ontaining a unique spine, i.e. an in�nite inje
tive path starting from the root,and its distribution is de�ned as follows. The root is assigned a number of 
hildren c∅ withdistribution µ̂◦, and a distinguished 
hild is 
hosen uniformly among these. On all 
hildren butthe distinguished one, independent trees with distribution P • are grafted, while the distinguished
hild has an independent number of 
hildren with law µ̂•. Again, one of these is 
hosen uniformlyand distinguished. Independent trees with law P ◦ originate from the undistinguished ones, andthe distinguished one has o�spring with law µ̂◦, and so on, so that one uses distributions P ◦, µ̂◦at even generations, and P •, µ̂• at odd ones. We let P̂ be the distribution of the resulting in�nitetree, and we denote the in�nite distinguished path [[∅,∞]] = {v0 = ∅, v1, . . .}. We let P̂ (h) bethe distribution of ([T ]vh

, vh) under P̂ , and we denote by (T, V ) a random variable with this law.We also let ◦ • (h) = ◦ or • a

ording to h being even or odd.Similarly, for r ∈ N = {1, 2, . . .}, h ≥ 0, let P̂
(h)
r be the law of a forest of r independent treesall with law P ◦ ex
ept for the K-th one whi
h has law P̂ (h), where K is uniform on {1, 2, . . . , r}.Lemma 4 (An
estral de
omposition for Galton-Watson forests) For every r ∈ N and nonnega-tive fun
tions F,G

Er

[
∑

u∈F

F (|u|, [F ]u)G(Fu)

]
= r

∑

h≥0

m
[h/2+1]
◦ m

[(h+1)/2]
• Ê(h)

r [F (V,F)]E◦•(h)[G(T )].(noti
e that by de�nition [F ]u is a forest, while Fu is a tree).Otherwise said, if a vertex u is taken a

ording to the 
ounting measure on F , then itsheight is distributed a

ording to the measure on N with weight m
[h/2+1]
◦ m

[(h+1)/2]
• on {h}, and



2 CRITICAL TWO-TYPE DISCRETE SNAKES 12given |u| = h, ([F ]u, u),Fu are independent with respe
tive laws P̂
(h)
r and P . Noti
e that when

m◦m• = 1, we 
an bound
Er

[
∑

u∈F

F (u, [F ]u)G(Fu)

]
≤ r(m◦ ∨ m•)

∑

h≥0

Ê(h)
r [F (V,F)]E◦•(h)[G(T )].Proof. This lemma is essentially deterministi
, in that one 
an take F (u, f)G(f ′) of the form1u,f ,f ′ for some parti
ular u ∈ f , f ′ with say |u| = h. It is then easy that the expe
tation weare looking for is just the probability Pr(F = [f , u, f ′]) where [f , u, f ′] is the unique forest f ′′satisfying [f ′′]u = f , f ′′u = f ′. The subtrees originating from the spine [[∅, u]] are then plainlyindependent with the 
laimed laws P ◦•(h′), 1 ≤ h′ ≤ h, and independent of the stru
ture ofthe spine. The latter is 
onstituted of ∅, u1, . . . , uh = u and the brothers of u1, . . . , uh, whoserespe
tive numbers are k1 − 1, . . . , kh − 1 with probability

∏

0≤i≤h−1 evenµ◦(ki+1)
∏

1≤i≤h−1 oddµ•(ki+1),whi
h we rewrite
rm

[h/2]
◦ m

[(h−1)/2]
•

1

r

h∏

i=1

1

ki

∏

0≤i≤h−1 even µ̂◦(ki+1)
∏

1≤i≤h−1 odd µ̂•(ki+1),and the �rst produ
t 
orresponds to the probability of 
hoosing the distinguished vertex ui atheight i, while the fa
tor 1/r amounts to 
hoosing the pla
e of the distinguished tree in the forestwith r roots. Hen
e the result. �2.5 Criti
ality and the tree of grandfathersWe now use a natural redu
tion of two-type trees obtained when squeezing all the odd gener-ations, i.e. by 
onsidering only the ◦ des
enden
e of ◦ verti
es. More pre
isely, given a tree
t, we de�ne re
ursively the redu
ed tree t◦ (also 
alled the tree of grandfathers in the sequel)starting from the root, by letting the 
hildren of the root in t◦ be the grand
hildren of ∅ in t,taken in depth-�rst order, and letting the 
hildren of these be the 
orresponding grand
hildrenin t, and so on. Formally, if k is the number of 
hildren of ∅ in t, and if the i-th of these
hildren has ci 
hildren i1, . . . , ici itself, then root ∅ has c1 + . . . + ck 
hildren in t◦, and we let
ij = c1 + . . . + ci−1 + j. In stage n, if we 
onsider a vertex u of t◦ whi
h 
omes from a vertex uof t by our 
onstru
tion, we let uij, 1 ≤ i ≤ cu, 1 ≤ j ≤ cui be its grandsons in t, and we map
uij to uij = u(cu1 + . . . + cu(i−1) + j), hen
e determining the cu1 + . . . + cuk 
hildren of u in t◦.It is now obvious by de�nition that

Figure 4: A two-type tree T , the 
orresponding redu
ed tree T̄◦, and the forest T̄•.Proposition 3 If T follows the law P , then T ◦ is a monotype Galton-Watson tree, whose o�-spring distribution µ◦ has generating fun
tion
Gµ◦ = Gµ◦ ◦ Gµ• .



2 CRITICAL TWO-TYPE DISCRETE SNAKES 13By di�erentiating this expression, we obtain that the mean of this new o�spring distribu-tion is m•m◦, so it is 
riti
al by our assumptions. Also, we 
an similarly 
onsider a forest
T1, T2, . . . , Tc∅(T ) of fringe subtrees rooted at the sons of the root of T , and apply a similartransformation T • to all these trees, skipping every ◦ generation. Again, this gives a 
riti
alGW forest (with random number of trees), also 
alled forest of grandfathers in the sequel. Bydi�erentiating twi
e the expression above we also obtain that the varian
e is �nite, and in fa
tsmall exponential moments are �nite. A qui
k 
omputation gives that the varian
e of µ◦ is σ2

◦(resp. σ2
• for µ•), where

σ◦ =
√

m2
•σ

2
◦ + m◦σ2

• , σ• =
√

m•σ2
◦ + m2

◦σ
2
• . (9)From the a.s. extin
tion 
riterium of monotype Galton-Watson trees, we also immediately dedu
ein our 
ase the well-known extin
tion lemma for two-type trees:Lemma 5 Let (µ◦, µ•) satisfy (H1) and T be a P ◦ (or P •) distributed tree. Then T is a.s. �nite.Of 
ourse, the existen
e of small exponential moments 
an be lifted here. We also immediatelygetLemma 6 Assume that the pair (µ◦, µ•) satis�es (H1). The 
on
lusions of Lemmæ 2 and 3remain valid for P ◦-forests (and P •-forests) introdu
ed in Se
tion 2.1.We now give a result similar to [20℄ in the 
ase of single type Galton-Watson trees. For u ∈ tand k ≥ 1 let au,k(t) be the number of an
estors v ∈ [[∅, u]] that have k 
hildren exa
tly. Similarnotations are taken for forests. The next lemma allows to bound the degree in large trees.Lemma 7 Assume that the pair (µ◦, µ•) satis�es (H1). For every A, ξ > 0 there exists ε > 0su
h that for n large enough,

P∞

(
sup

k≥nξ,u≺u([An])

au,k(F) ≥ 1

)
≤ exp(−nε). (10)Moreover, for every D > 0 there exists C > 0 su
h that for n large enough,

P∞

(
sup

k≥C log n,u≺u([An])
au,k(F) ≥ 1

)
≤ n−D. (11)Proof. Let η > 0. By �rst using Lemma 6 as in Lemma 8, it su�
es to bound

Pn1/2+η

(
sup

k≥nξ,|u|≤n1/2+η

au,k ≥ 1

)
≤ En1/2+η

(
∑

u∈F

1|u|≤n1/2+η1cu≥nξ

)and applying the an
estral de
omposition, this is smaller than
(m◦ ∨ m•)n

1/2+η
∑

0≤h≤n1/2+η

µ◦•(h)
(
[nξ,+∞[

)
.The sum 
ontains two kinds of terms depending on whether h is odd or even. Sin
e µ◦ and µ•have small exponential moments, Markov's inequality shows that, there exists ε su
h that, for nlarge enough, µ◦([nξ,+∞)) + µ•([nξ,+∞)) ≤ exp(−nε/2), whi
h gives (10). We obtain (11) bya similar method. �



2 CRITICAL TWO-TYPE DISCRETE SNAKES 142.6 Repartition of ◦-nodes and •-nodes in two-type treesLet now J◦
t (k) (resp. J•

t (k)) be the number of verti
es of type ◦ (resp. •) o

urring in depth-�rstorder before the k-th vertex of t in depth-�rst order. It is immediate that∣∣∣Ht
k − 2Ht◦

J◦
t
(k)

∣∣∣ ≤ 2
∣∣∣Ht◦

J◦
t
(k) − Ht◦

J◦
t
(k)+1

∣∣∣+ 2, (12)where by 
onvention Ht◦
J◦
t
(k)+1 = 0 when J◦

t (k) = |t◦|. A similar inequality holds when t isrepla
ed by a forest f , and/or ◦ by •. The next lemma gives the asymptoti
 behavior for
(J◦

F (k), k ≥ 0).Lemma 8 Under assumptions (H1), for any A, γ > 0 there exists ε > 0 su
h that for n largeenough,
P∞

(
sup

0≤k≤An

∣∣∣∣J
◦
F (k) − k

1 + m◦

∣∣∣∣ > n1/2+γ

)
≤ exp(−nε),and similarly with (J•

F ,m•) instead of (J◦
F ,m◦).Proof. Let J ′

k be the total number of verti
es that have been visited before exploring the k-th
◦, whi
h we 
all u (and whi
h is 
ounted in the number J ′

k). At time J ′
k, one has visited all the
hildren of the k−1 �rst ◦-nodes u1, . . . , uk−1 ex
ept maybe some of the 
hildren of the an
estorsof u. Using Lemmas 7 and 2, for any η, ξ > 0, there exists ε > 0, for n large enough, for any

k ≤ An,
P

(∣∣∣∣∣J
′
k − (k +

k∑

i=1

cui)

∣∣∣∣∣ ≥ n1/2+η+ξ

)
≤ exp(−nε).Now, sin
e the random variables cui are independent and have exponential moments, ∑k

i=1 cuiis 
on
entrated around its mean, and one gets that for n large enough, for any k ≤ An,
P

(
sup

0≤k≤An
|J ′

k − (1 + m◦)k| ≥ n1/2+γ/2

)
≤ exp(−nε).The result on J◦

F follows by a standard argument (it is uniformly 
lose to the right-
ontinuousinverse of J ′). The very same reasoning shows that J ′′
k is uniformly 
lose to (1 + m•)k with highprobability, where J ′′

k is the number of • verti
es visited before the k-th vertex. �An immediate 
onsequen
e of this isCorollary 2 Under the hypotheses (H), the statement of Proposition 1 remains valid in thetwo-type 
ase, i.e. for every A, ε > 0, α ∈ (0, 1/2), there exists C > 0 with
sup
n∈N

P ◦
∞

(
sup

0≤s 6=t≤A

|HF
ns − HF

nt|√
n|s − t|α > C

)
≤ ε.Proof. We bound

∣∣∣∣
HF

ns − HF
nt√

n

∣∣∣∣ ≤

∣∣∣∣∣∣

HF
ns − 2HF◦

J◦
F(ns)√

n

∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣

HF◦

J◦
F(ns) − HF◦

J◦
F(nt)√

n

∣∣∣∣∣∣
+

∣∣∣∣∣∣

HF
nt − 2HF◦

J◦
F (nt)√

n

∣∣∣∣∣∣
.The term in the middle is < C|s − t|α with high probability for C large enough thanks toProposition 1 and Lemma 8, while the two others are bounded by

sup
0≤k≤An

n−1/2
∣∣∣HF◦

k − HF◦
k+1

∣∣∣by (12) and the fa
t that J◦
F (k) ≤ k. Now this quantity 
onverges to 0 in probability byProposition 2. Therefore, we obtain the desired bound when s 6= t are su
h that ns, nt areintegers, and this is extended similarly as above to any s, t ≤ A by linear interpolation. �



