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Invariane priniples for labeled mobilesand bipartite planar mapsJean-François Markert∗, Grégory Miermont†6th April 2005AbstratA lass of labeled trees, alled mobiles, was introdued by Bouttier-di Franeso andGuitter in order to generalize the bijetive studies of planar maps initiated by Cori-Vauquelinand Shae�er. We prove an invariane priniple for resaled random mobiles assoiated withbipartite random planar maps under a Boltzmann distribution. We infer that the latteronverge in a ertain sense to the Brownian map introdued by Markert and Mokkadem,whih enompasses results of Chassaing and Shae�er on quadrangulations (although in aslightly di�erent ontext). These results are derived from a new invariane priniple for alass of two-type Galton-Watson trees oupled with a spatial motion, whih are shown toonverge to the Brownian snake.KeyWords: Random planar maps, labeled mobiles, invariane priniple, spatial Galton-WatsontreesM.S.C. Code: 60F17, 60J80, 05C30
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1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 21 Introdution, motivations and main results1.1 Planar mapsA planar map is a proper embedding m of a graph into the two-dimensional sphere S, onsideredup to any homeomorphism of the sphere. A onneted omponent of S \ m is homeomorphito a disk, and is alled a fae. The degree of a fae is the number of edges that onstitute itsboundary (with the onvention that an edge inluded in a fae is ounted twie). In this paper,we onsider only bipartite planar maps, i.e. maps suh that the degree of any fae is an evennumber.A pointed map is a map m in whih a vertex u is distinguished. When dealing with a pointedmap, we may label eah vertex by the length of the minimal path of edges linking this vertex tothe distinguished one (the �geodesi distane� to u). A root in a pointed map (m, u) is then adistinguished non oriented edge vw. By the bipartite nature of the map, the two ends of suhan edge have geodesi distanes to u of the form k and k + 1, so the hoie of a root is the sameas that of an oriented edge starting at the vertex with least label.PSfrag replaements
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1 1-12 -23-34Figure 1: On the �rst piture, an element of M5. Its distinguished edge is vw, the distinguishednode is u. The degree of the fae where w is written is 6. On the seond piture, the nodesare labeled by their geodesi distane to the distinguished vertex. On the last piture, a labeledmobile.Among all the families of maps, one of the best known is that of quadrangulations, beauseof the famous bijetion of Cori & Vauquelin [10℄ between planar rooted quadrangulations andwell labeled trees, and its desription by Shae�er (whih an be found in [28, 9, 22℄). Informally,well labeled trees are planar trees in whih nodes are labeled by integers subjet to a positivityonstraint. Using this bijetion:
• Chassaing & Shae�er [9℄ established that the longest distane to the root in uniform rootedquadrangulation with n faes divided by cn1/4 onverges in law to the range of the Browniansnake (with lifetime proess the normalized Brownian exursion),
• Chassaing & Durhuus [8℄ showed that unsaled uniform rooted quadrangulation with n faesonverges loally to a measure on in�nite quadrangulations,
• Markert & Mokkadem [22℄ give a desription of quadrangulations in term of the gluing oftwo trees, and show that these trees onverge when suitably normalized as n goes to ∞. Theyintrodued the notion of Brownian map, and show that under a ertain topology, resaled quad-rangulations onverge weakly to the Brownian map.We refer also to Angel & Shramm [3℄ who proved an analogous result as Chassaing & Durhuusfor rooted triangulations, but their proof is based on a Markovian onstrution of triangulationsrather than bijetive methods.



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 31.2 Boltzmann laws on planar mapsWe denote by M the set of bipartite pointed rooted planar maps with at least one edge, andby MF
n , MS

k and Mn,k the subsets of M onsisting of maps with n faes, k verties, and both
n faes and k verties, respetively. It is natural in our setting to add a emetery point in M,whih we all †, and whih we understand as a �map with no fae�. In the sequel, unless otherwisespei�ed, the term map is understood for �pointed, rooted, bipartite planar map�, and we willsimply write m as a shorthand for (m, u, vw).The goal of the present paper is to give asymptoti results generalizing [9℄ and [22℄ to severalother �Boltzmann laws� on bipartite maps onditioned to have a large number of faes or verties.Let q = (qi, i ≥ 1) be a sequene of non-negative weights non identially zero. Consider the σ-�nite measure Wq on M that assigns to eah map m ∈ M a weight qi per fae of degree 2i:

Wq(m) =
∏

f∈F (m)

qdeg(f)/2 (1)where F (m) denotes the set of faes of m, and where deg(f) is the degree of the fae f . Byonvention, we set Wq(†) = 1. This multipliative form is reminisent of the measures assoiatedwith the so-alled simply generated trees, whih is of the form w(t) =
∏

u∈t qcu(t) for any tree t,where ct(u) is the number of hildren of u, and where (qi)i is a sequene of non-negative numbers(Aldous [1, p. 27-28℄). We will be interested in probability measures assoiated with Wq inthe following way. If ZF
q,n := Wq(MF

n ) ∈ (0,+∞), we an onsider the onditional probabilitydistribution on MF
n

PF
q,n(·) =

Wq(· ∩MF
n )

ZF
q,n

.Similarly, we an onsider the probability distribution PS
q,k = Wq(· ∩ MS

k )/ZS
q,k as soon as

ZS
q,k = Wq(MS

k ) ∈ (0,+∞). If moreover Zq = Wq(M) is �nite, we an onsider the Boltzmannprobability distribution on M de�ned by
Pq(·) =

Wq(·)
Zq

.We will see that when ertain �ritiality� hypotheses on q are satis�ed (De�nition 1), under PS
q,kor PF

q,n several features of random maps satisfy an invariane priniple. This is summed up inSet. 4.4 by saying that suh resaled random maps onverge to an objet alled the Brownianmap, hene obtaining a generalization of [22℄. In partiular, we are able to give asymptotiresults for the diameter and the pro�le of a large lass of random maps, hene enompassing(in priniple) results by Chassaing and Shae�er [9℄, whih are obtained in the quadrangulationase, where q = δ2. We also mention that it would be natural to look for asymptoti behaviorof maps under the onditioned measure Pq(· |M ∈ Mn,k), but we were not able to rule this outby our methods.Remarks. • The reason why �in priniple� is that Chassaing and Shae�er work in the slightlydi�erent ontext of rooted maps, but whih are not pointed. Considering these objets wouldlead us to extra non-trivial tehnialities. Typially, pointing and rooting allows to onsiderfreely labeled mobiles below, while simple rooting lead to onsiderations on labeled mobiles witha positivity ondition. In a reent paper, Le Gall [17℄ has shown an invariane priniple onlabeled trees onditioned to be positive. His results imply the onvergene of resaled uniformrooted quadrangulations to the Brownian map.
• Notie that the law of #F (M) under Pq always harges every point of Z+, so that ZF

q,n isalways non-zero. However, this is not always true for ZS
q,n. More preisely, if we write the



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 4support of q as (κi, i ≥ 1), then the maps m that are harged by Pq are exatly those having nifaes of degree 2κi for some integer sequene (ni, i ≥ 1) with �nite support. By Euler's formula,suh maps have 2 +
∑

i ni(κi − 1) verties, so that #S(m) has a maximal span h whih is theg..d. of (κi −1, i ≥ 1). In the sequel, when onditioning on #S(m) = n we will therefore alwaystaitly suppose that n is hosen among the admissible values.1.3 Labeled mobiles, and the BdFG bijetionConsider the in�nite regular planar tree
T∞ =

⋃

n≥0

N
n,(by onvention N

0 = {∅}). For u = (u1, . . . , un), v = (v1, . . . , vm) ∈ T∞, we let uv =
(u1, . . . , un, v1, . . . , vm) be the onatenation of the words u and v. Reall that a planar tree
t is a subset of T∞ ontaining the root-vertex ∅, and suh that if ui ∈ t, then uj ∈ t forall 1 ≤ j ≤ i, and u ∈ t. Seen as a map, a tree is anonially rooted on the oriented edge
(∅, 1) where 1 is the left most hild of ∅. We denote by T the set of planar trees. We let
cu(t) = max{i : ui ∈ t} be the number of hildren of u.Every tree has a anonial bipartite oloration of its verties, whih an be of two kinds ◦and •, and suh that the root-vertex is a ◦. We let t◦ and t• be the sets of verties olored ◦and • in a tree t, respetively. For reason that will appear later, we all suh a olored tree, amobile. In a rooted mobile, the root is anonially assimilated to an unoriented edge, sine itnaturally inherits an orientation from the fat that the root vertex is a ◦.A labeled mobile is a pair (t, ℓ) where t is a mobile and ℓ : t◦ → Z is a funtion satisfyingthe following onstraint. Suppose v ∈ t• has father v0 ∈ t◦, and let v0, v1, v2 . . . , vk be theneighboring verties of t◦, arranged so that vi+1 is the vertex following vi when going lokwisearound v, with the onvention that k + 1 = 0. Then ℓ satis�es

ℓ(vi+1) ≥ ℓ(vi) − 1. (2)We let N(k) be the number of possible di�erenes (ℓ(vi) − ℓ(vi+1), 1 ≤ i ≤ k) that respet thisonstraint. By adding 2 to eah of the numbers ℓ(vi)− ℓ(vi+1), one sees that this is the same asthe number of ompositions of 2k in k positive parts. Hene
N(k) =

(
2k − 1

k − 1

)
. (3)When dealing with rooted mobiles, we will always suppose, unless otherwise mentioned, thatthe root vertex has label 1. We let W be the set of rooted labeled mobiles, and Wn,k be thesubset of those satisfying |t•| = n and |t◦| = k. The main tool for studying the laws introduedabove is the bijetion of Bouttier, Di Franeso & Guitter [7℄ generalizing that of Shae�er.Theorem 1 (Bouttier, Di Franeso & Guitter [7℄) There exists a one-to-one orrespondene

Φ between M and W with the following properties. It maps † to the tree {∅} with label 1, andfor any n ≥ 1 and k ≥ 2, the restrition of Φ to Mn,k is a bijetion onto Wn,k−1. Next, for
m = (m, u, vw) ∈ M \ {†}, letting (t, ℓ) = Φ(m),
� eah vertex σ of t• orresponds to a fae f of m, and the (total) degree of σ is half the degreeof f ,
� eah vertex x 6= u of m orresponds to a vertex φ(x) of t◦,
� the graph distane of any vertex x 6= u of m to u is equal to 1 + ℓ(φ(x)) − infσ∈t◦ ℓ(σ).We desribe the bijetion Φ in Setion 4.1 and show that it has some useful additional properties.Among these is the possibility to generalize the representation of quadrangulation as the gluingof two trees (given in [22℄) to bipartite maps.



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 51.4 Projetion of Pq, P
F
q,n, P

S
q,k on mobilesNow suppose that M is a Pq-distributed random planar map. Then by Theorem 1, letting

(T,L) = Φ(M) be the assoiated labeled random mobile, we an write, for any �xed labeledmobile (t, ℓ),
Pq(Φ(M) = (t, ℓ)) =

∏
v∈t• qcv(t)+1

Zq

=

(
∏

v∈t◦

1

Zq

)(
∏

v∈t•

Z
cv(t)
q qcv(t)+1N(cv(t) + 1)

)(
∏

v∈t•

1

N(cv(t) + 1)

)
,where cv(t) denotes the number of hildren of the vertex v in t, and where we have used∑

v∈t• cv(t) = |t◦| − 1 for any mobile t. Now, by de�nition of Wq and the properties of theBdFG bijetion, letting (T,L) = Φ(M), we may rephrase this by saying that under Pq, themobile T has distribution
Pq(T = t) =

(
∏

v∈t◦

1

Zq

)(
∏

v∈t•

Z
cv(t)
q qcv(t)+1N(cv(t) + 1)

)
,and the labeling L of the mobile T is uniform among all possible onditionally on T . Morepreisely, given T , for eah v ∈ T • with father v0 and hildren v1, . . . , vk, the sequene ofdi�erenes (L(vi + 1)−L(vi), 1 ≤ i ≤ k) is uniform among the N(k + 1) possible, independentlyover v's.Now, the �niteness of the measure Pq plainly entails that

f(x) =
∑

i≥0

xiqi+1N(i + 1) (4)is �nite at x = Zq, so we an de�ne a probability measure
µ•

q(k) =
Zk

qN(k + 1)qk+1

f(Zq)
, k ≥ 0, (5)and write

Pq(T = t) =
∏

v∈t◦

µ◦
q(cv(t))

∏

v∈t•

µ•
q(cv(t)), (6)where

µ◦
q(k) := Z−1

q f(Zq)k, k ≥ 0.But it is easy that this measure must itself be a probability measure sine Pq is one. Therefore, weget that f(Zq) = 1−Z−1
q , and µ◦

q is the geometri distribution with parameter 1/Zq, Therefore,we see that the study of Boltzmann random planar maps boils down to that of ertain two-typeGalton-Watson trees (see Set. 2), that ould be alled �bi-generated trees� in our ontext, witha ertain uniform labeling on their verties. This and the forthoming disussion in Set. 2motivates alling a weight sequene q ritial if the assoiated two-type Galton-Watson proessis, i.e. if m◦m• = 1, where m•,m◦ are the respetive means of µ•
q, µ◦

q. This is easily equivalentto m• = (Zq − 1)−1, and by (5) this an be rewritten as follows.De�nition 1 A weight q suh that Zq < ∞ is said to be ritial if
Z2

q f ′
l (Zq) = 1, (7)where f ′

l is the left-derivative of f . Equivalently, q is ritial if and only if the graphs of x 7→ f(x)and x 7→ 1− 1/x are tangent at x = Zq. We say that q is regular ritial if moreover the radiusof onvergene of f is > Zq, i.e. if µ•
q has small exponential moments.



