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MEASURED QUANTUM GROUPOIDS

BY FranNck LESIEUR

ABSTRACT. — In this article, we give a definition for measured quantum groupoids.
We want to get objects with duality extending both quantum groups and groupoids.
We base ourselves on J. Kustermans and S. Vaes’ works about locally compact quantum
groups that we generalize thanks to formalism introduced by M. Enock and J.M. Vallin
in the case of inclusion of von Neumann algebras. From a structure of Hopf-bimodule
with left and right invariant operator-valued weights, we define a fundamental pseudo-
multiplicative unitary. To get a satisfying duality in the general case, we assume the
existence of an antipode given by its polar decomposition. This theory is illustrated
with many examples among others inclusion of von Neumann algebras (M. Enock) and
a sub family of measured quantum groupoids with easier axiomatic.

RESUME (Groupoides quantiques mesurés). — Dans cet article, on définit une notion
de groupoides quantiques mesurés. On cherche & obtenir des objets munis d’une dualité
qui étend celle des groupoides et des groupes quantiques. On s’appuie sur les travaux
de J. Kustermans et S. Vaes concernant les groupes quantiques localement compacts
qu’on généralise grace au formalisme introduit par M. Enock et J.M. Vallin & propos
des inclusions d’algebres de von Neumann. A partir d’'un bimodule de Hopf muni
de poids opératoriels invariants & gauche et a droite, on définit un unitaire pseudo-
multiplicatif fondamental. Pour obtenir une dualité satisfaisante dans le cas général,
on suppose l’existence d’une antipode définie par sa décomposition polaire. Cette
théorie est illustrée dans une derniére partie par de nombreux exemples notamment
les inclusions d’algebres de von Neumann (M. Enock) et une sous famille de groupoides
quantiques mesurés a ’axiomatique plus simple.
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1. Introduction

1.1. Historic. — Theory of quantum groups has lot of developments in
operator algebras setting. Many contributions are given by [KaV74], [Worgq],
[ES89, [MNO1], [BS9]], [Wor95], [Wor9q], [VDa9q], [KVOQ]. In particular, J.
Kustermans and S. Vaes’ work is crucial: ], they propose a simple
definition for locally compact quantum groups which gathers all known exam-

ples (locally compact groups, quantum compacts groupe [], quantum

group ax + b [Wor01], [WZ02, Woronowicz’ algebra [MN91]|...) and they find

a general framework for duality of theses objects. The very few number of
axioms gives the theory a high manageability which is proved with recent
developments in many directions (actions of locally compact quantum groups
[VaeO1ll], induced co-representations [], cocycle bi-crossed products
[VVO03]). They complete their work with a theory of locally compact quantum
groups in the von Neumann setting [KV03].
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In geometry, groups are rather defined by their actions. Groupoids category
contains groups, group actions and equivalence relation. It is used by G.W
Mackey and P. Hahn ([Mac66], [Hah784] and [Hah78H]), in a measured version,
to link theory of groups and ergodic theory. Locally compact groupoids and
the operator theory point of view are introduced and studied by J. Renault
in [Ren80] and [Ren97. It covers many interesting examples in differential
geometry [[Co94] e.g holonomy groupoid of a foliation.

In , J.M Vallin introduces the notion of Hopf bimodule from which
he is able to prove a duality for groupoids. Then, a natural question is to
construct a category, containing quantum groups and groupoids, with a duality
theory.

In the quantum group case, duality is essentially based on a multiplicative
unitary [BS93]. To generalize the notion up to the groupoid case, J.M Vallin
introduces pseudo-multiplicative unitaries. In [], he exhibits such an
object coming from Hopf bimodule structures for groupoids. Technically
speaking, Connes-Sauvageot’s theory of relative tensor products is intensively
used.

In the case of depth 2 inclusions of von Neumann algebras, M. Enock and
J.M Vallin, and then, M. Enock underline two ” quantum groupoids” in duality.
They also use Hopf bimodules and pseudo-multiplicative unitaries. At this
stage, a non trivial modular theory on the basis (the equivalent for units of
a groupoid) is revealed to be necessary and a simple generalization of axioms
quantum groups is not sufficient to construct quantum groupoids category: we
have to add an axiom on the basis [EnoOiH i.e we use a special weight to do
the construction. The results are improved in [[Eno0

In , M. Enock studies in detail pseudo-multiplicative unitaries and
introduces an analogous notion of S. Baaj and G. Skandalis’ regularity. In
quantum groups, the fundamental multiplicative unitary is weakly regular and
manageable in the sense of Woronowicz. Such properties have to be satis-
fied in quantum groupoids. Moreover, M. Enock defines and studies compact
(resp. discrete) quantum groupoids which have to enter into the general theory.

Lot of works have been led about quantum groupoids but essentially in finite
dimension. We have to quote weak Hopf C*-algebras introduced by G. Bohm,

F. Nill and K. Szlachényi [BNS99], [BSz94], and then studied by F. Nill and L.
Vainerman [Nik0d], [Nil9g], [NVod], [NV0J]. J.M Vallin develops a quantum

groupoids theory in finite dimension thanks to multiplicative partial isometries
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[Valol], [Val0Z. He proves that his theory coincide exactly with weak Hopf
C*-algebras.

1.2. Aims and Methods. — In this article, we propose a definition for
measured quantum groupoids in any dimensions. "Measured” means we are in
the von Neumann setting and we assume existence of the analogous of a mea-
sure. We use a similar approach as J. Kustermans and S. Vaes’ theory with the
formalism of Hopf bimodules and pseudo-multiplicative unitaries. The notion
has to recover all known examples and shall extend their duality if already exist.

In our setting, we assume the existence of a scaling group and a coinvolution
so that we are much more closer to [MNWO03]. Then, we are able to construct
a dual structure for theses objects and we prove a duality theorem. We also
get uniqueness of the equivalent of Haar measure.

We want to give many examples. First of all, we present a family of
measured quantum groupoids of a particular interest: the axiomatic of them
is easier than the general measured quantum groupoids and very similar to J.
Kustermans and S. Vaes axiomatic of locally compact quantum groups because
we can construct the antipode. However, this new category is not self dual
but we can characterize their dual objects. Then we are interested in depth 2
inclusions of von Neumann algebras of Enock’s type which are included in our
theory and for which we can compute the dual structure. In a forthcoming
article, we will study an example of the type G = G1G2 where G; and G5 are
two groupoids such that G; NG = GO,

We are inspired by technics develop by J. Kustermans and S. Vaes about
locally compact quantum groups in the von Neumann setting [, by M.
Enock [ as far as the density theorem is concerned which is a key tool
for duality and by author’s thesis [[Les03].

1.3. Study plan. — After brief recalls about tools and technical points,
we define objects we will use. We start by associating a fundamental pseudo-
multiplicative unitary to every Hopf bimodule with invariant operator-valued
weights. In fact, we shall define several isometries depending on which
operator-valued weight we use. Each of them are useful, especially as far as the
proof of unitarity of the fundamental isometry is concerned. This point can be
also noticed in the crucial paper of S. Baaj and G. Skandalis [BS93] where they
need a notion of irreducible unitary that means there exist another unitary.
Also, in , they need to introduce several unitaries. The fundamental
unitary gathers all informations on the structure so that we can re-construct
von Neumann algebra and co-product.
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In the first part, we give axioms of measured quantum groupoids. In this
setting, we construct a modulus, which corresponds to modulus of groupoids
and a scaling operator which corresponds to scaling factor in locally compact
quantum groups. They come from Radon-Nikodym’s cocycle of right invariant
operator-valued weight with respect to left invariant one thanks to proposition
5.2 of [VaeOla]. Then, we prove uniqueness of invariant operator-valued weight
up to an element of basis center.

Also, we prove a ”manageability” property of the fundamental pseudo-
multiplicative unitary. A density result concerning bounded elements can be
handled. These are sections ﬁ and E They give interesting results on the
structure and a necessary preparation step for duality.

Then, we can proceed to the construction of the dual structure and get a
duality theorem.

The second part is devoted to examples. We have a lot of examples for
locally compact quantum groups thanks to Woronowicz or91f|, [lWorO ll],
, [and the cocycle bi-crossed product due to S. Vaes and L.
Vainerman [[VV03]. Theory of measured quantum groupoids has also a lot of
examples.

First, we lay stress on Hopf bimodule with invariant operator-valued weights
which are ”adapted” in a certain sense. This hypothesis corresponds to the
choice of a special weight on the basis to do the constructions (like in the
groupoid case with a quasi-invariant measure on G{°}). For them, we are
able to construct the antipode S, the polar decomposition of which is given
by a co-involution R and a one-parameter group of automorphisms called
scaling group 7. In particular, we show that S, R and 7 are independent of
operator-valued weights.

Then we explain how these so-called adapted measured quantum groupoids
fit into our measured quantum groupoids. In this setting, we develop informa-
tions about modulus, scaling operator and uniqueness. We also characterize
them and their dual in the general theory. Groupoids, weak Hopf C*-algebras,
quantum groups, quantum groupoids of compact (resp. discrete) type...are
of this type.

Depth 2 inclusions of von Neumann algebras also enter into our general
setting (but not in adapted measured quantum groupoids unless the basis is
semi-finite) and we compute their dual.
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Finally, we state stability of the category by direct sum (which reflects the
stability of groupoids under disjoint unions), finite tensor product and direct
integrals. Then, we are able to construct new examples: in particular we can
exhibit quantum groupoids with non scalar scaling operator.

2. Recalls
2.1. Weights and operator-valued weights [, ] — Let N

be a von Neumann and ¢ a normal, semi-finite faithful (n.s.f) weight on N;
we denote by Ny, My, Hy, Ty, Ay, Jy, Ay ... canonical objects of Tomita’s
theory with respect to (w.r.t) .

DEFINITION 2.1. — Let denote by 7, Tomita’s algebra w.r.t ¢ defined by:
{z € Ny NNj| 2 analytic w.r.t ¥ such that 0¥ (z) € Ny NN} for all z € C}

By ([], 2.12), we have the following approximating result:

LEMMA 2.2. — For all © € Ny, there exists a sequence (Tn)nen of Ty such
that:

i) ||zn|| < ||z|| for all n € N;
i1) (Tn)nen converges to x in the strong topology;
iii) (Ay(xn))nen converges to Ay(x) in the norm topology of Hy.
Moreover, if x € Ny N N;Z, then we have:

) (zn)nen converges to x in the *-strong topology;
iiv) (Ay(x)))nen converges to Ay (z*) in the norm topology of Hy.

Let N C M be an inclusion of von Neumann algebras and 7' a normal,
semi-finite, faithful (n.s.f) operator-valued weight from M to N. We put:

Np={zeM/T(z*z) € NT} and Mr = NyNr
We can define a n.s.f weight ¥ o7 on M in a natural way. Let us recall theorem

10.6 of [EN94]:

PRrROPOSITION 2.3. — Let N C M be an inclusion of von Neumann algebras
and T be a normal, semi-finite, faithful (n.s.f) operator-valued weight from M
to N and v a n.s.f weight on N. Then we have:

i) for all x € Ny and a € Ny, za belongs to No N Nyor, there exists
Ar(z) € Hompo(Hy, Hyor) such that:

Ar(z)Ay(a) = Aypor(za)
and At is a morphism of M —N -bimodules from Np to Homyo(Hy,, Hyor);
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i) NeNNyor is a weakly dense ideal of M and Ayor (NTNNyor) is dense
in Hyor, Apor (N7 NNyor NN ﬁ./\CZoT) is a core for A;/OQT and Ar(Nr) is
dense in Homyo(Hy, Hyor) for the s-topology defined by (BDHSY], 1.3);
iii) for all x € Ny and z € Np N Nyor, T(x*z) belongs to Ny and:
Ar(2)" Ayor(2) = Ay (T'(272))

w) for all x,y € Np:

Ar(y)*Ar(z) = my(T(@"y)) and ||Ar ()| = ||T(z"2)||/?
and At is injective.

A

Let us also recall lemma 10.12 of [EN9{:

PROPOSITION 2.4. — Let N C M be an inclusion of von Neumann algebras,
T a n.s.f operator-valued weight from M to N, ¢ a n.s.f weight on N and
x € Mr N Myor. If we put:

+oo
n o
o \/j/ e_”tQUf’ T(z) dt
T J—co

then x, belongs to Mr N Myor and is analytic w.r.t 1 o T. The sequence
converges to x and is bounded by ||z||. Moreover, (Apor(Zn))nen converges to
Ayor(x) and o¥°T(z,) € Mr N Myor for all z € C.

DEFINITION 2.5. — The set of € No NN NN NN, analytic w.r.t o® such
that o2 (z) € No N NG NNy NN for all z € C is denoted by 73 and is called
Tomita’s algebra w.r.t o1 = ® and T

Lemma @ is still satisfied with Tomita’s algebra w.r.t ® and 7.

2.2. Spatial theory [[Co8(], [Bau83H|, [[Lak0d]. — Let o be a normal, non-
degenerated representation of N on a Hilbert space H. So, H becomes a left
N-module and we write ,H.

DEFINITION 2.6. — An element £ of o H is said to be bounded w.r.t v
if there exists C' € R* such that, for all y € Ny, we have [|a(y)E|| < C||Ay(y)]]-
The set of bounded elements w.r.t 1 is denoted by D(,H, ).

By (lemma 2), D(,H, 1) is dense in H and «(N)'-stable. An element
€ of D(,H, 1) gives rise to a bounded operator R*¥ (¢) of Homy (Hy, H) such
that, for all y € Ny:

RYV(©)Ay(y) = aly)é
For all £,m € D(oH, 1), we put:

0¥ (€, ) = R¥V(ER™ ()" and < &1 >qp= RV (n) RV ()"

By [Co80] (lemma 2), the linear span of %% (£,n) is a weakly dense ideal of
a(N). < &1 >aqy belongs to my(N) = Jymy (N)Jy which is identified with
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the opposite von Neumann algebra N°. The linear span of < &, >,y is
weakly dense in N°.
By [Co8(] (proposition 3), there exists a net (17;)ier of D(oH, ) such that:

> 6%V (i) =1

icl
Such a net is called a (N, ¢)-basis of ,H. By ] (proposition 2.2), we can
choose 7; such that R*¥(n;) is a partial isometry with two-by-two orthogonal
final supports and such that < 7;,7; >q,4= 0 unless i = j. In the following,
we assume these properties hold for all (N, v)-basis of ,H.

Now, let § be a normal, non-degenerated anti-representation from N on H.

So H becomes a right /N-module and we write Hg. But 3 is also a representation

of N°. If 4° is the n.s.f weight on N° coming from ¢ then Nyo = ./\/;Z and we
identify Hyo with Hy thanks to:

(Ayo (") = JyAy(2))

DEFINITION 2.7. — An element £ of Hp is said to be bounded w.r.t ¢°
if there exists C' € R* such that, for ally € Ny, we have ||3(y*)&]] < C||Ay(y)]]-
The set of bounded elements w.r.t ¢° is denoted by D(Hg, 1°).

D(,H,) is dense in H and 3(N)'-stable. An element & of D(Hg,9°) gives
rise to a bounded operator R%%’(¢) of Homyo(Hy, H) such that, for all y €
Ny:

ROV Ay(y) = By*)¢
For all £, € D(Hpg,¢°), we put:
0% (&,m) = ROVI(ERM™ ()" and < &, >p,y0= RV ()" B> (¢)*

The linear span of §%¥"(¢,n) is a weakly dense ideal of B3(N)". < &1 >4.p0
belongs to my () which is identified with N. The linear span of < £, >g 4o is
weakly dense in N. In fact, we know that < £, >3 40€ My by (lemma
4) and by [Bau83H] (lemma 1.5), we have

Ay (< & >py0) = ROV ()¢
A net (&);er of ¥°-bounded elements of is said to be a (N°,1°)-basis of Hg if:
Zaﬂ,ap" (&, &) =1
icl

and if & such that R%¥°(&;) is a partial isometry with two-by-two orthogonal
final supports and such that < &;,&; >4 4= 0 unless ¢ = j. Therefore, we have:

RPV7(&) = 0PV (&, &)RPY (&) = RPY (&) < &,& >pue
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and, for all £ € D(Hg,¢°):
§=Y RPVU(E)A(< & & >pe)

il
PROPOSITION 2.8. — ([Eno03], proposition 2.10) Let N C M be an inclusion
of von Neumann algebras and T be a n.s.f operator-valued weight from M to
N. There exists a net (e;)icr of Np NNF N Nyor ﬂ./\/;on such that Ar(e;) is
a partial isometry, T(e;fei) =0 unless i = j and with orthogonal final supports
of sum 1. Moreover, we have e; = e;T(efe;) for alli € I, and, for all x € Np:

Ar(x) = Z Ar(e)T(efx) and x= Z e;T(efx)
iel i€l
in the weak topology. Such a net is called a basis for (T,v°). Finally, the net

(Ayor(€:))ier is a (N°,¢°)-basis of (Hyor)s where s is the anti-representation
which sends y € N to Jyory* Jyor-

2.3. Relative tensor product [CoSd], [Bau83b|], [Tak0d]. — Let H and K

be Hilbert space. Let a (resp. () be a normal and non-degenerated (resp.

anti-) representation of N on K (resp. H). Let ¢ be a n.s.f weight on N.

Following [Bau83H], we put on D(Hg,1°) ® K a scalar product defined by:
(61O ml&2 ©n2) = (a(< &, &2 >pape)m(n2)

for all &1,& € D(Hg,¢°) and 01,12 € K. We have identified 7, (N) with N.