2 CRITICAL TWO-TYPE DISCRETE SNAKES 152.7 Two-type dis
rete snakesWe now 
ouple the Galton-Watson trees with a spatial motion as follows. For every k ≥ 1
onsider two distributions ν◦
k , ν•

k on R
k.We enri
h the laws Pr, r ∈ N ∪ {∞} by asso
iating with the 
hildren (u1, . . . , ucu(f)) ofevery vertex u of f (given F = f) a r.v. (Yu1, Yu2 . . . , Yucu(f)) with law ν◦

cu(f) if |u| is even,and ν•
cu(f) otherwise, and we suppose these variables independent over di�erent u's. We 
all

Pr the asso
iated probability. We let also Y∅ = 0 and ℓ(u) =
∑

v∈[[∅,u]] Yv. In the sequel, thenotation f will stand for a labeled forest (f , ℓ).Let Rf
k = ℓ((u(k)), and de�ne (Rf

s, s ≥ 0) by linearinterpolation between values taken at integers. Similarly, we let R̂f
k = l(Ff (k)) be the label ofthe k-th vertex in depth-�rst traversal, and let R̂f be the asso
iated interpolated pro
ess. It is
onvenient to see this 
onstru
tion as done on Figure 5: assume that ea
h node u is drawn inthe plane at position (ℓ(u), |u|). The 
hildren of u will be at position {(ℓ(u) + Yui, |u| + 1), i ∈

J1, cf (u)K}. Hen
e, the variable Yui 
an be thought as abs
issa displa
ements of ith 
hildren of
u relative to u.PSfrag repla
ements

Ĥt

R̂t

4
5

5
57 3 3 3 18

18
-3

1
1 1 00 0-1 -1-1-1 2 26 4 4 4

Figure 5: At �rst a tree in whi
h ea
h node u is marked with Yu. On the se
ond pi
ture, u ismarked with ℓ(u), then one sees a representation in the plan using the variable Yu as abs
issadispla
ements. Then are represented on top Ĥt and below R̂t. The small re
tangle in this Figureillustrates that the pro
ess R̂t must be 
onstant on the nodes en
oded by ĤtWe denote by
M◦

k,j,p =

∫

Rk

|xj |pν◦
k(dx) and M•

k,j,p =

∫

Rk

|xj |pν•
k(dx)the p-th moments of the one-dimensional marginals of ν◦

k and ν•
k . We denote by (H2) the set ofassumptions

(H2) :=

{ the one-dimensional marginals of ν◦
k and ν•

k are 
entered.there exists ε > 0, S.t. for any k ≥ 1, 1 ≤ j ≤ k,M◦
k,j,4+ε < +∞ and M•

k,j,4+ε < ∞We will denote these two last quantities by M◦
k,j,M

•
k,j for the sake of brevity. We let also

(Σ◦
k,j)

2, (Σ•
k,j)

2 be the varian
es of the j-th marginal, and de�ne
Σ =

√√√√√1

2

∑

k≥1


µ◦(k)

m◦

∑

1≤j≤k

(Σ◦
k,j)

2 +
µ•(k)

m•

∑

1≤j≤k

(Σ•
k,j)

2


. (13)
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e of normalized labeled forests3.1 Convergen
e of the shapeDe�ne
σ =

1

2

√
σ2
◦

1 + m•

m◦
+ σ2

•

1 + m◦

m•
, (14)so that σ =

√
1 + m◦σ◦/2 =

√
1 + m•σ•/2.Theorem 2 Let (µ◦, µ•) satisfying (H1); under P∞,

(
HF

ns√
n

,
ĤF

2ns√
n

,
ΛF

ns√
n

,
Λ̂F

2ns√
n

)

s≥0

(d)−−→
n

(
2

σ
|Bs|,

2

σ
|Bs|,

σ◦√
1 + m◦

L0
s,

σ◦√
1 + m◦

L0
s

)

s≥0where B is a standard Brownian motion and L0 is its lo
al time at 0.Remark. We suspe
t that the small exponential moments assumption is only te
hni
al, andthat this theorem holds assuming only �nite varian
e. However, dropping this assumption islikely to make all the proofs mu
h more involved. The fa
t that 
onvergen
e holds jointly forres
aled height and 
ontour pro
esses is an amelioration obtained in [19℄, see also [11℄, and wewill ex
lusively 
on
entrate on the height pro
ess in the sequel, referring the interested reader tothe above referen
es.Proof. This is an easy 
onsequen
e of the pre
eding results. From (12) and Proposition 2, wehave that under P ◦
∞, (n−1/2HF

ns, s ≥ 0) has the same limit as (n−1/22HF◦

J◦
F ([ns]), s ≥ 0). By Propo-sitions 2 and 8 and a standard argument using Skorokhod's representation's theorem, we obtainthat the latter pro
ess 
onverges to (2σ−1

◦ |B(1+m◦)−1s|, s ≥ 0), and it su�
es to use Brownians
aling and 
he
k that 2/(
√

1 + m◦ σ◦) = 2/σ. The joint 
onvergen
e with (n−1/2ΛF
ns, s ≥ 0) isthen easy, using that ΛF

k = ΛF◦

J◦
F (k) for every k ≥ 0. �3.2 Convergen
e of the labelsFor (Xs, s ≥ 0) a real-valued fun
tion, we let X̌s,s′ = infs∧s′≤u≤s∨s′ Xu. Denote by (H3) theassumption

(H3) :=

{ there exists D > 0 su
h that max
1≤j≤k

(M◦
k,j ∨ M•

k,j) = O(kD) .The goal of this se
tion is to prove the following theorem.Theorem 3 If (H1), (H2) and (H3) are satis�ed then Σ is �nite, and under P∞, we have
(

HF
ns

n1/2
,

ΛF
ns

n1/2
,
RF

ns

n1/4

)
weakly−−−−→
n→∞

(
2

σ
|Bs|,

σ◦√
1 + m◦

L0
s,Σ

√
2

σ
rs

)
, s ≥ 0,in C([0, 1], R3), endowed with the topology of uniform 
onvergen
e on 
ompa
t sets, and where
onditionally on B, r is a 
entered Gaussian pro
ess with 
ovarian
e

cov(rs, rs′) = |B̌|s,s′ , s, s′ ≥ 0.Similarly, (
ĤF

2ns

n1/2
,
Λ̂F

2ns

n1/2
,
R̂F

2ns

n1/4

)
weakly−−−−→
n→∞

(
2

σ
|Bs|,

σ◦√
1 + m◦

L0
s, rs

)
, s ≥ 0.



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 17Remarks. • In 
ase of i.i.d. random variables Yv, the minimum moment 
ondition is theexisten
e of a moment of order 4 + ε (see [14℄). There, sin
e we allow the law of Yv to dependon the degree (this is the 
ase in the appli
ation to mobiles asso
iated with random maps), themoments of order 4 + ε must exist and also must not grow too fast with the degree: the rateof growing depends on the apparition of nodes with large degree in the tree; this is ruled o� byLemma 7.
• In fa
t, a joint 
onvergen
e result similar to that of Theorem 2 
ould be obtained here, but wedo not 
on
entrate on this. Also, the proofs will be done only in the 
ase of the height pro
ess,the 
ase of the 
ontour pro
ess being similar, and easier in many ways (e.g. the analog of Lemma11 is straightforward).From Theorem 3, we dedu
e, re
alling the notations of Se
t. 1.5,Corollary 3 Supposing (H1), (H2), (H3), for any a > 0, the pro
ess ((n−1/2HT

ns, n
−1/4RT

ns), 0 ≤
s ≤ n−1|T |) under P(· |max RT − min RT > an1/4) 
onverges to (2σ−1e,Σ

√
2σ−1r) under

N(· |Σ
√

2σ−1∆ > a).We will not give a detailed proof of this statement, as a very similar result appears in [11,Se
tion 2.5℄, to whi
h we refer the interested reader. Also, many other kinds of non-singular
onditionings 
ould be 
hosen instead of our 
hoi
e on the diameter of the range of the pro
ess r.We use this one be
ause of the spe
ialization to the mobiles asso
iated with maps as dis
ussedin the Introdu
tion and in Se
t. 4: the diameter of the range of r 
orresponds to the radius ofthe map.In order to prove Theorem 3, we must �rst 
ontrol the behavior of the random variables Yvinvolved in Rns. This passes through the 
ontrol of the largest degree in a our random trees,whi
h is the aim of the following subse
tion.3.3 Preliminary lemmæNow, for 1 ≤ j ≤ k we let a◦u,k,j(t) be the number of an
estors v ∈ [[∅, u]] su
h that |v| is even,
ct(v) = k, and su
h that u is moreover in the j-th fringe subtree tvj . The quantity a•u,k,j(t) isde�ned similarly. We de�ne the same quantity for forests rather than trees. Under a GW law(of a tree of a forest), we will unambiguously denote a◦u,k,j(T ) or a◦u,k,j(F) by a◦u,k,j, and so on.Lemma 9 Let (µ◦, µ•) satisfying (H1). For every γ,A > 0, there exists ε > 0 su
h that for nlarge enough,

P∞


 sup

k≥1,1≤j≤k,u≺u([An])

∣∣∣a◦u,k,j −
µ◦(k)
2m◦

|u|
∣∣∣

√
µ◦(k)
m◦

≥ n1/4+γ


 ≤ exp(−nε)and similarly for a•u,k,j.Proof. Noti
e that the number of ◦ verti
es under a vertex of height h is [h/2 + 1]. By Lemma4, for a given k ≥ 1, 1 ≤ j ≤ k,

Pn1/2+γ/2


 sup

|u|≤n1/2+γ/2

∣∣∣∣a
◦
u,k,j −

µ◦(k)

m◦

[ |u|
2

+ 1

]∣∣∣∣ ≥
√

µ◦(k)

m◦
n1/4+γ


 (15)

≤ En1/2+γ/2

[
∑

u∈F

1{∣∣∣a◦
u,k,j−

µ◦(k)
m◦

[
|u|
2

+1
]∣∣∣≥

√
µ◦(k)
m◦

n1/4+γ

}1{|u|≤[n1/2+γ/2]}

]

≤ C◦•n
1/2+γ/2

[n1/2+γ/2]∑

h=0

P



∣∣∣∣∣∣

[h/2+1]∑

l=1

X◦
k,j(l) −

µ◦(k)

m◦

[
h

2
+ 1

]∣∣∣∣∣∣
≥
√

µ◦(k)

m◦
n1/4+γ


 , (16)



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 18where C◦• = m◦ ∨ m•, and where on a probability spa
e (Ω,A, P ), X◦
k,j(l), l = 0, . . . , [h/2 + 1]are i.i.d. random variables with Bernoulli(µ◦(k)/m◦) law (whi
h 
orresponds to the probabilitythat X̂ = k,Uk = j where X̂ has law P (X̂ = k) = kµ◦(k)/m◦, and given X̂ = k, Uk ∈ {1, . . . , k}is uniform). Now H÷�ding's inequality says that if S

(p)
n is a binomial variable with parameter pand n trials. Then for every y ≥ 0,

P
(
|S(p)

n − np| >
√

p y
)
≤ 2 exp(−2y2/n). (17)This allows to bound ea
h term in the sum (16) by 2e−2nγ , and so the right member of (16) is

O(e−nγ
) where the O is uniform on k. To 
on
lude, we have to remove the 
ondition sup{|u|} ≤

n1/2+γ/2 and to move the supremum on k inside the probability. The �rst point is done thanksto Lemma 6.Se
ond point : The left hand side of (15) is bounded by O(ne−2nγ
), if we add supk≤n in theprobability. Let us handle the k larger than n. For n large enough, with probability ≥ 1 −

exp(−nε1), all au,k, and thus all a◦u,k,j, are null for k > n, and all |u| ≤ n (by Lemma 10). Thuswith this high probability,
sup
k>n

∣∣∣a◦u,k,j −
µ◦(k)
2m◦

|u|
∣∣∣

√
µ◦(k)
m◦

= sup
k>n

√
µ◦(k)

4m◦
|u| ≤ n sup

k>n

√
µ◦(k)

4m◦
≤ sup

k>n
k

√
µ◦(k)