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 6Our main results dealing with maps (Theorems 5, 6, 7) are proved under the assumption ofregular ritiality for the weight sequene. Let us however disuss more spei�ally on onditionedprobability measures. It is straightforward from (1) thatLemma 1 Fix n, k. For any α > 0 suh that ZF
αq,n < ∞, the onditional laws PF

αq,n are allequal to a single ommon distribution. Similarly, for any β > 0 suh that ZS
(βi−1qi,i≥1),k

< ∞,the onditional laws PS
(βi−1qi,i≥1),k

share a ommon value.Therefore, when we are onerned with onditional laws PF
q,n, PS

q,k, we will suppose that thereexists some α > 0 suh that Zαq < ∞ and αq is regular ritial, respetively that there existssome β > 0 suh that Z(βi−1qi,i≥1) < ∞ and (βi−1qi, i ≥ 1) is ritial, and fous on this ritialweight. This hanges f respetively to αf and f(β ·). It is also true that onditioning both onthe number of faes and verties is insensitive to termwise multipliation of q by (αβi−1, i ≥ 1),so this would lead to �nding a urve of (α, β)'s suh that (αβi−1qi, i ≥ 1) is ritial. We do notonentrate on this last point, as our methods are une�ient in onditioning on both these data.1.5 Overview of results and organization of the paperIt is therefore natural from (6), and the onditional law of the labeling L disussed above, tolook for a general invariane priniple for labeled two-type Galton-Watson trees together witha branhing spatial motion. We all suh random labeled trees �two-type disrete snakes�. Thetrees we are interested in have an anti-diagonal mean matrix, i.e. partiles of a type give birthexlusively to partiles of the other type. In Setion 3, we show suh an invariane priniple underfairly general hypotheses, namely that the (ritial) o�spring distribution has small exponentialmoments and that the spatial displaement between verties, whih need not have the same lawfor eah type, and may depend on the number k of hildren of the urrent vertex, has momentsof order 4 + ε that vary at most polynomially with k. Under these hypotheses, it is shown inCorollary 3 and Theorem 4 that ritial resaled disrete snakes onverge to the Brownian snake(see [11℄ and de�nitions below) driven by a Brownian exursion distributed aording to the It�exursion measure, while onditioned disrete snakes onverge to the Brownian snake driven bya standard Brownian exursion. The invariane priniple is proved in Setions 2 and 3 and isinteresting in its own right. It uses an anestral deomposition of trees (Set. 2.4) with a markedvertex, that was onsidered in a di�erent form and ontext in [15℄. This invariane prinipleimproves over past literature [19, 13, 14℄ in two ways:
• First, it allows two types instead of only one, so that Theorem 2 below showing that theunlabeled ritial two-type trees with �nite variane onverge to the Brownian ontinuum randomtree generalizes previous results [2, 19, 11℄, although we expet that the assumption of smallexponential moments ould be relaxed to a plain seond moment ondition. See [23℄ for thegeneral irreduible multitype ase.
• Seond, it allows the spatial displaement to depend on the loal struture of the tree, namelyof the type and the number of neighbors of the di�erent verties, whih seems not to havebeen onsidered before. Exept for the exponential moment assumptions, we expet that thehypotheses of the invariane priniple are lose to the best possible, see [14℄.We speialize the invariane priniple to the distributions µ◦

q, µ•
q above and the partiularlabeling of mobiles assoiated with Boltzmann random maps in Theorem 5, Set. 4.2. We usethis result in Set. 4.4 to show that suh random maps onverge one properly resaled to theBrownian map. As a orollary, we obtain for example the following generalization of the result of[9℄. Let N(de) be the It� measure of the standard re�eted Brownian motion, i.e. N is supportedby ontinuous funtions on some ompat subset [0, ζ] of R+ with ζ > 0, with zero value at theboundary and positive on (0, ζ). We let N(de,dr) be the It� measure of the head of the assoiated



1 INTRODUCTION, MOTIVATIONS AND MAIN RESULTS 7Brownian snake, i.e. with �rst marginal N and suh that given e, the seond marginal is the lawof a entered Gaussian proess with ovariane cov(rs, rs′) = minu∈[s∧s′,s∨s′] eu. Similarly, we let
N

(1)(de,dr) be the law of the head of the snake driven by a standard Brownian exursion, i.e.the same distribution as above but where N(de) is replaed by the law N (1)(de) of the standardBrownian exursion with unit duration.Now suppose that q is a regular ritial weight sequene, and let
ρq = 2 + Z3

qf ′′(Zq). (8)Let R(m) be the radius of m ∈ M, i.e. the maximal distane of a vertex to the distinguishedpoint. ThenCorollary 1 (i) For any a > 0 and under Pq, the law of the resaled radius R(M)/n given
R(M) > an onverges weakly to

N

((
4ρq

9Zq

)1/4

∆ ∈ ·
∣∣∣
(

4ρq

9Zq

)1/4

∆ > a

)
,where ∆ = max r − min r is the diameter of the Brownian snake(ii) As n → ∞, under PF

q,n,
R(M)

n1/4

weakly−−−−→
n→∞

(
4ρq

9(Zq − 1)

)1/4

∆ under N
(1).(iii) As n → ∞, under PS

q,n,
R(M)

n1/4

weakly−−−−→
n→∞

(
4ρq

9

)1/4

∆ under N
(1).1.6 Two examplesWe onlude this setion by giving expliitly the onstants mentioned above in two partiularases.1.6.1 2κ-angulationsLet κ ≥ 2 be an integer, and onsider the ase when q = αδκ, for some onstant α > 0. Theresulting distributions are the Boltzmann distributions on the set of maps with fae degree �xedand equal to 2κ, as in [8℄ in the ase κ = 2 of quadrangulations (suh distributions also appearin [4℄ for triangulations). Then f(x) = αN(κ)xκ−1, and the equations f(z) = 1 − 1/z and

z2f ′(z) = 1 are solved by Z = κ/(κ − 1) and determine a unique value for α. We thus haveobtained the value ακ of α, whih makes q ritial, i.e.
ακ =

(κ − 1)κ−1

κκN(κ)
,while the partition funtion is Zακδκ = κ/(κ− 1). Obviously, ακ is also the largest allowed valuefor α > 0 that makes Wq a �nite measure, i.e. so that f(z) = 1 − 1/z admits a solution.In partiular we hek α2 = 1/12, Zα2δ2 = 2, as in [8℄, and ρq = κ. Notie also that theonstant appearing in (ii), Corollary 1 is (8/9)1/4 in this ase, as in [9℄. Notie that onditioningon the number of verties is equivalent in this ase thanks to Euler's formula (up to trivialrenormalization onstants).



2 CRITICAL TWO-TYPE DISCRETE SNAKES 8
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xFigure 2: Example 1.6.1: drawing f for α = 1/18, 1/12, 1/8 and x 7→ 1 − 1/x (dashed) in thease κ = 2 of quadrangulations.Example 1.6.2: drawing f for β = 1/7, 1/8, 1/10 and x 7→ 1 − 1/x (dashed)1.6.2 qi = βiLet β > 0, and let qi = βi, so that the weight of a map m is β#A(m), where A(m) is the set ofedges of m. In this ase,
f(x) =

∑

i≥0

xiβi+1N(i + 1) =
2β√

1 − 4βx
(
1 +

√
1 − 4βx

)is de�ned for x < (4β)−1, and the only interesting ases in our setting are for β < 1/4. Now, theequation f(z) = 1 − 1/z has two real solutions > 1 when β < 1/8, and these are given by
1 −

√
1 − 8β + 4β

8β
and 1 +

√
1 − 8β + 4β

8β
.These two solutions merge into a unique one at β = 1/8, whih is of ourse the value making qritial, as an be double-heked by solving z2f ′(z) = 1, whose solution is 3/(16β). This gives

Zq = 3/2 in the ritial ase, while ρq = 27/4. The onditional version with respet to thenumber of verties an be seen as the �nite measure putting weight 8−#A(m) on eah element mof MS
n (i.e. q = 8−11) onditioned with respet to the number of verties ; notie that in thisase a onditional version with respet to the number of faes does not exist sine ZF

α1,n = ∞for all n, α > 0.2 Critial two-type disrete snakes2.1 Planar treesWe begin with some generalities on planar trees and forests. Reall the de�nitions of Set. 1. Welet |u| be the length of the word u ∈ T∞, whih is also the height (graph distane to the root)of u if onsidered as a vertex of some tree. For t a tree and n ≥ 0, let t|n = {u ∈ t : |u| ≤ n}be the restrition of t to the n �rst generations. For u ∈ t we let tu = {v ∈ T∞ : uv ∈ t} bethe fringe subtree of t rooted at u, and [t]u = t \ {uv : v ∈ tu \ {∅}} the pruned subtree. For
u = i1 . . . in ∈ t, we let uj = i1 . . . ij and [[∅, u]] = {∅, u1, . . . , un} be the anestral line of u bakto the root.



2 CRITICAL TWO-TYPE DISCRETE SNAKES 9The depth-�rst order on a planar tree is the order relation ≺ indued by the lexiographialorder. We let u(k) be the k-th vertex in depth-�rst order. We also de�ne the depth-�rst traversal,or ontour order of a tree t with n edges as a funtion:
Ft : {0, ..., 2n} → { verties of t },whih we regard as a walk around t, as follows: Ft(0) = ∅, and given Ft(i) = z, hoose, ifpossible, and aording to the depth-�rst order the smallest hild w of z whih has not alreadybeen visited, and set Ft(i + 1) = w. If not possible, let Ft(i + 1) be the father of z.A forest is a �nite or in�nite sequene of trees f = (t1, t2, . . .). The depth-�rst order on fis naturally de�ned as the linear order mathing both the depth-�rst order on eah ti and theorder in whih the ti appear. We de�ne similarly as above f |n, fu, [f ]u, u(k) for a forest f .Finally, for a forest f = (t1, t2, . . .), we let H f

k = |u(k)| and Ĥ f (k) = |Ff (k)|, and de�ne theheight proess (H f
s , s ≥ 0) and the ontour proess (Ĥ f

s , s ≥ 0) by interpolating linearly betweeninteger absissa. We also let Λf
k = max{i ≥ 1 : u(k) ∈ ti} and Λ̂f

k = max{i ≥ 1 : F f (k) ∈ ti}.See Fig. 3.PSfrag replaements H f Ĥ f

Figure 3: A forest, its height proess, and its ontour proess. On this example Λf
7 = 3 and

Λ̂f
7 = 12.2 Prerequisites on monotype Galton-Watson treesFor µ a probability measure on the set of nonnegative integers, we denote by Pµ the law of asingle type GW tree with o�spring distribution µ. We denote by (H) the onditions that µ isnon-degenerate, ritial and has small exponential moments, namely:

(H) :=





µ(0) + µ(1) 6= 1∑
k≥0 kµ(k) = 1there exists a > 0 s.t. ∑k≥0 eakµ(k) < +∞.We denote by Pµ

r the law of a forest with r ∈ Z+ ∪ {∞} trees, in whih the r trees are Pµdistributed and independent.We begin by giving some results on monotype forests that will be ruial for further study.The following result improves over known tightness results for the resaled height proess ofa Galton-Watson forest. Its proof as well as those of Lemma 2 and 3 are postponed to theAppendix at the end of the paper.Proposition 1 Suppose (H). Under Pµ
∞, for every A > 0, α ∈ (0, 1/2), the α-Hölder norm of

(n−1/2HF
ns, 0 ≤ s ≤ A) is uniformly tight in n, namely, for every ε > 0 there exists C > 0 suhthat

sup
n∈N

Pµ
∞

(
sup

0≤s 6=t≤A

|HF
ns − HF

nt|√
n|s − t|α > C

)
≤ ε.Moreover, the same onlusion holds for the ontour proess Ĥ.



2 CRITICAL TWO-TYPE DISCRETE SNAKES 10Notie that the onditioned analog of this proposition, i.e. under the probability laws Pµ(·||T | =
n) instead, and in the ase of the ontour proess, is a onsequene of the work of Gittenberger[13℄. In the unonditioned ase, to the best of our knowledge, Proposition 1 has not been shownbefore. Our proof is partly inspired by [11, Theorem 1.4.4℄, whih is a kind of ontinuous oun-terpart of the present proposition.The two following lemmæ will allow to give bounds on the maximal vertex-height and thenumber of trees visited before the An-th vertex of a forest in depth-�rst order.Lemma 2 Let µ be a distribution satisfying (H). In a Pµ

∞-forest, for every A > 0, η > 0, thereexists ε > 0 suh that for n large enough,
Pµ
∞

(
max{|u|, u ≺ u([An])} ≥ n1/2+η

)
≤ exp(−nε).Lemma 3 Let µ be a distribution satisfying (H) and F be a µ-forest with n1/2+η trees. For any

η > 0 and A > 0, there exists ε > 0, suh that for n large enough
Pµ

[n1/2+η ]
(|F| ≤ An) < exp(−nε)We �nish this setion by stating Aldous-Le Gall's theorems for onvergene of the heightproess for onditioned tree (see also [19℄), and for forests, that an be found respetively in[2, 11℄.Proposition 2 Under hypotheses (H):(i) Under Pµ

∞, (
HF

ns√
n

,
ΛF

ns√
n

)

s≥0

weakly−−−−→
n→∞

(
2

σ
|Bs|, σL0

s

)

s≥0

,for the uniform topology on ompat subsets of [0,∞), where σ2 is the variane of µ and B is astandard Brownian motion with loal time proess at 0 given by (L0
s, s ≥ 0) (whih is normalized tobe the density at 0 of the oupation measure of B before time s). Moreover, the same onlusionholds for the proesses ĤF

2ns, Λ̂
F
2ns instead of HF

ns,Λ
F
ns.(ii) Under Pµ(· | |T | = n), whenever the onditioning event has positive probability, the proess

(
HT

ns√
n

, 0 ≤ s ≤ 1

)
weakly−−−−→
n→∞

(
2

σ
es, 0 ≤ s ≤ 1

)for the uniform topology, where e is a standard Brownian exursion. The same result holds with
ĤT

2ns instead of HT
ns.2.3 Two-type Galton-Watson treesLet (µ◦, µ•) be a pair of integer valued probability distributions with means m◦ and m•, respe-tively. We denote by (H1) the set of assumptions :

(H1) :=





µ◦(0) + µ◦(1) + µ•(0) + µ•(1) 6= 1,
m◦m• = 1,there exists α > 0 suh that ∑k≥0 eαkµ◦(k) < ∞,

∑
k≥0 eαkµ•(k) < ∞.We onsider two-type {◦, •} GW trees with laws P ◦ and P • in whih :� the anestor has type ◦ for P ◦ and • for P •,� an individual of type ◦ gives birth exlusively to individuals of type • aording to the law µ◦,



2 CRITICAL TWO-TYPE DISCRETE SNAKES 11� an individual of type • gives birth exlusively to individuals of type ◦ aording to the law µ•,� the progeny of distint individuals are independent random variables.Under the assumption (H1), under P ◦ or under P •, T is a.s. �nite (see Proposition 5). Sothe law P ◦ is haraterized by
P ◦(T = t) =

∏

u∈t,|u| evenµ◦(cu(t))
∏

u∈t,|u| oddµ•(cu(t)) , t ∈ T.(For P • replae in the last formula ◦ by • and • by ◦).NotationIn the sequel, unless otherwise mentioned the probability P will denote P ◦, i.e. the law of a treerooted at a ◦ individual. We will then denote by t◦ and t• the sets of verties of t with evenresp. odd height.Similarly, for r ∈ N∪ {∞} we let Pr be the law of a forest onstituted of r independent GWtrees, all rooted at a ◦ individual. In partiular, P1 is naturally identi�ed with P ◦.2.4 Anestral deomposition of a Galton-Watson treeA key result for our study is a multitype version of an anestral deomposition for Galton-Watsontrees, related to the so-alled size-biased Galton-Watson distribution. Let
µ̂◦(k) =

kµ◦(k)

m◦
, µ̂•(k) =

kµ•(k)

m•
, k ≥ 0be the size-biased versions of the probabilities µ◦, µ•. The size-biased Galton-Watson tree isan in�nite tree ontaining a unique spine, i.e. an in�nite injetive path starting from the root,and its distribution is de�ned as follows. The root is assigned a number of hildren c∅ withdistribution µ̂◦, and a distinguished hild is hosen uniformly among these. On all hildren butthe distinguished one, independent trees with distribution P • are grafted, while the distinguishedhild has an independent number of hildren with law µ̂•. Again, one of these is hosen uniformlyand distinguished. Independent trees with law P ◦ originate from the undistinguished ones, andthe distinguished one has o�spring with law µ̂◦, and so on, so that one uses distributions P ◦, µ̂◦at even generations, and P •, µ̂• at odd ones. We let P̂ be the distribution of the resulting in�nitetree, and we denote the in�nite distinguished path [[∅,∞]] = {v0 = ∅, v1, . . .}. We let P̂ (h) bethe distribution of ([T ]vh