DEFINITION 2.9. — The completion of D(Hg,4°) ® K is called relative ten-
sor product and is denoted by H 3®, K.
¥

The image of &7 in H 3®, K is denoted by £ g®q, 1. One should bear in
¥ b

mind that, if we start from another n.s.f weight 1’ on N, we get another Hilbert
space which is canonically isomorphic to H 3®, K by ([Sau83l|, proposition
»

2.6). However this isomorphism does not send £ g®q n on & Q4 7.
P P’
By [Sau83H] (definition 2.1), relative tensor product can be defined from the

scalar product:
(&1 ©ml&2 ©m2) = (B(< m1,m2 >a,w)é1lé2)

for all £&1,& € H and 1,12 € D(o K, %) that’s why we can define a one-to-one

flip from H 3®, K onto K ,®g H such that:
¥ U

oy (§ pRan) =1 a®p¢
¥ e
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for all £ € D(Hpg,v) (resp. £ € H) and n € K (resp. n € D(oK,v)). The flip
gives rise at the operator level to ¢, from L(H s®, K) onto L(K Q5 H)
such that: v Y
sp(X) =0y Xy,
Canonical isomorphisms of change of weights send ¢, on ¢y so that we write
¢y without any reference to the weight on V.
For all £ € D(Hg,1°) and n € D(o K, 1), we define bounded operators:

A?’Q:KHH 3o K and pg’a:H—>H 3®a K
P P
n—¢§ pQ®an £ & 3Qan
P P
Then, we have:
AN = (< &€ >p90) and ()" p™ = BI< 1,1 > a0)

By [Fau83H] (remark 2.2), we know that D(, K, ) is a(afim(D(afiﬂ)))—

stable and for all £ € H, n € D(,K,9) and y € D(aw

_i/2), we have:

B 50an=E s®a alo’, ,y)n
P P
LEMMA 2.10. — If ¢ 3®q n =0 for all & € D(Hg,°) then n = 0.
P
Proof. — For all £,¢" € D(Hg,v°), we have:
A< &€ >pye)n = ATV AG = A€ p®an) =0
P

Since the linear span of < &', £ >3 40 is dense in N, we get n = 0. O

PROPOSITION 2.11. — Assume H # {0}. Let K’ be a closed subspace of K
such that «(N)K' C K'. Then:

HB(X)O(KZH B®aK/ = K=K
P P
Proof. — Let n € K'*. For all £,¢' € D(Hg,1°) and k € K', we have:
(€ s®a klg' p®am) = (a(< & >pu0)kln) =0
P P

Therefore, for all & € D(Hg,1°), we have:
¢ 5@an€(H 30, K)F =(H 50, K)* ={0}
P P "

By the previous lemma, we get n =0 and K = K. O
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Let H', K', o and (' like H, K, o and 8. Let A € L(H,H') and B €
L(K, K') such that:

Vne N, AB(n)=p(n)A and Ba(n)=d'(n)B

Then we can define an operator A g®q B € L(H 3®q K,H' 3®q K') which
P P P
naturally acts on elementary tensor products. In particular, if z € 3(N)'NL(H)

and y € a(N)' N L(K), we get an operator z g®, y on H 38, K. Canonical
@ (

isomorphism of change of weights sends z g®, y on z g®, y so that we write
w/
T 3®q y without any reference to the weight.

N
Let P be a von Neumann algebra and e a normal and non-degenerated anti-
representation of P on K such that e(P) C «(N). K is equipped with a
N — P-bimodule structure denoted by oK. Forally € P, 1y g®q €(y) is an
P

operator on H g®, K so that we define a representation of P on H g®q, K

L %
still denoted by e. If H is a () — N-bimodule, then H 3®, K becomes a ) — P-

bimodule (Connes’ fusion of bimodules). If v is a n.s.f weight on P and (L a
left P-module. It is possible to define two Hilbert spaces (H g®q K) ®¢ L
P v

and H g®q (K ®¢ L). These two ()" — ((P)'°-bimodules are isomorphic.

»
(The proof of [Val9d], lemme 2.1.3, in the case of commutative N = P is still
valid). We speak about associativity of relative tensor product and we write
H g®a K 5®< L without parenthesis.

We 1dent1fy Hy 3®q K and K as left N-modules by Ay (y) g®aq n— a(y)n
¥

for all y € Ny. By [], 3.10, we have:
XY = RPYI(€) p®a Lk
¥

We recall proposition 2.3 of []

PROPOSITION 2.12. — Let (&)ier be a (N°,4°)-basis of Hg. Then:
i) for all £ € D(Hg,¢°) and n € K, we have:
6 ﬁ®o¢ n= Zgz ﬁ®oz (< 5361' >B,w°)77
i€l
it) we have the following decomposition:
H ﬁ®a K=PE B®oz (<&, & >p,y0)K)
el

We here add a proposition we will use several times.
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PROPOSITION 2.13. — Let v a *-automorphism from N such that 1 ov = 1.
Then :
H ﬁoy@ao'y K=H ﬁ®oz K
» »

Proof. — Because of invariance of ¥ with respect to v, we have a unitary I
from Hy such that TAy(y) = Ay(y(y)) for all y € Ny. Moreover I.Jy, = JyI
and I*nl = y~1(n) for all n € N. For all £ € D(Hg,¢°) and y € Ny, we
compute:

Boy(y))E = B(v(y))E = RPV(€)JyAy (v(y))
= ROV () Iy TNy (y) = R7 (€1, Au(y)
that’s why we get:

D(Hgoy, ) = D(Hp,v°) and V¢ € D(Hg, 4°), 77" (€) = R7 ()1
To conclude, we show that scalar products on D(Hg y0) ©® K used to define
H 3®q K and H goy®a0y K are equal. If £, € D(Hg,v°) and 1,7’ € K,

¥ P

we have:
(€ BoyBaoy 77|§/ BoyBaoy 77/) = (a(y(< £¢ >ﬁ0%¢°))77|77/)
P P

= (a(v(I" < && >ppe D)nin')
= (< & >pye)nn’) = (€ B%a 'n B%a n')

O

To end the paragraph, we detail finite dimension case. We assume that
N, H and K are of finite dimensions. H g®, K can be identified with a

P
subspace of H® K. We denote by Tr the normalized canonical trace on K and
7 = Tr o a. There exist a projection eg o € B(N) @ a(N) and n, € Z(N)*
such that (id ® Tr)(eg,o) = B(no). Let d be the Radon-Nikodym derivative of
Y w.r.t 7. By [, 2.4, and proposition 2.7 of ], for all &,n € H:

Iha € 6%an—€ 50 ald)/*nr ep.a(B(ne) 2 @ a(d)*n)
P T
defines an isometric isomorphism of ()’ —a(N)'°-bimodules from H g®, K

P
onto a subspace of H ® K, the final support of which is eg 4.

2.4. Fiber product [Val9d], [EV0d]. — We use previous notations. Let M;

(resp. M3) be a von Neumann algebra on H (resp. K) such that G(N) C M;

(resp. a(N) C Ms). We denote by M| 3®, M}, the von Neumann algebra
N

generated by  s®, y with z € M{ and y € M3,.
N
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DEFINITION 2.14. — The commutant of M| s®. M} in L(H 3R, K) is
N P

denoted by M; g, M> and is called fiber product.
N

If P, and P, are von Neumann algebras like M7 and M5, we have:

Z) (Ml B*a MQ)m(Pl B*a PQ):(Mlmpl) B*a (MQQPQ)
N N N

it) N(My gra Ma) = My o*g M
N No

’LZ’L) (Ml n 6(]\7)/) B®a (M2 n OZ(N)/) g M1 B*a M2
N N

’L"U) M1 B*a Oé(N) = (Ml ﬂﬂ(N)l) B®a 1
N N

More generally, if 8 (resp. «) is a normal, non-degenerated *-anti-

homomorphism (resp. homomorphism) from N to a von Neumann algebra

M; (resp. Ms), it is possible to define a von Neumann algebra M; g*q Mo
N

without any reference to a specific Hilbert space. If Py, P, o/ and ' are like
My, My, o and § and if ® (resp. V) is a normal *-homomorphism from M;
(resp. Mas) to Py (resp. P») such that ® o 3 = 3 (resp. ¥ oa = '), then we
define a normal *-homomorphism by [Fau83al, 1.2.4:

d B*a v M1 B*a M2 — P1 B *a’ P2
N N N
Assume oK, is a N — P°-bimodule and L a left P-module. If o(N) C Mo,

e(P) C My and if ((P) € M3 where M35 is a von Neumann algebra on L,
then we can construct My gxq (M2 ox¢ M3) and (M7 pgxo M) x¢ Ms.
N N

Associativity of relative tensor product induces an isomorphism between these
fiber products and we write My gxq Mz <x¢ M3 without parenthesis.
N N

Finally, if M; and M5 are of finite dimensions, then we have:
M 5@ My = (If )" (M{©M)I , and My gxa Mz = (I )" (Mi®M)IT},
N N

Therefore the fiber product can be identified with a reduction of My ® My by

€s,a by ], 2.4.

2.5. Slice map . —
2.5.1. For normal forms. — Let A € My gxo M and &,& € D(Hpg,9°). We
N

define an element of My by:
(w65 Fra id)(A) = (AL AN
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so that we have ((we, ¢, pra id)(A)n1|n2) = (A& s®a Mm)|&2 p®a n2) for all
P P P
m,n2 € K. Also, we define an operator of M7 by:

(id g Wiyma)(A) = (p2)" Aplhe

for all n1,7m2 € D(oK,v). We have a Fubini’s formula:

wﬂl,”]z((wﬁh& ﬁza Zd)(A)) = w€17€2((id 5za wﬂl,”]z)(A))

for all £1,&2 € D(Hp, %) and n1,m2 € D(o K, ).

Equivalently, by ([Eno0d], proposition 3.3), for all w; € M, and k; € RT
such that wy o 8 < k19 and for all wy € MQJ; and ko € RT such wy o o < ko),
we have:

wa((w1 pra id)(A)) = wi((id gra w2)(A))
¥ »
2.5.2. For conditional expectations. — If P, is a von Neumann algebra such
that «(N) C P, € My and if E is a normal, faithful conditional expectation
from Ms onto P, we can define a normal, faithful conditional expectation
(id g*q E) from My gxo My onto My gx P such that:
N N N

(UJ B*a id)(id B*a E)(A) = E((w B*a Zd)(A))
P N P
forall Ae My gxq M2, w € Mf; and k1 € Rt such that wo B < ky1).
N

2.5.8. For weights. — 1If ¢1 is n.s.f weight on M; and if A is a positive element
of M1 gxo M2, we can define an element of the extended positive part of Ma,

N
denoted by (¢1 gxq id)(A), such that, for all n € D(,L*(Ms),), we have:
P

(91 pxa id)(A) 20l = 1((id gxa wy)(A))
v v

Moreover, if ¢ is a n.s.f weight on M, we have:

$2((d1 pra id)(A)) = ¢1((id pra $2)(A))
¥ ¥

Let (w;)ier be an increasing net of normal forms such that ¢; = sup;c; w;.
Then we have (¢1 g*q id)(A) = sup;(w; pxq id)(A).
(4 ¥

2.5.4. For operator-valued weights. — Let P; be a von Neumann algebra such
that B(N) C Py C M; and ®; (i = 1,2) be operator-valued n.s.f weights from

M; to P;. By [Eno0(], for all positive operator A € M, gxo My, there exists an
N
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element (®1 gk, id)(A) belonging to Py gx Ma such that, for all £ € L?(P)
N N
and n € D(,K, 1), we have:
(P p*a id)(A))/?(¢ ﬁ%a mI? = [[[®1((id fa i) (A))]/2EP

If ¢1 is a n.s.f weight on P;, we have:
(610@1 o id)(A) = (61 fra id) (1 e id)(A)
N n N

Also, we define an element (id gxo P2)(A) of the extended positive part of
N
My gxo P> and we have:
N

(id o¥a D2)((®1 o¥a id)(4)) = (¥ o¥a id)((id o¥a 92)(A))

REMARK 2.15. — We have seen that we can identify M; gxq a(N) with
N
M; N B(N)'. Then, it is easy to check that the slice map id gxo ¥ oa™! (if «
P
is injective) is just the injection of My g*q a(N) into M;. Also we see on that

N
example that, if ¢1 is a n.s.f weight on M, then ¢1 g, id (which is equal to
N

®1)M,nB(N)) needs not to be semi-finite.

3. Fundamental pseudo-multiplicative unitary

In this section, we construct a fundamental pseudo-multiplicative unitary
from a Hopf bimodule with a left invariant operator-valued weight and a right
invariant operator-valued weight. Let N and M be von Neumann algebras,
a (resp. () be a faithful, non-degenerate, normal (resp. anti-) representation
from N to M. We suppose that a(N) C S(N)'.

3.1. Definitions. —

DEFINITION 3.1. — A quintuplet (N, M, «, 3,T") is said to be a Hopf bimod-

ule of basis N if ' is a normal *-homomorphism from M into M g*, M such
N
that, for all n,m € N, we have:

i) T(a(n)B(m)) = a(n) 6%a B(m)

ii) T is co-associative: (I gxq id) o' = (id gkq I') o T
N N

One should notice that property i) is necessary in order to write down the
formula given in ii). (N°, M, 3,a,¢y oT') is a Hopf bimodule called opposite
Hopf bimodule. If N is commutative, « = § and I' = ¢y oI, then (N, M, o, o, T")
is equal to its opposite: we shall speak about a symmetric Hopf bimodule.
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DEFINITION 3.2. — Let (N, M, a, 3,T) be a Hopf bimodule. A normal, semi-
finite, faithful operator-valued weight from M to a(N) is said to be left in-
variant if:

(id pxa TL)T(2) =TL(z) p®a 1 for allzw € M3,
N N

In the same way, a normal, semi-finite, faithful operator-valued weight from M
to B(N) is said to be right invariant if:

(Tr pra id)[(z) =1 Q4 Tr(x) for all z € M?R
N N

We give several examples in the last section. In this section, (N, M, a, 5,T)
is a Hopf bimodule with a left operator-valued weight T, and a right operator-
valued weight Tg.

DEFINITION 3.3. — A *-anti-automorphism R of M is said to be a co-
involution if Roa = 3, R? =id and syo o (R gxo R)ol' =T o R.
N

REMARK 3.4. — With the previous notations, let us notice that Ro Ty o R
is a right invariant operator-valued weight from M to B(N). Also, let us say
that R is an anti-isomorphism of Hopf bimodule from the bimodule and its
symmetric.

Let p be a normal, semi-finite, faithful weight of N. We put:
d=poatoT,and ¥ =poftoTy
so that, for all z € M, we have:

(id g*a ©)(x) = Tr(z) and (U gxq id)I'(z) = Tr(z)

If H denote a Hilbert space on which M acts, then N acts on H, also,
by way of @ and 3. We shall denote again « (resp. ) for (resp. anti-) the
representation of N on H.

3.2. Construction of the fundamental isometry. —
DEFINITION 3.5. — Let define 6 and & by:

B3:N — L(Hg) and &: N — L(Hy)
x— Jea(x")Jp x— JyB(x")Jy

Then f3 (resp. &) is anormal, non-degenerate and faithful anti-representation
(resp. representation) from N to L(Hg) (resp. L(Hy)).
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PROPOSITION 3.6. — We have Ae(Np, N Ng) C D((H¢)B,,u°) and for all
a € Nt, N Ng, we have:

R (Ag(a)) = Az, (a)
Also, we have Ay (N1, N Nw) C D(a(Hy), ) and for all b € N, N Ny, then:
R (Ay (b)) = Ary, ()
REMARK 3.7. — We identify H, with H o1 and H,, with H,o51.
Proof. — Let y € N, analytic w.r.t g. We have:
Bly)Aa(a) = Aa(ao®; p(a(y) = As(ac”, " (aly")))
= Ag(aa(o”, ,(y"))) = Ar, (a)Au(o”, 5 (y)) = A, (@) JuAu(y)

Thanks to lemma P.2, we get By*)As(a) = Ap, (a)JuA,(y), for all y € N,
which gives the first part of the proposition. The end of the proof is very
similar. O

PROPOSITION 3.8. — We have Jq)D((Hq))B,MO) = D(,(Ho),p) and for all
ne D((ch)@,uo), we have:
RYH(Jem) = J‘I’Rﬁ’uo(n)c}u

Also, we have JyD(s(Hw), ) = D((Ho)g, u°) and for all £ € D((Hs)gs, 1°),
we have: A
RO (Ju€) = JuRO(€).J,

Proof. — Straightforward. O

COROLLARY 3.9. — We have Ao (To,1,) € D((Ho)g, 1°) N D(a(Ho), p) and
Aw(Tw, 1) € D(a(Hw), p) N D((Hw)g, p1°).

Proof. — This is a corollary of the two previous propositions. o

REMARK 3.10. — The invariance of operator-valued weights does not play a
part in the previous propositions.

PROPOSITION 3.11. — We have (wy ¢ pg*a id)(I'(a)) € Np, N Ng for all ele-
m
ments a € Np, N Ng and v,§ € D(Hg, j1°).

Proof. — By definition of the slice maps, we have:
(wo.g 't id)(T'(a))" (wo.e *a id)(T(a)) = (AP T (@A) T (@A)

<IN W pra id)(T(a*a))
o
< IBP ©)|*(wo0 p*a id)(L(aa))
o



18 FRANCK LESIEUR

Then, on one hand, we get, thanks to left invariance of T7:

Tr((woe pra id)(I'(a))"(woe pra id)(T'(a)))

< IR @IPTL(wo p*a id)(L(aa)))

= IR (O (oo p¥a id)(id pxa Tr)(T(a"a))

< IR @©IP () (Te(a*a) p®a NS
m

v

< IRPOIPITL (@ a)lllla(< v, 0 >p40) 11
< IR @©)IPITL (@ a) | R (v)]I*1

So, we get that (wye pra id)(I'(a)) € N7, . On the other hand, thanks to left

"
invariance of T, we know that:
O(((woe pra id)(I'(a)))" (woe pra id)(I'(a)))
2 2

is less or equal to:

IR%(&)]®((wo,0 p*a id)(L(a*a)))

= [|R7 ()|Pwou((id pxa ®)(L(a*a)))

= [|R%(&)*(T1(a*a)vlv) < |RP ()| T (a*a)|[[v]* < +oo
So, we get that (wy¢ pra id)(I'(a)) € Na.
n

PROPOSITION 3.12. — For all v,w € H and a,b € No N N1, , we have:

(v a®oé Ag(a)|lw a®0[§ Ag (b)) = (T (b a)v|w)

For allv,w € H and ¢,d € Ny N Nr,,, we have:

(Au(c) a®p vlAu(d) a®p w) = (Tr(d c)vfw)

Proof. — Using @ and @, we get that:

(v a®j Aa(a)|w o®5 A (b)) = (a(< As(a), Aa (D) >5 0 )v|w)
= ((Aqy (0)"Ary (a))v]w)

= (a(mu (@™ (TL(b"a))))v|w)

which gives the result after the identification of m,(/N) with N. The second

point is very similar.

O
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LEMMA 3.13. — Let a € No N Np, and v € D(Hg, p°). The following sum:
D & 500 Ae((woe pra id)(T(a)))
icl H H

converges in H g®q Hg for all (N°, u°)-basis (&)icr of Hg and it does not

depend on the (N"ttuo)—basis of Hg.