4m◦
≤ n1/4+γ ,for n large, be
ause µ◦ has exponential moments.The same reasoning applies to a•u,k,j. �The next lemma sharpens the pre
eding one, subje
t to relaxing a little the uniformity on

u. For u ∈ t, 0 ≤ l ≤ |u|, k ≥ 1, 1 ≤ j ≤ l, we de�ne the quantity a◦u,l,k,j to be the numberof an
estors v ∈ [[∅, u]] with even height satisfying |v| > |u| − l, and for whi
h cv(t) = k and
u ∈ tvj .Lemma 10 Let (µ◦, µ•) satisfying (H1). For every A, γ, ξ > 0, there exists ε > 0 su
h that, for
n large enough

P∞


 sup

k≥1,1≤j≤k,u≺u([An]),nξ≤l≤|u|

∣∣∣a◦u,l,k,j −
µ◦(k)
2m◦

l
∣∣∣

l1/2+γ
√

µ◦(k)
m◦

≥ 1


 ≤ exp(−nε).Proof. Again we 
onsider a forest with n1/2+γ/2 trees and bound |u| ≤ n1/2+γ/2 up to losing anexponentially small probability. Also, noti
e that the number of ◦ verti
es 
omprised between avertex with height h and its an
estor at height h− l is [h/2 + 1]− [(h− l)/2 + 1]. For �xed k, l,and for c > 0 we write similarly as above

Pn1/2+γ/2


 sup

n1/2+γ/2≥|u|≥l≥nξ

∣∣∣a◦u,l,k,j −
µ◦(k)
m◦

([
h
2 + 1

]
−
[

h−l
2 + 1

])∣∣∣
([

h
2 + 1

]
−
[

h−l
2 + 1

])1/2+γ
√

µ◦(k)
m◦

≥ c




≤ C◦•n
1/2+γ/2

n1/2+γ/2∑

h=nξ

P


 sup

nξ≤l≤h

∣∣∣
∑[h/2+1]

i=[(h−l)/2+1] X
◦
k,j(i) −

µ◦(k)
m◦

([
h
2 + 1

]
−
[

h−l
2 + 1

])∣∣∣
√

µ◦(k)
m◦

([
h
2 + 1

]
−
[

h−l
2 + 1

])1/2+γ
≥ c




≤ 2C◦•n
1/2+γ/2

n1/2+γ/2∑

h=nξ

h exp(−2c2n2ξγ) ≤ 2C◦•n
3/2+3γ/2 exp(−n2γξ)and this gives the result, using the same method as in the pre
eding lemma and 
hoosing c smallenough. �



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 193.4 Finite-dimensional 
onvergen
eThe �rst step in the proof of Theorem 3 is the followingProposition 4 Suppose that the pair (µ◦, µ•) satis�es (H1), and that the displa
ements distri-bution ν• and ν◦ are 
entered. Suppose moreover that
max
1≤j≤k

(Σ◦
k,j ∨ Σ•

k,j)
2 = O(kD),for some D > 0. Then the 
onvergen
e of �nite-dimensional marginals holds in Theorem 3.Noti
e that this statement shows that the �nite-dimensional 
onvergen
e holds even without theextra 4 + ε moment hypothesis. Also, note that under the hypothesis of the proposition, thevarian
e Σ asso
iated with the limiting pro
ess is �nite, be
ause µ◦, µ• have small exponentialmoments.Let us give the intuition for the one-dimensional 
onvergen
e. By using Skorokhod's repre-sentation theorem, we may assume that we are working in a new probability spa
e on whi
h allthe dis
rete forests (Fn) are living, and su
h that the 
onvergen
e of (n−1/2(HFn

ns ,ΛFn
ns ), s ≥ 0)to ((2σ−1|Bs|, σL0

s), s ≥ 0) is almost-sure. In the remaining of the se
tion, it is impli
it that weare working on this new probability spa
e, and all the probabilities are taken 
onditionally on
B(σ) = 2σ−1|B|. We write simply F instead of Fn.Fix s ≥ 0. If u = u([ns]), we 
an rewrite

RF
ns =

∑

k≥1

∑

1≤j≤k




a◦
u,k,j∑

l=1

Y ◦
k,j(l) +

a•
u,k,j∑

l=1

Y •
k,j(l)


 , (18)where the variables Y ◦

k,j(l), Y
•
k,j(l) are all independent, and independent of a◦u,k,j and a•u,k,j, withlaw the j-th marginal of ν◦

k and ν•
k respe
tively. Sin
e a◦u,k,j is approximately µ◦(k)|u|/(2m◦)(with similar estimate for a•u,k,j), and sin
e |u| is approximately n1/2B

(σ)
s , it is expe
ted that

n−1/4RF
ns 
onverges to a 
entered Gaussian law with varian
e

B
(σ)
s

2

∑

k≥1


µ◦(k)

m◦

∑

1≤j≤k

(Σ◦
k,j)

2 +
µ•(k)

m•

∑

1≤j≤k

(Σ•
k,j)

2


 = Σ2B(σ)

s ,whi
h is what is wanted. Let us now pro
eed to the rigorous proof. We start with aLemma 11 Suppose (H1) and that max1≤j≤k(M
◦
k,j,p ∨ M•

k,j,p) = O(kD) as k → ∞, for some
p > 1 and D > 0. Then for every �xed s,

n−1/4
∣∣∣RF

ns − RF
[ns]

∣∣∣→ 0in probability as n → ∞.Proof. By de�nition of RF the r.v. RF
k−1 − RF

k is a sum of at most |HF
k − HF

k−1| + 2 randomvariables 
orresponding to the variables Y that are present on the path [[u(k − 1), u(k)]]. Let
An

r be the event
An

r =

{
sup

1≤k≤[An]
d(u(k − 1), u(k)) > r log n

}
.For any r1 > 0, there exists r2 su
h that

P∞(An
r2

) = O(n−r1). (19)



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 20Indeed, 
onsider a forest with n1/2+γ trees for some γ > 0. A negative jump with size at least δin the height pro
ess 
orresponds to a run of at least δ nodes that have at least one 
hild, whenexploring the forest in reverse depth-�rst sear
h. Sin
e µ◦(0) + µ•(0) > 0 (be
ause m◦m• = 1),one sees that runs of 
onse
utive 
hildren having at least one 
hild is smaller than twi
e ageometri
al random variable with parameter (1−µ◦(0))(1−µ•(0)). Now, it is easy to prove thatthe maximum of [An] i.i.d. su
h geometri
 r.v. satis�es (19). Using (11) for r large enough, theevent
Bn

r =
{
sup{cu(k), k ≤ An} ≤ r log n

}
∩An

r ,satis�es P∞(Bn
r ) → 1 when n goes to in�nity. Using the hypothesis, E∞(|Rk−1 − Rk|p | Bn

r ) =
O(logK n) for a 
ertain K > 0, and this 
on
ludes the proof. �Proof of Proposition 4. Let us prove the one-dimensional 
onvergen
e. Thanks to Lemma11, we restri
t our attention to the values of s, su
h that ns is an integer. We use a trun
ationpro
edure, that is we 
hoose C large and write

RF
ns = RC

ns + R̃C
ns,where RC

ns, R̃
C
ns are the sum of (18) with k ranging respe
tively from 1 to C and from C + 1 to

∞. Assume for a moment that for every ε > 0,
lim

B→∞
lim sup

n→∞
P∞(|R̃C

ns| > n1/4ε) = 0. (20)In this 
ase, we 
an use Lemma 9 together with the 
entral limit theorem as n → ∞ in the �rstsum 
onditionally on B(σ), to obtain that a.s. RC
ns/n

1/4 
onverges in distribution as n → ∞ toa 
entered Gaussian variable with varian
e equal to the partial sum
Σ2

C =
B

(σ)
s

2

∑

1≤k≤C


µ◦(k)

m◦

∑

1≤j≤k

(Σ◦
k,j)

2 +
µ•(k)

m•

∑

1≤j≤k

(Σ•
k,j)

2


 ,whi
h 
onverges to a normal variable with 
laimed varian
e as C → ∞. Now still supposing (20)we write, for ε > 0

∣∣∣P∞

(
RF

ns > n1/4x
)
− P∞

(
RC

ns + R̃C
ns > n1/4x, |R̃C

ns| ≤ εn1/4
)∣∣∣ ≤ P∞(|R̃C

ns| > εn1/4) ≤ ε,as soon as C, then n are 
hosen large enough. Therefore
P∞

(
RC

ns

n1/4
> x + ε

)
− 2ε ≤ P∞

(
RF

ns

n1/4
> x

)
≤ P∞

(
RC

ns

n1/4
> x − ε

)
+ ε,and the result is obtained by taking the sup and inf limits as n → ∞, then letting C → ∞ and�nally ε → 0.It remains to prove (20). Let Bn be the union of the three events

{
sup

k≥n,u≺u(An)
au,k ≥ 1

}
,

{
max

{0,...,[nt]}
HF ≥ 2n1/2 sup

[0,t]
B(σ)

}
,



 sup

k≥1,1≤j≤k,u≺u(An)

∣∣∣a◦u,k,j −
µ◦(k)
2m◦

|u|
∣∣∣

√
µ◦(k)
m◦

∨

∣∣∣a•u,k,j −
µ•(k)
2m•

|u|
∣∣∣

√
µ•(k)
m•

≥ n3/8



 .Then

P∞

(
R̃C

ns > n1/4ε
)
≤ P∞ (Bn) + P∞

(
R̃C

ns > n1/4ε,Bc
n

)



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 21The �rst term of the right-hand side goes to 0 as n → ∞ by Lemmæ 7, 9. By �rst 
onditioningon the a◦u,k,j, a
•
u,k,j, the se
ond term 
an be rewritten and bounded by

P∞



∣∣∣∣∣∣

∑

C≤k≤n

∑

1≤j≤k




a◦
u,k,j∑

l=1

Y ◦
j,k(l) +

a•
u,k,j∑

l=1

Y •
j,k(l)



∣∣∣∣∣∣
> n1/4ε,Bc

n




≤ 1

ε2n1/2
E




n∑

k=C

∑

1≤j≤k

(a◦u,k,j(Σ
◦
k,j)

2 + a•u,k,j(Σ
•
k,j)

2)1Bc
n




≤ 2B
(σ)
s

2ε2

n∑

k=C

(
k
µ◦(k)

m◦
max
1≤j≤k

(Σ◦
k,j)

2 + k
µ•(k)

m•
max
1≤j≤k

(Σ•
k,j)

2

)

+
1

ε2n1/8

n∑

k=C



√

µ◦(k)

m◦
k max

1≤j≤k
(Σ◦

k,j)
2 +

√
µ•(k)

m•
k max

1≤j≤k
(Σ•

k,j)
2


By the assumption made on varian
es, and the fa
t that µ◦, µ• have small exponential moments,the se
ond term 
onverges to 0 while the �rst 
onverges to

B(σ)
s ε−2

∑

k≥C

(
k
µ◦(k)

m◦
max
1≤j≤k

(Σ◦
k,j)

2 + k
µ•(k)

m•
max

1≤j≤k
(Σ•

k,j)
2

)
,and this does 
onverge to 0 as C → ∞.The 
ase of multi-dimensional 
onvergen
e is similar, although some extra 
are must be takenbe
ause of nodes, where dependen
ies 
an o

ur. We only sket
h the proof, referring the readerto [14℄ for more details. Let 0 ≤ s1 < s2 < . . . < sk. Also, noti
e that for any forest f and k < k′,the distan
e df (u(k), u(k′)) satis�es |df (u(k), u(k′)) − (H f

k + H f
k′ − 2mink≤l≤k′ H f

l )| ≤ 2 (it is infa
t always equal to 2 ex
ept when u(k) is an an
estor of u(k′)). It follows that up to forgettingtwo steps in ea
h bran
h, the lengths of bran
hes of the subforest of f spanned by the root and
u([nsi]), 1 ≤ i ≤ k (a bran
h being a maximal 
hain of neighboring verti
es with degree ≤ 2),are determined by the ve
tor

(H f
[ns1]

, Ȟ f
[ns1],[ns2]

,Hf
[ns2]