, vh) under P̂ , and we denote by (T, V ) a random variable with this law.We also let ◦ • (h) = ◦ or • aording to h being even or odd.Similarly, for r ∈ N = {1, 2, . . .}, h ≥ 0, let P̂
(h)
r be the law of a forest of r independent treesall with law P ◦ exept for the K-th one whih has law P̂ (h), where K is uniform on {1, 2, . . . , r}.Lemma 4 (Anestral deomposition for Galton-Watson forests) For every r ∈ N and nonnega-tive funtions F,G

Er

[
∑

u∈F

F (|u|, [F ]u)G(Fu)

]
= r

∑

h≥0

m
[h/2+1]
◦ m

[(h+1)/2]
• Ê(h)

r [F (V,F)]E◦•(h)[G(T )].(notie that by de�nition [F ]u is a forest, while Fu is a tree).Otherwise said, if a vertex u is taken aording to the ounting measure on F , then itsheight is distributed aording to the measure on N with weight m
[h/2+1]
◦ m

[(h+1)/2]
• on {h}, and



2 CRITICAL TWO-TYPE DISCRETE SNAKES 12given |u| = h, ([F ]u, u),Fu are independent with respetive laws P̂
(h)
r and P . Notie that when

m◦m• = 1, we an bound
Er

[
∑

u∈F

F (u, [F ]u)G(Fu)

]
≤ r(m◦ ∨ m•)

∑

h≥0

Ê(h)
r [F (V,F)]E◦•(h)[G(T )].Proof. This lemma is essentially deterministi, in that one an take F (u, f)G(f ′) of the form1u,f ,f ′ for some partiular u ∈ f , f ′ with say |u| = h. It is then easy that the expetation weare looking for is just the probability Pr(F = [f , u, f ′]) where [f , u, f ′] is the unique forest f ′′satisfying [f ′′]u = f , f ′′u = f ′. The subtrees originating from the spine [[∅, u]] are then plainlyindependent with the laimed laws P ◦•(h′), 1 ≤ h′ ≤ h, and independent of the struture ofthe spine. The latter is onstituted of ∅, u1, . . . , uh = u and the brothers of u1, . . . , uh, whoserespetive numbers are k1 − 1, . . . , kh − 1 with probability

∏

0≤i≤h−1 evenµ◦(ki+1)
∏

1≤i≤h−1 oddµ•(ki+1),whih we rewrite
rm

[h/2]
◦ m

[(h−1)/2]
•

1

r

h∏

i=1

1

ki

∏

0≤i≤h−1 even µ̂◦(ki+1)
∏

1≤i≤h−1 odd µ̂•(ki+1),and the �rst produt orresponds to the probability of hoosing the distinguished vertex ui atheight i, while the fator 1/r amounts to hoosing the plae of the distinguished tree in the forestwith r roots. Hene the result. �2.5 Critiality and the tree of grandfathersWe now use a natural redution of two-type trees obtained when squeezing all the odd gener-ations, i.e. by onsidering only the ◦ desendene of ◦ verties. More preisely, given a tree
t, we de�ne reursively the redued tree t◦ (also alled the tree of grandfathers in the sequel)starting from the root, by letting the hildren of the root in t◦ be the grandhildren of ∅ in t,taken in depth-�rst order, and letting the hildren of these be the orresponding grandhildrenin t, and so on. Formally, if k is the number of hildren of ∅ in t, and if the i-th of thesehildren has ci hildren i1, . . . , ici itself, then root ∅ has c1 + . . . + ck hildren in t◦, and we let
ij = c1 + . . . + ci−1 + j. In stage n, if we onsider a vertex u of t◦ whih omes from a vertex uof t by our onstrution, we let uij, 1 ≤ i ≤ cu, 1 ≤ j ≤ cui be its grandsons in t, and we map
uij to uij = u(cu1 + . . . + cu(i−1) + j), hene determining the cu1 + . . . + cuk hildren of u in t◦.It is now obvious by de�nition that

Figure 4: A two-type tree T , the orresponding redued tree T̄◦, and the forest T̄•.Proposition 3 If T follows the law P , then T ◦ is a monotype Galton-Watson tree, whose o�-spring distribution µ◦ has generating funtion
Gµ◦ = Gµ◦ ◦ Gµ• .



2 CRITICAL TWO-TYPE DISCRETE SNAKES 13By di�erentiating this expression, we obtain that the mean of this new o�spring distribu-tion is m•m◦, so it is ritial by our assumptions. Also, we an similarly onsider a forest
T1, T2, . . . , Tc∅(T ) of fringe subtrees rooted at the sons of the root of T , and apply a similartransformation T • to all these trees, skipping every ◦ generation. Again, this gives a ritialGW forest (with random number of trees), also alled forest of grandfathers in the sequel. Bydi�erentiating twie the expression above we also obtain that the variane is �nite, and in fatsmall exponential moments are �nite. A quik omputation gives that the variane of µ◦ is σ2

◦(resp. σ2
• for µ•), where

σ◦ =
√

m2
•σ

2
◦ + m◦σ2

• , σ• =
√

m•σ2
◦ + m2

◦σ
2
• . (9)From the a.s. extintion riterium of monotype Galton-Watson trees, we also immediately deduein our ase the well-known extintion lemma for two-type trees:Lemma 5 Let (µ◦, µ•) satisfy (H1) and T be a P ◦ (or P •) distributed tree. Then T is a.s. �nite.Of ourse, the existene of small exponential moments an be lifted here. We also immediatelygetLemma 6 Assume that the pair (µ◦, µ•) satis�es (H1). The onlusions of Lemmæ 2 and 3remain valid for P ◦-forests (and P •-forests) introdued in Setion 2.1.We now give a result similar to [20℄ in the ase of single type Galton-Watson trees. For u ∈ tand k ≥ 1 let au,k(t) be the number of anestors v ∈ [[∅, u]] that have k hildren exatly. Similarnotations are taken for forests. The next lemma allows to bound the degree in large trees.Lemma 7 Assume that the pair (µ◦, µ•) satis�es (H1). For every A, ξ > 0 there exists ε > 0suh that for n large enough,

P∞

(
sup

k≥nξ,u≺u([An])

au,k(F) ≥ 1

)
≤ exp(−nε). (10)Moreover, for every D > 0 there exists C > 0 suh that for n large enough,

P∞

(
sup

k≥C log n,u≺u([An])
au,k(F) ≥ 1

)
≤ n−D. (11)Proof. Let η > 0. By �rst using Lemma 6 as in Lemma 8, it su�es to bound

Pn1/2+η

(
sup

k≥nξ,|u|≤n1/2+η

au,k ≥ 1

)
≤ En1/2+η

(
∑

u∈F

1|u|≤n1/2+η1cu≥nξ

)and applying the anestral deomposition, this is smaller than
(m◦ ∨ m•)n

1/2+η
∑

0≤h≤n1/2+η

µ◦•(h)
(
[nξ,+∞[

)
.The sum ontains two kinds of terms depending on whether h is odd or even. Sine µ◦ and µ•have small exponential moments, Markov's inequality shows that, there exists ε suh that, for nlarge enough, µ◦([nξ,+∞)) + µ•([nξ,+∞)) ≤ exp(−nε/2), whih gives (10). We obtain (11) bya similar method. �



2 CRITICAL TWO-TYPE DISCRETE SNAKES 142.6 Repartition of ◦-nodes and •-nodes in two-type treesLet now J◦
t (k) (resp. J•

t (k)) be the number of verties of type ◦ (resp. •) ourring in depth-�rstorder before the k-th vertex of t in depth-�rst order. It is immediate that∣∣∣Ht
k − 2Ht◦

J◦
t
(k)

∣∣∣ ≤ 2
∣∣∣Ht◦

J◦
t
(k) − Ht◦

J◦
t
(k)+1

∣∣∣+ 2, (12)where by onvention Ht◦
J◦
t
(k)+1 = 0 when J◦

t (k) = |t◦|. A similar inequality holds when t isreplaed by a forest f , and/or ◦ by •. The next lemma gives the asymptoti behavior for
(J◦

F (k), k ≥ 0).Lemma 8 Under assumptions (H1), for any A, γ > 0 there exists ε > 0 suh that for n largeenough,
P∞

(
sup

0≤k≤An

∣∣∣∣J
◦
F (k) − k

1 + m◦

∣∣∣∣ > n1/2+γ

)
≤ exp(−nε),and similarly with (J•

F ,m•) instead of (J◦
F ,m◦).Proof. Let J ′

k be the total number of verties that have been visited before exploring the k-th
◦, whih we all u (and whih is ounted in the number J ′

k). At time J ′
k, one has visited all thehildren of the k−1 �rst ◦-nodes u1, . . . , uk−1 exept maybe some of the hildren of the anestorsof u. Using Lemmas 7 and 2, for any η, ξ > 0, there exists ε > 0, for n large enough, for any

k ≤ An,
P

(∣∣∣∣∣J
′
k − (k +

k∑

i=1

cui)

∣∣∣∣∣ ≥ n1/2+η+ξ

)
≤ exp(−nε).Now, sine the random variables cui are independent and have exponential moments, ∑k

i=1 cuiis onentrated around its mean, and one gets that for n large enough, for any k ≤ An,
P

(
sup

0≤k≤An
|J ′

k − (1 + m◦)k| ≥ n1/2+γ/2

)
≤ exp(−nε).The result on J◦

F follows by a standard argument (it is uniformly lose to the right-ontinuousinverse of J ′). The very same reasoning shows that J ′′
k is uniformly lose to (1 + m•)k with highprobability, where J ′′

k is the number of • verties visited before the k-th vertex. �An immediate onsequene of this isCorollary 2 Under the hypotheses (H), the statement of Proposition 1 remains valid in thetwo-type ase, i.e. for every A, ε > 0, α ∈ (0, 1/2), there exists C > 0 with
sup
n∈N

P ◦
∞

(
sup

0≤s 6=t≤A

|HF
ns − HF

nt|√
n|s − t|α > C

)
≤ ε.Proof. We bound

∣∣∣∣
HF

ns − HF
nt√

n

∣∣∣∣ ≤

∣∣∣∣∣∣

HF
ns − 2HF◦

J◦
F(ns)√

n

∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣

HF◦

J◦
F(ns) − HF◦

J◦
F(nt)√

n

∣∣∣∣∣∣
+

∣∣∣∣∣∣

HF
nt − 2HF◦

J◦
F (nt)√

n

∣∣∣∣∣∣
.The term in the middle is < C|s − t|α with high probability for C large enough thanks toProposition 1 and Lemma 8, while the two others are bounded by

sup
0≤k≤An

n−1/2
∣∣∣HF◦

k − HF◦
k+1

∣∣∣by (12) and the fat that J◦
F (k) ≤ k. Now this quantity onverges to 0 in probability byProposition 2. Therefore, we obtain the desired bound when s 6= t are suh that ns, nt areintegers, and this is extended similarly as above to any s, t ≤ A by linear interpolation. �



2 CRITICAL TWO-TYPE DISCRETE SNAKES 152.7 Two-type disrete snakesWe now ouple the Galton-Watson trees with a spatial motion as follows. For every k ≥ 1onsider two distributions ν◦
k , ν•

k on R
k.We enrih the laws Pr, r ∈ N ∪ {∞} by assoiating with the hildren (u1, . . . , ucu(f)) ofevery vertex u of f (given F = f) a r.v. (Yu1, Yu2 . . . , Yucu(f)) with law ν◦

cu(f) if |u| is even,and ν•
cu(f) otherwise, and we suppose these variables independent over di�erent u's. We all

Pr the assoiated probability. We let also Y∅ = 0 and ℓ(u) =
∑

v∈[[∅,u]] Yv. In the sequel, thenotation f will stand for a labeled forest (f , ℓ).Let Rf
k = ℓ((u(k)), and de�ne (Rf

s, s ≥ 0) by linearinterpolation between values taken at integers. Similarly, we let R̂f
k = l(Ff (k)) be the label ofthe k-th vertex in depth-�rst traversal, and let R̂f be the assoiated interpolated proess. It isonvenient to see this onstrution as done on Figure 5: assume that eah node u is drawn inthe plane at position (ℓ(u), |u|). The hildren of u will be at position {(ℓ(u) + Yui, |u| + 1), i ∈

J1, cf (u)K}. Hene, the variable Yui an be thought as absissa displaements of ith hildren of
u relative to u.PSfrag replaements

Ĥt

R̂t

4
5

5
57 3 3 3 18

18
-3

1
1 1 00 0-1 -1-1-1 2 26 4 4 4

Figure 5: At �rst a tree in whih eah node u is marked with Yu. On the seond piture, u ismarked with ℓ(u), then one sees a representation in the plan using the variable Yu as absissadisplaements. Then are represented on top Ĥt and below R̂t. The small retangle in this Figureillustrates that the proess R̂t must be onstant on the nodes enoded by ĤtWe denote by
M◦

k,j,p =

∫

Rk

|xj |pν◦
k(dx) and M•

k,j,p =

∫

Rk

|xj |pν•
k(dx)the p-th moments of the one-dimensional marginals of ν◦

k and ν•
k . We denote by (H2) the set ofassumptions

(H2) :=

{ the one-dimensional marginals of ν◦
k and ν•

k are entered.there exists ε > 0, S.t. for any k ≥ 1, 1 ≤ j ≤ k,M◦
k,j,4+ε < +∞ and M•

k,j,4+ε < ∞We will denote these two last quantities by M◦
k,j,M

•
k,j for the sake of brevity. We let also

(Σ◦
k,j)

2, (Σ•
k,j)

2 be the varianes of the j-th marginal, and de�ne
Σ =

√√√√√1

2

∑

k≥1


µ◦(k)

m◦

∑

1≤j≤k

(Σ◦
k,j)

2 +
µ•(k)

m•

∑

1≤j≤k

(Σ•
k,j)

2


. (13)



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 163 Convergene of normalized labeled forests3.1 Convergene of the shapeDe�ne
σ =

1

2

√
σ2
◦

1 + m•

m◦
+ σ2

•

1 + m◦

m•
, (14)so that σ =

√
1 + m◦σ◦/2 =

√
1 + m•σ•/2.Theorem 2 Let (µ◦, µ•) satisfying (H1); under P∞,

(
HF

ns√
n

,
ĤF

2ns√
n

,
ΛF

ns√
n

,
Λ̂F

2ns√
n

)

s≥0

(d)−−→
n

(
2

σ
|Bs|,

2

σ
|Bs|,

σ◦√
1 + m◦

L0
s,

σ◦√
1 + m◦

L0
s

)

s≥0where B is a standard Brownian motion and L0 is its loal time at 0.Remark. We suspet that the small exponential moments assumption is only tehnial, andthat this theorem holds assuming only �nite variane. However, dropping this assumption islikely to make all the proofs muh more involved. The fat that onvergene holds jointly forresaled height and ontour proesses is an amelioration obtained in [19℄, see also [11℄, and wewill exlusively onentrate on the height proess in the sequel, referring the interested reader tothe above referenes.Proof. This is an easy onsequene of the preeding results. From (12) and Proposition 2, wehave that under P ◦
∞, (n−1/2HF

ns, s ≥ 0) has the same limit as (n−1/22HF◦

J◦
F ([ns]), s ≥ 0). By Propo-sitions 2 and 8 and a standard argument using Skorokhod's representation's theorem, we obtainthat the latter proess onverges to (2σ−1