Proof. — By B.11], we have (wy¢, pg*a id)(I'(a)) € Ng N Np, for all i € I,

and the vectors &; 3®q Ao ((wye, g:a id)(T'(a))) are two-by-two orthogonal.
I I

Normality and left invariance of ® imply:
Sl 990 Aul(wne ot @)
i<a(< & > hal(ne gt D@D Ao (e, 5% i)
- g((Afﬂ)*r(a*)[Z AL ) D (@A)
= ®((wnn ta T a) = (i 3t D)D" @)elo) = (Tu(a"a)ele) < o0

We deduce that the sum ), ; & s®a Aa((woe, pra id)(I'(a))) converges in
I Z
H 3®q Hg. To prove that the sum does not depend on the (N°, 1°)-basis, we

m
compute for all b € Ny, N Ng and w € D(Hg, u°):
O & 5%a Aa((woe, pra id)(T(a)w @0 Aa(b))
m

icl H M

=D (al< & w>ppe)ho((Wog gra id)((a))|Aa (b))

=) O (< & w >p ) (Woe pra id)(T(a)))
el ®
= (B NGO D AN (@A?) = (b (Wow gxa id)(T(a))).
iel ®

As D(Hg, 1u°) © Ao(N1, NN3) is dense in H 3®, He and the last expression
w
is independent of the (N°, u°)-basis, we can conclude. O

THEOREM 3.14. — Let H be a Hilbert space on which M acts. There exists a
unique isometry Uy, called (left) fundamental isometry, from H a®s Ho

"
to H g®q He such that, for all (N°, p°)-basis (&)icr of Hg, a € Ny, N Ng
m
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and v € D(Hg, u°):
Un(v a®pAa(a) =) & 5®a Aa((wog, pxa id)(I'(a))))
He i€l H
Proof. — By , we can define the following application:

U: D(Hg,,LLO)XAcp(NT ﬂN@)HH JeLSP Hgs
m

(0, Aa(a)) = Y& 500 As((wo, pra id)(I'(a))))
el H
Let b € Ny, N Ng and w € D(Hg, 1°). Then, by normality and left invariance
of ®, we have:
(U (v, Ao (a))|U (w, Aa (b))

= D (o< & & >pp0)ha((wog, o id)(I'(a)))[Ae(wwe pra id)(T(0))))

B,J€1

=Y (Na(a(< & & >ppo)wog pra id)(I(@))[As((Woe sra id)(T(1))))

i€l H
=Y B TOIN (< &, & >0 ) AEY) T (@)NF?)
el
_(I)(()\Ba b* Z)\ﬁa )\5&) )\ﬁa()\ﬁa) ] (a))\f,a)
el

Then, properties of (N, u®)-basis (§;)ier of Hg imply that:

Q((wo,w pra 1d)(L(ba))) = wow((id gxa )(T'(0*a)))

= wy,w(Tr(0%a)) = (T (b a)v|w)
By , we get:

(U((v, A (@)U ((w, As (b)) = (v a®5 As(a)lw a®@5 Aa(b))

e e
so that, from U, we can easily define a suitable application Uy which is inde-
pendent of the (N?, u°)-basis by B.13. O

One can define a right version of Uy from the right invariant weight:

THEOREM 3.15. — Let H be a Hilbert space on which M acts. There exists a
unique isometry Uy, called right fundamental isometry, from Hy a®g H

to Hy p®a H such that, for all (N, p)-basis (n;)ier of oH, a € Nty ﬂNq;
n
and v € D(oH, p):
Up(Aw(a) a®pv) = Au((id ﬂ*a wy,n, ) (@) 5®a mi
e

el H
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3.3. Fundamental isometry and co-product. — In this paragraph, we
establish several links between fundamental isometry and co-product. In fact,
many of the following relations are more or less equivalent to definition of
fundamental unitary and, depending of the situation, we will give priority to
one or the other relations in our demonstrations.

PROPOSITION 3.16. — We have (1 3@q JoeJa)Unpyl,, = T(@)p)5 , ) for
N

all e,z € No ﬂNTL and (Jq;fJ\p 8Rq 1)U}{/\if(y) = F(y))\g\f‘/\‘p(f) for all
N
[,y € No N Npy,.

Proof. — Let v € D(Hg, u°) and (&;)ier a (N°, p°)-basis of Hz. We have:

(1 ®a JoeJo)Un(v o®5 Aa())
N ne

=D & 5% Joeaha((Wug pra id)(T(2)))
iel s ®

=) & 5% (wog pra id)(T(2)Jaha(e) = T(@)(v 500 Joha(e))
icl Iz iz Iz

By B. and B.§, we have Ag(z) € D((Ho)g, n°) and JoAa(e) € D(a(Ho), 1)
so that each term of the previous equality is continuous in v. Density of
D(Hg, 1°) in H finishes the proof. The last part is very similar. O

PROPOSITION 3.17. — For all v,w € D(Hg, u°) and a € No N N, , we have:
Ao Un(v o®g As(a)) = Aa((Wow pra id)(T(a)))
pO I
Also, for all v',w" € D(oH, ) and b € Ny N Ny, we have:

(W) U (A (0) a®5 ') = Au((id e wrr,w)(T(1)))

Proof. — Let e € N N Nr,. By B.14, we can compute:

JoeJo(N3*) Un(v o®; Aa(a)) = (VJ2) (1 580 Jaeda)Unpyl v
e N
= ()\ﬁ’a)*f‘(a)pgz\q}(e)v

= (Wp,w p*a 1d)(T'(a))JoAs(e)

= JoeJoAo((wWow g*a id)(T'(a)))

Density of No NN, in N finishes the proof. The second part is very similar. [
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COROLLARY 3.18. — For all a € Ny, N Ns, v € D(oH,u) N D(Hg, u°) and
w € D(Hg, u°), we have:

(o, ¥ 1d)(Un)Aa(a) = Ao ((wo,w gra id)(T'(a)))

where we denote by (wy, * 1d)(Un) the operator ()\ﬁ’o‘)*UH)\gﬁ of L(Ha).

Proof. — Straightforward. O

COROLLARY 3.19. — For all e,z € No "N, and n € D(,Hg,u°), we have:
(id fra Wig e (e),n) (L(@)) = (id * Wry(2),J0er Jon) (Un)

Also, for all f,y € No NN, and & € D((Hy)g, u°), we have:

(Wrgnw(F)e B%a 1d)(D(Y) = (Way (y), 09 £ Jue * 1) (Ugr)

"
Proof. — Straightforward by . O

COROLLARY 3.20. — For all a,b € Ny N N, N Ng N N7, we have:
(WAg (@), 7o e ) ¥ 1) (Up)" = (Wag (). g rg (07) * 1d) Upy)

Proof. — By B.19, we have for all e € Ny NNy

*

(WAy (), Jodg(esb) * 1) (Up)" = (Wryag(e),Jure ) 6% id)(T(a))
m
= (Wrg Ay (), JuAy(e) B%a id)(I'(a"))
m

= (Why (a*), 7o Ag (bre) * 1d)(Up).

Let (ug)rex be a family in Ny N NJ such that upy — 1 in the *-strong

topology. We denote:
1
ep = NG /e_tzof’(uk) dt

For all k € K, e, and o?m (€}) are bounded and belong to Ny and converge to
1 in the *-strong topology so that JyAg(b*e) = O'EIZ-/Q((?;;)J\I/A\I/(Z)*) converge
to JgAg(b*) in norm of Hy. Let &, n € D(,H, ) and we compute:

(Wag (@), dore ) * 1) (Ug) ™€) = (JuAw(b) s®a E[UL(Aw(a) a®p 1))
I e

= lim (JyAgw(epd) p®a E|Uk(Aw(a) a®p 1))
keK © ue

= %ier%((w/\\y(a),]‘l,/\q,(e;b) x1d)(Up)"€n)
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By the previous computation, this last expression is equal to:

]lienil(((w,\w(a*),h,mp(b*ek) +1d)(Upp)€ln)

lim (Uy (Aw(a) a®p &)|Johw(ber) s@an)
keEK e m
= Un(Aw(a®) a®p &)|JuAu(b") s@a n) = (Wag (a*),Juhe b *1d)Up)EN)
I p
By density of D(,H, 1) in H, the result holds. O

3.4. Commutation relations. — In this section, we verify commutation
relations which are necessary for Uy to be a pseudo-multiplicative unitary and
we establish a link between Uy and I'. We also have similar formulas for U};.
LEMMA 3.21. — Let £ € D(Hg,p°) and n € D(oH, ).

i) For all a € a(N)', we have )\g’a oa=(1 5%& a))\g’a.
ii) For all b € B(N)', we have \yi™ = (b #a DAL

iii) For all x € D(c”, ), we have )‘g’(i)g = )\g’o‘ o a(oﬁi/Q(x)).

w) For all x € D(Ufﬂ), we have pz’(z)n = pg*a o 5(05/2 (2)).
Proof. — Straightforward. O
We recall that a(N) and B(N) commute with G(N)'.

PrROPOSITION 3.22. — For alln € N, we have:
i) Un(l a®j a(n)) = (a(n) 3®a 1)Un;
No N
i) Un(1 a®5 B(n)) = (1 s®a B(n))Un;
No N
iii) Ug(B(n) a®z1) = (1 s®a B(n))Un.
No N
Proof. — By , we can compute for all n € N and e,z € Ny, N Ng:

(@) 0 Joelu)Unp) = (an) sa DE@AG,

= (a(n)x)l)gz\@ (e)

= (1 B%a thejlb)UHpif(a(n)z)

= (1 3®a JoeJo)Un(l o®; a(n))pif(z)
N No

Usual arguments of density imply the first equality. The second one can be
proved in a very similar way. By and [3.21., we can compute for all n € 7,
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and e,z € Ny, N Ng:

(1 ﬁ%a J¢€J¢3(n))UHPif(z) = F(x)pia/\@(ea(n*))
_ Brer
= F(x)Pa(ggi/z(n))J@A@(e)

= F(x)pg;a/\(p (e) (n)

= (1 R J¢€J¢)Uﬂpif(z)ﬂ(n)
N

= (1 ﬂ%a J<I>€J<I>)UH(5(R) a?@ 1)9%:5(1)

Density of 7,, in N and normality of 3 and B finish the proof. o

PROPOSITION 3.23. — For all z € M' N L(H), we have:

UH(:L' Q®B 1) = (:C 8Ra I)UH
Neo N

Proof. — For alle,y € Ny, "\Ng andz € M'NL(H) C a(N)NB(NYNL(H),
we have by :

(2 ﬁ%a J«I)€J<I>)UHPif(y) =(z B%a 1)F(y)p§§\q,(e)

_ B,a
= F(y)PJq,Aq)(e)x

=(1 g%a Jq)eJq))UHpr(y):C

= (1 5®a J<1>€J<1>)UH(:C Q®B 1)pif(y)
N No
Usual arguments of density imply the result. o

COROLLARY 3.24. — For allm € N, we have:
i) Uny (B(n) o®31) = (B(n) 50 DUy
o N

it) Ung (&(n) a%@ 1) =(a&(n) gRa 1)Un,
No N

PROPOSITION 3.25. — We have I'(m)Un = Un(1 o®z m) for allm € M.
NO
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Proof. — By B.16, we can compute for all e,z € Ny, N Na:
(1 50 JaeJo)U(m)Unpl,, = T(m)(1 $a Joeo)Unpylis
= F(mx)pgz\q)(e)

=(1 s®aq J¢€J¢)UHP%5
N
= (1 p®a JoeJo)Un(l a®; m)pyl,)
N No
Usual arguments of density imply the result. O

3.5. Unitarity of the fundamental isometry. — This is a key part of the
theory and certainly one of the most difficult. To prove unitary of Uy (resp.
Uy;), we establish a reciprocity law where both left and right operator-valued
weights are at stake.

3.5.1. First technical result. — We establish results needed for . In the
following proposition, we compute some functions € defined in section @

PROPOSITION 3.26. — We have for all c € Ny NN, m € (Ng NNp,)* and
v E D(HB,MO).'

074 (v, JyAg(c))m = (/\if(m*))*pg"ﬁJg,c* Ju

Proof. — Let x € Ny N Nr,,. On one hand, we get by B.q and B.§:
0%+ (v, Jy Ay (c))mAg (z) = R (0) R (Jy Ay (c)) Ay (mz)
= RB’”O(’U)JMATR(C)*J\I;A\IJ(TR,%).
On the other hand, if ¢ € Ty 75, then we have by :

A )P0 Juct Ty () = (AL ))T (Juc Tuhu(2) a@p v)
e

= Tr(mzo?, 5(c))v
= RO (0) M (B (Th(0y ()2 m™)))
= RO (0) ] Ay, (0) Jw A ()
‘We obtain:
A ime)) P07 Ju e Jy A () = ROH (0) ], Ay, (0)* Ty A (ma)

for all c € Ny N NTR by normality which finishes the proof. O
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COROLLARY 3.27. — Let a € (N\Il ﬂNTR)*(/\/:p ﬂNTL). If c € Ng N NTR;
e € No NNy, and £ € Hy,n € D(o(Hs), ), uw € H, v € D(Hg, u°), then we
have:
(v s No0) U (€ a5 Aa(a)u 980 Jac" Jo)
o

= (Juc"Ju§ a®p v[Au((id pra Wy iere(e)) (@) a®p u)
e Iz e

Proof. — By and B.2d, we can compute:

(v 52 N 0) e (€ 0@ Aa(a)lu 580 Joe" Jon)
we H
= (o) W N 0) (1 980 Jue”Jo) Uiy (€ a5 Aa(a))u)
Mo

= (™) N (NG (o) T (@ o El0)
= 074" (v, Ju N (0)) (0 ) T(@)p30% 4 o) 1)
= (AP ﬁ:wn,.z@me»)(r(a*)))*f’g’ﬁ‘]@c*‘]@ﬂ“)
= (Juc" Jué &%OB v[Ay((id B:a Wy, JeAa(e)) ) (D(a”))) ai@oﬂ u)
O

3.5.2. Second technical result. — In this section, results only depend on
and co-product relation but not on the previous technical result. Let H be an
other Hilbert space on which M acts.

LEMMA 3.28. — Let a,e € No NNp,, € € D(Hg,u°), n € D(oH,u), and
¢ € H. We have:

(1 ﬁ%a Joedo)Un(n o®j [(A?“)*UH(C a®z Aa(a))])

= (" $0a 1)"(id s DIT@)E 59an 50a Joha(e))

Proof. — First let assume ¢ € D(Hg, u°). By and , we can compute:

(1 5%a Joeda)Un(n a®; (W) Un(C a®; Aala))])
=(1 §®a JoeJo)Un(n o®j Mo((wee pra id)(I'(a)))

=I((we,e pra id)(I'(a)(n s®a JoAa(e))

= (¢ 52 1 (id 5o DIT@)C 5Ban 520 Jaha(e))



MEASURED QUANTUM GROUPOIDS 27

So, we get the result for all ( € D(Hg,u®). The first term of the equality
is continuous in ¢ because 7 € D(oH, p) and Ao(a) € D((Ho)g, pu°). Also,
since 1) € D(oH, pt) and Ag(a) € D((Ho)s, 1°), the last term of the equality is
continuous in ¢. Density of D(Hg, u°) in H finishes the proof. O

LEMMA 3.29. — The sum Y,c;mi o®j (M) Un((p5°)'E a®; As(a))]
e ne
€EH pRq H, a € No NNy, and (N, p)-
n

(1]

converges for all £ € D(Hg, u°),

basis (n;)icr of oH.

Proof. — First, observe that ni o®j [(AZ*)* Un((p2:*)*E a@g Ag(a))] are
1o
orthogonal. To compute, we put: Q; = pfh’a)*E a®jp Ag(a). By B.21 l and .22 -
ne
we have:

I a5 () Upe(2:)]]?
= (B(< MM >a) AEY) U ()| (M) Upe ()
= (M) (1 p®a BI< 102 >a)) U () (N Upe ()

() TR(B< 1015 >a) ()| Une()
= (A O) Un () U ()
By , it follows that we have, for all i € I:

17 a®@5 (A Un((Ph*)'E @5 Ae(@)]|]?
e e

<R ENP (5 ) E @ As(@)l(pp*) E a®p Aa(a))
e e

< [|R7*(€)IP(TL(a*a)(pn*) El () E)
< [[RPOIPNT (a*a)l| (P, ) El(p*) )

So, we can sum over i € [ to get that:

Sl a®; [0S Unl(02°)°E 0 Aa(a))]|?

i€l e e

is less or equal to ||R%(&)|?||T (a*a)||||Z]|> < co. That’s why the sum con-
verges. O
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PROPOSITION 3.30. — Let a,e € Ng "N, Z € H 5®a H, ¢ € D(Hg,p°),
N € D(o(Hg), ) and (n;)icr a (N, p)-basis of oH. We have

(P T @5 (&) Unl(p)*)°E a5 Aa(a))])

i€l e ne

= (A?a)*r((ld B*a WJ@A@(@),U)(F(G)))E

Proof. — The existence of the first term comes from the previous lemma. By
and the co-product relation, we can compute:

D07 (1 s Jaeda)Un(n 0®s (A Un((p]")E o®; As(a))])

i€l N e o
=> (o) (e #®a 1)*(id gxa T)(T'(a)((py ") E ﬁ®a i O Jola(e))
el N K
= (P O 520 (I sre i) L@ o5V IE 520 Jaha(e))
el H

= 7 08" 59a 1) e i) (T(@)(E S0 Joha(e)

m

= (21 @ oV (Tt i) (T(@)(E S0 Joha(e))

= (A*)T((id pxa WrsAs(e)n)(T'(@)))

(1]

O
With results of the two last sections in hand, we can prove now a reciprocity
law where H will be equal to Hy.

3.5.3. Reciprocity law. — For all monotone increasing net (e )rex in NoyNNT,
of limit equal to 1, the following (w s,y (ey))kex is monotone increasing and
converges to . So, for all x € Ny N N1y, (Wiyag(er) p%a id)(I'(x)) converges

w

to (¥ pg*qo id)(I'(x)) in the weak topology. We denote (;, = JyAw(ejer) €
m

D((Hg)g,p°) for all k € K.