, . . . , Ȟ f
[nsk−1],[nsk],H

f
[nsk]).Now, the proof of the one-dimensional 
onvergen
e shows that the spatial displa
ements alongea
h bran
h 
onverge to independent normal variables with respe
tive varian
es Σ2l, where lis the limiting renormalized length of the bran
h of the Continuum Random Tree, as the onlydependent variables in the walks appear only at the nodes of the subtrees, whi
h number isbounded by 2k. This ends the proof. �3.5 TightnessTo end the proof of Theorem 3, we needProposition 5 If assumptions (H1), (H2) and (H3) are ful�lled, the sequen
e of laws of thepro
esses (n−1/4RF

ns, s ≥ 0), n ≥ 1 is tight in C([0,∞)).Proof. Our way of pro
eeding follows 
losely the arguments of [21, 14℄. We know from Corollary2 that for every α ∈ (0, 1/2), and A,C1 > 0, with P∞-probability arbitrarily 
lose to 1 we havefor all n,
|HF

ns − HF
ns| ≤ C1n

1/2|s − t|α (21)



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 22for all s, t ≤ A. We let Bn be the interse
tion of the 
orresponding event and of the events
{

max
u≺u(An),k≥C log n

ak,u = 0

}
,



 sup

u≺u(An),k≥1,1≤j≤k,nξ≤l≤|u|

∣∣∣a◦u,l,k,j −
µ◦(k)
2m◦

l
∣∣∣

l1/2+γ
√

µ◦(k)
m◦

∨

∣∣∣a•u,l,k,j −
µ•(k)
2m•

l
∣∣∣

l1/2+γ
√

µ•(k)
m•

≤ 1



where C > 0 is 
hosen so that the probability of Bn stays ≥ 1− λ for any pres
ribed λ > 0, and

ξ > 0 will be �xed later.Our goal is to show that with high probability, there exists C2, β > 0 su
h that for every
s, t ≤ A, and n large enough,

|RF
ns − RF

nt| ≤ C2n
1/4|s − t|β.Noti
e that it su�
es to show this property for all n large and s 6= t su
h that ns and nt areintegers, whi
h we suppose from now on.Under Bn, the number of variables to sum between u(ns) and u(nt) is the distan
e ℓn(s, t)between these nodes, where |ℓn(s, t)− (HF

ns + HF
nt − 2ȞF (ns, nt))| ≤ 2, so ℓn(s, t) is bounded by

C3n
1/2|s − t|α uniformly on s, t ≤ A (with ns, nt integers) as soon as (21) holds.Let u(ns, nt) be the highest 
ommon an
estor of u(ns), u(nt). Let also j(s), j(t) be su
hthat u(ns), u(nt) respe
tively belong to the fringe subtrees Tu(ns,nt)j(s), Tu(ns,nt)j(t). Then we 
anrewrite

RF
ns − RF

nt = (Yu(ns,nt)j(s) − Yu(ns,nt)j(t))

+
∑

k≥1

∑

1≤j≤k




a◦
s,t,k,j∑

l=1

Y ◦
k,j(l) +

a•
s,t,k,j∑

l=1

Y •
k,j(l)




−
∑

k≥1

∑

1≤j≤k




b◦s,t,k,j∑

l=1

Z◦
k,j(l) +

b•s,t,k,j∑

l=1

Z•
k,j(l)


 ,where the terms of the sums are all independent. Here, a◦s,t,k,j is the number of nodes in

]]u(s, t), u(s)]] with even height, with k 
hildren and for whi
h u(s) is in the j-th fringe sub-tree, and b◦s,t,k,j is the same but for ]]u(s, t), u(t)]], and similarly for a•s,t,k,j, b
•
s,t,k,j, and the

Y ◦
k,j(l), Z

◦
k,j(l) are independent 
onditionally on the a, b, with law the j-th marginal of ν◦

k , andso on. Then, using (32), we get for p = 4 + ε

E∞

[∣∣RF
ns − RF

nt

∣∣p | Bn, (a, b)
]

≤ C(p)ℓn(s, t)p/2−1




E∞[|Yu(ns,nt)j(s) − Yu(s,t)j(t)|p]
+
∑

1≤k≤C log n

∑
1≤j≤k(a

◦
s,t,k,j + b◦s,t,k,j)M

◦
k,j

+
∑

1≤k≤C log n

∑
1≤j≤k(a

•
s,t,k,j + b•s,t,k,j)M

•
k,j


1Bn

≤ C(p)C4ℓn(s, t)p/2−1




2pcD
u(s,t)

+
∑

1≤k≤C log n kD
∑

1≤j≤k(a
◦
s,t,k,j + b◦s,t,k,j)

+
∑

1≤k≤C log n kD
∑

1≤j≤k(a
•
s,t,k,j + b•s,t,k,j)


1Bn ,where C4 is su
h that max1≤j≤k(M

◦
k,j ∨ M•

k,j) ≤ C4k
D for some D > 0 and all k ≥ 1. Let now

Cn = {|u(s)| − |u(s, t)| ≤ nξ},Dn = {|u(t)| − |u(s, t)| ≤ nξ},



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 23for the same ξ as in the de�nition of Bn. Sin
e ℓn(s, t) = |u(s)| − |u(s, t)| + |u(t)| − |u(s, t)|, wededu
e
E∞

[∣∣∣∣
RF

ns − RF
nt

n1/4

∣∣∣∣
p

| Bn, Cn,Dn

]
≤ C5n

−p/4ℓn(s, t)p/2(log n)D1Cn,Dn ≤ C6n
p(ξ/2−1/4)(log n)D,sin
e the sum of all a, b plus 1 is ℓn(s, t). We then 
hoose (re
all p = 4+ε) ξ so that (4+ε)(ξ/2−

1/4) < −1, and sin
e ns and nt are supposed to be distin
t integers |s− t| ≥ 1/n, this gives that
E∞

[∣∣∣∣
RF

ns − RF
nt

n1/4

∣∣∣∣
p

| Bn, Cn,Dn

]
≤ C6|s − t|1+η ,for some η > 1 and n large enough.Next, we have, applying the equality satis�ed in Bn to u = u(s), l = |u(s)| − |u(s, t)| and

u = u(t), l = |u(t)| − |u(s, t)|, whi
h is valid under Cc
n ∩ Dc

n,
E∞

[∣∣∣∣
RF

ns − RF
nt

n1/4

∣∣∣∣
p

|Bn, Cc
n,Dc

n

]

≤ C7n
−p/4ℓn(s, t)p/2−1

∑

k≥1

kD+1
(
(µ◦(k) + µ•(k))ℓn(s, t) + (

√
µ◦(k) +

√
µ•(k))ℓn(s, t)1/2+γ

)1Bn

≤
(
C8n

−p/4ℓn(s, t)p/2 + C9n
−p/4ℓn(s, t)p/2−1/2+γ

)1Bn

≤ C10|s − t|αp/2 + C11n
−1/4+γ/2|s − t|αp/2−α/2+αγ

≤ C10|s − t|αp/2 + C11|s − t|αp/2+1/4−α/2+αγ−γ/2

≤ C12|s − t|1+η′for α 
hosen 
lose enough to 1/2 and γ to 0 and for some η′ > 0.Finally, we similarly estimate
E∞

[∣∣∣∣
RF

ns − RF
nt

n1/4

∣∣∣∣
p

|Bn, Cc
n,Dn

]

≤
(
C8n

−p/4ℓn(s, t)p/2 + C9n
−p/4ℓn(s, t)p/2−1/2+γ

)1Bn + C6n
p(ξ/2−1/4)(log n)D,and this is bounded by quantities similar as above, and things are similar for 
onditioning by

Cn,Dc
n. Finally,

E∞

[∣∣∣∣
RF

ns − RF
nt

n1/4

∣∣∣∣
4+ε

|Bn

]
≤ C ′|s − t|1+η′′

,for some C ′, η′′ > 0, and sin
e the probability of Bn 
an be 
hosen as 
lose of 1 as wanted, thisimplies by standard 
onsiderations that the (1 + η′′)/(4 + ε)-Hölder norm on 
ompa
ts of thepro
ess (n−1/4RF
ns, s ≥ 0) is tight, and this implies the tightness of this sequen
e of pro
esses.This ends the proof of Proposition 5, and thus of Theorem 3. �3.6 Convergen
e of size 
onditioned dis
rete snakesLemma 12 If hypothesis (H1) is ful�lled, we have
P ◦(|T ◦| = n) ∼ h◦

σ̄◦

√
2π

n−3/2, P ◦(|T •| = n) ∼ h• m◦

σ̄•

√
2π

n−3/2,along values of n making these probabilities positive, where h◦ is the span of the law of |T ◦| under
P ◦, and h• the span of |T •| under P ◦.



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 24Proof. The �rst quantity is the probability that the grandfather 
riti
al tree T̄◦ has n nodes.This is 
omputed thanks to the Otter-Dwass formula that 
an be found in [25℄ and the 
entrallo
al limit theorem (see [26, p.706℄). For the se
ond quantity, write
n3/2P ◦(|T •| = n) =

∑

i

n3/2P ◦
(
|T •| = n

∣∣ c∅ = i
)
P ◦(c∅ = i). (22)First, P ◦(c∅ = i) = µ◦(i). Then,

n3/2P ◦(|T •| = n | c∅ = i) = n3/2P •
i (|F•| = n) → i h•/(σ̄•

√
2π)thanks to the Otter-Dwass formula applied to the grandfather forest F̄• and the 
entral lo
allimit theorem. To 
on
lude, use Lebesgue dominated 
onvergen
e theorem in (22). �The 
onditioning argumentLet (k(i), i ≥ 1) be a sequen
e of elements of {+∞, 1, 2, 3, . . .}; let Ai be an event on the set offorests Fi = {f = (t1, . . . , tk(i))} with k(i) trees rooted on a ◦-node. For n large enough, under

(H1) thanks to Lemma 12,
P
◦
k(i)

(
Ai

∣∣ |t•1| = n
)
≤ c n3/2

Pk(i)(Ai).For any sequen
e (ai)i, 1 ≤ ai ≤ k(i), 
onsider now events of the type
Ai =





a(i)∑

j=1

g(tj) ≥ Z



 or Ai =

{
sup

j=1,...,a(i)
g(tj) ≥ Z

}
, and B = {g(t1) ≥ Z}for a given non negative fun
tion g. We have

P
◦
k(i)

(
B
∣∣ |t•1| = n

)
≤ P

◦
k(i)

(
Ai

∣∣ |t•1| = n
)
≤ c n3/2

P
◦
k(i)(Ai).The 
ontents of this paragraph remains un
hanged repla
ing |t•1| by |t◦1|.Hen
e, the probability of an event involving a tree 
onditioned by its size is 
ontrolled by the
orresponding event for forests.Consider P ◦ a 
riti
al Galton-Watson distribution on two-type trees. Let Q◦

n (resp. Q•
n)the probability indu
ed on T by the 
onditioning by |T ◦| = n (resp. |T •| = n), whenever theseevents have positive probability. Formally,

Q◦
n = P ◦(· | |T ◦| = n), Q•

n = P ◦(· | |T •| = n).Using the 
onditioning argument and Lemma 8, we getLemma 13 If hypothesis (H1) is ful�lled:
(i) Under Q◦

n, |T | /n
proba−−−→

n
1 + m◦,

(ii) Under Q•
n, |T | /n

proba−−−→
n

1 + m•.Theorem 4 If assumptions (H1), (H2) and (H3) are ful�lled, under Q•
n, (resp. under Q◦

n), thepro
ess (n−1/2ĤT
2(|T |−1)s, n

−1/4R̂T
2(|T |−1)s

)
s∈[0,1]


onverges weakly to
(

4

σ̄•
es,

2Σ√
σ̄•

rs

)

s∈[0,1]

,

(resp. (
4

σ̄◦
es,

2Σ√
σ̄◦

rs

)

s∈[0,1]

) under N
(1),in C([0, 1], R2) endowed with the topology of uniform 
onvergen
e.