◦ |B(1+m◦)−1s|, s ≥ 0), and it su�es to use Browniansaling and hek that 2/(
√

1 + m◦ σ◦) = 2/σ. The joint onvergene with (n−1/2ΛF
ns, s ≥ 0) isthen easy, using that ΛF

k = ΛF◦

J◦
F (k) for every k ≥ 0. �3.2 Convergene of the labelsFor (Xs, s ≥ 0) a real-valued funtion, we let X̌s,s′ = infs∧s′≤u≤s∨s′ Xu. Denote by (H3) theassumption

(H3) :=

{ there exists D > 0 suh that max
1≤j≤k

(M◦
k,j ∨ M•

k,j) = O(kD) .The goal of this setion is to prove the following theorem.Theorem 3 If (H1), (H2) and (H3) are satis�ed then Σ is �nite, and under P∞, we have
(

HF
ns

n1/2
,

ΛF
ns

n1/2
,
RF

ns

n1/4

)
weakly−−−−→
n→∞

(
2

σ
|Bs|,

σ◦√
1 + m◦

L0
s,Σ

√
2

σ
rs

)
, s ≥ 0,in C([0, 1], R3), endowed with the topology of uniform onvergene on ompat sets, and whereonditionally on B, r is a entered Gaussian proess with ovariane

cov(rs, rs′) = |B̌|s,s′ , s, s′ ≥ 0.Similarly, (
ĤF

2ns

n1/2
,
Λ̂F

2ns

n1/2
,
R̂F

2ns

n1/4

)
weakly−−−−→
n→∞

(
2

σ
|Bs|,

σ◦√
1 + m◦

L0
s, rs

)
, s ≥ 0.



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 17Remarks. • In ase of i.i.d. random variables Yv, the minimum moment ondition is theexistene of a moment of order 4 + ε (see [14℄). There, sine we allow the law of Yv to dependon the degree (this is the ase in the appliation to mobiles assoiated with random maps), themoments of order 4 + ε must exist and also must not grow too fast with the degree: the rateof growing depends on the apparition of nodes with large degree in the tree; this is ruled o� byLemma 7.
• In fat, a joint onvergene result similar to that of Theorem 2 ould be obtained here, but wedo not onentrate on this. Also, the proofs will be done only in the ase of the height proess,the ase of the ontour proess being similar, and easier in many ways (e.g. the analog of Lemma11 is straightforward).From Theorem 3, we dedue, realling the notations of Set. 1.5,Corollary 3 Supposing (H1), (H2), (H3), for any a > 0, the proess ((n−1/2HT

ns, n
−1/4RT

ns), 0 ≤
s ≤ n−1|T |) under P(· |max RT − min RT > an1/4) onverges to (2σ−1e,Σ

√
2σ−1r) under

N(· |Σ
√

2σ−1∆ > a).We will not give a detailed proof of this statement, as a very similar result appears in [11,Setion 2.5℄, to whih we refer the interested reader. Also, many other kinds of non-singularonditionings ould be hosen instead of our hoie on the diameter of the range of the proess r.We use this one beause of the speialization to the mobiles assoiated with maps as disussedin the Introdution and in Set. 4: the diameter of the range of r orresponds to the radius ofthe map.In order to prove Theorem 3, we must �rst ontrol the behavior of the random variables Yvinvolved in Rns. This passes through the ontrol of the largest degree in a our random trees,whih is the aim of the following subsetion.3.3 Preliminary lemmæNow, for 1 ≤ j ≤ k we let a◦u,k,j(t) be the number of anestors v ∈ [[∅, u]] suh that |v| is even,
ct(v) = k, and suh that u is moreover in the j-th fringe subtree tvj . The quantity a•u,k,j(t) isde�ned similarly. We de�ne the same quantity for forests rather than trees. Under a GW law(of a tree of a forest), we will unambiguously denote a◦u,k,j(T ) or a◦u,k,j(F) by a◦u,k,j, and so on.Lemma 9 Let (µ◦, µ•) satisfying (H1). For every γ,A > 0, there exists ε > 0 suh that for nlarge enough,

P∞


 sup

k≥1,1≤j≤k,u≺u([An])

∣∣∣a◦u,k,j −
µ◦(k)
2m◦

|u|
∣∣∣

√
µ◦(k)
m◦

≥ n1/4+γ


 ≤ exp(−nε)and similarly for a•u,k,j.Proof. Notie that the number of ◦ verties under a vertex of height h is [h/2 + 1]. By Lemma4, for a given k ≥ 1, 1 ≤ j ≤ k,

Pn1/2+γ/2


 sup

|u|≤n1/2+γ/2

∣∣∣∣a
◦
u,k,j −

µ◦(k)

m◦

[ |u|
2

+ 1

]∣∣∣∣ ≥
√

µ◦(k)

m◦
n1/4+γ


 (15)

≤ En1/2+γ/2

[
∑

u∈F

1{∣∣∣a◦
u,k,j−

µ◦(k)
m◦

[
|u|
2

+1
]∣∣∣≥

√
µ◦(k)
m◦

n1/4+γ

}1{|u|≤[n1/2+γ/2]}

]

≤ C◦•n
1/2+γ/2

[n1/2+γ/2]∑

h=0

P



∣∣∣∣∣∣

[h/2+1]∑

l=1

X◦
k,j(l) −

µ◦(k)

m◦

[
h

2
+ 1

]∣∣∣∣∣∣
≥
√

µ◦(k)

m◦
n1/4+γ


 , (16)



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 18where C◦• = m◦ ∨ m•, and where on a probability spae (Ω,A, P ), X◦
k,j(l), l = 0, . . . , [h/2 + 1]are i.i.d. random variables with Bernoulli(µ◦(k)/m◦) law (whih orresponds to the probabilitythat X̂ = k,Uk = j where X̂ has law P (X̂ = k) = kµ◦(k)/m◦, and given X̂ = k, Uk ∈ {1, . . . , k}is uniform). Now H÷�ding's inequality says that if S

(p)
n is a binomial variable with parameter pand n trials. Then for every y ≥ 0,

P
(
|S(p)

n − np| >
√

p y
)
≤ 2 exp(−2y2/n). (17)This allows to bound eah term in the sum (16) by 2e−2nγ , and so the right member of (16) is

O(e−nγ
) where the O is uniform on k. To onlude, we have to remove the ondition sup{|u|} ≤

n1/2+γ/2 and to move the supremum on k inside the probability. The �rst point is done thanksto Lemma 6.Seond point : The left hand side of (15) is bounded by O(ne−2nγ
), if we add supk≤n in theprobability. Let us handle the k larger than n. For n large enough, with probability ≥ 1 −

exp(−nε1), all au,k, and thus all a◦u,k,j, are null for k > n, and all |u| ≤ n (by Lemma 10). Thuswith this high probability,
sup
k>n

∣∣∣a◦u,k,j −
µ◦(k)
2m◦

|u|
∣∣∣

√
µ◦(k)
m◦

= sup
k>n

√
µ◦(k)

4m◦
|u| ≤ n sup

k>n

√
µ◦(k)

4m◦
≤ sup

k>n
k

√
µ◦(k)

4m◦
≤ n1/4+γ ,for n large, beause µ◦ has exponential moments.The same reasoning applies to a•u,k,j. �The next lemma sharpens the preeding one, subjet to relaxing a little the uniformity on

u. For u ∈ t, 0 ≤ l ≤ |u|, k ≥ 1, 1 ≤ j ≤ l, we de�ne the quantity a◦u,l,k,j to be the numberof anestors v ∈ [[∅, u]] with even height satisfying |v| > |u| − l, and for whih cv(t) = k and
u ∈ tvj .Lemma 10 Let (µ◦, µ•) satisfying (H1). For every A, γ, ξ > 0, there exists ε > 0 suh that, for
n large enough

P∞


 sup

k≥1,1≤j≤k,u≺u([An]),nξ≤l≤|u|

∣∣∣a◦u,l,k,j −
µ◦(k)
2m◦

l
∣∣∣

l1/2+γ
√

µ◦(k)
m◦

≥ 1


 ≤ exp(−nε).Proof. Again we onsider a forest with n1/2+γ/2 trees and bound |u| ≤ n1/2+γ/2 up to losing anexponentially small probability. Also, notie that the number of ◦ verties omprised between avertex with height h and its anestor at height h− l is [h/2 + 1]− [(h− l)/2 + 1]. For �xed k, l,and for c > 0 we write similarly as above

Pn1/2+γ/2


 sup

n1/2+γ/2≥|u|≥l≥nξ

∣∣∣a◦u,l,k,j −
µ◦(k)
m◦

([
h
2 + 1

]
−
[

h−l
2 + 1

])∣∣∣
([

h
2 + 1

]
−
[

h−l
2 + 1

])1/2+γ
√

µ◦(k)
m◦

≥ c




≤ C◦•n
1/2+γ/2

n1/2+γ/2∑

h=nξ

P


 sup

nξ≤l≤h

∣∣∣
∑[h/2+1]

i=[(h−l)/2+1] X
◦
k,j(i) −

µ◦(k)
m◦

([
h
2 + 1

]
−
[

h−l
2 + 1

])∣∣∣
√

µ◦(k)
m◦

([
h
2 + 1

]
−
[

h−l
2 + 1

])1/2+γ
≥ c




≤ 2C◦•n
1/2+γ/2

n1/2+γ/2∑

h=nξ

h exp(−2c2n2ξγ) ≤ 2C◦•n
3/2+3γ/2 exp(−n2γξ)and this gives the result, using the same method as in the preeding lemma and hoosing c smallenough. �



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 193.4 Finite-dimensional onvergeneThe �rst step in the proof of Theorem 3 is the followingProposition 4 Suppose that the pair (µ◦, µ•) satis�es (H1), and that the displaements distri-bution ν• and ν◦ are entered. Suppose moreover that
max
1≤j≤k

(Σ◦
k,j ∨ Σ•

k,j)
2 = O(kD),for some D > 0. Then the onvergene of �nite-dimensional marginals holds in Theorem 3.Notie that this statement shows that the �nite-dimensional onvergene holds even without theextra 4 + ε moment hypothesis. Also, note that under the hypothesis of the proposition, thevariane Σ assoiated with the limiting proess is �nite, beause µ◦, µ• have small exponentialmoments.Let us give the intuition for the one-dimensional onvergene. By using Skorokhod's repre-sentation theorem, we may assume that we are working in a new probability spae on whih allthe disrete forests (Fn) are living, and suh that the onvergene of (n−1/2(HFn

ns ,ΛFn
ns ), s ≥ 0)to ((2σ−1|Bs|, σL0

s), s ≥ 0) is almost-sure. In the remaining of the setion, it is impliit that weare working on this new probability spae, and all the probabilities are taken onditionally on
B(σ) = 2σ−1|B|. We write simply F instead of Fn.Fix s ≥ 0. If u = u([ns]), we an rewrite

RF
ns =

∑

k≥1

∑

1≤j≤k




a◦
u,k,j∑

l=1

Y ◦
k,j(l) +

a•
u,k,j∑

l=1

Y •
k,j(l)


 , (18)where the variables Y ◦

k,j(l), Y
•
k,j(l) are all independent, and independent of a◦u,k,j and a•u,k,j, withlaw the j-th marginal of ν◦

k and ν•
k respetively. Sine a◦u,k,j is approximately µ◦(k)|u|/(2m◦)(with similar estimate for a•u,k,j), and sine |u| is approximately n1/2B

(σ)
s , it is expeted that

n−1/4RF
ns onverges to a entered Gaussian law with variane

B
(σ)
s

2

∑

k≥1


µ◦(k)

m◦

∑

1≤j≤k

(Σ◦
k,j)

2 +
µ•(k)

m•

∑

1≤j≤k

(Σ•
k,j)

2


 = Σ2B(σ)

s ,whih is what is wanted. Let us now proeed to the rigorous proof. We start with aLemma 11 Suppose (H1) and that max1≤j≤k(M
◦
k,j,p ∨ M•

k,j,p) = O(kD) as k → ∞, for some
p > 1 and D > 0. Then for every �xed s,

n−1/4
∣∣∣RF

ns − RF
[ns]

∣∣∣→ 0in probability as n → ∞.Proof. By de�nition of RF the r.v. RF
k−1 − RF

k is a sum of at most |HF
k − HF

k−1| + 2 randomvariables orresponding to the variables Y that are present on the path [[u(k − 1), u(k)]]. Let
An

r be the event
An

r =

{
sup

1≤k≤[An]
d(u(k − 1), u(k)) > r log n

}
.For any r1 > 0, there exists r2 suh that

P∞(An
r2

) = O(n−r1). (19)



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 20Indeed, onsider a forest with n1/2+γ trees for some γ > 0. A negative jump with size at least δin the height proess orresponds to a run of at least δ nodes that have at least one hild, whenexploring the forest in reverse depth-�rst searh. Sine µ◦(0) + µ•(0) > 0 (beause m◦m• = 1),one sees that runs of onseutive hildren having at least one hild is smaller than twie ageometrial random variable with parameter (1−µ◦(0))(1−µ•(0)). Now, it is easy to prove thatthe maximum of [An] i.i.d. suh geometri r.v. satis�es (19). Using (11) for r large enough, theevent
Bn

r =
{
sup{cu(k), k ≤ An} ≤ r log n

}
∩An

r ,satis�es P∞(Bn
r ) → 1 when n goes to in�nity. Using the hypothesis, E∞(|Rk−1 − Rk|p | Bn

r ) =
O(logK n) for a ertain K > 0, and this onludes the proof. �Proof of Proposition 4. Let us prove the one-dimensional onvergene. Thanks to Lemma11, we restrit our attention to the values of s, suh that ns is an integer. We use a trunationproedure, that is we hoose C large and write

RF
ns = RC

ns + R̃C
ns,where RC

ns, R̃
C
ns are the sum of (18) with k ranging respetively from 1 to C and from C + 1 to

∞. Assume for a moment that for every ε > 0,
lim

B→∞
lim sup

n→∞
P∞(|R̃C

ns| > n1/4ε) = 0. (20)In this ase, we an use Lemma 9 together with the entral limit theorem as n → ∞ in the �rstsum onditionally on B(σ), to obtain that a.s. RC
ns/n

1/4 onverges in distribution as n → ∞ toa entered Gaussian variable with variane equal to the partial sum
Σ2

C =
B

(σ)
s

2

∑

1≤k≤C


µ◦(k)

m◦

∑

1≤j≤k

(Σ◦
k,j)