PROPOSITION 3.31. — Foralla € (NgNN1,)*(NoNNT,)), e € NoNNp, b €

Nq;ﬁNTR,C € T‘IHTR) vE D(Hﬁ,ﬂo)vn € D(a(H<I>)a,LL) and (N; #)-bGSiS of oH,
(ni)ier , we have that the image of:

D i a®s [N Uy (((05) Ul (Juc JuAw (b) 6@ 0)] «®5 Aa(a))]
el e ne e
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by (pifé*qu)*UH converges, in the weak topology, to:
(it sun) (0 580 O 0) Uity (00) o2 Aa(@)
e
Proof. — Let u € H. We compute the value of the scalar product of:
Un(Y_mi a®p (AL Unty ([(05;%) Uty (Aw (be) a®pv)] a®p As(a))])

iel ne H e
by u g®q Joe*Jon. By , we get that it is equal to:

o

(L((id p*a wrze(e)n)(L(@))Up (Ae(be) a®p0)|G @0 u)

By the right version of , this is equal to:
(Un(Aw((id pra wigne(e)n)(L(@)be) a®pv)Ck s®a u)
e Iz

"
By , we obtain:

(Wrsau(er) o%a i) (T((id sxa wrgns(e)9)(T(@))be))v]u)

which converges to:

(¥ gra id)(L((id pra wigna(e)n)T(a)))be)vlu)

Now, by right invariance of Ty, and , we can compute this last expres-
sion:

(W pxa id)(T((id gra wrgns(e).n)(T(a)))be)v]u)

= (Tr((id pxa Wiphe(e).n)T'(@))be)v|u)
= (Ay(be) a®p VA ((id pra wy,1400())(T(@")))) a®p u)

= (0 580 AL (o) Uty (A (0) o5 Aa(@)|u 580 Joe™Jon)
M ‘ e Iz

which finishes the proof. O

Let (1;)ierbe a (N, p)-basis of oH. For all finite subset J of I, we denote
by Py the projection .., 0%*(n;,1;) € a(N)' so that:
SO o) =1 58 P
icJ N

For all e € Ng N N, , we also denote by P:

1 @0 Joe™ JoPrlseds =Y pyo s (000 o0 )
N icJ
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COROLLARY 3.32. — For alla € (Ny NN, )*(NeNNT,), b € Ny NNT,,, and
c€Tyr,, vED(Hg,u°), e € No NNy, and J finite subset of I, we have:

P5Un Zm «®3 (AL Uny ((05%) Uy (Jwc™ Ju A (b) a®p )] a®3Ae(a))])

converges, in the weak topology, to:

Pj(v ﬁ®a N () Unta (A (b) «®5 Ag(a)))

Proof. — We apply to the reciprocity law p J@e Jon which is a continuous linear
operator of H in H g®, Hs, and also a continuous linear operator of H

n
with weak topology in H 3®, He with weak topology. Then, we take finite
"

sums. O

Until the end of the section, we denote by Hg the closed linear span in
Hg of (/\ﬁ’a)*UH\P(U a®[§ Ag(a)) where v € Hy, w € Jq;Aq;(Nq; ﬁNTR),

I
and a € (Ng N NTR) No N Nr,. By the third relation of lemma (resp.
proposition B.22 - (resp. ﬁ is a non-degenerated (resp. anti-) representation
of N on Hs.

LEMMA 3.33. — Leta € (N\p ﬁNTR)*(Nq> ﬂNT) be Ng ﬁNTR, ¢ € Tory,
v € D(Hg,p°) and (n;)ier a (N, p)-basis of H. We put, for all k € K:

Er=0_m a®ﬁ (A2 Unty () Uy (Jwc* Ju Aw (b) af?oﬁ v)] a®; Ao(a))]
icl e

Then the net (Ex)kek s bounded.
Proof. — Let E=v ﬁ®a (/\J\pA\y(c)) Uny (Aw(b) o®j Aa(a)). By the previ-

ous corollary, we know that P$SUgZE) weakly converges to P$E, so that:

lim lim P{UySy = 2
Jllell<1 K

Consequently, there exists C' € RT such that:

sup supl||PjUEL|| < C
Jllel|<1 K

and, the interversion of the supremum gives:

C=sup sup |[PjUnEk|| = sup |[|[UnEx|| = sup||Ex|
kg lel]<1 k p
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COROLLARY 3.34. — For all a € (Ny N N7,)*(Ne N N7), b € Ng N Np,,,
¢ €Ty s, v € D(Hg,u®) and (0;)icr o (N, p)-basis of oH, we put:

Zr=0_m a®; (N2 Uny ((05°) Uk (Juc" JuAu(b) a®50)] o®5 Ao(a))]
el e e e
for ol k € K, and:
E=0 p®a ()\?qu,(C))*UHw (Aw(b) «®j As(a))
H ne

Then Ug =y, converges to = in the weak topology.

Proof. — Let © € H 3®, Hep and € > 0. Then, there exists e € No N N, of

w
norm less than equal to 1 and a finite subset J of I such that ||(1 — P$)©|| <.
By B.33, there also exists ko such that |(P$UpEy — PZE|0)| < € for all k > k.
Then, we get:

(UnZr — E|9)|

|
< |(UnEx — PjUnZk|0)| + [(P;UnEx — PJE|O)| + [(PFE — E[O))
< [(UnEk|(1 = P7)O)| + e+ [(E|(1 = P7)O)]
< [(UnEk|(1 = P7)O)| + e+ [(E|(1 = P7)O)| < (supkek||Zk|| + |[E]] + 1)e
O
COROLLARY 3.35. — We have the following inclusion:
H 3®4 Ho C UH(H Q®B H@)
M ne
Proof. — By the previous corollary, we know that = belongs to the weak closure
of Ug(H o® 4 Hg) which is also the norm closure. Now, Uy is an isometry,
ue
that’s why UH(H a®[§ Hq;.) is equal to UH(H a®[§ Hq;.) O
e e

THEOREM 3.36. — Uy : H 3 Hy — H 3®y Ho is a unitary.
° I

o
Proof. — By the previous corollary, we have:
(1) H 384 Hoe CUy(H a®p He) CUy(H a®p Hs) CH 3®q Ho.
H ne ne H

Also, using a (N?, uu°)-basis, we have, for all v € Hy and a € N7, N Ng:

Uny (v a®5 Ag(a)) =D & ®a (A" Uty (v 0®5 Agla))
ne 1 H ne
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so that Up, (Hg a®3 Hg) C Hy 8®a He. The reverse inclusion is the
"

o

relation () applied to Hy. Consequently, we get:
Uty (Hy a®p Hs) = Uny (Hw a®p Ha)
e e

Since Up, is an isometry, Hy a®p Hs = Hyg a®p Hs and, so He = Hs.

1 Iz

Finally, by inclusion ([]), we obtain Uy (H 4®p He) = H 3®s Ho. O
e Iz

DEFINITION 3.37. — Fundamental isometry Uy is now called (left) funda-

mental unitary. Right version U}, is called right fundamental unitary.

COROLLARY 3.38. — If [F] denote the linear span of a subset F of a vector
space E, we have:

He = [Ao((wo,w s@a id)(I'(a)))[v,w € D(Hg, p%),a € No N Nr,]

= [(AD) Un(v a®5 Aa(a)v € H,w € D(Hg, p°),a € No N N, ]
ue
= [(W’U,w * Zd)(UH)§|’U € D(OtHv /,L),’U_) € D(Hﬁ,ﬂo),f S H@]

Proof. — The second equality comes from . The last one is clear. It’s
sufficient to prove that the last subspace is equal to Hg. Let n € Hg in the
orthogonal of:

[(Wo,w *id)(Un)§|v € D(oH,p),w € D(Hg, p°),§ € Ho
Then, for all v € D(oH, 1), w € D(Hg, u°) and § € Hp, we have:

(Un(v a®j Hlw p®a n) = ((Wo,w *id)(Un)§ln) =0

Since Uy is a unitary, w g®q n = 0 for all w € D(Hg, u°) from which we

easily deduce that n =0 (by @ for example). O
COROLLARY 3.39. — We have I'(m) = Un(1 «®z m)Uf; for all m € M.

NO
Proof. — Straightforward thanks to unitary of Uy and B.23. O
3.6. Pseudo-multiplicativity. — Let put W = Uj_. We have already

proved commutation relations of section @ and, now the aim is to prove that
W is a pseudo-multiplicative unitary in the sense of M. Enock and J.M Vallin

([EVO00], definition 5.6):
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DEFINITION 3.40. — We call pseudo-multiplicative unitary over N w.r.t
o, 3,3 each unitary V from H 3®, H onto H a®p H which satisfies the
M ne

following commutation relations, for all n,m € N:

(B(n) a®s a(m))V =V(a(m) Qa 5(n))
No N

and

(B(n) «®5 B(m)V =V (B(n) 50 Bm)
and the formula:

(V a®é 1)(O'Mo a®é 1)(1 a®é V)O‘QH(l 8Ra O'Mo)(l 8Ra V) =
NO NO NO N N
(1 a®ﬁ V)(V B®oz 1)
No N
where the first o0 is the flip from H a®p H onto H 3®a H, the second is the

e Iz
flip from H ,®g H onto H s®, H and oy, is the flip from H g®, H 3®a H
pe 1 I "
onto H o®; (H ®. H). This last flip turns around the second tensor
o 1

i
product. Moreover, parenthesis underline the fact that the representation acts

on the furthest leg.

We recall, following ([Eno09], 3.5), if we use an other n.s.f weight for the con-
struction of relative tensor product, then canonical isomorphisms of bimodules
change the pseudo-multiplicative unitary into another pseudo-multiplicative
unitary. The pentagonal relation is essentially the expression of the co-product
relation. So, we compute (id gxo I') oI and (I' gk, id) o I' in terms of Uy

N N
with the following propositions and . Until the end of the section, H
is an other Hilbert space on which M acts.

LEMMA 3.41. — We have, for all & € D(H, ) and & € D(Hg, pu°):

)\Zﬂ()\%a)* — (/\%04)*02#0(1 a®ﬁ O_#)/\?lﬁ

ND
and:
Ur AP (NG Ul = (WS (1 @0 U 1 0®;0,)(1 a®p Un)AL?
HAE, ( ¢, ) U = ( € ) (1 p®a H)U2u°( a®5 Uu)( a®p Un) €
N No Ne
Proof. — The first equality is easy to verify and the second one comes from
the first one. O

PROPOSITION 3.42. — The two following equations hold:
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Z) f07“ all 51 € D(aH,N)afi € D(C!Hau)a£2 € D(Hﬁauo)agé € D(Hﬁay'o)
and n1,m2 € He, the scalar product of:

(1 p®a Un)ozue(1 a®50u)(1 a®pUn)(op a®z1)([§]1 5®a &1] a®5m)
N Ne Ne No © 1o

by & pRa &2 p®a N2 is equal to ((we ¢, *1d)(Up)(wer ¢y * id) (Un)milne).-
n i
ii) for all a € No "N, , & € H and &,&, € D(Hg, p°), the value of:

()\géa)*(l 38R0 Up)oaue(1 a®p g.)(1 a®s Um)(oy a®; 1)
N Neo Ne Neo
on [§] s®a &1] o®j Aa(a) is equal to:
I ne
Un (&1 a®j Aa((wep gy pra id)(T(a))))
Ne I

Proof. — By the previous lemma, we can compute the scalar product of i) in
the following way:

(g (1 5Ba Un)ozs (1 o®50,)(1 a®s U)X (& «®;m)

|§2 BRa 772)
Ne I

o
= (S G Un(El a®3 m)lé2 p®a 12)
e H
= ((AZ’”‘)*UH(& a®p (wep g *id)(Un)m|n2)
o

= ((wey & *id)(Unt) (wey gy * id) (Un )m |n2)

Also, the second assertion comes from the previous lemma and . Let’s
first assume that & € D(,H, ). Then, we compute the vector in demand:

& (1 680 Undone (1025 0,)(1 o5 UnE (€ o® Aa(a)

Neo 7

= UrAS NG Un (€] o®5 Aala))
1o
=Un(&1 o®j Ao((wep gy pra id)(I'(a))))
Ne Iz
So, we obtain the expected equality for all & € D(,H, ). Since the two

expressions are continuous in &7, density of D(,H, ) in H implies that the
equality is still true for all & € H. O

PROPOSITION 3.43. — For all a,b € Ny N N1, , we have:

(i g D) (T(@)p5:55 0

(1 ﬂ®0€ (1 ﬂ®a J¢bJ<I>)UH)O—2,u.°(1 a®[§ O—#)(l
N N

¥ a%fi Un)(oy a?f 1)Pif(a)
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Proof. — Let & € 'H and &}, &, € D(Hg, u°). We compose the second term of
the equality on the left by ()\?,’a)* and we get:

(1 @0 JobJa) NG (1 580 Ur)ooue (1 a®5 0)(1 a@p Un)(04 «®51)0000)
N &2 N o
No N No

which we evaluate on &} s®q &1, to get, by the previous proposition and :
n

(1 p®a JobJa)Un(§1 «®j Ae((we ey pra id)(I'(a))))
N No o

= T(wepgy pa id)(T(@))P5%,
n

= (Agéa)*(id B*a F)(F(a))ngA@(b) (& s®a &)
iz Iz

So, the proposition holds. O

LEMMA 3.44. — For all X € M g*xq M C (1 g®q B(N)), we have:
N N
(T pra id)(X) = Un p®a 1)1 o®5 X)(Uf p®a 1)
N N No N

Proof. — By , I" is implemented by Uy so that we easily deduce the lemma.
O

PROPOSITION 3.45. — For all a,b € No N N, , we have:

(T o id)(T(@))o 5% )

=(1 48al Qa0 JobJa)(Un pQa 1)(1 a®; W)U o®; 1)p;‘f(a)
N N N No No

Proof. — By the previous lemma and , we can compute:
(1 6®a 1 R0 JabJs)(Un 26 V(1 o®5 W) Uf a@5 1ol 0
N N N No No

=Un s®a 1)(1 a®51 3®a JobJa)(l o®j W*)Pif(a)U;I
N Ne N Ne

= (Un 5 D1 a®; (1 5®a JobJe)W* il ) )Uk
N N

Neo

= (UH B%a 1)(1 a®3 F(a)piﬁ\&(b))U;}
NO

= (UH B%a 1)(1 a®3 F(a))(U;I a%f 1)P§:§\®(b) = (F ﬁ;a id)(r(a))ngA(p(b)

O
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COROLLARY 3.46. — The following relation is satisfied:

Uk o®5 1)(0pe «®5 1)(1 a®j Up)ozu(1l Qa0 ue)(1 &0 W)
No No No N N

N

Neo

Proof. — We put together (with H = Hg) and thanks to the co-
product relation. We get:

(1 p®a W¥)oaue (1 a®j 0u)(1 o®p Un)
N Neo Ne

= (Un p2a 1)1 o@3 W)(Uf a®51) (040 a®3 1)
N Neo Ne No
Take adjoint and we are. O
THEOREM 3.47. — W 1is a pseudo-multiplicative unitary over N w.r.t a,B, 0.

Proof. — W is a unitary from He g®q He onto Ho a®p Hg which satisfies
n )

the four required commutation relations. The previous corollary, with H = Hg,
finishes the proof. O

Similar results hold for the right version:

THEOREM 3.48. — If W' = Uy, then the following relation makes sense and
holds:

(W' 5@ 1)(04 @0 1)1 R4 Ug)ozue (1 a®p 0,)(1 a®p Ugy)
N N N Neo Neo
=1 3®a Uyg)(W' a®p1)

N Neo

If H = Hg, then W' is a pseudo-multiplicative unitary over N° w.r.t 3, a, é.

Proof. — For example, it is sufficient to apply the previous results with the
opposite Hopf bimodule. O
3.7. Right leg of the fundamental unitary. — In the von Neumann

setting of the theory of locally compact quantum groups, it is well-known (see
IKVO03]) that we can recover M from the right leg of the fundamental unitary.
In this paragraph, we prove the first result in that direction in our setting.

DEFINITION 3.49. — We call A(U};) (vesp. A(Uj;)) the weak closure in £(H)
of the vector space (resp. von Neumann algebra) generated by (wy ., *id)(Ujy)
with v € D(4(Hy), 1) and w € D((Hg)g, 1°).
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PROPOSITION 3.50. — A(U};) is a non-degenerate involutive algebra i.e
A(Uyy) = A(Uy) such that:

a(N)UB(N) € A(Uy) = A(Uy) € M C &(N)
Moreover, we have:

r e AUy NLH) <= Uyl a®px)=(1 Q4 z)Uy
NO

In fact, we will see later that A(Uy) = A(Uy) = M.

Proof. — The second and third points are obtained in [EV0(] (theorem 6.1).
Eno0d (

As far as the first point is concerned, it comes from proposition 3.6)
and which proves that A(U};) is involutive. O

To summarize the results of this section, we state the following theorem:

THEOREM 3.51. — Let (N, M, «, 3,T) be a Hopf bimodule, Ty, (resp. Tr) be
a left (resp. right) invariant n.s.f operator-valued weight. Then, for all n.s.f
weight w on N, if ® = poa~! o Ty, then the application:

v a®; As(a) = D & ®a Aa((wue gra id)(T(a)))
e iel H Iz
for all v € D((Ha)g,p°), a € Ny, N Ng, (N°, u°)-basis (&)icr of (Ha)p and
where B(n) = Jea(n*)Js, extends to a unitary W, the adjoint of which W*
18 a pseudo-multiplicative unitary over N w.r.t o, 3,0 from Hg a®p He onto
e
Hy 3®q Ho. Moreover, for allm € M, we have:
n

D(m) =W (1 o®; m)W
NO

Also, we have similar results from Tg.

We also add a key relation between I' and the fundamental unitary proved

in corollary :
THEOREM 3.52. — For all e,x € No NN, and n € D(oHs, 1°), we have:

(Zd B*a wJ<pA<p(e),77)(F(z)) = (Zd * w/\@(l),J@e*J@’r})(UH)
m

Also, for all f,y € Ng NN, and £ € D((Hy)g, u°), we have:

(Wrghw(F)e B%a 1d)(D(Y)) = (Way (y),Jg £+ Jue * 1d)(Ugr)
"
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PART 1
MEASURED QUANTUM GROUPOIDS

In this part, we propose a definition for measured quantum groupoids from
which we can develop a full theory that is we construct all expected natural
objects, then we perform a dual structure within the category and we also get
a duality theorem which extends duality for locally compact quantum groups.
Two main ideas are used in this theory. First of all, we use axioms of Masuda-
Nakagami-Woronowicz’s type: we assume the existence of the antipode defined
by its polar decomposition. On the other hand, we introduce a rather weak
condition on the modular group of the invariant operator-valued weight. From
this, we can proceed and we get all known examples as we will see in the second
part.