4 ASYMPTOTICS FOR MAPS 25Remark. The limit in the theorem is, up to a multipli
ative 
onstant, the head of the Browniansnake with lifetime pro
ess the normalized Brownian ex
ursion. Convergen
e of dis
rete snaketo the Brownian snake with i.i.d. in
rement (or that may be dependent between brothers) areproved in [9, 21, 14℄. In the two last referen
es, the spa
e of 
onvergen
e is H, the spa
e of thehead of the Brownian snake : H is the subspa
e of C([0, 1], R) × C([0, 1], [0,+∞[) of fun
tions
(ζ, f) that satisfy ζ(0) = ζ(1) = 0 and for any 0 ≤ s ≤ s′ ≤ 1, f(s) = f(s′) if ζ(s) =
ζ(s′) = mins≤u≤s′ ζ(u). Here, the 
onvergen
e holds also in H. As a 
onsequen
e, thanks to thehomeomorphism Theorem of [21℄, the 
onvergen
e in (i) and (ii) entails that 
orresponding two-type dis
rete snakes, suitably normalized, 
onverge to the Brownian snake with lifetime pro
essthe normalized Brownian ex
ursion.Proof. (i) Under Q◦

n, the grandfather tree T ◦ of T is a single type 
riti
al µ◦-GW tree 
on-ditioned to have size n. By Proposition 2(ii), we have n−1/2(HT ◦
ns )s∈[0,1]

weakly−−−−→
n

2
σ̄◦

(es)s∈[0,1].Now, the total number of nodes in T is, a

ording to Lemma 8 and the 
onditionning argument,
on
entrated around n(1 + m◦). The good repartition of ◦-nodes in T gives the results.
(ii) Under Q•

n, the total number of nodes in T is 
on
entrated around n(1 + m•). Themain di�eren
e with the proof of (i), if we think in terms of grandfathers forest T •, is that the
onditionning is on the number of nodes in T • whi
h has a random number of trees. The �rstargument to identify the limit is the following : the number of trees in T • is c∅; it 
onverges indistribution when n → ∞ (the arguments are given in the proof of Lemma 12). Now, for any i,if we 
ondition T • to have i trees and n nodes, the normalized height pro
ess (n−1/2HT •
ns

)
s∈[0,1]
onverges weakly to ( 2

σ̄•
es

)
s∈[0,1]

(when n goes to +∞). Sin
e the limit is the same for any i,this implies that the limit is the same under the only 
onditioning by |T •| = n.Let us establish the 
onvergen
e of the label pro
esses. We review now the arguments usedfor the 
onvergen
e of label pro
esses of forests, and shows that they 
an be extended when
onditioning by the size of the tree. First, thanks to the 
onditioning argument, Lemmæ 2, 3,6, 7, 9, 10 and 11 hold under the 
onditioning by |T •
1 | = n or |T ◦

1 | = n and the property provedholds for the 
onditioned snakes if one takes A large enough. Then one follows line by line theproof of the �nite �mensional 
onvergen
e (in the proof of Proposition 4 we use a Skohorod'srepresentation spa
e on whi
h n−1/2HT
β◦n. 
onverges to 4e./σ̄◦ or n−1/2HT

β•n. 
onverges to 4e./σ̄•almost surely, depending on whether we are proving (i) or (ii)). For proving the analogue ofProposition 5, we only need an extension of (21). Su
h a formula is known for 
riti
al single typeGalton-Watson trees 
onditioned by the size (simple adaptation of Lemma 1 in [14℄); then it istrue for the underlying grandfather tree (or forest). �4 Asymptoti
s for maps4.1 BDG's bije
tion between bipartite maps and mobilesWe present here the 
onstru
tion of Bouttier & al. [7℄ for seek of 
ompletness.Des
ription of ΦConsider a rooted pointed map m ∈ Mn,k, with distinguished node u and root vw. We presentthe 
onstru
tion of (t, ℓ) = Φ(m), the rooted labeled mobile asso
iated with m (see Fig. 7).1) Label ea
h node x of m by g(x), the geodesi
 distan
e to u.2) The 
onstru
tion takes pla
e now in ea
h fa
e, independently : Let F be a fa
e of m, withdegree 2j. Add in this fa
e a •-node. Sin
e m is bipartite, the di�eren
e between two 
onse
utivelabels around F is +1 or −1. Among the 2j verti
es of F , sele
t the j ones immediately followed



4 ASYMPTOTICS FOR MAPS 26by verti
es with smaller labels. Add now an edge between the •-node and ea
h of the j sele
tedverti
es (see Figure 6).3) Remove all the edges of the original map. Only the distin-PSfrag repla
ements 45
5 6 66 77Figure 6: Step 2 of Φ.

guished node u is isolated. Remove it.4) We obtain a tree in whi
h the edges 
onne
t •-nodes to la-beled nodes of the original map : 
onsider these last nodes as
◦-node (there are k − 1 su
h nodes sin
e only the root is iso-lated). There are n •-nodes, one per fa
e of m.5) Choose the root of the mobile as the �rst edge that links wto the •-node in the fa
e adja
ent to vw, to the right of −→wv.6) Add −g(v) + 1 to the label of ea
h node.The resulting mobile belongs to Wn,k−1, 
all it Φ(m).PSfrag repla
ements

u

v

w 01 11 22
2

33 334
PSfrag repla
ements

v

w 01 112
2

23
333 4
PSfrag repla
ements01234 -1 -1-1

0
0

01
1 112Figure 7: Illustration of the appli
ation Φ. The two arrows explain how to 
hoose the root of t.Des
ription of Φ−1Consider a rooted labeled mobile (t, ℓ) ∈ Wn,k−1 with root v′w′. Up to renaming the verti
es,we assume that v′ is a ◦-node and w′ a •-node. We now give the 
onstru
tion of m = Φ−1(t, ℓ).1) Let m be the minimum of the labels of t. Add −m + 1 to ea
h label.A 
orner of t is a se
tor with apex at a labeled vertex of t and delimited by two 
onse
utiveedges around this vertex. We label ea
h 
orner by the label of its apex. To ea
h 
orner C withlabel l ≥ 2, we asso
iate its su

essor s(C) de�ned as the �rst en
ountered 
orner with label l−1when going 
lo
kwise around the tree (there is always a su

essor).2) We 
onstru
t the map m asso
iated with t by �rst drawing an edge between ea
h 
orner withlabel l ≥ 2 and its su

essor within the external fa
e of t and in su
h a way that no two edgesinterse
t. This 
an be done due to the nested stru
ture around t of 
orners and their su

essors,namely : if a 
orner C ′ lies stri
tly between a 
orner C and its su

essor s(C), then s(C ′) liesbetween C ′ and s(C) (with possibly s(C ′) = s(C)).3) Add an origin vertex u labeled 0 in the external fa
e and view the unique se
tor around thisisolated point as the su

essor of all 
orners labeled 1, whi
h we therefore also 
onne
t to theorigin via non-
rossing edges. This is possible be
ause ea
h 
orner has its su

essor before or atthe �rst en
ountered 
orner labeled 1; hen
e all 
orners labeled 1 are in
ident to the externalfa
e.4) Erase all unlabeled verti
es and their adja
ent edges.5) The result is a map m that has n fa
es and k verti
es. It remains to root it and to distinguisha node :� the distinguished node is u,



4 ASYMPTOTICS FOR MAPS 27� the root, is the �rst edge of m that starts from v′ to the left of −−→v′w′.The resulting pointed rooted map is Φ−1(t, ℓ)PSfrag repla
ements
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PSfrag repla
ements
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PSfrag repla
ements01-1-2-3234 3
33 34

2 22 1
11 0

567Figure 8: Illustration of Φ−1. The two arrows explain how to 
hoose the root of m. It remainsto remove the labels.4.2 Mobiles derived from random mapsIn this se
tion, we show how the invarian
e prin
iples of Se
ts. 3 and 3.6 has to be interpretedin the 
ontext of the mobiles 
onstru
ted from random maps. Re
all the notations from Se
t. 1,and 
onsider the labeled mobiles (T,L) = Φ(M) under the laws Pq, PF
q,n or PS

q,n. First, noti
ethat 
ontrary to what we 
onsidered in the two previous se
tions, the • verti
es in mobiles Twith law Pq do not have a label, but this is a minor di�eren
e sin
e we 
an suppose that theyinherit the label of their respe
tive fathers, so that the spatial displa
ement from any ◦ vertex toits 
hildren is 0. We therefore set ν◦
k = δ0, the Dira
 measure at the origin of R

k. Now, a

ordingto the labeling 
onstraint (2) of mobiles obtained by the BdFG bije
tion, and the fa
t that it isuniform a

ording to these 
onstraints 
onditionally on T , we naturally set, for any k ≥ 1 and
a1, . . . , ak ∈ Z,

ν•
k(a1, . . . , ak) =

∏k
i=0 1ai+1≥ai−1

N(k + 1)
,where a0 = ak+1 = 0.From now on, suppose that q is a regular 
riti
al weight, and we de�ne µ◦

q, µ•
q as in Se
t. 1.Lemma 14 The data µ◦

q, µ•
q, ν◦, ν• satisfy the hypotheses (H1), (H2), (H3). More pre
isely,

(i) For any k ≥ 1, the distribution ν•
k is 
entered. For any k ≥ 1, j ∈ J1, kK,

(Σ•
k,j)

2 =
2j(k + 1 − j)

k + 2
.

(ii) For any k ≥ 1, ∑k
j=1(Σ

•
k,j)

2 =
k(k + 1)

3
.

(iii) max
1≤j≤k

M◦
k,j,p ≤ (k + 1)p in parti
ular max

1≤j≤k
(M•

k,j ∨ M◦
k,j) = O(k4+ε).Proof. Sin
e q is regular 
riti
al, (H1) is plainly satis�ed. Next, 
onsider a •-node u with totaldegree k + 1 (for k ≥ 0). Denote by u0, . . . , uk, the neighbors of u sorted in the depth �rst



4 ASYMPTOTICS FOR MAPS 28order (so u0 is the grandfather of the other nodes). By the 
onvention on ν◦, the distribution of
(ℓ(u1)−ℓ(u0), . . . , ℓ(uk)−ℓ(u0)), is given by ν•

k . The 
ondition (2) on the labels 
an be rewritten
x1 ≥ −1, x2 ≥ −1, . . . , xk ≥ −1, xk+1 ≥ −1, and k+1∑

i=1

xi = 0where the xi are the integers xi = ℓ(ui) − ℓ(ui−1) with the 
onvention ℓ(uk+1) = ℓ(u0). Now,let put k + 1 balls in k + 1 urns and note (yi, 1 ≤ i ≤ k + 1) the number of balls in the urns
1, 2 . . . , k + 1. We have

(yi, 1 ≤ i ≤ k + 1)
(d)
= (xi + 1, 1 ≤ i ≤ k + 1).Then, ν•

k,j is the distribution of x1 + · · · + xj and also the one of sk,j = y1 + · · · + yj − j. Bysymmetry, the mean of y1 is 1 and then sk,j is 
entered. Let us 
ompute its varian
e.Using the urn representation, we obtain
P(sk,j = l) =

(l+2j−1
l+j

)(2k−2j−l+1
k−j+1−l

)
(
2k+1
k+1

) for any l ∈ {−j, . . . , k + 1 − j}.Now,
(Σ•

k,j)
2 = Var (sk,j) =

k+1−j∑

l=−j

(l+2j−1
l+j

)(2k−2j−l+1
k−j+1−l

)
(2k+1

k+1

) l2 =
k+1∑

l=0

(l+j−1
j−1

)(2k−j−l+1
k−j

)
(2k+1

k+1

) (l − j)2 (23)Note that the following sum does not depend on j,
k+1∑

l=0

(
l + j − 1

j − 1

)(
2k − j − l + 1

k − j

)
=

(
2k + 1

k

)
.Indeed, when one 
ounts the number of possible 
hoi
es of k + 1 numbers among J1, 2k + 1K,one may spe
ify at �rst that the jth 
hosen is j + l (with l ∈ J0, k + 1K) and then 
hoose j − 1numbers in J1, l + j − 1K, and k − j numbers in Jj + l + 1, 2k + 1K.Using a+1

b+1

(a
b

)
=
(a+1

b+1

) and (l − j)2 = (l + j)(l + j + 1)− (l + j)(4j + 1) + 4j2, the numeratorof (23) 
an be rewritten
4j2

(
2k + 1

k

)
−(4j+1)j

k+1∑

l=0

(
l + j

j

)(
2k − j − l + 1

k − j

)
+j(j+1)

k+1∑

l=0

(
l + j + 1

j + 1

)(
2k − j − l + 1

k − j

)and then
(Σ•

k,j)
2 =

4j2
(2k+1

k

)
− (4j + 1)j

(2k+2
k+1

)
+ j(j + 1)