2 +
µ•(k)

m•

∑

1≤j≤k

(Σ•
k,j)

2


 ,whih onverges to a normal variable with laimed variane as C → ∞. Now still supposing (20)we write, for ε > 0

∣∣∣P∞

(
RF

ns > n1/4x
)
− P∞

(
RC

ns + R̃C
ns > n1/4x, |R̃C

ns| ≤ εn1/4
)∣∣∣ ≤ P∞(|R̃C

ns| > εn1/4) ≤ ε,as soon as C, then n are hosen large enough. Therefore
P∞

(
RC

ns

n1/4
> x + ε

)
− 2ε ≤ P∞

(
RF

ns

n1/4
> x

)
≤ P∞

(
RC

ns

n1/4
> x − ε

)
+ ε,and the result is obtained by taking the sup and inf limits as n → ∞, then letting C → ∞ and�nally ε → 0.It remains to prove (20). Let Bn be the union of the three events

{
sup

k≥n,u≺u(An)
au,k ≥ 1

}
,

{
max

{0,...,[nt]}
HF ≥ 2n1/2 sup

[0,t]
B(σ)

}
,



 sup

k≥1,1≤j≤k,u≺u(An)

∣∣∣a◦u,k,j −
µ◦(k)
2m◦

|u|
∣∣∣

√
µ◦(k)
m◦

∨

∣∣∣a•u,k,j −
µ•(k)
2m•

|u|
∣∣∣

√
µ•(k)
m•

≥ n3/8



 .Then

P∞

(
R̃C

ns > n1/4ε
)
≤ P∞ (Bn) + P∞

(
R̃C

ns > n1/4ε,Bc
n

)



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 21The �rst term of the right-hand side goes to 0 as n → ∞ by Lemmæ 7, 9. By �rst onditioningon the a◦u,k,j, a
•
u,k,j, the seond term an be rewritten and bounded by

P∞



∣∣∣∣∣∣

∑

C≤k≤n

∑

1≤j≤k




a◦
u,k,j∑

l=1

Y ◦
j,k(l) +

a•
u,k,j∑

l=1

Y •
j,k(l)



∣∣∣∣∣∣
> n1/4ε,Bc

n




≤ 1

ε2n1/2
E




n∑

k=C

∑

1≤j≤k

(a◦u,k,j(Σ
◦
k,j)

2 + a•u,k,j(Σ
•
k,j)

2)1Bc
n




≤ 2B
(σ)
s

2ε2

n∑

k=C

(
k
µ◦(k)

m◦
max
1≤j≤k

(Σ◦
k,j)

2 + k
µ•(k)

m•
max
1≤j≤k

(Σ•
k,j)

2

)

+
1

ε2n1/8

n∑

k=C



√

µ◦(k)

m◦
k max

1≤j≤k
(Σ◦

k,j)
2 +

√
µ•(k)

m•
k max

1≤j≤k
(Σ•

k,j)
2


By the assumption made on varianes, and the fat that µ◦, µ• have small exponential moments,the seond term onverges to 0 while the �rst onverges to

B(σ)
s ε−2

∑

k≥C

(
k
µ◦(k)

m◦
max
1≤j≤k

(Σ◦
k,j)

2 + k
µ•(k)

m•
max

1≤j≤k
(Σ•

k,j)
2

)
,and this does onverge to 0 as C → ∞.The ase of multi-dimensional onvergene is similar, although some extra are must be takenbeause of nodes, where dependenies an our. We only sketh the proof, referring the readerto [14℄ for more details. Let 0 ≤ s1 < s2 < . . . < sk. Also, notie that for any forest f and k < k′,the distane df (u(k), u(k′)) satis�es |df (u(k), u(k′)) − (H f

k + H f
k′ − 2mink≤l≤k′ H f

l )| ≤ 2 (it is infat always equal to 2 exept when u(k) is an anestor of u(k′)). It follows that up to forgettingtwo steps in eah branh, the lengths of branhes of the subforest of f spanned by the root and
u([nsi]), 1 ≤ i ≤ k (a branh being a maximal hain of neighboring verties with degree ≤ 2),are determined by the vetor

(H f
[ns1]

, Ȟ f
[ns1],[ns2]

,Hf
[ns2]

, . . . , Ȟ f
[nsk−1],[nsk],H

f
[nsk]).Now, the proof of the one-dimensional onvergene shows that the spatial displaements alongeah branh onverge to independent normal variables with respetive varianes Σ2l, where lis the limiting renormalized length of the branh of the Continuum Random Tree, as the onlydependent variables in the walks appear only at the nodes of the subtrees, whih number isbounded by 2k. This ends the proof. �3.5 TightnessTo end the proof of Theorem 3, we needProposition 5 If assumptions (H1), (H2) and (H3) are ful�lled, the sequene of laws of theproesses (n−1/4RF

ns, s ≥ 0), n ≥ 1 is tight in C([0,∞)).Proof. Our way of proeeding follows losely the arguments of [21, 14℄. We know from Corollary2 that for every α ∈ (0, 1/2), and A,C1 > 0, with P∞-probability arbitrarily lose to 1 we havefor all n,
|HF

ns − HF
ns| ≤ C1n

1/2|s − t|α (21)



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 22for all s, t ≤ A. We let Bn be the intersetion of the orresponding event and of the events
{

max
u≺u(An),k≥C log n

ak,u = 0

}
,



 sup

u≺u(An),k≥1,1≤j≤k,nξ≤l≤|u|

∣∣∣a◦u,l,k,j −
µ◦(k)
2m◦

l
∣∣∣

l1/2+γ
√

µ◦(k)
m◦

∨

∣∣∣a•u,l,k,j −
µ•(k)
2m•

l
∣∣∣

l1/2+γ
√

µ•(k)
m•

≤ 1



where C > 0 is hosen so that the probability of Bn stays ≥ 1− λ for any presribed λ > 0, and

ξ > 0 will be �xed later.Our goal is to show that with high probability, there exists C2, β > 0 suh that for every
s, t ≤ A, and n large enough,

|RF
ns − RF

nt| ≤ C2n
1/4|s − t|β.Notie that it su�es to show this property for all n large and s 6= t suh that ns and nt areintegers, whih we suppose from now on.Under Bn, the number of variables to sum between u(ns) and u(nt) is the distane ℓn(s, t)between these nodes, where |ℓn(s, t)− (HF

ns + HF
nt − 2ȞF (ns, nt))| ≤ 2, so ℓn(s, t) is bounded by

C3n
1/2|s − t|α uniformly on s, t ≤ A (with ns, nt integers) as soon as (21) holds.Let u(ns, nt) be the highest ommon anestor of u(ns), u(nt). Let also j(s), j(t) be suhthat u(ns), u(nt) respetively belong to the fringe subtrees Tu(ns,nt)j(s), Tu(ns,nt)j(t). Then we anrewrite

RF
ns − RF

nt = (Yu(ns,nt)j(s) − Yu(ns,nt)j(t))

+
∑

k≥1

∑

1≤j≤k




a◦
s,t,k,j∑

l=1

Y ◦
k,j(l) +

a•
s,t,k,j∑

l=1

Y •
k,j(l)




−
∑

k≥1

∑

1≤j≤k




b◦s,t,k,j∑

l=1

Z◦
k,j(l) +

b•s,t,k,j∑

l=1

Z•
k,j(l)


 ,where the terms of the sums are all independent. Here, a◦s,t,k,j is the number of nodes in

]]u(s, t), u(s)]] with even height, with k hildren and for whih u(s) is in the j-th fringe sub-tree, and b◦s,t,k,j is the same but for ]]u(s, t), u(t)]], and similarly for a•s,t,k,j, b
•
s,t,k,j, and the

Y ◦
k,j(l), Z

◦
k,j(l) are independent onditionally on the a, b, with law the j-th marginal of ν◦

k , andso on. Then, using (32), we get for p = 4 + ε

E∞

[∣∣RF
ns − RF

nt

∣∣p | Bn, (a, b)
]

≤ C(p)ℓn(s, t)p/2−1




E∞[|Yu(ns,nt)j(s) − Yu(s,t)j(t)|p]
+
∑

1≤k≤C log n

∑
1≤j≤k(a

◦
s,t,k,j + b◦s,t,k,j)M

◦
k,j

+
∑

1≤k≤C log n

∑
1≤j≤k(a

•
s,t,k,j + b•s,t,k,j)M

•
k,j


1Bn

≤ C(p)C4ℓn(s, t)p/2−1




2pcD
u(s,t)

+
∑

1≤k≤C log n kD
∑

1≤j≤k(a
◦
s,t,k,j + b◦s,t,k,j)

+
∑

1≤k≤C log n kD
∑

1≤j≤k(a
•
s,t,k,j + b•s,t,k,j)


1Bn ,where C4 is suh that max1≤j≤k(M

◦
k,j ∨ M•

k,j) ≤ C4k
D for some D > 0 and all k ≥ 1. Let now

Cn = {|u(s)| − |u(s, t)| ≤ nξ},Dn = {|u(t)| − |u(s, t)| ≤ nξ},



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 23for the same ξ as in the de�nition of Bn. Sine ℓn(s, t) = |u(s)| − |u(s, t)| + |u(t)| − |u(s, t)|, wededue
E∞

[∣∣∣∣
RF

ns − RF
nt

n1/4

∣∣∣∣
p

| Bn, Cn,Dn

]
≤ C5n

−p/4ℓn(s, t)p/2(log n)D1Cn,Dn ≤ C6n
p(ξ/2−1/4)(log n)D,sine the sum of all a, b plus 1 is ℓn(s, t). We then hoose (reall p = 4+ε) ξ so that (4+ε)(ξ/2−

1/4) < −1, and sine ns and nt are supposed to be distint integers |s− t| ≥ 1/n, this gives that
E∞

[∣∣∣∣
RF

ns − RF
nt

n1/4

∣∣∣∣
p

| Bn, Cn,Dn

]
≤ C6|s − t|1+η ,for some η > 1 and n large enough.Next, we have, applying the equality satis�ed in Bn to u = u(s), l = |u(s)| − |u(s, t)| and

u = u(t), l = |u(t)| − |u(s, t)|, whih is valid under Cc
n ∩ Dc

n,
E∞

[∣∣∣∣
RF

ns − RF
nt

n1/4

∣∣∣∣
p

|Bn, Cc
n,Dc

n

]

≤ C7n
−p/4ℓn(s, t)p/2−1

∑

k≥1

kD+1
(
(µ◦(k) + µ•(k))ℓn(s, t) + (

√
µ◦(k) +

√
µ•(k))ℓn(s, t)1/2+γ

)1Bn

≤
(
C8n

−p/4ℓn(s, t)p/2 + C9n
−p/4ℓn(s, t)p/2−1/2+γ

)1Bn

≤ C10|s − t|αp/2 + C11n
−1/4+γ/2|s − t|αp/2−α/2+αγ

≤ C10|s − t|αp/2 + C11|s − t|αp/2+1/4−α/2+αγ−γ/2

≤ C12|s − t|1+η′for α hosen lose enough to 1/2 and γ to 0 and for some η′ > 0.Finally, we similarly estimate
E∞

[∣∣∣∣
RF

ns − RF
nt

n1/4

∣∣∣∣
p

|Bn, Cc
n,Dn

]

≤
(
C8n

−p/4ℓn(s, t)p/2 + C9n
−p/4ℓn(s, t)p/2−1/2+γ

)1Bn + C6n
p(ξ/2−1/4)(log n)D,and this is bounded by quantities similar as above, and things are similar for onditioning by

Cn,Dc
n. Finally,

E∞

[∣∣∣∣
RF

ns − RF
nt

n1/4

∣∣∣∣
4+ε

|Bn

]
≤ C ′|s − t|1+η′′

,for some C ′, η′′ > 0, and sine the probability of Bn an be hosen as lose of 1 as wanted, thisimplies by standard onsiderations that the (1 + η′′)/(4 + ε)-Hölder norm on ompats of theproess (n−1/4RF
ns, s ≥ 0) is tight, and this implies the tightness of this sequene of proesses.This ends the proof of Proposition 5, and thus of Theorem 3. �3.6 Convergene of size onditioned disrete snakesLemma 12 If hypothesis (H1) is ful�lled, we have
P ◦(|T ◦| = n) ∼ h◦

σ̄◦

√
2π

n−3/2, P ◦(|T •| = n) ∼ h• m◦

σ̄•

√
2π

n−3/2,along values of n making these probabilities positive, where h◦ is the span of the law of |T ◦| under
P ◦, and h• the span of |T •| under P ◦.



3 CONVERGENCE OF NORMALIZED LABELED FORESTS 24Proof. The �rst quantity is the probability that the grandfather ritial tree T̄◦ has n nodes.This is omputed thanks to the Otter-Dwass formula that an be found in [25℄ and the entralloal limit theorem (see [26, p.706℄). For the seond quantity, write
n3/2P ◦(|T •| = n) =

∑

i

n3/2P ◦
(
|T •| = n

∣∣ c∅ = i
)
P ◦(c∅ = i). (22)First, P ◦(c∅ = i) = µ◦(i). Then,

n3/2P ◦(|T •| = n | c∅ = i) = n3/2P •
i (|F•| = n) → i h•/(σ̄•

√
2π)thanks to the Otter-Dwass formula applied to the grandfather forest F̄• and the entral loallimit theorem. To onlude, use Lebesgue dominated onvergene theorem in (22). �The onditioning argumentLet (k(i), i ≥ 1) be a sequene of elements of {+∞, 1, 2, 3, . . .}; let Ai be an event on the set offorests Fi = {f = (t1, . . . , tk(i))} with k(i) trees rooted on a ◦-node. For n large enough, under

(H1) thanks to Lemma 12,
P
◦
k(i)

(
Ai

∣∣ |t•1| = n
)
≤ c n3/2

Pk(i)(Ai).For any sequene (ai)i, 1 ≤ ai ≤ k(i), onsider now events of the type
Ai =





a(i)∑

j=1

g(tj) ≥ Z



 or Ai =

{
sup

j=1,...,a(i)
g(tj) ≥ Z

}
, and B = {g(t1) ≥ Z}for a given non negative funtion g. We have

P
◦
k(i)

(
B
∣∣ |t•1| = n

)
≤ P

◦
k(i)

(
Ai

∣∣ |t•1| = n
)
≤ c n3/2

P
◦
k(i)(Ai).The ontents of this paragraph remains unhanged replaing |t•1| by |t◦1|.Hene, the probability of an event involving a tree onditioned by its size is ontrolled by theorresponding event for forests.Consider P ◦ a ritial Galton-Watson distribution on two-type trees. Let Q◦

n (resp. Q•
n)the probability indued on T by the onditioning by |T ◦| = n (resp. |T •| = n), whenever theseevents have positive probability. Formally,

Q◦
n = P ◦(· | |T ◦| = n), Q•

n = P ◦(· | |T •| = n).Using the onditioning argument and Lemma 8, we getLemma 13 If hypothesis (H1) is ful�lled:
(i) Under Q◦

n, |T | /n
proba−−−→

n
1 + m◦,

(ii) Under Q•
n, |T | /n

proba−−−→
n

1 + m•.Theorem 4 If assumptions (H1), (H2) and (H3) are ful�lled, under Q•
n, (resp. under Q◦

n), theproess (n−1/2ĤT
2(|T |−1)s, n

−1/4R̂T
2(|T |−1)s

)
s∈[0,1]

onverges weakly to
(

4

σ̄•
es,

2Σ√
σ̄•

rs

)

s∈[0,1]

,

(resp. (
4

σ̄◦
es,

2Σ√
σ̄◦

rs

)

s∈[0,1]

) under N
(1),in C([0, 1], R2) endowed with the topology of uniform onvergene.