4. Definition

In the following, (N, M, a, 3,T") denotes a Hopf-bimodule. Like in the quan-
tum group case (for example [KV00] or MNWOQ]), we assume that there exist
a normal semi-finite and faithful (nsf) left invariant operator-valued weight
Ty,. We also assume that we have an antipode. Precisely, like in [MNWO03],
we require the existence of a co-involution R of M and a scaling operator 7
(deformation operator) which will lead to polar decomposition of the antipode.
Axioms we choose for them are well known properties at the quantum groups
level. They are quite symmetric, easy to express and adapted to our develop-
ments. They give a link between R, 7 and the co-product I'. They stand for
strong invariance and relative invariance of the weight in [MNWO0J]. Finally,
we add a modular condition on the basis coming from inclusions of von Neu-
mann algebras. The idea is that we have to choose a weight on the basis N to
proceed constructions. That is also the case for usual groupoids (see [Ren8(],

and also section [L]).

DEFINITION 4.1. — Wecall (N, M, «, 8,1, T, R, 7, ) a measured quantum
groupoid if (N, M, «, 3,T') is a Hopf-bimodule equipped with a nsf left invari-
ant operator-valued weight 77, from M to «(N), a co-involution R of M, a
one-parameter group of automorphisms 7 of M and a nsf weight v on N such
that, for all t € R and a,b € N, NN :

R((id %0 ©rgnn(@)D(08) = (id sxa wgngm)T(a"a)

and 71 ((id pxa Wrgns(a))D(0°D)) = (id sra @y ng(0F (o)) T (07 (0°D))
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where ® = v o a~! o T}, and such that:
VoYt =V

where 7 is the unique one-parameter group of automorphisms v of N satisfying
foralln e N,t e R:

ol (B(n)) = B(ye(n)

We recall that the Hopf-bimodule does also admit a nsf right invariant
operator-valued weight Tr = Ro T, o R. The rest of the section is devoted to
develop several points of the definition and clarify from where v comes from.
Thanks to relation concerning 7, we easily get that:

nof=poo; and (7 g*aof)oF:Foof
N

for all n € N and ¢t € R (For the first one, make b goes to 1). The first equality
give the behavior 7 should have on the basis. In fact, it is necessary, if we

want to give a meaning to 7; gx, of. The last relation is usual in the theory
N
of locally compact quantum groups. Then, we can explain how to recover M

from I':

THEOREM 4.2. — If < F >~V s the weakly closed linear span of F' in M,
then we have:

M =< (w pkq id)(T(m)) | m e M,w e MJ ke R" stwoB < kv >~V

=< (id grq w)T(m)) | me M,we M} ke R stwoa <kv >V

Proof. — Let call Mg the first subspace of M and M, the second one. Since
7:(B(n)) = B(o} (n)) for all t € R, we have:

Mp =< (woTy pxq id)(T(m))|m € M,w € (Mg){, k€ R st woB < kv >~V

Moreover we have of ((w g*xo id)['(m)) = (Wo Tt gxq id)[(0f(m)) so that

o (MR) = Mg for all t € R. On the other hand, by proposition .11, restriction
of ® to Mp is semi-finite. By Takesaki’s theorem (, theorem 10.1), there
exists a unique normal and faithful conditional expectation F from M to Mg
such that ®(m) = ®(E(m)) for all m € M*. Moreover, if P is the orthogonal
projection on the closure of Ag(No N Mg) then E(m)P = PmP.

So the range of P contains Ag((w pgka id)['(z)) for all w and z € Ng. By

v
proposition implies that P = 1 so that FE is the identity and M = Mg.
Now, it is clear that R(Mpg) = M, thanks to co-involution property what
completes the proof. O



40 FRANCK LESIEUR

The theorem enables us to understand that formulas satisfied by R and 7 in
the definition are sufficient to determine them. For example, we can be ensured
of the commutation between R and 7 which can be tested on elements of the
form (id pxa Wipag(a))T(b*D). Also, if we put ¥ = v o371 oTgr = ®o R, we

get, for all t € R:

v o_ P _ v v _ o
op =RooZ,0R and mnoa=aoog/ and (0, gxa7-t)oI'=Too,
N

Then, we can precise the behavior of 7 with respect to the Hopf-bimodule
structure:

PROPOSITION 4.3. — We have T'o 1, = (14 gka 7t) o for all t € R.
N

Proof. — Because of the behavior of 7 on the basis, it is possible to define a

normal *-automorphism 7, g 7 of M gxo M which naturally acts for all
N N

t € R. By co-product relation, we have for all £ € R:

id gxa D)(oF ko T—i) oL = (id gxo DT oo
B t B B t

= (T gxqid)[o of =(Toa} gra T—t)I

174

= (0} pra Tt pra T-t)(T' gkq id)T

v v

= (O’;II g*a [(Tot p*a T—t)oT])oT

Consequently, for all m € M, w € M}, k € RT such that wo 3 < kv, we have:

To7 s0((Wool) paid)l = (w gaid gke id) (o) gxa(ToT_4))oT

v v v

= (w B*a id B*a id)(af’ B*a [(T_t B*a T_t) o F])

=[(7—¢ p*a 7—t)oT]o((wo ofj) g*a 1d)T

v

The theorem allows us to conclude. O

Then, we get a nice and useful characterization of elements of the basis
thanks to I':

PROPOSITION 4.4. — For allz € MNa(N)', we have I'(z) =1 gQq & x €
N
B(N). Also we have, for allz € MNB(N), I'x) =2 g®q 1 & x € a(N).
N
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Proof. — Let x € M N «(N)" such that I'(z) = 1 Q4 x. For all n € N, we
N

define in the strong topology:

Ty = % /ezp(—thQ)Jfl(z) dt analytic w.r.t o¥,
and:

Yn = % /exp(—thQ)T_t(:E) dt belongs to a(N)'.

T
Then we have I'(z,,) = 1 3®q Yn. If d € (My N Mr,,)T, then, for all n € N,
N

we have dx, € My N Mr,. Let w € M and k € RT such that woa < kv.
By right invariance, we get:

w o TR(dl‘n) = W((\I] ﬁ*a ’Ld)(l—‘(dl‘n)))

U((id pra w)(I(dzn))) = V((id sxa (ynw))(T(d)))

w((¥ gra id)(T'(d))yn) = w(Tr(d)yn)

Take the limit over n € N to obtain Tr(dz) = Tr(d)x for all d € MgNMr,
and, by semi-finiteness of Tr, we conclude that = belongs to S(N). Reverse
inclusion comes from axioms. If we apply this result to the opposite Hopf-
bimodule, then we get the second point. o

Finally, we are able to explain existence and uniqueness of « for the defini-
tion:

PROPOSITION 4.5. — There exists a unique one-parameter group of automor-
phisms v of N such that:

i " (B(n)) = B (n))
for alln € N andt € R.

Proof. — For all n € N and t € R, we have o} (8(n)) belongs to M N «a(N)'.
Then, we can compute:

Toof(B(n)) = (4 ﬁ;a o) oT(B(n))

= (1 pra 07)(1 pQa B(n)) =1 ®a o} (B(n))
N N N

By the previous proposition, we deduce that of (3(n)) belongs to 3(IV) i.e there
exists a unique element +;(n) in N such that o (3(n)) = B(7:(n)). The rest of
the proof is straightforward. O
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In our definition, we ask  to leave invariant . Just before investigating the
structure of these objects, we re-formulate at the Hilbert level relations for R
and 7 with Uy (or W) coming from theorem B.51. Depending on the situation,
we will use one or the other expression.

PROPOSITION 4.6. — Let I be a unitary anti-linear operator which implements
R that is R(m) = Im*I for all m € M and P be a strictly positive operator
which implements T that is 7s(m) = P~%*mP® for allm € M and t € R. For
allt € R and v,w € D(,Ho,v), we have :

R((id * wgv,w)(Un)) = (id ¥ @gw,0)(Un)

Tt((’id * WJ(pU,w)(UH)) = (’Ld * WA;itJ(pv,A;itw)(UH)

(I oa®5 Ja)Usp = Un(I 5®a Jo) and (P" 504 AZ)Ux = Un(P" o®5 AY)
sno o (R ko R)oT =T o R and (1; pka 0f)oT =T ooy
N N
Proof. — By theorem , for all e,z € No NN, and n € D(oHe,p°), we
recall that:
(id pra Wipns(e)n)(D(@)) = (id % Wrg (2),J0er Jon) (Un)

174

Then the first two equalities are equivalent to formulas of the definition and
we get straightforward the equalities at the Hilbert level. The last ones come
from definition. O

5. Uniqueness, modulus and scaling operator

In this section, we obtain results about the modular theory of the left-
invariant operator-valued weight. We construct a scaling operator and a mod-
ulus which link the left invariant operator-valued weight Ty, and the right in-
variant operator-valued weight R o T, o R. We also prove that the modulus is
a co-character. We also establish uniqueness of the invariant operator-valued
weight.

5.1. Definitions of modulus and scaling operators. —

ProprosITION 5.1. — For all t € R, we have:

(1) Toolr_y = (id pxe ofT_4)oT
N

(2) RoTpoRoolT 1 =povyo’, 083 'oRoTLoR
(3) PoRooPT_1=®oR
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Proof. — For all n € N and t € R, we have:
oy T—¢(a(n)) = a7 (a(o”(n))) = a(n)
so that we can define ¢d gx, of’ 7_¢. Then, the first statement comes straight-

N
forward from definition property of 7 and by proposition @
By right invariance of T, we deduce, for all a € M?R:

Troof7_i(a) = (¥ pxe id)[(of7_¢(a))

= o7 (U kg id)T(a)) = o7 0 Tr(a)

v

Then, by hypothesis on 7 and T, we get:
TROO’;I)T_t = U;I)T_toﬁoﬁ_loTR = a’?oﬁoaztoﬁ_loTR = ﬁo'yta{toﬁ_loTR

To conclude we just have to take v o 37! on the previous relation and use
invariance property of ¢ and vy w.r.t v. O

PROPOSITION 5.2. — The one-parameter groups of automorphisms oc® and T
(resp. oV and T) commute each other.

4

Proof. — We put s = v,0”,. Since W is s-invariant, we have o¥ oo o 7_; =

ofor_yooy, for all s,t € R so that:
(id pko )T =T ok =TooY, oni00r = (0¥, gkaTs)oT 0ki00y
N N

= (0¥, gka Ts0 ki) oT 00y = (id ko Ts 0 Kt 0 T_g) o
N N

So, for all a € M, w € M} and k € R such that wo 3 < kv, we get:
of o 1((w pra id)T(a)) =Ts00F 071 0T_s((w g*a id)[(a))

and by theorem @, we easily obtain commutation between ¢® and 7. By
applying the co-involution R to this commutation relation, we end the proof.

O
COROLLARY 5.3. — The one-parameter groups of automorphisms o® and o%
commute each other.
Proof. — By the previous proposition, we compute, for all s,¢t € R:
T'o O';b o O'EI = (Ts p*a J;I)) olo ofj = (TSO';II B*a J;I)T,t) ol
N N
= (07 pa T_t0T) ol
N
= (o} B*a 7)ol oo®=Tocg!o0?
N

Since I' is injective, we have done. O
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By the previous proposition and by [Vae01d] (proposition 2.5), there exist a
strictly positive operator § affiliated with M and a strictly positive operator A
affiliated to the center of M such that, for all ¢ € R, we have [D®o R : D®], =
Az’ §i . Modular groups of ® and ®o R are linked by o°F (m) = 6@ (m)5—*
for all t € R and m € M.

DEFINITION 5.4. — We call scaling operator the strictly positive operator
A affiliated to Z(M) and modulus the strictly positive operator § affiliated to
M such that, for all t € R, we have:

[D® o R : D), = A3t §it

The following propositions give the compatibility of A and § w.r.t the struc-
ture of Hopf-bimodule.

LEMMA 5.5. — For all s,t € R, we have [D® o 0®°F : D], = \ist.

Proof. — The computation of the cocycle is straightforward:
[D® o c2°R . DB], = [DP o 02°F : DB o Ro o®°F|[D® o R : DD,
= o®°*(D® : DP o R];)[DP o R : DD,
_ 671'50?8()\7%67#)515)\% sit
_ §ois N~ B st g—it gis \ 1o git _ yist
o

PROPOSITION 5.6. — We have R(\) = X\, R(0) =571 and 7(6) = 6, e (\) = A
for allt € R.

Proof. — Relations between R, A and § come from uniqueness of Radon-
Nikodym cocycle decomposition. By proposition @, we have Por_, = PogPolt
for all s,t € R, so:

7o([D®o R : D®];) = [DPoRoT_,: DPor_,|; = [DPoc®oR: DPoc®E,
Consequently, by the previous lemma, we get:
7.([D® o R : D®);)
= [DPoo?RoR: DPo R|;[DP o R: DP|;[DP: DP o c2°F,
= R([D® o ¢®°f' . DO)* )[DP o R : DO|;[DP o 6*°F . DOJ;

_ R()\ist))\—#é‘it)\—ist — )\—%é‘it
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5.2. First result of uniqueness for invariant operator-valued weight.
— Next, we want to precise where the scaling operator A sits. We have to
prove, first of all, a first result of uniqueness as far as the invariant operator-
valued weight is concerned.

Let 77 and T3 be two n.s.f left invariant operator-valued weights from M
to a(N) such that 71 < Tp. For all i € {1,2}, we put ®; = voa~! oT; and
61(71) = J':Pia(n*)‘]‘bi'

We define, as we have done for Uy, an isometry (Us)g by the following
formula:

U2)a (v a®p, Aay(a)) = D & p®a Ao, ((wog, o*a id)(T'(a)))
vo iel v
for all v € D(Hg,v°) and a € Ng, NNr,. Then, we know that (Uz) g is unitary
and I'(m) = (U2)u (1 «®p, m)(U2)} for all m € M.
NO

Since Ty < Ty, there exists F' € L(Hg,, Hg, ) such that, for all z € Ng, NN,
we have FAg,(z) = Ag, (x). It is easy to verify that, for all n € N, we have
FBa(n) = pi(n)F. If we put P = F*F, then P belongs to M’ N (3(N) and
Jg, PJs, belongs to M Na(N)'.

LEMMA 5.7. — We have T'(Jo,PJo,) =1 3®a Jo,PJo,.
N

Proof. — We have, for all v,w € D(Hg,v°) and a,b € Ng, N Np,:

(1 ﬁ%a P)U2)u(v o®p, Ao, (a)|(Uz)n(w «®p, Ag, (b))

Vo

= (Un)uv o®p, Ag, (a)|(Ur)m(w a®p, Ag, (0)))

where (Uy)g is defined in the same way as (Uz)p. The two expressions are
continuous in v and w, so by density of D(Hg,v°) in H, we get, for all v,w € H
and a,b € Ng, N Nr,:

( 6%a P)U2)u(v a®g, A, (a)|(U2)m(w o®p, Aa,(D)))

ve ve

=((U)n a®p, Ao, (a)[(U1)n(w @, Ag, (b))

= (1 a®s, P)(v a®g, Aa,(a))lw o®p, As, (D))
Ne ve ve

so that (U2)5 (1 s®q P)(U2)p =1 a®5 P. In particular, if we take H = Heg,
N
then by@ we get (Uz) g (1 a®ﬁ J%PJ@Q)(UQ)H =1 5®a Jo,PJg,. Finally,

since Jp, PJg, € M, we have F(J%PJ%) =1 g®a Jq>2PJq>2 O
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PROPOSITION 5.8. — If T1 and Tb are n.s.f left invariant weights from M
to a(N) such that Ty < Tu, then there exists an injective p € N such that
0<p<1and forallt € R:

[D®; : D®y); = B(p)™

Proof. — By the previous lemma and proposition , there exists an injec-
tive p € N such that 0 < p < 1 and, for all z,y € Ng, N Nr,, we have

(Ao, (2)|Aa, (1) = (Jo. B(p) o, A, (2)|Aa, (y)). By [Btr81] (proposition 3.13),
we get that S(p) coincides with the analytic continuation in —i of the cocycle

[D®q : D®3]. Then, we have, for all ¢ € R:
[D®1 : D] = B(p)”
O

PROPOSITION 5.9. — Let T1 be a n.s.f left invariant operator-valued weight

&, is o®-invariant. Then, there exists a strictly positive operator q which is
affiliated to N7 such that ®1 = (®)g(q)-

Proof. — We put Ty = T, +T}. Since ®; is o®-invariant, then the left invariant
operator-valued weight T5 is n.s.f. Finally, since 77 < T and T, < T, there
exists an injective p € N between 0 and 1 such that ®; = ($2)g(,) and & =

(¢2)ﬁ(1*p)' By , we have:
[D®; : D®y); = B(p)™ and [DP : DBy]; = B(1 — p)*
Then, we have, for all t € R:

[D®; : DB), = [D®; : DBs];[ DBy : DD, = ﬁ(%)”

that’s why ¢ = +£ is the suitable element. Now, by [Str81], we have:

T-p
Ba) = a7 (B(a) = B(3(a))
so that, by injectivity of 3, we get that ¢ is affiliated to N7. O

LEMMA 5.10. — For allt € R, 7y o T o7y is a n.s.f left invariant operator-
valued weight from M to o(N). Moreover, a2°™(B3(n)) = B(vs(n)) for all
s,teR andn e N.

1

Proof. — For allt € R, we have voa~to71_ ;0T o1, = ® o1;. Then:

(id gxqvoa™!

v

or_toTpom)ol = (id gkq Pom)ol

=7_40(id gkq ®)oT o, =7_0Tom
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On the other hand, for all s, € R and n € N, since v and ¢” commute, we
have:

0™ (B(n)) = T 0 0T o (B(n)) = 71 0 07 (B(0} (n)))
= 71(B(ys0¢ (n))) = BloZ 7507 (n)) = B(7S ()
O

PROPOSITION 5.11. — There ezists a strictly positive operator q affiliated with
Z(N) such that the scaling operator A\ = «a(q) = B(q). In particular, X\ is
affiliated with Z(M) N a(N) N B(N).

Proof. — By the previous lemma, 7507, o7_j is left invariant. Moreover, since
0® and 7 commute, ® o 7_ is o®-invariant. That’s why, we are in conditions
of proposition @ so that we get a strictly positive operator g, affiliated with
N7 such that [D® o 7_s : D®]; = 3(gs)". On the other hand, by lemma [.j,
we have [D® o g2°% : D®], = N¥'. Since we have ®o7_, = ® 0 02°% 50 we
obtain that A%! = 3(qs)" for all s,t € R. We easily deduce that there exists
a strictly positive operator ¢ affiliated with Z (V) such that A = 8(¢). Finally,

since R(A) = A, we also have A = a(q). O

5.3. Properties of the modulus. — Now, we prove that the modulus ¢ is
a co-character. This will be a key-result for duality.