(2k+3
k+2

)
(
2k+1

k

) =
2j(k + 1 − j)

(k + 2)
.Now, repla
ing (l − j)2 by (l − j)p in (23), and bounding this quantity by (k + 1)p, we obtaineasily (ii) and (iii). �From (ii) in this lemma we easily dedu
e, by elementary 
omputations:Lemma 15 The 
onstants σ◦, σ•, σ and Σ 
orresponding as in (14), (13) to the data µ◦
q, µ•

q, ν◦, ν•of Se
t. 1 are given by
σ◦ =

√
ρq , σ• =

√
(Zq − 1)ρq , σ =

√
Zqρq

2
and Σ =

√
ρq

6
,for ρq de�ned at (8).
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orollary of this and Corollary 3, and Theorem 4, we �nally obtainTheorem 5 Let q be a regular 
riti
al weight. Then(i) Under Pq and given R(M) > an for some a > 0, the pro
ess (n−2ĤT
2n4s, n

−1R̂T
2n4s)s≥0asso
iated with Φ(M) 
onverges to the head of the Brownian snake determined by

(
4√

Zqρq

e,

(
4ρq

9Zq

)1/4

r

) under N

(
·
∣∣∣
(

4ρq

9Zq

)1/4

∆ > a

)
.(ii) Under PF

q,n, the pro
ess (n−1/2ĤT
2(|T |−1)s, n

−1/4R̂T
2(|T |−1)s)0≤s≤1 asso
iated with Φ(M) 
on-verges to (

4√
(Zq − 1)ρq

e,

(
4ρq

9(Zq − 1)

)1/4

r

) under N
(1).(iii) Under PS

q,n, the pro
ess (n−1/2ĤT
2(|T |−1)s, n

−1/4R̂T
2(|T |−1)s)0≤s≤1 asso
iated with Φ(M) 
on-verges to (

4
√

ρq

e,

(
4ρq

9

)1/4

r

) under N
(1).4.3 The pro�le of random mapsLet m ∈ M and (t, ℓ) = Φ(m). Assume that |t•| = n. The duration of the 
ontour pro
ess of tis twi
e its number of edges, that is 2(|t| − 1). The |t| − n type-◦ verti
es are visited at times

(0, 2, 4, . . . , 2(|t| − 1)). We want to 
onsider only the labels of ◦-verti
es, and so we set
Rt(k) = ℓ(F (2k)) for k ∈ J0, |t| − 1K,and we extend Rt linearly between su

essive integers. A 
onsequen
e of Theorem 4 and ofLemma 7 is the following :Corollary 4 Theorem 5 (ii) and (iii) still hold with n−1/4RT ((|T |−1).) instead of n−1/4R̂T

2(|T |−1)..In this se
tion, we 
onsider the 
onvergen
e of the pro�le of bipartite maps (this is thedistribution's generalization of Chassaing & S
hae�er [9℄, where the 
onvergen
e of momentswere also proven in the 
ase of quadrangulation). Consider m ∈ M and (t, ℓ) a rooted labeledmobile. For any k ∈ Z, let λt
k be the number of nodes with label k in t and let Lm

k be the numberof verti
es at distan
e k from the distinguished node in m; denote by λ = min{j, λj > 0} thesmallest label in the mobile. The sequen
e (Lm
k )k≥0 is 
alled the pro�le of m. As a simple
onsequen
e of the 
onstru
tion of Φ,

λt
k+λ = #

{
j,Rt(j) = k + minRt

}
= Lm

k+1 for any k ≥ 0.Similarly, denoting by Im, the integrated pro�le , we have
Im(k) =

k∑

j=0

Lm
j = #

{
j,Rt(j) ≤ k + minRt

} for k ∈ Z+Using the same argument as in [9℄ (see also [22℄), we get



4 ASYMPTOTICS FOR MAPS 30Theorem 6 (i) Under PF
q,n, (resp. PS

q,n) the largest distan
e to the root n−1/4max{i, LM
i > 0}
onverges in distribution to

(
4ρq

9(Zq − 1)

)1/4

∆ under N
(1),

( resp. (4ρq

9

)1/4

∆ under N
(1)

)
.(ii) Under PF

q,n, (resp. PS
q,n), the pro
ess ( IM (n1/4x)

n(1+m•)

)
x≥0

(resp. ( IM (n1/4x)
n(1+m◦)

)
x≥0


onverges weaklyto (
Leb

{
t ∈ [0, 1],

(
4ρq

9(Zq − 1)

)1/4

(r(t) − min r) ≤ x

})

x≥0

under N
(1)


resp. (

Leb

{
t ∈ [0, 1],

(
4ρq

9

)1/4

(r(t) − min r) ≤ x

})

x≥0

under N
(1)


in C[0,+∞) endowed with the topology of uniform 
onvergen
e on 
ompa
t sets.4.4 Convergen
e to the Brownian mapThe Brownian map is introdu
ed in Mar
kert & Mokkadem [22℄. Informally, it is the quotient ofa 
ontinuous tree, where the equivalen
e 
lass are de�ned with the help of a se
ond 
ontinuoustree. We show that normalized bipartite maps 
onverge to the Brownian map. Most of whatis done here is a generalization of [22℄, where the work was based on the bije
tion betweenquadrangulations and �labeled trees�. We will be sometimes a little bit sket
hy referring theinterested reader to the above referen
e.4.4.1 Bipartite maps as a tree glued on a se
ond treeConsider a rooted labeled mobile (t, ℓ) ∈ Wn,k−1 with root v′w′ (su
h that v′ is a ◦-node and w′a •-node). To obtain a representation of m = Φ−1(t, ℓ) with the help of two trees, we need toreroot the mobile on one of the ◦-node with minimum label. We need also to keep the tra
ksof v′ and w′ : they are ne
essary to build the root of m. We denote by t(θ) the rooted labeledmobile obtained from t by rerooting it on the edge (Ft(θ), Ft(θ + 1)), and with labels, the labelsof t plus −ℓ(Ft(θ)) + 1, where θ is the integer belonging to {0, 2, 4, . . . , 2(|t| − 1) − 2}. Thelabel of the root-node of t(θ) is 1, t and t(θ) are equal as unrooted unlabeled trees, the di�eren
ebetween the labels of neighbors are the same in t and t(θ). Let ⊕ denotes the addition modulo

2(|t| − 1). For any i ∈ J0, 2(|t| − 1)K,
Ĥt(θ)

(i) = Ĥt(θ ⊕ i) + Ĥt(θ) − 2min
{

Ĥt(x), x ∈ J(θ ⊕ i) ∧ θ, (θ ⊕ i) ∨ θ)K
}

,and for any i ∈ J0, |t| − 1K,
Rt(θ)

(i) = ℓ(Ft(θ ⊕ 2i)) − ℓ(Ft(θ)) + 1 = Rt

(
θ ⊕ 2i

2

)
− Rt

(
θ

2

)
+ 1.On t(θ), v′ is visited at time 2(|t| − θ) and w′ at time 2(|t| − θ) + 1. Hen
e, the variable

X(θ) = 2(|t| − θ) su�
es to re
onstitute v′ and w′.Let
Θt = inf{θ, ℓ(Ft(θ)) = min ℓ(Ft)},be the �rst visit time of a ◦-node with minimum label. We will often write Θ instead of Θt. Themobile t(Θ) has positive labels. We now build the rooted pointed map Φ(t) from (Θ, t(Θ)).
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PSfrag repla
ements01-1-2-3234Figure 9: En
oding of a mobile.PSfrag repla
ements 3 33 342 22 11 10567 Figure 10: Rerooting on the �rst minimum.Constru
tion of Φ−1(t, ℓ) from (Θ, t(Θ))The pro
ess Rt(Θ) 
ontains all the informations needed to build the edges of Φ(t).(1) Add in the plane the point u = N|t| = (|t|, 0), and for i ∈ J1, |t| − 1K draw the node
Ni = (i,Rt(Θ)

(i)).(2) For j ∈ J1, |t| − 1K, add an edge in the plane between Nj and Nj′ where j′ en
odes thesu

essor of the 
orner en
oded by j in t(θ) as on Figure 11. That is : draw the edges in su
h away that the edges do not 
ross, and in su
h a way that the edge (Nj , Nj′) surrounds from abovethe edges that start from abs
issas lying between j and j′. The set of nodes and edges drawn isa tree (see [22℄ for a proof); we 
all this tree D.PSfrag repla
ements
v′

3
X(Θ)/2

4210567 Figure 11: Doddering tree.(3) We 
all G the underlying tree of t(Θ). Its 
ontour pro
ess is Ĥt(Θ) . Ea
h node of D (butthe root) 
orresponds to a ◦-
orner of G : for j ≥ 1, the node Nj of D 
orresponds to the nodevisited at time 2j in G. Glue the nodes of D that 
orrespond to 
orners of the same node of G insu
h a way that the edges do not interse
t. (On Figure 12, glue the nodes of D that 
orrespondto 
orners of the same node of D below the tree. They are spe
i�ed by horizontal doted lines).(4) Choose the root and the distinguished node of m : the distinguished node is the point uadded in (1). In t(Θ), v′ and w′ are visited at time X(Θ) and X(Θ) + 1. To get the root of m,



4 ASYMPTOTICS FOR MAPS 32we have to turn around v′, starting from −−→
v′w′ on the right. Pro
eed as on Fig. 12.Remark. One may also 
onstru
t the root of m on D (before the gluing of the nodes of D). v′is the node NX(Θ)/2 on D. w′ is the last node in the list N1, N2, . . . , NX(Θ)/2−1 with su

essor

v′, and if su
h a node does not exists, w′ is the su

essor of v′ (this is the 
ase on Figure 11).PSfrag repla
ements
v′

w′
1 1

1 02 2 2
233 333 3 344

X(Θ)Figure 12: Drawing of the doddering tree on the gluer tree.The two trees D and G are 
alled doddering tree and gluer tree, respe
tively, in [22℄. Thedoddering tree 
ontains all the edges of the maps and, as one guesses easily in view of Figure12, using the gluer tree one may re
onstitute the original map. For this, draw D on the 
ontourpro
ess of G as on Figure 12 : pla
e the root of D in the plane (not on the graph of G). Then,for i ∈ J0, |t| − 2K, pla
e the i + 1th node of D on the 2|t| − 2i − 2 th ◦ 
orner of G. Now, itremains to use a deformation of the plane, in order to �glue� together the 
orners of the gluertree, 
orresponding to the same nodes. This is possible as one may imagine easily on Fig. 12 in
onsidering the horizontal line as elasti
 strings. One may also pro
eed, as on Fig. 13 where two�rst gluings are done. At the end, it remains to remove the doted lines and the •-nodes.PSfrag repla
ements1
0234

PSfrag repla
ements1
0234Figure 13: Two �rst gluings.Remark. We have 
onstru
ted the map m with the help of the labeled mobile (t, ℓ) (givenby the BdFG bije
tion), whi
h itself has been en
oded by the triplet (Θ, (Ĥt(Θ)

,Rt(Θ)
)
) where,

Ĥt(Θ) is the 
ontour pro
ess of G, the value Θ is used to re
onstitute the root of m, and by
onstru
tionProposition 6 Setting Rt(Θ)
(|t|) = 0, the pro
ess (Rt(Θ)

(|t| − i)
)

i=0,...,|t|−1
is the height pro
essof D.4.4.2 Asymptoti
s of D and GIn order to get the asymptoti
s of the trees D and G under PF

q,n or PS
q,n, we follow and modifyslightly when needed some arguments given with 
onsiderable more details in [22℄. We re
all the



4 ASYMPTOTICS FOR MAPS 33operation of rerooting of a normalized labeled tree de�ned for any θ ∈ [0, 1] by
J : H −→ [0, 1] × H