4 ASYMPTOTICS FOR MAPS 25Remark. The limit in the theorem is, up to a multipliative onstant, the head of the Browniansnake with lifetime proess the normalized Brownian exursion. Convergene of disrete snaketo the Brownian snake with i.i.d. inrement (or that may be dependent between brothers) areproved in [9, 21, 14℄. In the two last referenes, the spae of onvergene is H, the spae of thehead of the Brownian snake : H is the subspae of C([0, 1], R) × C([0, 1], [0,+∞[) of funtions
(ζ, f) that satisfy ζ(0) = ζ(1) = 0 and for any 0 ≤ s ≤ s′ ≤ 1, f(s) = f(s′) if ζ(s) =
ζ(s′) = mins≤u≤s′ ζ(u). Here, the onvergene holds also in H. As a onsequene, thanks to thehomeomorphism Theorem of [21℄, the onvergene in (i) and (ii) entails that orresponding two-type disrete snakes, suitably normalized, onverge to the Brownian snake with lifetime proessthe normalized Brownian exursion.Proof. (i) Under Q◦

n, the grandfather tree T ◦ of T is a single type ritial µ◦-GW tree on-ditioned to have size n. By Proposition 2(ii), we have n−1/2(HT ◦
ns )s∈[0,1]

weakly−−−−→
n

2
σ̄◦

(es)s∈[0,1].Now, the total number of nodes in T is, aording to Lemma 8 and the onditionning argument,onentrated around n(1 + m◦). The good repartition of ◦-nodes in T gives the results.
(ii) Under Q•

n, the total number of nodes in T is onentrated around n(1 + m•). Themain di�erene with the proof of (i), if we think in terms of grandfathers forest T •, is that theonditionning is on the number of nodes in T • whih has a random number of trees. The �rstargument to identify the limit is the following : the number of trees in T • is c∅; it onverges indistribution when n → ∞ (the arguments are given in the proof of Lemma 12). Now, for any i,if we ondition T • to have i trees and n nodes, the normalized height proess (n−1/2HT •
ns

)
s∈[0,1]onverges weakly to ( 2

σ̄•
es

)
s∈[0,1]

(when n goes to +∞). Sine the limit is the same for any i,this implies that the limit is the same under the only onditioning by |T •| = n.Let us establish the onvergene of the label proesses. We review now the arguments usedfor the onvergene of label proesses of forests, and shows that they an be extended whenonditioning by the size of the tree. First, thanks to the onditioning argument, Lemmæ 2, 3,6, 7, 9, 10 and 11 hold under the onditioning by |T •
1 | = n or |T ◦

1 | = n and the property provedholds for the onditioned snakes if one takes A large enough. Then one follows line by line theproof of the �nite �mensional onvergene (in the proof of Proposition 4 we use a Skohorod'srepresentation spae on whih n−1/2HT
β◦n. onverges to 4e./σ̄◦ or n−1/2HT

β•n. onverges to 4e./σ̄•almost surely, depending on whether we are proving (i) or (ii)). For proving the analogue ofProposition 5, we only need an extension of (21). Suh a formula is known for ritial single typeGalton-Watson trees onditioned by the size (simple adaptation of Lemma 1 in [14℄); then it istrue for the underlying grandfather tree (or forest). �4 Asymptotis for maps4.1 BDG's bijetion between bipartite maps and mobilesWe present here the onstrution of Bouttier & al. [7℄ for seek of ompletness.Desription of ΦConsider a rooted pointed map m ∈ Mn,k, with distinguished node u and root vw. We presentthe onstrution of (t, ℓ) = Φ(m), the rooted labeled mobile assoiated with m (see Fig. 7).1) Label eah node x of m by g(x), the geodesi distane to u.2) The onstrution takes plae now in eah fae, independently : Let F be a fae of m, withdegree 2j. Add in this fae a •-node. Sine m is bipartite, the di�erene between two onseutivelabels around F is +1 or −1. Among the 2j verties of F , selet the j ones immediately followed



4 ASYMPTOTICS FOR MAPS 26by verties with smaller labels. Add now an edge between the •-node and eah of the j seletedverties (see Figure 6).3) Remove all the edges of the original map. Only the distin-PSfrag replaements 45
5 6 66 77Figure 6: Step 2 of Φ.

guished node u is isolated. Remove it.4) We obtain a tree in whih the edges onnet •-nodes to la-beled nodes of the original map : onsider these last nodes as
◦-node (there are k − 1 suh nodes sine only the root is iso-lated). There are n •-nodes, one per fae of m.5) Choose the root of the mobile as the �rst edge that links wto the •-node in the fae adjaent to vw, to the right of −→wv.6) Add −g(v) + 1 to the label of eah node.The resulting mobile belongs to Wn,k−1, all it Φ(m).PSfrag replaements
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PSfrag replaements01234 -1 -1-1
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1 112Figure 7: Illustration of the appliation Φ. The two arrows explain how to hoose the root of t.Desription of Φ−1Consider a rooted labeled mobile (t, ℓ) ∈ Wn,k−1 with root v′w′. Up to renaming the verties,we assume that v′ is a ◦-node and w′ a •-node. We now give the onstrution of m = Φ−1(t, ℓ).1) Let m be the minimum of the labels of t. Add −m + 1 to eah label.A orner of t is a setor with apex at a labeled vertex of t and delimited by two onseutiveedges around this vertex. We label eah orner by the label of its apex. To eah orner C withlabel l ≥ 2, we assoiate its suessor s(C) de�ned as the �rst enountered orner with label l−1when going lokwise around the tree (there is always a suessor).2) We onstrut the map m assoiated with t by �rst drawing an edge between eah orner withlabel l ≥ 2 and its suessor within the external fae of t and in suh a way that no two edgesinterset. This an be done due to the nested struture around t of orners and their suessors,namely : if a orner C ′ lies stritly between a orner C and its suessor s(C), then s(C ′) liesbetween C ′ and s(C) (with possibly s(C ′) = s(C)).3) Add an origin vertex u labeled 0 in the external fae and view the unique setor around thisisolated point as the suessor of all orners labeled 1, whih we therefore also onnet to theorigin via non-rossing edges. This is possible beause eah orner has its suessor before or atthe �rst enountered orner labeled 1; hene all orners labeled 1 are inident to the externalfae.4) Erase all unlabeled verties and their adjaent edges.5) The result is a map m that has n faes and k verties. It remains to root it and to distinguisha node :� the distinguished node is u,



4 ASYMPTOTICS FOR MAPS 27� the root, is the �rst edge of m that starts from v′ to the left of −−→v′w′.The resulting pointed rooted map is Φ−1(t, ℓ)PSfrag replaements
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567Figure 8: Illustration of Φ−1. The two arrows explain how to hoose the root of m. It remainsto remove the labels.4.2 Mobiles derived from random mapsIn this setion, we show how the invariane priniples of Sets. 3 and 3.6 has to be interpretedin the ontext of the mobiles onstruted from random maps. Reall the notations from Set. 1,and onsider the labeled mobiles (T,L) = Φ(M) under the laws Pq, PF
q,n or PS

q,n. First, notiethat ontrary to what we onsidered in the two previous setions, the • verties in mobiles Twith law Pq do not have a label, but this is a minor di�erene sine we an suppose that theyinherit the label of their respetive fathers, so that the spatial displaement from any ◦ vertex toits hildren is 0. We therefore set ν◦
k = δ0, the Dira measure at the origin of R

k. Now, aordingto the labeling onstraint (2) of mobiles obtained by the BdFG bijetion, and the fat that it isuniform aording to these onstraints onditionally on T , we naturally set, for any k ≥ 1 and
a1, . . . , ak ∈ Z,

ν•
k(a1, . . . , ak) =

∏k
i=0 1ai+1≥ai−1

N(k + 1)
,where a0 = ak+1 = 0.From now on, suppose that q is a regular ritial weight, and we de�ne µ◦

q, µ•
q as in Set. 1.Lemma 14 The data µ◦

q, µ•
q, ν◦, ν• satisfy the hypotheses (H1), (H2), (H3). More preisely,

(i) For any k ≥ 1, the distribution ν•
k is entered. For any k ≥ 1, j ∈ J1, kK,

(Σ•
k,j)

2 =
2j(k + 1 − j)

k + 2
.

(ii) For any k ≥ 1, ∑k
j=1(Σ

•
k,j)

2 =
k(k + 1)

3
.

(iii) max
1≤j≤k

M◦
k,j,p ≤ (k + 1)p in partiular max

1≤j≤k
(M•

k,j ∨ M◦
k,j) = O(k4+ε).Proof. Sine q is regular ritial, (H1) is plainly satis�ed. Next, onsider a •-node u with totaldegree k + 1 (for k ≥ 0). Denote by u0, . . . , uk, the neighbors of u sorted in the depth �rst



4 ASYMPTOTICS FOR MAPS 28order (so u0 is the grandfather of the other nodes). By the onvention on ν◦, the distribution of
(ℓ(u1)−ℓ(u0), . . . , ℓ(uk)−ℓ(u0)), is given by ν•

k . The ondition (2) on the labels an be rewritten
x1 ≥ −1, x2 ≥ −1, . . . , xk ≥ −1, xk+1 ≥ −1, and k+1∑

i=1

xi = 0where the xi are the integers xi = ℓ(ui) − ℓ(ui−1) with the onvention ℓ(uk+1) = ℓ(u0). Now,let put k + 1 balls in k + 1 urns and note (yi, 1 ≤ i ≤ k + 1) the number of balls in the urns
1, 2 . . . , k + 1. We have

(yi, 1 ≤ i ≤ k + 1)
(d)
= (xi + 1, 1 ≤ i ≤ k + 1).Then, ν•

k,j is the distribution of x1 + · · · + xj and also the one of sk,j = y1 + · · · + yj − j. Bysymmetry, the mean of y1 is 1 and then sk,j is entered. Let us ompute its variane.Using the urn representation, we obtain
P(sk,j = l) =

(l+2j−1
l+j

)(2k−2j−l+1
k−j+1−l

)
(
2k+1
k+1

) for any l ∈ {−j, . . . , k + 1 − j}.Now,
(Σ•

k,j)
2 = Var (sk,j) =

k+1−j∑

l=−j

(l+2j−1
l+j

)(2k−2j−l+1
k−j+1−l

)
(2k+1

k+1

) l2 =
k+1∑

l=0

(l+j−1
j−1

)(2k−j−l+1
k−j

)
(2k+1

k+1

) (l − j)2 (23)Note that the following sum does not depend on j,
k+1∑

l=0

(
l + j − 1

j − 1

)(
2k − j − l + 1

k − j

)
=

(
2k + 1

k

)
.Indeed, when one ounts the number of possible hoies of k + 1 numbers among J1, 2k + 1K,one may speify at �rst that the jth hosen is j + l (with l ∈ J0, k + 1K) and then hoose j − 1numbers in J1, l + j − 1K, and k − j numbers in Jj + l + 1, 2k + 1K.Using a+1

b+1

(a
b

)
=
(a+1

b+1

) and (l − j)2 = (l + j)(l + j + 1)− (l + j)(4j + 1) + 4j2, the numeratorof (23) an be rewritten
4j2

(
2k + 1

k

)
−(4j+1)j

k+1∑

l=0

(
l + j

j

)(
2k − j − l + 1

k − j

)
+j(j+1)

k+1∑

l=0

(
l + j + 1

j + 1

)(
2k − j − l + 1

k − j

)and then
(Σ•

k,j)
2 =

4j2
(2k+1

k

)
− (4j + 1)j

(2k+2
k+1

)
+ j(j + 1)

(2k+3
k+2

)
(
2k+1

k

) =
2j(k + 1 − j)

(k + 2)
.Now, replaing (l − j)2 by (l − j)p in (23), and bounding this quantity by (k + 1)p, we obtaineasily (ii) and (iii). �From (ii) in this lemma we easily dedue, by elementary omputations:Lemma 15 The onstants σ◦, σ•, σ and Σ orresponding as in (14), (13) to the data µ◦
q, µ•

q, ν◦, ν•of Set. 1 are given by
σ◦ =

√
ρq , σ• =

√
(Zq − 1)ρq , σ =

√
Zqρq

2
and Σ =

√
ρq

6
,for ρq de�ned at (8).



4 ASYMPTOTICS FOR MAPS 29As a orollary of this and Corollary 3, and Theorem 4, we �nally obtainTheorem 5 Let q be a regular ritial weight. Then(i) Under Pq and given R(M) > an for some a > 0, the proess (n−2ĤT
2n4s, n

−1R̂T
2n4s)s≥0assoiated with Φ(M) onverges to the head of the Brownian snake determined by

(
4√

Zqρq

e,

(
4ρq

9Zq

)1/4

r

) under N

(
·
∣∣∣
(

4ρq

9Zq

)1/4

∆ > a

)
.(ii) Under PF

q,n, the proess (n−1/2ĤT
2(|T |−1)s, n

−1/4R̂T
2(|T |−1)s)0≤s≤1 assoiated with Φ(M) on-verges to (

4√
(Zq − 1)ρq

e,

(
4ρq

9(Zq − 1)

)1/4

r

) under N
(1).(iii) Under PS

q,n, the proess (n−1/2ĤT
2(|T |−1)s, n

−1/4R̂T
2(|T |−1)s)0≤s≤1 assoiated with Φ(M) on-verges to (

4
√

ρq

e,

(
4ρq

9

)1/4

r

) under N
(1).4.3 The pro�le of random mapsLet m ∈ M and (t, ℓ) = Φ(m). Assume that |t•| = n. The duration of the ontour proess of tis twie its number of edges, that is 2(|t| − 1). The |t| − n type-◦ verties are visited at times

(0, 2, 4, . . . , 2(|t| − 1)). We want to onsider only the labels of ◦-verties, and so we set
Rt(k) = ℓ(F (2k)) for k ∈ J0, |t| − 1K,and we extend Rt linearly between suessive integers. A onsequene of Theorem 4 and ofLemma 7 is the following :Corollary 4 Theorem 5 (ii) and (iii) still hold with n−1/4RT ((|T |−1).) instead of n−1/4R̂T

2(|T |−1)..In this setion, we onsider the onvergene of the pro�le of bipartite maps (this is thedistribution's generalization of Chassaing & Shae�er [9℄, where the onvergene of momentswere also proven in the ase of quadrangulation). Consider m ∈ M and (t, ℓ) a rooted labeledmobile. For any k ∈ Z, let λt
k be the number of nodes with label k in t and let Lm

k be the numberof verties at distane k from the distinguished node in m; denote by λ = min{j, λj > 0} thesmallest label in the mobile. The sequene (Lm
k )k≥0 is alled the pro�le of m. As a simpleonsequene of the onstrution of Φ,