PROPOSITION 5.12. — For alln € N and t € R, we have:
§"a(n)d™" = a(voy(n))  and  §"B(n)s~" = B(noy (n))
Proof. — By definition of ~, we have:

B(o”,(n)) = o} (B(n)) = 6" (B(n))d~" = 6" B(yi(n))d—"

what gives the first equality (we recall that v and ¢ commute with each other).
Then, apply the co-involution to get the second one. o

Thanks to the commutation relations and by proposition , we can de-
fine, for all t € R, a bounded operator §" 3®, 6" which naturally acts on
N

elementary tensor products.

LEMMA 5.13. — There exists a strictly positive operator P on Hg implement-
ing T such that, for all € Ng and t € R, we have P*Ag(x) = A2 Ag (71 (x)).

Proof. — Since ® o R = ®4, by [Vae0l4] (5.3), we have:
Ao (o2 (2)) = 6 JpA2 6" Jo A% Ag (2)
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and since X is affiliated with Z(M), we get ||Ae(02°R(x))|| = ||A2Ag(z)]| for
all z € No N Np, and t € R. But, we know that ® is o?°® o 7-invariant, so
l[Ao(2)|| = ||A2Ag(7e(2))||. Then, there exists P; on Hg such that:

PAg(z) = A%Aé(Tt(z))

for all x € Np N N1, and t € R. For all s,t € R, we verify that PsP; = Py
thanks to relation 7¢(\) = X\ and the existence of P follows. The fact that P
implements 7 is clear. O

LEMMA 5.14. — We have, for all a,b € Nog " N1, and t € R:

_ PoR __
= WJ1yAp(a) O T—t ande®A¢(b)oot =w

w
Joha(AE () J¢A¢(A%G??R(b))

Proof. — Since 7 is implemented by P, the first relation holds. By []
(proposition 2.4), we know that Agor = JodJ3dAge so that we can compute,
forallz € M and b € N N N, :

(07 (2) o Mo (b)| T Ao (D) = (28505 JoAs (D) Agex JeAs (D))

= (
= (2J36" T AL Tp A (b)| Ja 6" T50"AG T Aa (b))
= (267" Jo Ao (02,(0))|07 " JoAa (02, (b))

= (@Jaha(A20?,(0)0™)| JoAa (X202, (b)5™))

= (2JoAo(AZ5 02, (b)6")| Jo Ao (AT 0, (b)8))
= (2JaAa(\2 0P R (1)) JoAa (A2 022 F (D))

O

PROPOSITION 5.15. — We have T o1, = (0 o 0258) o for allt € R.
N

Proof. — For all a,b € No NN, and t € R, we compute:
(id oo Wrana () (02 p*a o) ol om(a*a)]
= o2,[(id R WaAa(b) © oy *F)(T o i (a*a))]
By the previous lemma, this last expression is equal to:
Jeha(rdoreny) (I 0 Te(@"a))]
=02, o R[(id o*a WrgAa(r(a)) LA 025 (6%0)))]

)0 237 (0°D))]

20(id praw

=Ro Ufopb[(id fFa wJ@Aep(/\%‘rt(a))
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Again, by the previous lemma, this last expression is equal to:

Ro o [(id pra wipre(a) © T—t(I 0 a2 (bb))]
= R[(id pxa wisnqs(a))(L(07D))] = (id pra wisns@)(I'(a"a))

So, we conclude that (6%, gxq of°f)oT or =T for all t € R. O
N

COROLLARY 5.16. — For allt € R and m € M, we have:
(51'15 ﬁ®a 5zt)F(m>(571t ﬁ®a 571'15) — F(5itm57it>
N N

In particular, for all s,t € R, T'(6%) and §" s®4 6% commute each other.
N

Proof. — For all t € R, we have:

P

JoI'= (J?t Bka Oy © U;I)OR
N

PoR

] PoR ol ;I>0R o Tt) oT o oy

(62,00 B*aq O-4 OO0
N

® PoR P PoR
= (02,07 pgxeo; tom)ol oo, o0,
N

( Lol PoR

P PoR
02y pra 0y Y)oTlomoZ, 00y
N

:FoaftoofoR

We know that o®,02°%(m) = §%md~% for all m € M, that’s why we get:
(51'15 ﬁ®a 5zt)F(m)(571t ﬁ®a 571'15) — F(5itm57it)
N N
In particular, for all s € R, we have:

(5it 5%0 5zt)r(5w)(571t 5%0 571'15) — F((sit(;is(sfit) — F((sw)
O

PROPOSITION 5.17. — Let us denote by TgTL made of elements a € N, N
No N Ny, analytic with respect to both ® and ¥ such that, for all z,2" € C,
oY 00?2 (a) belongs to N, N\ No NNy. This linear space is weakly dense in M
and the set of Ay(a) (resp. Aa(a)), for all a € Ty, , is a linear dense subset
in H. Moreover, the subset J@A@(T(I;I,’TL) is included in the domain of 6%, for

all z € C and is an essential domain for 6*.

Proof. — Let us take x € TJTL and let us write A = fo"ot de; and define
fo = [V de;. If we put:

q “+o0 7qt2 o
Tpq = [p - e o, (x) dt
—o0
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we obtain that z,, 4 belongs to T(;TL, is analytical with respect to ¥, o¥ (z,,,) is
weakly converging to z and Ag (), 4) is weakly converging to Ag(z). Moreover,
Ar, (zp,4)is weakly converging to Ar, (z).
Since, for all y € M and t € R, we have:
oo, = §twsH
we see that, for all such elements z,, and z € C, 6%z, ,6"* is bounded
and belongs to 7o 7, . In particular, 5_%901),,16% belongs to My, N 7g and is
analytic with respect to both ® and ¥. Using then the operator e,, introduced
in [, 1.1, which are analytic to both ® and ¥ and converging to 1 when
n goes to infinity, we get that e,z 4 belongs to Ny, NNg. On the other hand,
since:
enxp,qéé = (enéé)é_%xp,qéé

belongs to N, we see, by ], 3.3, that e, xp 4 belongs to My and, there-
fore, to T(I;I,’TL, from which we then get all the results claimed. (|

Let recall proposition 2.4 of [:

PROPOSITION 5.18. — Let a,b in N, . Then Tr(a*a) and Tr(b*b) are positive
self-adjoint closed operators which verify:

WrgAg(a)(TL(b7D)) = wryny ) (TL(a"a))

LEMMA 5.19. — Let b € N1, N1 No NNy and X positive affiliated to M be
such that 5-2 X8~ 2 is bounded. Then the element of the extended positive part
(id pxo U)T'(X) is such that:

. 11
Wrgns () ((@d pra OI(X)) =wy o (TL(072X572))
If X is bounded, such that 6= = X6~ % is bounded and in M then (Wiyay ) B*a

id)T(X) belongs to MF, N M. IfY is in M7, , we have:
§73TL(Y)6% = (id gxe U)L(57 X57)

Proof. — Let us assume that a,b € N7, N N N Ny. By [VaeOld], JoAs(a) is
in the domain of 6% and 6~ 2.JpAg(a) = Ai62JyAg(a). Then, we compute
the following;:

Wigng ) ((id pra V)'(a"a)) = @ o R((wigag ) p*a id)T(a"a))

= ®((Wryru(a) pra id)T(07D)) = wiyny (o) (TL(07D)) = (T(b°0))

w 1
0" 2JpAs(a)

- wJ@Aep(aéfé)(TL (b*b)) - W‘L;,A@(b) (TL(éiéa*aéié))
(T1(62a"ad™?))

w_ 1
52 J\pA\p(b)
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If X is positive such that -2 X2 is bounded, we may consider X as the
upper limit of elements of the type a}a; where a; belongs to the dense left ideal
N7, "\No NNg. Then every a;6~% is bounded and we get the first formula by
increasing limits. The proof of the second one is an easy corollary of the first
one because we are in the essential domain of §2. o

THEOREM 5.20. — We have T'(§) =6 g®4 0.
N

Proof. — Applying I' to the second equality of the previous proposition, we
get for all Y € M;ﬁ:

=

DEH)TLY) p@a DI =T((id pro DFGHYSY)
= (id praid gre V) gxq id)T(62Y 7))
= (id praid gre V)(id gxe D)T(62Y 7))
Let now b € T(I)‘IZTL and define Z by:
Z = (Wry Ay (b) p¥a id)T(02Y5?)
By corollary , we have:

1,1 )
6 27072 = (WS%J\I,A\I,(b) 5>:a Zd)F(Y)
which is bounded by proposition . By the previous proposition, we get for

all v/ € TTR NTy:

=

1
WAy (b) p@aduhe®)(L(02)(TL(Y) ﬁ%a DT(62))
. . . 1 1
= w']\pA\p(b) [3®a~]\PA\IA(b/)((’Ld B*a id g*a \I/)(’Ld B*a F)F(52Y52))
= Wy ng ) ((id gxa OT(Wryn, @) s@a id)I(02Y52)))

0722072)) =Wy sonwon TE (@58 5, )

= Ysi J\pA\p(b/)(TL( p*a id)I'(Y)))

= Y sy (t) p0asd e L) 5%0‘ 1)

from which we infer, by increasing limits, that:
WigAw(b) s8aduhe @) (T (6) =167 JyAu(b) sRq 62 JyAy(D)]]?

which finishes the proof by proposition . O
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5.4. Uniqueness of invariant operator-valued weight. —
THEOREM 5.21. — IfT" a n.s.f left invariant operator-valued weight such that

(Tt p*a o®)Yol =To0®, voy =v and yo~ =~ on, then there exists

N
a strictly positive operator h affiliated with Z(N) such that, for all t € R, we
have:

' =voaloT =(woa toTyL)sun) and [DT': DT, = B(h™)
Proof. — We put ® =voa~!oT’. We have for all s € R:

> @’ > > _ @ @’
TooZ, 00, =(7—5 gra0_g)ol 0o, =(id gkqoZ 00, )oT
N N

By right invariance of Tg, we have for all a € M}R:

Tr(02, 007 (a) = (20 R sxq id)(T(0?, 0 0¥ (a))

S S

—S S —S

=02, 00 (o R pxq id)(a)) = 0>, 006® (Tr(a))

. .
® oo -invariant and,

and ¢® commute each

Since v and v leave v invariant, we get that ® o R is o

!
2ol and 0%, 0 0¥ commute each other. But o®°#

$oR

SO 0.

other that’s why o and o®" also commute each other. For all s, t € R, we

have:
Do (5°)075) = (0 gra o JLE))E 50 07%) =1 g, o (57%)57
N N N

Consequently o (§7%)5~% belongs to (N). For all n € N and s,t € R, we
have:
o (5°)B(n)a (57%%) = o ((6°)0 2, (B(n))d ") = o ((6°)B(1L4(n))5 ")
= o7 (B(s0%7L4(0) = By 5087 (1)) = B(v50% (n))) = 6 B(n)5 "
So 0@ (6')6~% belongs to S(Z(N)) and we easily get that there exists a
strictly positive operator k affiliated with Z(N) such that o' (675) = B(k"s*)§s.
Then, we have:

U;b/ oaf)(m) — ¥ (5—ito_zi>oR(m)5it) _ B(k—ist)é-—ito_d)/ ° a,zboR(m)(sitﬁ(kist)

S S

= B(k~)a} 0 o (m)A(K™")

Take m = §™ to get k is affiliated to N7. Apply ® to the previous formula and
get:
ooy oo (m*m) =Bk} 0oy (m m)B(k™))
= 2(0} 00y (m*m)) = ooy (m"m)
So, by @ and left invariance J?; oTy o of,, there exists a strictly positive op-
erator g, affiliated with Z(N) such that ® o o® = ®3(q.)- By usual arguments,
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we deduce that there exists a strictly positive ¢ affiliated to Z(NN) such that
Poo? = Py(g-) and [DP o 0F : D], = B(¢*). Then, again by b.9, there
exists a strictly positive operator h affiliated to Z (V) such that ® = ®4(j,) avec
[DT': DTy) = B(h). O

Also, we have a similar result for right invariant operator-valued weight.

COROLLARY 5.22. — IfTg a n.s. f rzght invariant operator-valued weight such
that (o} g*a T_¢) oI —Foat ,voy =v and yoy = o, then there

erists a stmctly positive operator h affiliated with Z(N) such that:
Tr = (RoTL o R)am
We state results of the section in the following theorems:

THEOREM 5.23. — Let (N,M,«,3,T, T, R,7,v) be a measured quantum

groupoid. If T' a mn.s.f left invariant operator-valued weight such that

(Tt p*a O’t,>OF ook, voy = v and yor = + o, then there
N

exists a strictly positive operator h affiliated with Z(N) such that, for allt € R:
voa ol = (voa Tt oTL)sm
We have a similar result for the right invariant operator-valued weights.

THEOREM 5.24. — Let (N, M,«,8,T,TL,R,7,v) be a measured quan-
tum groupoid.  Then there exists a strictly positive operator 0 affiliated
with M called modulus and then there exists a strictly positive operator
X affiliated with Z(M) N a(N) N B(N) called scaling operator such that

it2
[Dvoa~toTLoR:Dvoa~toTyL], = NT 6 for all t € R.
Moreover, we have, for all s,t € R:
[DvoatoTpors:Droa toTy]y = A%

DvoatoTpoRor,: Dvoa ™t oTyoR]y =\~

) [

i _ .
[Dyoa_l OTL Oo_;/oa LoTroR . DVOa_l OTL]t — )\zst

[Dvoa=toTroRo UZOQ*IOTL :Dvoa ' oTyoR]y =\
ii) ROA) =\, R(0) =871, 74(8) =6 and :(\) = \ ;

iii) 0 is a group-like element i.e T'(§) =4 56}3a d.

6. A density theorem

In this section, we prove that there are sufficiently enough operators which
are both bounded under the left-invariant operator-valued weight and the right-
invariant operator-valued weight. This allows, as a corollary, to found bounded
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elements for both a and g which will be useful for duality. This chapter is
mostly inspired by chapter 7 of [Eno04].

LEMMA 6.1. — Let y,z € Ny, "Ny and £ € D((Hy)g, 1°), then we have:

[(Waw ), 02+ ug * ) Up)l" (Wng ), du 2+ dug * 1d) Ugr)

<R (O (Wigne(s) s%a id)(T(y*y))
13

For ally € Nr, "Ny, z€ M and § € D((Hy)g, 1°), then we have:

R ([(way (y),J0 2= e * 1) (U] (Wag (y), 1wz 1ee * id) (Ug))
V0 . «
<R (O (Wrgnu(y) %a id)(T("2))
o

Proof. — The first inequality comes straightforward from theorem . Then,
apply R to get for all z € N, N Ny:

R ([(w/\\p(y),J\pZ*J\pf * Zd)(UIILI)]*(WA\p (y),Jwz*Jw§ * ’Ld)(U]/LI))

<|IR% (€)IPR(wgrg(z) p¥a id)(T(y"y))
"

= [|R% (Ol (Wryra(y) s%a id)(T(2*2))
o

Let us assume now that z € M. Using Kaplansky’ s theorem, there exist
a family z; in Np, N Ny, weakly converging to z, with [|z|| < ||z||. Then we
infer that Rﬁ’”O(J\pz;‘J\pé) is weakly converging to RB’”U(J\pz*J‘yé) with:

1B* (T2 Tu)|| < [|R7 (Juz" Tug)||
Therefore (way (y), 7y 27 Jye * id)(Up) is weakly converging to (way (y), sz Jye *
id)(Uy,) with:
(@hw (), 7027 2ue * A U] < [[(@hy (y), 702+ 2ue * id) (U]
which finishes the proof. O

PROPOSITION 6.2. — If z € Np,, y € Np, NNy and § € D((Hy)g, 1°) then
(Why (), Ju 2+ Je * id)(Upy) belongs to Np, N Ny.

Proof. — By the previous lemma and by right left-invariance of ®, we have:
U (Wag () 7wz dwe * 1) (Ug)* (Wag (). Jo 2 gwe * 1) (Ugy))
=®oR ([(w/\\p(y)y-]\pz*']wf * id)(UI/LI)]*(w/\\p(y)y-]\pz*']\yf * Zd)(UI/LI))

<R ()|Pwsg ag () (id g3 )T(2*2)) = [|RP (€)][Pw iy ag (o) (TL(72))
o
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Also, we have:
TR ((wap(y)»prz*J\pf * ’Ld)(Ullr{)*(wap (y),Jwz*Jw € * Zd)(U}i))
=RoTr o R ([(Way(y).suz=due * 1) (U)]* (Way (y), 052 gue * id)(Ugr))

SR OIP (@rgru() %a id)(id sra To)(T(2"2))
7 I3

= IR (Ol (Wrsruw) % id)(TL(z"2) ®a 1))
7 7

< IR @©IPITL = 2) I Ta(y*y)l 1

LEMMA 6.3. — For all y,z € Np,, NNy and n € D((Hw)g, 1°), we have:
R[(wy*J\pn,J\pA\p (2) * id)(U;-I)]R[(wy*J\pn,J\pA\p(Z) * Zd)(U}{)]*
< I Tr(y"y)I*(wy pra id)(I(227))
m

Proof. — Let us compute:
R[(wy*J\pn,J\pA\p (z) * id)(U;-I)]R[(wy*J\pn,J\pA\p(Z) * Zd)(U}{)]*
WAy (2),Jey* Jon * ’Ld)(UII“{)(wA\p (2),Jwy*Jen * Zd)(U;-I)

WigAy(y)n 8% 14)(L(2)(Wigag )y s*a id)(T(2))"
w u

< I Tr(y"y)|* (wy pra id)(T(227))

*

= (
= (

O

PROPOSITION 6.4. — Let y1,2" € Np, NNy, y2 € Nr, " Ng N Ng, z €
R(T;’TL)* defined in proposition and e, the analytic elements associated
to the Radon-Nikodym derivative § defined in [VaeOld]. Then the operators
(Wyr Ay (y2), Sz ez Ag (=) * 1) (Ugy) belong to Ny O Ny NNy, N Ns.