(ζ, f) 7−→ J (θ)(ζ, f) = (ζ(θ), f (θ))
,where for any x ∈ [0, 1],

f (θ)(x) = f(θ + x) − f(θ),

ζ(θ)(x) = ζ(θ + x) + ζ(θ)− 2ζ̌(θ ⊕ x, θ),
(24)where the additions in the arguments are modulo 1. This may be understood as follows : (ζ, f)is the en
oding of a labeled tree T (that may be 
ontinuous) for whi
h ζ is the 
ontour pro
essof the underlying tree t, and f is a labeling of the nodes of t. (ζ(θ), f (θ)) is the en
oding of alabeled tree T ′ whi
h is obtained from T as follows: reroot T on the 
orner θ (that is visited attime θ using the 
ontour order), and add −f(θ) to ea
h label (this �xes the root label of T ′ to 0).We refer also to Aldous [1℄ p.40 for this operation of rerooting. We are parti
ularly interestedby the rerooting on I(f) = inf Argmin f , the �rst minimum of the label pro
ess :

Ψ : H −→ [0, 1] × H

(ζ, f) 7−→ (I(f), (ζ+, f+)) :=
(
I(f), (ζ(I(f)), f I(f))

)
.The appli
ation Ψ is invertible (note that, it would not be without the �rst 
oordinate I(f)).The pair (e+, r+) 
orresponding to the head of the Brownian snake (e, r) under N

(1) will be 
alledthe head of the positive snake. We refer to Le Gall & Weill [18℄ and Le Gall [17℄ for propertiesof (e+, r+) and its o

urren
e as a limit of 
onditioned spatial trees.Lemma 16 Under N
(1), I(r) is uniform on [0, 1] and independent of (e+, r+).Proof. First, a

ording to Lemma 16 in [22℄ (see also [18, [Prop. 2.5℄), # Argmin r = 1 a.s..The law of (e, r) is preserved by rerooting (see [22℄) and I(r(θ)) = I(r) − θ mod 1. Then I(r)is uniform in [0,1℄. Now, let us 
he
k the independen
e. Suppose that r rea
hes its minimumon
e. For any x ∈ [0, 1), Ψ(e(x), r(x)) = (θ − x mod 1, (e+, r+)). Hen
e, in ea
h 
lass stable byrerooting, the positive representative (e+, r+) is independent of I(r). �Re
all that in mobile a •-node is labeled as its father.Proposition 7 Under PF

q,n (resp. PS
q,n), the pro
ess Ψ

(
ĤT (2(|T |−1).)

n1/2 , R̂T (2(|T |−1).)

n1/4

) 
onvergesweakly to
Ψ

(
4√

(Zq − 1)ρq

e,

(
4ρq

9(Zq − 1)

)1/4

r

) under N
(1)

(resp. Ψ

(
4

√
ρq

e,

(
4ρq

9

)1/4

r

) under N
(1)

)
.Proof. First, the weak 
onvergen
e is a 
onsequen
e of Corollary 4 and the fa
t that under

N
(1), the pro
ess r rea
hes a.s. its minimum on
e. Indeed, the appli
ations Argmin and then Ψare 
ontinuous on the spa
e of 
ontinuous fun
tions that rea
h their minimum on
e, and so onemay 
on
lude using Billingsley [6, Theorem (5.2)℄. �Sin
e a •-node has the same labels as its father, it is 
lear that I(R̂t (2(|t| − 1).)) is a realthat en
odes a ◦-node. Hen
e, one may 
he
k that I(R̂t)

not
= I

(
R̂t (2(|t| − 1).)

)
= Θ(t)

2(|t|−1) ,
(
Ĥt (2(|t| − 1).)

)(I(R̂t))
= Ĥt(Θ)

(2(|t| − 1).)



4 ASYMPTOTICS FOR MAPS 34and that the pro
esses (
R̂t(2(|t| − 1).)

)(I(R̂t))
+ 1 and Rt(Θ)

((|t| − 1).) 
oin
ide on
{
0, 1

(|t|−1) ,
2

(|t|−1) , ...,
(|t|−1)
(|t|−1)

}. Denote by Ct(Θ) the 
ontour pro
ess of D. By Proposition 6and 7,Corollary 5 Under PF
q,n (resp. PS

q,n), the pro
ess ( Θ(T )
2(|T |−1) ,

ĤT (Θ)
(2(|T |−1).)

n1/2 , RT (Θ)
((|T |−1).)

n1/4

) hasthe same limit as Ψ
(

ĤT (2(|T |−1).)

n1/2 , R̂T (2(|T |−1).)

n1/4

) given in Proposition 7.For any x ∈ [0, 1], set π(x) = 1 − x. The pro
ess ( ĤT (Θ)
(2(|T |−1).)

n1/2 , CT (Θ)
(2(|T |−1).)

n1/4

) 
onvergesweakly to (
4√

(Zq − 1)ρq

e+,

(
4ρq

9(Zq − 1)

)1/4

r+ ◦ π

) under N
(1)

(resp. ( 4
√

ρq

e+,

(
4ρq

9

)1/4

r+ ◦ π

) under N
(1)

)
.This is also a 
onsequen
e of the general result, proven in [22℄, that asserts that if the spa
enormalization is not trivial, the 
ontour pro
ess and the height pro
ess have the same limit.4.4.3 Abstra
t map and Brownian mapWe saw that bipartite maps 
an be obtained with the help of two trees G and D thanks to a�gluing pro
edure�. The last theorem says that the 
odings of these trees 
onverge. The ideanow is to use the 
onvergen
e of trees to de�ne the 
onvergen
e of maps. Some 
hanges appearin the present paper as 
ompared with [22℄ :� Here the maps are rooted pointed instead of being only rooted.� Here, the natural traversal for both trees is the 
lo
kwise traversal.� Here |D| = |G| instead of |D| = 2|G|.� Here |D| and |G| are random (
onditionally on |t◦| = n or |t•| = n).We re
all now few points of the de�nitions of abstra
t maps and abstra
t trees. We modifythem slightly in order to take into a

ount the list of di�eren
es given above.Abstra
t treesConsider C+[0, 1] the set of 
ontinuous fun
tions g from [0, 1] to R

+ that satisfy g(0) = g(1) = 0.For any g ∈ C+[0, 1], we introdu
e the equivalen
e relation in [0, 1],
x ∼

g
y ⇐⇒ g(x) = g(y) = ǧ(x, y),We denote by Eg the quotient spa
e Eg = [0, 1]/ ∼

g
and we 
onsider the 
anoni
al surje
tion Fgfrom [0, 1] in Eg :

Fg(x) = {y, y ∈ [0, 1], x ∼
g

y}.For short, we write sometimes ẋ instead of Fg(x) and we say that x is a representative of ẋ. Let
M be the set of �nite measures on [0, 1] and for µ ∈ M set Eµ = Fg(supp (µ)), the image of thesupport of µ by Fg. A pair (g, µ) ∈ C+[0, 1] ×M is said to be a tree-en
oding if it satis�es:

E(T )
g

def
= {u ∈ Eg,#F−1

g (u) 6= 2} ∪ {0̇} ⊂ Eµ. (25)



4 ASYMPTOTICS FOR MAPS 35Let (g, µ) be a tree en
oding. For any ẋ and ẏ in Eg, set
dEg (ẋ, ẏ) = g(x) + g(y) − 2ǧ(x, y).It is not di�
ult to 
he
k that dEg is a metri
 on Eg.De�nition 2 Let (g, µ) be a tree en
oding. The rooted tree T en
oded by (g, µ), we write T =

Tree(g, µ), is the metri
 spa
e T = (Eg, dEg ). The fun
tion Fg is 
alled the depth �rst traversalof T . The elements of Eg are 
alled points of T , the elements of Eµ are 
alled nodes of T . The
lass Fg(0) = 0̇ is 
alled the root-vertex of T . The set of 
orners of T is [0, 1). The set of 
ornersaround a point ẋ is F−1
T (ẋ) ∩ [0, 1). The 
orner 0 is the root-
orner.Set of treesWe denote by Γ the set of trees. Let dΓ : Γ2 → R

+ be the appli
ation de�ned for (T1,T2) =
(Tree(g1, µ1),Tree(g2, µ2)) elements of Γ2 by

dΓ(T1,T2) = ‖g1 − g2‖∞ + dM(µ1, µ2)with
‖g1 − g2‖∞ = sup{|g1(x) − g2(x)|, x ∈ [0, 1]}and

dM(µ1, µ2) = sup
x∈R

|Cµ1(x) − Cµ2(x)|where Cµ(.) = µ((−∞, .] is the repartition fun
tion of µ. The appli
ation dΓ is a metri
 on Γ.Abstra
t mapsDe�nition 3 Let (D,G) = (Tree(f, µD),Tree(ζ, µG)) ∈ Γ2 and let b be an appli
ation from
EµD

\ {root-vertex} to the set of 
orners (i.e. [0, 1)) of G. The 3-tuple (D,G, b) is said to beadmissible if the three following 
onditions are satis�ed:
(i) b is an inje
tion.
(ii) b is de
reasing : if u 4 v in D, then b(u) ≥ b(v) in [0, 1).
(iii) If u and v are two nodes in D su
h that b(u) ∼

ζ
b(v) (that is b(u) and b(v) are 
orners ofthe same node in G), then the depth of u and the depth of v in D are equal.Let (D,G, b) be a-admissible. We de�ne an equivalen
e relation: for x, y ∈ ED, we say that

x ∼
M

y ⇔ (x = y) or ({x, y} ⊂ EµD
\ {root-vertex} and b(x) ∼

ζ
b(y)

)
. (26)For x ∈ ED we set x̂ = {y ∈ ED, y ∼

M
x}. A 
lass x̂ is either a point of D, or the set of the nodesof D glued with x (the node x in
luded), or the root of D.Let M be the set
M = {x̂, x ∈ ED} .De�nition 4 Let x ∈ [0, 1]. The spa
e (M,x) is 
alled the rooted pointed map en
oded by

(D,G, b) (rooted in the root at D, and marked at x). We denote this spa
e by M = Map(D,G, b).
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M the set of rooted pointed maps. We refer to [22℄ for topologi
al aspe
t ofabstra
t maps.Remark. For any û, ŵ ∈ M and any k > 0, set

d(k)(û, ŵ) = inf

k∑

i=0

dD(u2i, u2i+1),where the in�mum is taken on the set E = {(u0, . . . , u2k+1) ∈ E2k+2
D s.t. û0 = û, û2k+1 =

ŵ, û2i+1 = û2i+2} and where dD is the metri
 in D. Ea
h element e ∈ E de�nes a path in themap : between û2i and û2i+1 it is the image by S of the geodesi
 between u2i and u2i+1 in D.Sin
e u2i+1 and u2i+2 are glued to build M , in the map, û2i+1 = û2i+2.The appli
ation dM : M2 → R
+ de�ned for any û, ŵ ∈ M by
dM (û, v̂) = inf

k≥0
d(k)(û, v̂),is a metri
 on M . For dis
rete maps, this metri
 
oin
ides with the graph distan
e.This metri
 is 
alled the "quotient metri
" in [5℄. It is somehow the maximal one 
ompatibleboth with the metri
 on D and the fa
t that equivalent points of D should be at distan
e 0. Themetri
 spa
e (M,dM ) is therefore the simplest 
andidate for being the limit e.g. in the Gromov-Haussdorf sense of dis
rete maps seen as metri
 spa
es. Unfortunately, proving (or re
using)this assertion would require a lot more information than only the geodesi
 distan
e from a �xedpoint in the map, and seems unrea
hable by our methods.The set −→

M of mapsConsider the appli
ation d−→
M

:
−→
M

2 → R
+ de�ned by:

d−→
M

((M1, x1), (M2, x2)) = |x1 − x2| + dΓ(D1,D2) + dΓ(G1,G2) + ‖CµD1
◦b−1

1
− CµD2

◦b−1
2
‖∞,where for i ∈ {1, 2},

Mi = Map (Di,Gi, bi) = Map (Tree(fi, µDi),Tree(ζi, µGi), bi) ,and where the fun
tion
x 7→ CµD1

◦b−1
1

(x) = µD1(b
−1
1 (−∞, x]) = µD1({y ∈ EµD1

, b1(y) ∈ (−∞, x]})measures the amount of nodes of the doddering trees glued on the 
orners interval (−∞, x] ofthe gluer tree G1. The appli
ation d−→
M

is a metri
 on −→
M.4.4.4 Normalized bipartite maps and abstra
t mapsWe now represent normalized bipartite maps as abstra
t maps in the sense introdu
ed above.For this, we need two steps :