λt
k+λ = #

{
j,Rt(j) = k + minRt

}
= Lm

k+1 for any k ≥ 0.Similarly, denoting by Im, the integrated pro�le , we have
Im(k) =

k∑

j=0

Lm
j = #

{
j,Rt(j) ≤ k + minRt

} for k ∈ Z+Using the same argument as in [9℄ (see also [22℄), we get



4 ASYMPTOTICS FOR MAPS 30Theorem 6 (i) Under PF
q,n, (resp. PS

q,n) the largest distane to the root n−1/4max{i, LM
i > 0}onverges in distribution to

(
4ρq

9(Zq − 1)

)1/4

∆ under N
(1),

( resp. (4ρq

9

)1/4

∆ under N
(1)

)
.(ii) Under PF

q,n, (resp. PS
q,n), the proess ( IM (n1/4x)

n(1+m•)

)
x≥0

(resp. ( IM (n1/4x)
n(1+m◦)

)
x≥0

onverges weaklyto (
Leb

{
t ∈ [0, 1],

(
4ρq

9(Zq − 1)

)1/4

(r(t) − min r) ≤ x

})

x≥0

under N
(1)


resp. (

Leb

{
t ∈ [0, 1],

(
4ρq

9

)1/4

(r(t) − min r) ≤ x

})

x≥0

under N
(1)


in C[0,+∞) endowed with the topology of uniform onvergene on ompat sets.4.4 Convergene to the Brownian mapThe Brownian map is introdued in Markert & Mokkadem [22℄. Informally, it is the quotient ofa ontinuous tree, where the equivalene lass are de�ned with the help of a seond ontinuoustree. We show that normalized bipartite maps onverge to the Brownian map. Most of whatis done here is a generalization of [22℄, where the work was based on the bijetion betweenquadrangulations and �labeled trees�. We will be sometimes a little bit skethy referring theinterested reader to the above referene.4.4.1 Bipartite maps as a tree glued on a seond treeConsider a rooted labeled mobile (t, ℓ) ∈ Wn,k−1 with root v′w′ (suh that v′ is a ◦-node and w′a •-node). To obtain a representation of m = Φ−1(t, ℓ) with the help of two trees, we need toreroot the mobile on one of the ◦-node with minimum label. We need also to keep the traksof v′ and w′ : they are neessary to build the root of m. We denote by t(θ) the rooted labeledmobile obtained from t by rerooting it on the edge (Ft(θ), Ft(θ + 1)), and with labels, the labelsof t plus −ℓ(Ft(θ)) + 1, where θ is the integer belonging to {0, 2, 4, . . . , 2(|t| − 1) − 2}. Thelabel of the root-node of t(θ) is 1, t and t(θ) are equal as unrooted unlabeled trees, the di�erenebetween the labels of neighbors are the same in t and t(θ). Let ⊕ denotes the addition modulo

2(|t| − 1). For any i ∈ J0, 2(|t| − 1)K,
Ĥt(θ)

(i) = Ĥt(θ ⊕ i) + Ĥt(θ) − 2min
{

Ĥt(x), x ∈ J(θ ⊕ i) ∧ θ, (θ ⊕ i) ∨ θ)K
}

,and for any i ∈ J0, |t| − 1K,
Rt(θ)

(i) = ℓ(Ft(θ ⊕ 2i)) − ℓ(Ft(θ)) + 1 = Rt

(
θ ⊕ 2i

2

)
− Rt

(
θ

2

)
+ 1.On t(θ), v′ is visited at time 2(|t| − θ) and w′ at time 2(|t| − θ) + 1. Hene, the variable

X(θ) = 2(|t| − θ) su�es to reonstitute v′ and w′.Let
Θt = inf{θ, ℓ(Ft(θ)) = min ℓ(Ft)},be the �rst visit time of a ◦-node with minimum label. We will often write Θ instead of Θt. Themobile t(Θ) has positive labels. We now build the rooted pointed map Φ(t) from (Θ, t(Θ)).
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PSfrag replaements01-1-2-3234Figure 9: Enoding of a mobile.PSfrag replaements 3 33 342 22 11 10567 Figure 10: Rerooting on the �rst minimum.Constrution of Φ−1(t, ℓ) from (Θ, t(Θ))The proess Rt(Θ) ontains all the informations needed to build the edges of Φ(t).(1) Add in the plane the point u = N|t| = (|t|, 0), and for i ∈ J1, |t| − 1K draw the node
Ni = (i,Rt(Θ)

(i)).(2) For j ∈ J1, |t| − 1K, add an edge in the plane between Nj and Nj′ where j′ enodes thesuessor of the orner enoded by j in t(θ) as on Figure 11. That is : draw the edges in suh away that the edges do not ross, and in suh a way that the edge (Nj , Nj′) surrounds from abovethe edges that start from absissas lying between j and j′. The set of nodes and edges drawn isa tree (see [22℄ for a proof); we all this tree D.PSfrag replaements
v′

3
X(Θ)/2

4210567 Figure 11: Doddering tree.(3) We all G the underlying tree of t(Θ). Its ontour proess is Ĥt(Θ) . Eah node of D (butthe root) orresponds to a ◦-orner of G : for j ≥ 1, the node Nj of D orresponds to the nodevisited at time 2j in G. Glue the nodes of D that orrespond to orners of the same node of G insuh a way that the edges do not interset. (On Figure 12, glue the nodes of D that orrespondto orners of the same node of D below the tree. They are spei�ed by horizontal doted lines).(4) Choose the root and the distinguished node of m : the distinguished node is the point uadded in (1). In t(Θ), v′ and w′ are visited at time X(Θ) and X(Θ) + 1. To get the root of m,



4 ASYMPTOTICS FOR MAPS 32we have to turn around v′, starting from −−→
v′w′ on the right. Proeed as on Fig. 12.Remark. One may also onstrut the root of m on D (before the gluing of the nodes of D). v′is the node NX(Θ)/2 on D. w′ is the last node in the list N1, N2, . . . , NX(Θ)/2−1 with suessor

v′, and if suh a node does not exists, w′ is the suessor of v′ (this is the ase on Figure 11).PSfrag replaements
v′

w′
1 1

1 02 2 2
233 333 3 344

X(Θ)Figure 12: Drawing of the doddering tree on the gluer tree.The two trees D and G are alled doddering tree and gluer tree, respetively, in [22℄. Thedoddering tree ontains all the edges of the maps and, as one guesses easily in view of Figure12, using the gluer tree one may reonstitute the original map. For this, draw D on the ontourproess of G as on Figure 12 : plae the root of D in the plane (not on the graph of G). Then,for i ∈ J0, |t| − 2K, plae the i + 1th node of D on the 2|t| − 2i − 2 th ◦ orner of G. Now, itremains to use a deformation of the plane, in order to �glue� together the orners of the gluertree, orresponding to the same nodes. This is possible as one may imagine easily on Fig. 12 inonsidering the horizontal line as elasti strings. One may also proeed, as on Fig. 13 where two�rst gluings are done. At the end, it remains to remove the doted lines and the •-nodes.PSfrag replaements1
0234

PSfrag replaements1
0234Figure 13: Two �rst gluings.Remark. We have onstruted the map m with the help of the labeled mobile (t, ℓ) (givenby the BdFG bijetion), whih itself has been enoded by the triplet (Θ, (Ĥt(Θ)

,Rt(Θ)
)
) where,

Ĥt(Θ) is the ontour proess of G, the value Θ is used to reonstitute the root of m, and byonstrutionProposition 6 Setting Rt(Θ)
(|t|) = 0, the proess (Rt(Θ)

(|t| − i)
)

i=0,...,|t|−1
is the height proessof D.4.4.2 Asymptotis of D and GIn order to get the asymptotis of the trees D and G under PF

q,n or PS
q,n, we follow and modifyslightly when needed some arguments given with onsiderable more details in [22℄. We reall the



4 ASYMPTOTICS FOR MAPS 33operation of rerooting of a normalized labeled tree de�ned for any θ ∈ [0, 1] by
J : H −→ [0, 1] × H

(ζ, f) 7−→ J (θ)(ζ, f) = (ζ(θ), f (θ))
,where for any x ∈ [0, 1],

f (θ)(x) = f(θ + x) − f(θ),

ζ(θ)(x) = ζ(θ + x) + ζ(θ)− 2ζ̌(θ ⊕ x, θ),
(24)where the additions in the arguments are modulo 1. This may be understood as follows : (ζ, f)is the enoding of a labeled tree T (that may be ontinuous) for whih ζ is the ontour proessof the underlying tree t, and f is a labeling of the nodes of t. (ζ(θ), f (θ)) is the enoding of alabeled tree T ′ whih is obtained from T as follows: reroot T on the orner θ (that is visited attime θ using the ontour order), and add −f(θ) to eah label (this �xes the root label of T ′ to 0).We refer also to Aldous [1℄ p.40 for this operation of rerooting. We are partiularly interestedby the rerooting on I(f) = inf Argmin f , the �rst minimum of the label proess :

Ψ : H −→ [0, 1] × H

(ζ, f) 7−→ (I(f), (ζ+, f+)) :=
(
I(f), (ζ(I(f)), f I(f))

)
.The appliation Ψ is invertible (note that, it would not be without the �rst oordinate I(f)).The pair (e+, r+) orresponding to the head of the Brownian snake (e, r) under N

(1) will be alledthe head of the positive snake. We refer to Le Gall & Weill [18℄ and Le Gall [17℄ for propertiesof (e+, r+) and its ourrene as a limit of onditioned spatial trees.Lemma 16 Under N
(1), I(r) is uniform on [0, 1] and independent of (e+, r+).Proof. First, aording to Lemma 16 in [22℄ (see also [18, [Prop. 2.5℄), # Argmin r = 1 a.s..The law of (e, r) is preserved by rerooting (see [22℄) and I(r(θ)) = I(r) − θ mod 1. Then I(r)is uniform in [0,1℄. Now, let us hek the independene. Suppose that r reahes its minimumone. For any x ∈ [0, 1), Ψ(e(x), r(x)) = (θ − x mod 1, (e+, r+)). Hene, in eah lass stable byrerooting, the positive representative (e+, r+) is independent of I(r). �Reall that in mobile a •-node is labeled as its father.Proposition 7 Under PF

q,n (resp. PS
q,n), the proess Ψ

(
ĤT (2(|T |−1).)

n1/2 , R̂T (2(|T |−1).)

n1/4

) onvergesweakly to
Ψ

(
4√

(Zq − 1)ρq

e,

(
4ρq

9(Zq − 1)

)1/4

r

) under N
(1)

(resp. Ψ

(
4

√
ρq

e,

(
4ρq

9

)1/4

r

) under N
(1)

)
.Proof. First, the weak onvergene is a onsequene of Corollary 4 and the fat that under

N
(1), the proess r reahes a.s. its minimum one. Indeed, the appliations Argmin and then Ψare ontinuous on the spae of ontinuous funtions that reah their minimum one, and so onemay onlude using Billingsley [6, Theorem (5.2)℄. �Sine a •-node has the same labels as its father, it is lear that I(R̂t (2(|t| − 1).)) is a realthat enodes a ◦-node. Hene, one may hek that I(R̂t)

not
= I

(
R̂t (2(|t| − 1).)

)
= Θ(t)

2(|t|−1) ,
(
Ĥt (2(|t| − 1).)

)(I(R̂t))
= Ĥt(Θ)

(2(|t| − 1).)



4 ASYMPTOTICS FOR MAPS 34and that the proesses (
R̂t(2(|t| − 1).)

)(I(R̂t))
+ 1 and Rt(Θ)

((|t| − 1).) oinide on
{
0, 1

(|t|−1) ,
2

(|t|−1) , ...,
(|t|−1)
(|t|−1)

}. Denote by Ct(Θ) the ontour proess of D. By Proposition 6and 7,Corollary 5 Under PF
q,n (resp. PS

q,n), the proess ( Θ(T )
2(|T |−1) ,

ĤT (Θ)
(2(|T |−1).)

n1/2 , RT (Θ)
((|T |−1).)

n1/4

) hasthe same limit as Ψ
(

ĤT (2(|T |−1).)

n1/2 , R̂T (2(|T |−1).)

n1/4

) given in Proposition 7.For any x ∈ [0, 1], set π(x) = 1 − x. The proess ( ĤT (Θ)
(2(|T |−1).)

n1/2 , CT (Θ)
(2(|T |−1).)

n1/4

) onvergesweakly to (
4√

(Zq − 1)ρq

e+,

(
4ρq

9(Zq − 1)

)1/4

r+ ◦ π

) under N
(1)

(resp. ( 4
√

ρq

e+,

(
4ρq

9

)1/4

r+ ◦ π

) under N
(1)

)
.This is also a onsequene of the general result, proven in [22℄, that asserts that if the spaenormalization is not trivial, the ontour proess and the height proess have the same limit.4.4.3 Abstrat map and Brownian mapWe saw that bipartite maps an be obtained with the help of two trees G and D thanks to a�gluing proedure�. The last theorem says that the odings of these trees onverge. The ideanow is to use the onvergene of trees to de�ne the onvergene of maps. Some hanges appearin the present paper as ompared with [22℄ :� Here the maps are rooted pointed instead of being only rooted.� Here, the natural traversal for both trees is the lokwise traversal.� Here |D| = |G| instead of |D| = 2|G|.� Here |D| and |G| are random (onditionally on |t◦| = n or |t•| = n).We reall now few points of the de�nitions of abstrat maps and abstrat trees. We modifythem slightly in order to take into aount the list of di�erenes given above.Abstrat treesConsider C+[0, 1] the set of ontinuous funtions g from [0, 1] to R

+ that satisfy g(0) = g(1) = 0.For any g ∈ C+[0, 1], we introdue the equivalene relation in [0, 1],
x ∼

g
y ⇐⇒ g(x) = g(y) = ǧ(x, y),We denote by Eg the quotient spae Eg = [0, 1]/ ∼

g
and we onsider the anonial surjetion Fgfrom [0, 1] in Eg :

Fg(x) = {y, y ∈ [0, 1], x ∼
g

y}.For short, we write sometimes ẋ instead of Fg(x) and we say that x is a representative of ẋ. Let
M be the set of �nite measures on [0, 1] and for µ ∈ M set Eµ = Fg(supp (µ)), the image of thesupport of µ by Fg. A pair (g, µ) ∈ C+[0, 1] ×M is said to be a tree-enoding if it satis�es:

E(T )
g

def
= {u ∈ Eg,#F−1

g (u) 6= 2} ∪ {0̇} ⊂ Eµ. (25)



4 ASYMPTOTICS FOR MAPS 35Let (g, µ) be a tree enoding. For any ẋ and ẏ in Eg, set
dEg (ẋ, ẏ) = g(x) + g(y) − 2ǧ(x, y).It is not di�ult to hek that dEg is a metri on Eg.De�nition 2 Let (g, µ) be a tree enoding. The rooted tree T enoded by (g, µ), we write T =