Proof. — Let us write X = (nyA\p(yz),.I\pz*e;Aq,(z’) x1d)(Uy). Since yiy2 be-
longs to N, NNy and z belongs to R(N7;,)* = N, and therefore e,z belongs
to Nr,, we get, using proposition .9, that X belongs to N7, N Ay. On the
other hand, since y1, y2, z*e’ 2’ belong to NTR N My, we can use lemma 5.3 to
get that:

RXRX)" < ITr(yiy)l|(@ryau(e) % id)(T(2"€;2"2" en2))
o

< TRy 1P (@i as () s%a id)(D( € en2))
m

Let us apply Tr to this inequality, we get that:
Tr(RX)R(X)") < ITry)Z IPTr(Wrsau ) a*a id)(T(2"€sen2))
n



56 FRANCK LESIEUR

which is equal, thanks to lemma p.19, to:

| Tr(yiy)|ll2]]*w (T (6722 el enz07 %))

573 Ju A (y2)
With the hypothesis, we get that 622072 belongs to A7, and therefore
€203 = (ené’%)éézé’% belongs also to N,. We also get that JyAg(y2)
belongs to the domain of 6~2 which proves that R(X)* belongs to N, and

therefore X belongs to N, . We prove by similar computations that X belongs
to Nq>. O

THEOREM 6.5. — The left ideal N7, N Ny N Nr, N Ng is dense in M and
Ao (N1, NNy N N7, N Ng) is dense in H.

Proof. — Let y be in Nr, N Ng N Ng and z in N7, N Ng. Taking, by
Kaplansky’s theorem, a bounded family e; in Mg, N Ng strongly converg-
ing to 1, we get that R%*(efAy(y)) is weakly converging to R¥*(Ay(y)).
Taking also a bounded family fx in R(Tﬁ? p)" strongly converging to 1, we
get that RB’”O(Jq,f,je;Aq,(z)) is weakly converging, when n,%k go to infin-
ity, to RAH (Aw(z)). Therefore, using the previous proposition, we get that
(WAg (y), 70 Aw (2) @(U}I) belongs to the weak closure of N, "\Ng NN, NNo.
By proposition .17, we get that, for any = € 71y, v, there exists y; in N, N
Ny N Ng such that Arp,(y;) is weakly converging to Ar,(z) or equivalently
R%*(Agy(y;)) is weakly converging to R%"(Ay(x)). Therefore, we get that
(WAy (2),J9Ae (2) ¥ d)(Uf;) belongs to the weak closure of N, NNy NN, NNs.
It remains true for 2 in N, N Ny NNz, NN by density. If now x belongs
to N7, N Ny, and h; is a bounded family in Nr, N Ny, since Ar, (hiz) =
hfAr,(z) is weakly converging to Ar, (), we finally obtain that, for any z, z
in N7, "Ny, the operator (wa (y), 7444 (2) ¥id)(Uf;) belongs to the weak closure
of N7, "\Ny NN, NNg. By density, for all ¢ € D( 4H, u) and n € D(Hg, u°),
the operator (we,,*id)(U};) belongs to the weak closure of N, "N'w NN7, NNg.
Which proves the density of Nz, N Ng NN, N Ng in M by theorem 1.9,

Let g,, an increasing sequence of positive elements of M, "MyNMp, "M
strongly converging to 1. The operators:

T[T ey
hn\/;/ et o; (gn) dt

are in Mz, N My, analytic with respect to ¥, and, for any z € C, 0¥ (h,)
is a bounded sequence strongly converging to 1. Let now A = O+°°t des be

the scaling operator. Let us write h), = (ff det) hy,. These operators are in

Nr,, NNy, analytic with respect to ¥, and, for any z € C, o¥ (h,) is a bounded
sequence strongly converging to 1. Moreover the operators k!, belong also to

N1, NNy by lemma p.g and [Vae0la]. Let now z be in Ny. We get that zh!,
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belongs to N, NNy N Nr, N Ng and that:
Aw(zh;,) = Joo¥; )y (h)) Juhe (@)
is converging to Ay (x) which finishes the proof. O

THEOREM 6.6. — Let T, wr, .0 be the subset of elements x in Np, N Ny N
N1, "\Ns, analytic with respect to both ® and ¥, and such that, for all z,2' € C,
o¥ oa® () belongs to N, NNy NNy, N No. Then Try, wr, o is dense in M
and Ay (T, v, @) is dense in H.

Proof. — Let x be a positive operator in Mr, N Mg N Mz, N Mg. Let now
A= fooot dey be the scaling operator and let us define:

n n —+o0 —+o0 5 5
Xy = / de; —/ / e M) 6P (1) dsdt
1 TJooo J—o0

It is not so difficult to see that z,, is analytic both with respect to ® and

¥. By lemma [p. and thanks to [Vae01d] and [EN9d] 10.12, we see that the

operators o (z,,) and o2 (z,,) are linear combinations of positive elements in

MTRﬂMq; ﬂ./\/lTLﬁMcp. O
COROLLARY 6.7. — There exist a dense linear subspace E of Ng such that
Ag(E) is dense in L*(M,®) = H and:

JoAg(E) C D( oH,u) N D(Hg, ")
Proof. — Let E be the linear subspace spanned by the elements of the form e,z
where e,, are the analytic elements associated to the Radon-Nikodym derivative
§, defined in [Vae01d], and x belongs to 77y, w,7, ¢. It is clear that E is a subset

of N, dense in M and that Ag(F) is dense in H. Since E C N N Nr,, we
have:

JoAo(E) C D( oH, p)
Using [Vae01d], we get that:
J@Aq)(en:c) = 57%[]\1;/\‘1/(6”:6)

Since e 2672 = (en5*%)5§z5*% and, by the previous theorem, that 6226~ 2
is a bounded operator in N, so is enzd~2 and therefore, we have:

67 JyAy(ens) = AT JyAe(end™ %) C Johy(No NN1y,)

and we get that JpAe(enz) belongs to D(Hg, u?). By linearity, we get the
result. (|
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7. Manageability of the fundamental unitary

In this section, we prove that the fundamental unitary satisfies a propo-

sition similar to Woronowicz’s manageability of [Wor9g. Following [Eno0J]

(definition 4.1), we define the notion of weakly regular pseudo-multiplicative
unitary which is interesting by itself but it will be useful for us to get easily
von Neumann algebra structure on the dual structure.

DEFINITION 7.1. — We call manageable operator the strictly positive op-
erator P on Hg such that P Ag(z) = A2 Ag(r(2)), for all 2 € Np and t € R.

PROPOSITION 7.2. — For allm e M, n € N and t € R, we have:

PUmP~" = 1,(m) Pa(n)P™" = a(a¥ (n))
P*B(n)P~" = p(of (n))  P*B(n)P™" = B0} (n))
Proof. — Straightforward. O

Then, we can define operators P? 3®, P® on Hy 3%, He and P a®p pit
v v Vo

on He a®p Hg for all t € R.

174

THEOREM 7.3. — The unitary W satisfies a manageability relation. More ex-
actly, we have:

(O W 0,(4 5@0 V)| a@pw) = (0 Wore(Jop a®p P~%0)|J6q 504 P w)
for allv e D(P~2), w € D(P2) and p,q € D(oHgp,v) N D((Ho)g,v°). More-
over, for all't € R, we have W(P" @4 P") = (P" ,®; P")W.

Proof. — Let p,q € D(aHo,v) N D((Hs)g,v°). For all v € D(D'?) and
w € D(D~1/?), we know that:

(1(id ) W) Tol) = (i ) (V) P/20| P20
for all v € D(PY/?) and w € D(P~/2). By [L.g, we rewrite the formula:

(c,W¥o,(q 5®a V)P a®p w) = (0o Waoye(Jop o®p P71/2v)|Jq>q 3®a Pl/Qw)
Now, we have to prove W*(P" &5 P") = (P" 32, P")W* for all

t € R. First of all, because of the commutation relation between P and (3,
D((He)g,v°) is P-invariant and if (&) is a (N°,v°)-basis of (Hg)g, then
(P¢;)icr is also. Let v € D((Hg)g,v°) and a € N, N Ng. We compute:
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(P g®a POYW* (v o®j5 As(a))

ve

_ZP”{ 5®a)\/ Ao (7 ((wo,g; B*a id)(I'(a))))

el
=> P §%a As((wpity, pite, pra id)(D(AY27,(a))))
el
=W*(P'v 085 \2Ae(ri(a)) = W (P o®; P (v 0®5 Aala))

ve ve ve

O

DEFINITION 7.4. — A pseudo-multiplicative unitary W w.r.t a, 3, ﬂ:is said to
be weakly regular if the weakly closed linear span of (A%#)*Wp%® where
v, w belongs to D(,H,v) is equal to a(N)'.

ProroSITION 7.5. — The operator W = o,W¥*o, from Hg 3®a Hg onto

1%
Hy o®p Ho is a pseudo-multiplicative unitary over N w.r.t a,ﬁ,ﬁ which is

vo

weakly regular in the sense of [Eno03) (definition 4.1).

Proof. — By [, we know that W is a pseudo- multlphcatlve unitary. We
also know that < (A\%#)* Wpﬁ @ >~V o(N). Forallv € D(P~%), w € D(P?)
and p,q € D(aHo,v) N D((Hg)s,v°), we have, by theorem 73

((Agvﬁ)*/w\pfvadw) = (O’VoWO‘,,o (J(I)p a®ﬁ P_1/2’U)|Jq>q é@a P1/2w)

and on the other hand:

(R ()R (p)*qlw) = (R (v)J, R**" (Jop)* Jaqlw)
= (R (0) o Au(< Jog, Jap >4 0 ) |w)
= (PTV2R* (0)J,Au(< Jag, Jop > 6o ,)| P ?w)
= (R™V(PTV20) A V2T A (< Jag, Jop >p 0 ) [P/ 2w)
= (R*Y(P™Y20)A (< Jop, Joq >4 0 )| P/ w)
= (a(< Jop, Joq > b VP12 P/ %)
= (Jap 5®a P70lJaq 304 P w)

v 174

There exists = € Ho 5®q Ho such that 0, Wa,E = Jop B® P~1/2y since
v
p1/2,

W is onto. By definition, there exists a net (Zk Jopi, a®5 v} )ier
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which converges to =. Then (( Z(:?(/\g;ﬁ)*Wpf;aqm))ie] converges to:
k k
(0poWoay,oZ|Jag 4®a P1/2w) = (Jop 4®a P71/2v|Jq>q 3®a P1/2w)
= (R™"(v)R*"(p)"q|w)

Then, we obtain a(N)" =< R*Y(v)R™"(p)* >~VC< (wvﬁp*id)(WU,ﬂ) >—W,
(]

8. Duality

In this section, a dual measured quantum groupoid is constructed thanks
to modulus and scaling operator. Then, we obtain a bi-duality theorem which
generalizes Pontryagin duality, locally compact quantum groups duality and
duality for groupoids. Finally, we get Heisenberg’s relations.

8.1. Dual structure. —

DEFINITION 8.1. — The weak closure of the linear span of (we, * id)(W),
where £ € D((Hg)p,v°) and n € D(oHs,v), is denoted by M. It’s a von Neu-

mann algebra because weak regularity of W (prop. [7.g) and [Eno07 (proposi-
tion 3.2).

DEFINITION 8.2. — We put I' the application from M into L(Ho ;®a Ho)

such that, for all z € M , we have:

INz) =0, W(x gRa 1)W* 0,
N

PROPOSITION 8.3. — The 5-uple (N, ]/\I,Q,B,f) is a Hopf-bimodule called
dual Hopf-bimodule.

Proof. — The proposition comes from theorems 6.2 and 6.3 of [] applied
toW =o0,W*0,. O

LEMMA 8.4. — Let call M™P the subspace of M, spanned by the positive and
normal forms such that there exists k € R and both w o a and w o 3 are
dominated by kv. Then, M2 s dense *_subalgebra of M, such that, for all
m € M, we have:

wn(m) = (@ gra id)(D(m)))  and  w*(m) = & o R(m")

v
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Proof. — By definition wy belongs to M,. There exists £ € D(Hg,v°) such
that w = we. For all n € N, we have:

wp(e(n*n)) = p((we g*a id)(D(a(n*n))))
= WO (@) pza D) = O Ve

= poa(< a(n)é, a(n)g >p5,0) < kv(< a(n)é, a(n)é >p,0) = klla(n)|f?

= kw o a(n*n) < kK*v(n*n)
Also, we can prove that wpu o 3 is dominated by kv so that wp belongs to
M2 Since Ro o = 0, M2 is *-stable. We have to prove associativity of
product and that (wu)* = p*w*. The first property comes from co-associativity
of co-product and the second one comes from co-involution property. We only
check the first one because the second proof is very similar computation. Let

W, X € M2P and €,¢,¢" € D(Hg,v°) the corresponding vectors. Then, for
all m € M, it is easy to see that:

(wp)x(@) = (I gra id)(T(2))(€ Ba 3 5%a £)I¢ 6%a 3 6%a £")
= ((ud o*a )(I(x))(€ #®a 3 5®a £")I€ 6%a 3 6%a ")
= (P((we g*a id)(T'(x)))(¢’ 5®a &Ie 5®a ")
= ixl(we gra 1d)(I(2))) = wpx)()
Density condition comes from corollary f.7 for example. O

COROLLARY 8.5. — The contractive application T from MP to M such that
T(w) = (w*id)(W) is 1-1 and multiplicative.

Proof. — The application 7 is injective because of theorem @ We prove
multiplicativity of 7 for positive linear forms because the general case comes
then from linearity. Let &,n € D(oH,v) N D(Hg,v°), (4 € D(oH,v) and
G2 € D(HB’ v°). By proposition of the first part, we know that:

((we * id)(W) (wyy * id)(W)(1]¢2)
is equal to the scalar product of

(ove a®3 nQa a®3 W)oa, (1 BRa au0)(1 BRa W)(& BRa N 8Qa (1)
No No N N v v
by [ s®a 1] «®j G2 Then, by pseudo-multiplicativity of W, this equal to:

v

(W a®5 DA @ W)W R0 1)(§ s®an s®a Q) ®a 0] a®j C2)
Neo Neo N v v v ve
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=((1 a®; WIW(E 5®an) 3®a GIW(E 5®an) o®j (2)
Neo v 14 v vo

=((1 a®p (id*we ¢, (W)W (E sRa MW (E sRa 1))
NO v v

Since I' is implemented by W, this is equal to:
(L ((id * we, ¢ )JW))E pRa M€ 5D 1) = (wewn)((id x we, ¢, ) (W)

= ((wewn) * id)(W)G1[C2)
By density of D(,H,v) and D(HB’ v°) in H, we get that 7 is multiplicative. O

To get a measured quantum groupoid from the dual Hopf-bimodule, we
have to exhibit, first of all, a co-involution. This is done and the following
proposition:

PROPOSITION 8.6. — There exists a unique *-anti-autormorphism R ofM\ such
that, for all w € M ﬁ, we have R(7(w)) = F(woR). Moreover R(z) = Joz*Jo

for all x € M and R is a co-involution.

Proof. — For all £ € D(o(Hg),v) and n € D((Hg)g,v°), we have:
(Jo&t(w o R)"Jaln) = (7(w o R)Jon|Jef) = (( o Rxid)(W)Jan|Jag)
= wo R((id * wjgn,10e(W)) = w((id * we n)(W)) = (7(w)€|n)

So, if we define R by R(z) = Jez*Jg for all x € M, we obtain a *-anti-
automorphism of M such that, for all w € M , we have R(#(w)) = #(wo R).
Umqueness comes from density of 7(Mx @8 ) in M. By definition, we have
Roa = 5 So, we have to check co-involution property to finish the proof.
For all w € Mf"ﬁ, we compute:

D(#(w)) =W*1 aﬁg (w s id) (W))W = 0,0 W ((w * id) (W) ﬂ%a DW*a,

= O'Vo(w * 1d * Zd)((l O‘®B W)(W ﬁ®a 1)(1 ﬁ®a W*))UV
No N N

By pseudo-multiplicativity of W, this is equal to:
oo (w xid * id) (W oa®5 1)(0ve a®j 1)(1 a®5 W)o2 (1 384 0ve))oy
No No No N

= (wxid#id)((1 a®;00)(W a®5 (00 a®; 1)(1 a®5 W)o2,)
NO NO NO NO

Then, we get:
[o R(7(w)) = T(#(wo R))

= (woR*id*id)((l a®ﬁ O‘Vo)(W a®é 1)(0’1,0 a®é 1)(1 CV®B W)UQV)
Ne Neo Neo Neo
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Now, by proposition fi.g, we know that: W = (I 3@, Jo)W*(I R4 Ja) s0
N N

that:
(1 a®[§ O’Uo)(W a®@ 1)(0’,,0 a®[§ 1)(1 a®[§ W)O’Ql,
NO NO NO NO
= (I a®pJo a®3 J<I>)[(W a®31)(‘7v0 a®g1)(1 a®BW)‘72V(1 ﬂ®aguo)]*(1 Ra Jo 3®a J<I>)
Ne Neo No No Neo N N N

Since R is implemented by I and Ris implemented by Jg, we have:

I o R(7(w))
= (B axs R)((w=id)[(W a®j 1)(0ve a®j D)(1 a®s W)ozu(1 580 0v0)])
Ne Neo No Neo N
= (R oxj R)osn oD(#(w)) = svo 0 (R jxa R) o I(7t(w))
Ne N
A density argument enables us to conclude. O

Then, we have to construct a left-invariant operator-valued weight TZ from
M to a(N). We follow J. Kustermans and S. Vaes’ paper [: we define in
fact a GNS construction (H, ¢, A) and we give a core for A. Let introduce the
space T of w € M2 such that there exists k € R* and |w(z*)| < k||Ae ()|
for all z € Ng N Nr,. Then, by Riesz’ theorem, there exists {(w) € H such

that:
w(z®) = (§(w)|Ae(2))
LEMMA 8.7. — The set {¢(w)| w € I} is dense in H.

Proof. — Let a,b € E define in corollary @ Then wpy(a),a4(p) belongs to
M and we have, for all z € N NN, :

Wg(a) A () () = ®(0"a"a) = ®(z"ao?;(b")) = (Aa(ao?;(b"))|As(x))

s0 that wa, (a),a4(s) belongs to Z and we have &(wa,(a),aq (b)) = Aa(ac?; (b))
which is dense in H. (|

In the following, for all form w, we denote by @ the form such that @(z) =
w(z*). Observe that w € M” implies that @ belongs also to M.