1) We need to normalize the doddering tree and the gluer tree and endow these obje
ts by a
orner measure.
2) Identity the gluing inje
tion bt that sends the nodes of the doddering tree in the set of 
ornersof the gluer tree.Let (t, ℓ) or simply t be a labeled mobile and set µGt

= µDt
= 1

2(|t|−1)

∑2(|t|−1)−1
k=0 δk/(2(|t|−1)).We set

Gn
t = Tree(n−1/2Ĥt(Θ)

(2(|t| − 1).) , µGt
) and Dn

t = Tree(n−1/4Ct(Θ)
(2(|t| − 1).) , µDt

).
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ation bt is the appli
ation sending the kth node of Dt on the 2(|t| − k)th 
orner of Gt.Consider Mn
t = Map(Gn

t ,Dn
t , bt) marked at

Ut = X(Θ(t)) / (2(|t| − 1))(to mark the 
orner visited at time Ut in the normalized doddering tree or to marked the rootis equivalent and). The rooted pointed −→
Mn

t := (Mn
t , Ut) is 
alled the normalized bipartite map.4.4.5 Rooted pointed Brownian mapConsider (e+, r+) the head of the positive snake. Let µG∞ = µD∞ = Leb[0,1] and for c > 0, set

Gc
∞ = Tree(c e+, µG∞) and Dc

∞ = Tree(cr+(1 − .), µD∞).The appli
ation b is de�ned for any x ∈ [0, 1] by b(x) = 1 − x. Consider U a random variableindependent of (e+, r+). We set M∞(c1, c2) = Map(Gc1
∞,Dc2

∞, b) and 
onsider the element −→M∞ =

(M∞(c1, c2), U) ∈ −→
M, whi
h we 
all the rooted pointed Brownian map.4.4.6 Convergen
e to the Brownian mapTheorem 7 (i) Under PF

q,n, the sequen
e −→
Mn

T 
onverges weakly to
−→
M∞

(
4√

(Zq − 1)ρq

,

(
4ρq

9(Zq − 1)

)1/4
) in (

−→
M, d−→

M
)(ii) Under PS

q,n, the sequen
e −→
Mn

T 
onverges weakly to
−→
M∞

(
4

√
ρq

,

(
4ρq

9

)1/4
) in (

−→
M, d−→

M
)Proof : By Lemma 16 the marked point is asymptoti
ally uniform and independent of thererooted snake. As in [22℄, under PF

q,n or PS
q,n, the fun
tion CµDT

◦b−1
T 
onverges weakly in C(R)to CLeb[0,1] . A

ording to the de�nition of d−→

M
, the Corollary 5 su�
es to 
on
lude. �AppendixProof of Proposition 1. We prove only the statement for the height pro
ess, whi
h is moreirregular than the 
ontour pro
ess. Indeed, if ϕ(k) and ϕ(l) are the rank in depth-�rst order ofthe verti
es F (k), F (l) visited in rank k, l in 
ontour order, then |ϕ(k) − ϕ(l)| ≤ |k − l|. Now, ifthe 
on
lusion of the proposition holds for H, from |Ĥk − Ĥl| = |Hϕ(k) −Hϕ(l)|, it will also holdfor Ĥ.Re
all e.g. from [11℄ that if we let

Sf
n =

n∑

k=1

(cf (u(k)) − 1) , n ≥ 0be the �uka
iewi
z walk asso
iated with the forest f , then the height pro
ess of f is given by
H f

n = #

{
k ∈ {0, 1, . . . , n − 1} : Sf

k = min
k≤l≤n

Sf
l

}
. (27)
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∞, SF is a random walk on Z with 
entered step distribution µ(·+1) on {−1, 0, 1, 2, . . .},and thanks to the time reversal property

(Ŝ
(n)
k = Sn − Sn−k, 0 ≤ k ≤ n)

d
= (Sk, 0 ≤ k ≤ n),we have

HF
n

d
= #

{
k ∈ {1, 2, . . . , n} : SF

k = max
0≤l≤k

SF
l

}
,whi
h is the number of (weak) re
ords of S until time n.Now, suppose 0 ≤ s < t ≤ A are su
h that ns, nt ∈ Z+. Write λ(x) = max{l ∈ [0, ns] : SF

l ≤
x}. Using (27), we have
HF

nt−HF
ns = #

{
k ∈ [ns, nt) : SF

k = min
k≤l≤nt

SF
l

}
−#

{
λ

(
min

ns≤l≤nt
SF

l

)
< k < ns : SF

l = min
k≤l≤ns

SF
l

}
,(28)and the rest of the proof will 
onsist in estimating the moments of the two terms above, whi
h
orrespond to the lengths of the bran
hes of F from u(ns), u(nt) down to their highest 
ommonan
estor. Thanks to the time-reversal property mentioned above, the �rst term is equal indistribution to

Gn(t−s) = #

{
1 ≤ k ≤ n(t − s) : SF

k = max
0≤l≤k

SF
l

}
,the number of (weak) re
ords before n(t − s).Let Mn = max0≤k≤n SF

k . Let τ0 = 0, and τi, i ≥ 1 be the i-th re
ord time, i.e. the i-th time
τ ≥ 1 su
h that SF

τ = Mτ . Then it is easy and well-known that (τi− τi−1, i ≥ 1) form a sequen
eof i.i.d. random variables. Moreover, sin
e SF is 
entered and its in
rements have �nite se
ondmoment under Pµ
∞, it is a 
onsequen
e of the proof of [12, XII,7 Theorem 1a℄ and the dis
ussionbefore that the Lapla
e exponent φ(s) = − log Eµ

∞[exp(−sτ1)] ∼ Cs1/2 as s → 0 for some C > 0(Feller 
onsiders the 
ase of stri
t ladder epo
hs, but the treatment of weak ones is similar).Now, for any p > 1, and integer u,
Eµ

∞[Gp
u] = p

∫ ∞

0
xp−1Pµ

∞ (Gu ≥ x) dx

= p

∫ ∞

0
xp−1Pµ

∞

(
x∑

i=1

(τi − τi−1) ≤ u

)
dx

≤ pe

∫ ∞

0
xp−1Eµ

∞

[
exp

(
−

x∑

i=1

τi − τi−1

u

)]
dx ≤ C ′φ(u−1)−p ≤ C ′′up/2,for some C ′, C ′′ > 0 and every u large enough. Therefore, the same kind of bound, with pos-sibly larger C ′′, holds for every u ≥ 1, and sin
e ns, nt are distin
t integers, we showed that

E[Gp
n(t−s)] ≤ C1n

p/2|s − t|p/2 uniformly in su
h n, s, t, where C1 = C1(µ, p) > 0.Let us now handle the se
ond term in (28). Using time-reversal, we see that this equals
#

{
n(t − s) < k ≤ nt ∧ κ

(
max

1≤l≤n(t−s)
SF

l

)
: SF

k = max
n(t−s)≤l≤k

SF
l

}in distribution, where κ(x) = max{k : SF
k < x} (with the 
onvention max ∅ = 0). By usingMarkov's property at time n(t − s), this has same distribution as G

ns∧κ(M̃n(t−s)−S̃n(t−s))
, where

G is de�ned as above, while S̃ is an independent 
opy of SF with maximum pro
ess M̃ . By
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ity of G this is less than G
κ′(M̃n(t−s)−S̃n(t−s))

where κ′(x) = min{k : SF
k ≥ x}. Let usprove that Eµ

∞[Gp
κ′(x)] ≤ Cxp for every x ≥ 0, for some C > 0. To this end, noti
e that

Mn(t−s) =

Gn(t−s)∑

i=1

(SF
τi
− SF

τi−1
), (29)and it is a 
lassi
al result of �u
tuation theory that the variables SF

τi
− SF

τi−1
are independentwith 
ommon distribution Pµ

∞(SF
τ1 = i) = µ([i + 1,∞)), i ≥ 0, so their mean is σ2/2, where σ2is the varian
e of µ, and noti
e that these variables have small exponential moments. Now, theusual large deviations theorem shows that for some a,N > 0 and for every n ≥ N ,

Pµ
∞

(∑n
i=1(S

F
τi
− SF

τi−1
)

n
<

σ2

4

)
≤ exp(−an). (30)Now, using (29) in the se
ond equality,

Eµ
∞[Gp

κ′(x)] = p

∫ ∞

0
up−1Pµ

∞(Gκ′(x) > u)du

= p

∫ ∞

0
up−1Pµ

∞




⌈u⌉∑

i=1

(SF
τi
− SF

τi−1
) < x


 du

= pxp

∫ ∞

0
vp−1 Pµ

∞




⌈xv⌉∑

i=1

(SF
τi
− SF

τi−1
) <

xv

v


 dv

≤ pxp



∫ 4σ−2

0
vp−1dv +

∫ ∞

4σ−2

vp−1Pµ
∞




⌈xv⌉∑

i=1

(SF
τi
− SF

τi−1
) <

σ2xv

4


dv


 .Now, as soon as x is large enough, i.e. 4xσ−2 ≥ N , where N is de�ned before (30), the probabilityin the se
ond integral is bounded by exp(−axv) ≤ exp(−v) if we further ask x > a−1. Thus thewanted bound on Eµ

∞[Gp
κ′(x)]. By the independen
e of S̃, we 
on
lude that

Eµ
∞[(G

κ′(M̃n(t−s)−S̃n(t−s))
)p] ≤ CEµ

∞[(Mn(t−s) − SF
n(t−s))

p] (31)
≤ 2p−1C

(
1 +

(
p

p − 1

)p)
Eµ

∞[(SF
n(t−s))

p],where we used Doob's inequality Eµ
∞[Mp

n(t−s)] ≤ (p/(p − 1))pEµ
∞[(SF

n(t−s))
p], sin
e SF is 
en-tered. Now we use the following 
onsequen
e of Rosenthal's inequality [24℄: if X1, . . . ,Xn areindependent 
entered random variables (not ne
essarily identi
ally distributed), then for every

p ≥ 2 there exists C(p) su
h that
E[|X1 + . . . + Xn|p] ≤ C(p)np/2−1

n∑

i=1

E[|Xi|p]. (32)This shows that Eµ
∞[(SF

n(t−s))
p] ≤ C ′(p)np/2|s− t|p/2 for some C ′(p) > 0, for every s, t su
h that

ns, nt ∈ Z+, and therefore the same kind of upper bound holds for the quantity in (31).Putting things together, we have obtained that for every p ≥ 2 and some C2 = C2(µ, p) > 0,
sup
n≥1

sup
s,t≥0,ns,nt∈Z+

Eµ
∞

[∣∣∣∣
HF

ns − HF
nt√

n

∣∣∣∣
p]

≤ C2|s − t|p/2.
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e HF is de�ned by linear interpolation between integer abs
issa, it is elementary that asimilar estimate holds when taking the supremum over all s, t ≥ 0, up to taking a larger C2. Theproof of the usual Kolmogorov's 
ontinuity theorem (see e.g. [27℄) entails the result. �Proof of Lemma 2. This result follows an approa
h taken in [20℄, using again the �uka
iewi
zwalk, and 
an be found in [16℄. We therefore only sket
h details. We bound the probability under
onsideration by [An]max0≤k≤An Pµ
∞(|u(k)| ≥ n1/2+η), then use the fa
t that |u(k)| is equal inlaw to Gk, the number of weak re
ords introdu
ed above. Then, using (29) and a moderatedeviation theorem allows to bound max0≤k≤n Pµ

∞(|Mk − σ2Gk/2| > n1/2+η/2) ≤ exp(−nε) forsome ε > 0 and n large, so it su�
es to show that max0≤k≤n Pµ
∞(Mk ≥ n1/2+η) ≤ exp(−nε) forsome ε > 0 and n large, and this is easy by a standard maximal inequality and applying theproof of the standard large deviations theorem. �Proof of Lemma 3. By the Otter-Dwass formula, the probability that a forest with r roots has

N individuals is given by rP (SN = N − r)/N , where S is a random walk with step distributionequal to the o�spring distribution of the GW pro
ess. Now, letting r = n1/2+η ,
Pµ

[n1/2+η ]
(|F| < An) =

[An]∑

i=[n1/2+η]

n1/2+η

i
P (Si − i = −n1/2+η)

≤ An max
1≤i≤An

P (Si − i = −n1/2+η),the lemma is dedu
ed thanks to a 
lassi
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