Tree(g, µ), is the metri spae T = (Eg, dEg ). The funtion Fg is alled the depth �rst traversalof T . The elements of Eg are alled points of T , the elements of Eµ are alled nodes of T . Thelass Fg(0) = 0̇ is alled the root-vertex of T . The set of orners of T is [0, 1). The set of ornersaround a point ẋ is F−1
T (ẋ) ∩ [0, 1). The orner 0 is the root-orner.Set of treesWe denote by Γ the set of trees. Let dΓ : Γ2 → R

+ be the appliation de�ned for (T1,T2) =
(Tree(g1, µ1),Tree(g2, µ2)) elements of Γ2 by

dΓ(T1,T2) = ‖g1 − g2‖∞ + dM(µ1, µ2)with
‖g1 − g2‖∞ = sup{|g1(x) − g2(x)|, x ∈ [0, 1]}and

dM(µ1, µ2) = sup
x∈R

|Cµ1(x) − Cµ2(x)|where Cµ(.) = µ((−∞, .] is the repartition funtion of µ. The appliation dΓ is a metri on Γ.Abstrat mapsDe�nition 3 Let (D,G) = (Tree(f, µD),Tree(ζ, µG)) ∈ Γ2 and let b be an appliation from
EµD

\ {root-vertex} to the set of orners (i.e. [0, 1)) of G. The 3-tuple (D,G, b) is said to beadmissible if the three following onditions are satis�ed:
(i) b is an injetion.
(ii) b is dereasing : if u 4 v in D, then b(u) ≥ b(v) in [0, 1).
(iii) If u and v are two nodes in D suh that b(u) ∼

ζ
b(v) (that is b(u) and b(v) are orners ofthe same node in G), then the depth of u and the depth of v in D are equal.Let (D,G, b) be a-admissible. We de�ne an equivalene relation: for x, y ∈ ED, we say that

x ∼
M

y ⇔ (x = y) or ({x, y} ⊂ EµD
\ {root-vertex} and b(x) ∼

ζ
b(y)

)
. (26)For x ∈ ED we set x̂ = {y ∈ ED, y ∼

M
x}. A lass x̂ is either a point of D, or the set of the nodesof D glued with x (the node x inluded), or the root of D.Let M be the set
M = {x̂, x ∈ ED} .De�nition 4 Let x ∈ [0, 1]. The spae (M,x) is alled the rooted pointed map enoded by

(D,G, b) (rooted in the root at D, and marked at x). We denote this spae by M = Map(D,G, b).



4 ASYMPTOTICS FOR MAPS 36We denote by −→
M the set of rooted pointed maps. We refer to [22℄ for topologial aspet ofabstrat maps.Remark. For any û, ŵ ∈ M and any k > 0, set

d(k)(û, ŵ) = inf

k∑

i=0

dD(u2i, u2i+1),where the in�mum is taken on the set E = {(u0, . . . , u2k+1) ∈ E2k+2
D s.t. û0 = û, û2k+1 =

ŵ, û2i+1 = û2i+2} and where dD is the metri in D. Eah element e ∈ E de�nes a path in themap : between û2i and û2i+1 it is the image by S of the geodesi between u2i and u2i+1 in D.Sine u2i+1 and u2i+2 are glued to build M , in the map, û2i+1 = û2i+2.The appliation dM : M2 → R
+ de�ned for any û, ŵ ∈ M by
dM (û, v̂) = inf

k≥0
d(k)(û, v̂),is a metri on M . For disrete maps, this metri oinides with the graph distane.This metri is alled the "quotient metri" in [5℄. It is somehow the maximal one ompatibleboth with the metri on D and the fat that equivalent points of D should be at distane 0. Themetri spae (M,dM ) is therefore the simplest andidate for being the limit e.g. in the Gromov-Haussdorf sense of disrete maps seen as metri spaes. Unfortunately, proving (or reusing)this assertion would require a lot more information than only the geodesi distane from a �xedpoint in the map, and seems unreahable by our methods.The set −→

M of mapsConsider the appliation d−→
M

:
−→
M

2 → R
+ de�ned by:

d−→
M

((M1, x1), (M2, x2)) = |x1 − x2| + dΓ(D1,D2) + dΓ(G1,G2) + ‖CµD1
◦b−1

1
− CµD2

◦b−1
2
‖∞,where for i ∈ {1, 2},

Mi = Map (Di,Gi, bi) = Map (Tree(fi, µDi),Tree(ζi, µGi), bi) ,and where the funtion
x 7→ CµD1

◦b−1
1

(x) = µD1(b
−1
1 (−∞, x]) = µD1({y ∈ EµD1

, b1(y) ∈ (−∞, x]})measures the amount of nodes of the doddering trees glued on the orners interval (−∞, x] ofthe gluer tree G1. The appliation d−→
M

is a metri on −→
M.4.4.4 Normalized bipartite maps and abstrat mapsWe now represent normalized bipartite maps as abstrat maps in the sense introdued above.For this, we need two steps :

1) We need to normalize the doddering tree and the gluer tree and endow these objets by aorner measure.
2) Identity the gluing injetion bt that sends the nodes of the doddering tree in the set of ornersof the gluer tree.Let (t, ℓ) or simply t be a labeled mobile and set µGt

= µDt
= 1

2(|t|−1)

∑2(|t|−1)−1
k=0 δk/(2(|t|−1)).We set

Gn
t = Tree(n−1/2Ĥt(Θ)

(2(|t| − 1).) , µGt
) and Dn

t = Tree(n−1/4Ct(Θ)
(2(|t| − 1).) , µDt

).



4 ASYMPTOTICS FOR MAPS 37The appliation bt is the appliation sending the kth node of Dt on the 2(|t| − k)th orner of Gt.Consider Mn
t = Map(Gn

t ,Dn
t , bt) marked at

Ut = X(Θ(t)) / (2(|t| − 1))(to mark the orner visited at time Ut in the normalized doddering tree or to marked the rootis equivalent and). The rooted pointed −→
Mn

t := (Mn
t , Ut) is alled the normalized bipartite map.4.4.5 Rooted pointed Brownian mapConsider (e+, r+) the head of the positive snake. Let µG∞ = µD∞ = Leb[0,1] and for c > 0, set

Gc
∞ = Tree(c e+, µG∞) and Dc

∞ = Tree(cr+(1 − .), µD∞).The appliation b is de�ned for any x ∈ [0, 1] by b(x) = 1 − x. Consider U a random variableindependent of (e+, r+). We set M∞(c1, c2) = Map(Gc1
∞,Dc2

∞, b) and onsider the element −→M∞ =

(M∞(c1, c2), U) ∈ −→
M, whih we all the rooted pointed Brownian map.4.4.6 Convergene to the Brownian mapTheorem 7 (i) Under PF

q,n, the sequene −→
Mn

T onverges weakly to
−→
M∞

(
4√

(Zq − 1)ρq

,

(
4ρq

9(Zq − 1)

)1/4
) in (

−→
M, d−→

M
)(ii) Under PS

q,n, the sequene −→
Mn

T onverges weakly to
−→
M∞

(
4

√
ρq

,

(
4ρq

9

)1/4
) in (

−→
M, d−→

M
)Proof : By Lemma 16 the marked point is asymptotially uniform and independent of thererooted snake. As in [22℄, under PF

q,n or PS
q,n, the funtion CµDT

◦b−1
T onverges weakly in C(R)to CLeb[0,1] . Aording to the de�nition of d−→

M
, the Corollary 5 su�es to onlude. �AppendixProof of Proposition 1. We prove only the statement for the height proess, whih is moreirregular than the ontour proess. Indeed, if ϕ(k) and ϕ(l) are the rank in depth-�rst order ofthe verties F (k), F (l) visited in rank k, l in ontour order, then |ϕ(k) − ϕ(l)| ≤ |k − l|. Now, ifthe onlusion of the proposition holds for H, from |Ĥk − Ĥl| = |Hϕ(k) −Hϕ(l)|, it will also holdfor Ĥ.Reall e.g. from [11℄ that if we let

Sf
n =

n∑

k=1

(cf (u(k)) − 1) , n ≥ 0be the �ukaiewiz walk assoiated with the forest f , then the height proess of f is given by
H f

n = #

{
k ∈ {0, 1, . . . , n − 1} : Sf

k = min
k≤l≤n

Sf
l

}
. (27)
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∞, SF is a random walk on Z with entered step distribution µ(·+1) on {−1, 0, 1, 2, . . .},and thanks to the time reversal property

(Ŝ
(n)
k = Sn − Sn−k, 0 ≤ k ≤ n)

d
= (Sk, 0 ≤ k ≤ n),we have

HF
n

d
= #

{
k ∈ {1, 2, . . . , n} : SF

k = max
0≤l≤k

SF
l

}
,whih is the number of (weak) reords of S until time n.Now, suppose 0 ≤ s < t ≤ A are suh that ns, nt ∈ Z+. Write λ(x) = max{l ∈ [0, ns] : SF

l ≤
x}. Using (27), we have
HF

nt−HF
ns = #

{
k ∈ [ns, nt) : SF

k = min
k≤l≤nt

SF
l

}
−#

{
λ

(
min

ns≤l≤nt
SF

l

)
< k < ns : SF

l = min
k≤l≤ns

SF
l

}
,(28)and the rest of the proof will onsist in estimating the moments of the two terms above, whihorrespond to the lengths of the branhes of F from u(ns), u(nt) down to their highest ommonanestor. Thanks to the time-reversal property mentioned above, the �rst term is equal indistribution to

Gn(t−s) = #

{
1 ≤ k ≤ n(t − s) : SF

k = max
0≤l≤k

SF
l

}
,the number of (weak) reords before n(t − s).Let Mn = max0≤k≤n SF

k . Let τ0 = 0, and τi, i ≥ 1 be the i-th reord time, i.e. the i-th time
τ ≥ 1 suh that SF

τ = Mτ . Then it is easy and well-known that (τi− τi−1, i ≥ 1) form a sequeneof i.i.d. random variables. Moreover, sine SF is entered and its inrements have �nite seondmoment under Pµ
∞, it is a onsequene of the proof of [12, XII,7 Theorem 1a℄ and the disussionbefore that the Laplae exponent φ(s) = − log Eµ

∞[exp(−sτ1)] ∼ Cs1/2 as s → 0 for some C > 0(Feller onsiders the ase of strit ladder epohs, but the treatment of weak ones is similar).Now, for any p > 1, and integer u,
Eµ

∞[Gp
u] = p

∫ ∞

0
xp−1Pµ

∞ (Gu ≥ x) dx

= p

∫ ∞

0
xp−1Pµ

∞

(
x∑

i=1

(τi − τi−1) ≤ u

)
dx

≤ pe

∫ ∞

0
xp−1Eµ

∞

[
exp

(
−

x∑

i=1

τi − τi−1

u

)]
dx ≤ C ′φ(u−1)−p ≤ C ′′up/2,for some C ′, C ′′ > 0 and every u large enough. Therefore, the same kind of bound, with pos-sibly larger C ′′, holds for every u ≥ 1, and sine ns, nt are distint integers, we showed that

E[Gp
n(t−s)] ≤ C1n

p/2|s − t|p/2 uniformly in suh n, s, t, where C1 = C1(µ, p) > 0.Let us now handle the seond term in (28). Using time-reversal, we see that this equals
#

{
n(t − s) < k ≤ nt ∧ κ

(
max

1≤l≤n(t−s)
SF

l

)
: SF

k = max
n(t−s)≤l≤k

SF
l

}in distribution, where κ(x) = max{k : SF
k < x} (with the onvention max ∅ = 0). By usingMarkov's property at time n(t − s), this has same distribution as G

ns∧κ(M̃n(t−s)−S̃n(t−s))
, where

G is de�ned as above, while S̃ is an independent opy of SF with maximum proess M̃ . By
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κ′(M̃n(t−s)−S̃n(t−s))

where κ′(x) = min{k : SF
k ≥ x}. Let usprove that Eµ

∞[Gp
κ′(x)] ≤ Cxp for every x ≥ 0, for some C > 0. To this end, notie that

Mn(t−s) =

Gn(t−s)∑

i=1

(SF
τi
− SF

τi−1
), (29)and it is a lassial result of �utuation theory that the variables SF

τi
− SF

τi−1
are independentwith ommon distribution Pµ

∞(SF
τ1 = i) = µ([i + 1,∞)), i ≥ 0, so their mean is σ2/2, where σ2is the variane of µ, and notie that these variables have small exponential moments. Now, theusual large deviations theorem shows that for some a,N > 0 and for every n ≥ N ,

Pµ
∞

(∑n
i=1(S

F
τi
− SF

τi−1
)

n
<

σ2

4

)
≤ exp(−an). (30)Now, using (29) in the seond equality,

Eµ
∞[Gp

κ′(x)] = p

∫ ∞

0
up−1Pµ

∞(Gκ′(x) > u)du

= p

∫ ∞

0
up−1Pµ

∞




⌈u⌉∑

i=1

(SF
τi
− SF

τi−1
) < x


 du

= pxp

∫ ∞

0
vp−1 Pµ

∞




⌈xv⌉∑

i=1

(SF
τi
− SF

τi−1
) <

xv

v


 dv

≤ pxp



∫ 4σ−2

0
vp−1dv +

∫ ∞

4σ−2

vp−1Pµ
∞




⌈xv⌉∑

i=1

(SF
τi
− SF

τi−1
) <

σ2xv

4


dv


 .Now, as soon as x is large enough, i.e. 4xσ−2 ≥ N , where N is de�ned before (30), the probabilityin the seond integral is bounded by exp(−axv) ≤ exp(−v) if we further ask x > a−1. Thus thewanted bound on Eµ

∞[Gp
κ′(x)]. By the independene of S̃, we onlude that

Eµ
∞[(G

κ′(M̃n(t−s)−S̃n(t−s))
)p] ≤ CEµ

∞[(Mn(t−s) − SF
n(t−s))

p] (31)
≤ 2p−1C

(
1 +

(
p

p − 1

)p)
Eµ

∞[(SF
n(t−s))

p],where we used Doob's inequality Eµ
∞[Mp

n(t−s)] ≤ (p/(p − 1))pEµ
∞[(SF

n(t−s))
p], sine SF is en-tered. Now we use the following onsequene of Rosenthal's inequality [24℄: if X1, . . . ,Xn areindependent entered random variables (not neessarily identially distributed), then for every

p ≥ 2 there exists C(p) suh that
E[|X1 + . . . + Xn|p] ≤ C(p)np/2−1

n∑

i=1

E[|Xi|p]. (32)This shows that Eµ
∞[(SF

n(t−s))
p] ≤ C ′(p)np/2|s− t|p/2 for some C ′(p) > 0, for every s, t suh that

ns, nt ∈ Z+, and therefore the same kind of upper bound holds for the quantity in (31).Putting things together, we have obtained that for every p ≥ 2 and some C2 = C2(µ, p) > 0,
sup
n≥1

sup
s,t≥0,ns,nt∈Z+

Eµ
∞

[∣∣∣∣
HF

ns − HF
nt√

n

∣∣∣∣
p]

≤ C2|s − t|p/2.
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(|F| < An) =

[An]∑
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n1/2+η

i
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≤ An max
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