PROPOSITION 8.8. — The space Z is a dense left ideal of M such that, for
all w € M®P and p € T, we have:

E(wp) = T(w)E(w)

Proof. — If £,n belong to D(,H,v) N D(Hg, "), then we, belongs to MXP.
Moreover, if 7 belongs also to D(jaHe, ®) = JeAs(N3), then we have:

|wen(@%)] = [(Elzn)| < [IE]Illenl] < KlIE|l[Ae ()]
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so that, by corollary @, we can deduce that T is dense in M®? and therefore
in M,. Now, for all z € Ng N N, , we have:

wp(e®) = p((w o*a id)l(z%)) = p((@ o*a id)I'(z))")
= (E(W|Ae (@ fa id)I'(x))) = (W@ * id) (W) As(z))

= ((wxid)(W)E(p)|Aa (2))
so that the proposition holds. O
DEFINITION 8.9. — For all t € R and w € M,, we define elements of M, such
that, for all x € M:
(W) (w) = wor(x), 6 (w)(z) =w(0z), and pw)(z) = w(6 1 4(2))
PROPOSITION 8.10. — The applications 7*,6* and p define strongly continu-

ous one-parameter groups of *-automorphisms of M, Moreover, they leave
T stable and, for allt € R and w € T, we have:

E(rf (W) = ATEPTIE (W), E(6; (w)) = AT Jad T TpE(w),
and  &(pi(w)) = P"Ja0" Ja&(w)

Proof. — Since 7(§) = §, it is easy to see that 7* and §* commute with each

other and, for all ¢ € R, we have p; = 7%, 06, so that the last statement comes

from the two first one. Since 7 is implemented by P, 7* defines a strongly

continuous one-parameter representation of M,. It is the same for §*. If w

belongs to Mf"ﬂ, then there exists k& € R+ such that, for all ¢ € R, we have:
i (Ww)oa=woroa=woaooy <kvooy =kv

Moreover, there exists £ € D(oH,v) N D(Hpg, ") such that w = wg and, for all
teR and n € N, we have:

Se(w)(a(nn)) = (8" a(n*n)¢lE) = (a(n)éla(n)d™"¢)
= (a(n)€d"" alyo} (n)€))
so that we get:
167 (w)(a(nn))| < kl|Ay (n)||* = kv(n*n)
A similar proof with 8 allows us to deduce that 7*,5* and p belongs to M, &

as soon as w belongs to My A Tt is also straightforward to check that 7;* is a *-
automorphism of M*a’ﬂ thanks to "o, = (74 g*q 7)o and the commutation
N

between 7 and R. Also, it is also straightforward to check that §;f is a *-
automorphism of M thanks to ['(§) = § 384 6 and R(8) = 6~ 1. Finally,
N
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for all x € No N N, , we have, on one hand:
(W) (@) = w(n(2") =won(a") = (§(w)|As(r(2)))
= (EW)INT PAg(2)) = (A7 PT¢(w)]As(2))
and on the other hand:
Sr(w) (@) = w((@6™™)") = (E(w)]Ae(zd~™))
= (§(w)[Jo0 " Jp A% A (7)) = (A2 Jo0" Jp&(w)|Aa(z))
That finishes the proof. O

PROPOSITION 8.11. — There exists unique strongly continuous one-parameter

groups T,k and & of *-automorphisms of M such that, for allt € R and w €
M2P | we have:

T(T(W)) =7 (15 (w)),  Re(T(W)) =7(024(w))  and  G(T(w)) =T (pi(w))

Moreover, for allt € R and x € ]/W\, the following properties hold:
— ﬁ'\t(m) = Pitl'Piit, Et(:n) = leé“J@:vJ@&*“Jq)

and 7;(z) = Pt Jgp0% JpxJed— Je P
— T, K and & commute with each other. Also T and R do.
~Roa=aandToa=aoo! =0oa

~ ~
~

— (7 gra 7)ol =TT, (id gre Ry)ol =ToRy and (7 gka 01)ol = Lody
N N N
Proof. — By definition, we have & = To Kk = K o T so that we just have to do
the proof for 7 and K. For all w € M>P and t € R, we compute the values
of Pi#(w)P~% and Jed6 Jo7t(w)Jod " Js. Let pu € Z. Since 7(w) belongs to
B(N)', we have on one hand:

P (w)P~E() = PUR(@)AZE(r (1) = A2 PP (wri ()
= £ (@) = 7 (77, ()E(w)

S

and on the other hand:
Jo6" Tpit(w)Jod ™" Jo&(p) = Joo" Jor(w)A = £(5F (1))
= €(0% (w)p) = T(6Z 4 (w))E(p)

So, if we define 7; by 7;(z) = Pz P~ and & by #(z) = Job6tJoxJed s,
then we get strongly continuous *-automorphism of M satisfying the first prop-
erty. By definition, 7 is implemented by P and R by Jg. Since P and Jg com-
mute with each other, so 7 and R do. Now, 7 and 7 coincide on a(N) C Mﬂ]/W/:

because they are both i:mplemented by P. Also T coincide with id on M N M
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by definition. By the way, we can give a meaning for formulas of the fourth
point. Thanks to manageability of W, we have, for all t € R and x € M:

L(7(2)) = o, W(P 2P~ 304 1)Wo,
N

= (P" ;@4 PM)a,W(z 504 )W*0,(P™" ;04 P7")
N N N

= (7 pra 7)L(x)
N

Finally, since the left leg of W leaves in M, we have:
(7 (2)) = 0, W (Ja0" JozJed e 30a )W o,
N
= (1 4®a Js0"Ja)o,W(z 300 YW 0, (1 ;04 Job " Jp)
N N N

= (id sra 7T (2)
N

O

LEMMA 8.12. — We have (wR * id)(W*) = (Tji/z(w) xid)(W) for all w €
’D(Tji/2).

Proof. — We know that (id+ u)(W) belongs to D(S) and that S((id*u)(W) =
(id * p)(W*). So (id * p)(W) belongs to D(1_;/5) and 7_;/9((id * p)(W)) =

R((id * u)(W*)). By applying w to the previous equation, we easily get the
result. O

Since ¥ = ® o R, there exists an anti-unitary J from Hy onto Hg such that
TNy (z) = Ao (R(x*)) for all z € Ny N Ny,.

PROPOSITION 8.13. — For all w € T and p € D(p;/2), wi belongs to T and
we have:

§lwp) = T 7 (pija(p)" TE(w)

Proof. — Foralln € N, we put e, = 7= Jexp(—n?t?)6"dt so that eyis analytic

with respect to 0®, Npen C Np and Nod—2e, C Ny. It is sufficient to prove
the proposition for all y € D(Tji/Qéi/Q). Then, since § is a co-character, we
can compute, for all z € N:

Nal(id pro PV (wen)) = Au((id e DD (ren)d ™)

= Au((id pro PD(xend™%)(1 580 57))
v N
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The computation goes on as follow:
Ao ((id gra p)T(zen)) = A ((id a0 * () (@8 % ey))
= T Ao (R((id gka 0715 ()T (267 % en)")))
= T A (075 (11) © R o id)T(R(x0 2 €0)"))
= T (0% ja(1) © Rxid)(W*)Ag(R(z6™ 2¢,)"))
= T*(8%iya(n) 0 R id)(W*) T A (2™ Zen))
=J(72 T_i/2 —1/2( ) xid)(W)T Aa(zen)) = T (pija(p) * id)(W)T Ao (zey))
Now, we have:
(wi)((zen)”) = (w gra p)L((zen)”) = w((id gra p)I'((zen)"))
= (WA ((id gra m)T(zen))) = ()T F(pis2(1)) T A (zen))
= (T 7 (pij2(1))" TE(w) | Mg (zen))

Since (xen)nen is converging to x and (Ag(ze,))nen is converging to Ag(z),
we finally have:

(wp)(z™) = (T "7 (pis2 ()" TE(W)|Aa (x))
so that wp € Z and {(wp) = T* 7 (pij2(p)* TE(w). O

COROLLARY 8.14. — There exists a unique closed densely defined operator A
from D(A) C M to He such that T(Z) is a core for A and A(7F(w)) = &(w) for
allwel.

Proof. — Let (wn)nen be a sequence of 7 and let w € Hg such that (7(w ))neN
is converging to 0 and (£, )nen is converging to w. If u belongs to D(p;/2
then we have, by the previous proposition, for all n € N:

Fwn)(p) = T #(pis2(1))* TE(wn)
Take the limit to get that 0 = J*7(p;/2(n))* Jw. Since it is easy to check
that p;/2(D(pij2) N I) is dense in 7 we get that w = 0. So the formula of
the proposition defines a closable operator and its closure satisfy all expected
conditions. O

THEOREM 8.15. — There exists a unique normal semi-finite fazthful wezght
TL M — a( ) such that the normal semi-finite faithful weight d =voa~ oTL
admits (H, L,A) as GNS construction. Moreover, & is the modular group of </IS,
the closure of PJsdJe (P and JE(SJ@ commute with each other) coincide with

the modular operator of ® and o* (B(n)) = B(y—¢(n)) for allt € R andn € N.
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Proof. — Since 7 is a multiplicative application and since Z is a left ideal of
MEZ*, 2y belongs to #(Z) for all z € #(M**) and y € 7(Z) so, by definition,
we have A(zy) = zA(y). Using the closeness of A, we show that D(A) is a left
ideal of M and Aazy) = zA( ) for all x € Mandye D).

By proposition B.11], 5;(z) belongs to D(A) for all z € 7(Z) and ¢ € R and
AG(z)) = P”J<1>5”J¢A( ). Using again the closeness of A, we get that & (z)
belongs to D(A) for all 2 € D(A) and ¢ € R and we have:

A(Gi(z)) = P Je6" JpA(x)

By proposition B.13, for all w € D(p;/2) and x € 7(Z), 27 (w) belongs to D(A)
and we have A@7i(w)) = J*7(pia(@))" TA@) = TGip2(7(pif2)))" TA(2).
Since 7(D(p;/2)) is dense in D(d;/2) and g-invariant, 7(D(p;/2)) is a core for
. The closeness of A allows us to conclude that 2y belongs to D(A) for all
2z €D(A) and y € D(G 0;/2) and we have:

~

Awy) = T*Gip2(y)* TA(2)

Therefore we know, by proposition 5.14 of [], that there exists a normal
semi-finite weight ® on M such that (H,1,A) is a GNS construction for ® and
o is the modular group of 3. Moreover, thanks to the previous equation, we
have:

Kay) = T"5ia(y)" TA(2)
for all z € N3 and y € D(5;/2) NN3. We easily get faithfulness of ® from this
last relation. We already know that a(N) C M N M and, by proposition

we have, for all n € N:
o (a(n) = ol (n)) = 07°* " (a(n))

By Haagerup’s existence theorem, we get the normal semi-finite faithful weight
®. Finally, we check the last property. For all n € N and t € R, we have:

a?(ﬁ(n)) = P J6%a(n*)6 " Je P = P Jpa(y_i0” ,(n*))Jp P~
= P"B(y-10%,(n)) P = B(7-4(n))
because v and ¢” commute with each other. o
LeEMMA 8.16. — For all x € N NN, A(z) belongs to D(Hg, %) and we
have RV (A(z)) = A7 ().

Proof. — By definition Jg and J implement the same operator on a(N) C

M N M so that Jya(n*)Jsz = B(n) for all n € N. Then the lemma is a
consequence of proposition @ O
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LEMMA 8.17. — For all§ € D((Hs)z,v°), alln € D((He),v°)ND(aHe,v°)
and all x € Ng NNZ , (wne 5®a id)(T(z)) belongs to Ng NNZ; and we have:

174

Mwnge ®a id)(I(2))) = (id * wy,e)(W)A(2)

Proof. — Thanks to the pentagonal relation, we can compute for all w € Z:

(@i p®a id)(D(FW))) = (Wi 5@a id)(T((w*id)(W)))

174

= (Wne p®a id)(gre W ((w xid)(W) 6% HW+,)

174

= (w o id * wye)((1 a®p W)W 58a 1)(1 3®a W)
N N

NO
= (wxwpe*id)(W o®5 1)(00e a®z 1)(1 a®5 W)o2u (1 5Qa 040))
Ne Ne Ne N
= 7 ((id * wy £)(W)w)

Then, by definition, (wy e ;®a id)(I'(#(w))) belongs to Ng NN for allw € T
and we have:

A(wne 3@a id) (L (F(W)))) = (id * wye) (W)A(F(w))
Closeness of A finishes the proof. O

ProroOSITION 8.18. — The operator-valued weight TZ is left invariant.

Proof. — Let (§)ier be a (N°,v°)-basis of (Hg). For all 2 € N3 NN and
n € D((Ha)s,v°) N D(aHo,v), we have:

B ((wy o id) ([ (@) = Y B((wn.e, it id) ([T (@) (Wne g id)((2)))
iel v
= IA((wne *azd x))||? = and*wn& W)A(x)|”
iel el

~

= ((pg’a)*pﬁ’”‘A(w)lA(w)) = |[A(z) s®anll?
= (a(< A(@), A@) >p.00 nln) = (Tu (" 2)nln)
O
To have a measured quantum groupoid, we need to check a relation between

the co-involution R and T. By the way, it will give a link between the two
natural GNS constructions of ®5 = ¥ = ® o R. We put S3,J; and Az to be

the fundamental objects associated to d by the Tomita’s theory in the GNS
construction (H, ¢, A).
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DEFINITION 8.19. — We put Z* the subset of Z consisting of elements of the
form w4 (a),a4(s) Where a, b belong to E.

LEMMA 8.20. — We have that 7(I%) is a core for A and N(F(T)) is a core
for S3 and for Aé for all z € C.

Proof. — This lemma comes from standard arguments and by definition of
A. O
PROPOSITION 8.21. — For all x € E, we have Ag(x) belongs to D(S%) and
we have:

Sila(r) = Aa(S7H(2)")

Moreover Ag(E) is a core for SZ.

Proof. — Let w € I, For all u € Mf"ﬁ, we have:
w(w(w)*) = p((wid)(W)*) = @((id * p)(W")) = w o S((id * p)(W))
((id = p)(W)) = p((W* o7_z +id)(W)) = p(T(w* 0 7_4))

=wroT 3 i
2 2

Then, we have:
(S3AFW))|Ae) = AFW)")|Ae) = AFw" o7_;)[Aa)) = ({(w o T_
=wor i (a") =w(S (@) = (Ae(S7H(@)")E(w)) = (Aa (S (2)")[A(F(w)))

)

Thus the previous lemma and the fact that &(wa,(a),a.0) = Aa(a %, (b*
implies the proposition. |

PROPOSITION 8.22. — For all x € Ny, N Ny, we have:
Jghas(x) = Ao (R(z"))

Proof. — Define the anti-unitary J of H such that JAs,(z) = Ag(R(z*))
for all z € Ny, N Ng. Let a belongs to E. For all n € N, we put e, =
7= Jexp(—n?t?)§"dt so that e, is analytic with respect to o*, Nge, C Ng
and Npd~2e, C Ny. Since 75(6) = 0, we see that 75(e,) = e, for all s € R,
hence e, € D(7;) and 74 (€5) = €5. By assumption a belongs to D(7;) so that
aen belongs to D(7;) and 7 (aen) = 7; (a)en. Hence 7; (ae,)d? is a bounded
operator and its closure is equal to 7; (a)(62e,). We recall that ry(x) is equal,
by definition, to 7;(m)d* for all ¢ € R and m € M. Then ae,, belongs to D(r )

and r; (aen) =75 (a a)(62e,). By assumption, 7; belongs to Ny N Nr,,. So we
1

see that ki(ae,)6~ 2 is bounded and its closure equals 7 (a)e, € Ny NN,
) S N<1> ﬂNTL and:

(aen)) = A, (ry (aen)5™2) = A, (7

implying that H%(
Ag(r (a)en)

i Ti
2 2
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By definition, we have AgA¢($) = Ag(ki(z)), we easily get that Ag(aey)
1
belongs to D(A5*) and:

A # Ag(aen) = Ao (ky (aen)) = Aa, (3 (a)en)

By closedness of Aé%, this implies that Ag(a) belongs to D(A

(a))

i i
2 2

[

é ) and:
AéiAcp(a) :A.:pJ(T%

Consequently, we have:

TS Ao (a) = Thay (75 (@) = As(S7 (a)") = SiAa(a) = JpAS *As(a)

i
2

N

Since Ag(E) is a core for Ag? = J3 5%, we have done. O

3
Finally, we have to recognize what is W,

ProPOSITION 8.23. — The unitary o,W*o, is the fundamental unitary asso-
ciated with the dual Hopf-bimodule structure.

Proof. — The fundamental unitary associated with the dual quantum groupoid
is denoted by W. By definition of W and lemma , we have for all ¢ €
D(oHe,v) N D((Hs)s,v°), n € D((Hs)s,v°) and x € Ng NNz

(weup * id) (WA(z) = M(wesy gra id)(D(2)))

v

= (id % we ) (W)A(2) = (we.p * id) (000 Wae)A(x)
from which we easily deduce that W= o, W*o,. O

THEOREM 8.24. — (N, ]/\4\, a, B, f, Tz, ]?E, T,V) is a measured quantum groupoid
called dual quantum groupoid of (N,M,«,3,T, Ty, R, 7,v). Fundamental
objects of the dual quantum groupoid (N, M\,a,ﬁ,f,}?,ﬁ,?, v) are given, for
allz € M and t € R, by:

i) W= o,W*a, is the fundamental unitary,

i) R(z) = Jpa*Jg is the unitary antipode and 7(x) = PaP~ is the

scaling group,

i11) X = A1 s the scaling operator and the closure of P_1J¢5J¢5_1A;1

is the modulus (/S\’

i) P = P is the manipulation operator,

v) in the GNS construction (H,L,X), the modular operator Ag is the

closure of PJsd~'Jp and the modular conjugation satisfies J3he, () =
Ao (R(z*)) for all x € Np, N Ny.
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Proof. — By proposition E, (N, J/W\,a,ﬁ,f) is a Hopf-bimodule. By theo-
rem , it admits a normal semi-finite faithful left-invariant operator-valued
weight TZ By proposition E, R is a co-involution for this structure and,
by definition, we have R(7(w)) = F(w o R) for all w € M™”. Since Jy =T
implement R on M and since = W = 0, W*0,,, we get R((id waﬁw)(W)) =
(id wJ®w7v)(/V[7). By proposition , T is a scaling group. We just have to
check that the one-parameter group of automorphisms 74 of N leaves v invari-
ant. However, we have already noticed, in theorem , that we have 7, = v_;
for all £ € R. By hypothesis over ~, we have done.

By proposition and by definition of 7, 7(Z) is stable under 7; t € R and
we have, for all w € Z:

ARGFEW)) = AFWoT_¢)) = E(wo T—y) = A PYA(R(w))

Now, by closeness of A, we get that P*A(z) = A= A(7(x)) for all z € Nz NN
and t € R. From this and from lemma E we get that:

At = [DB o7, : D], = [DB 0 52°R : D], = Nist

and  P"A(z) = A2 A(7(2)) = P"A(x)
O

The whole picture is not completely drawn yet because the value of 5 is
missing. For this, we need the bi-duality theorem. The expression will finally

be given in .

8.2. Bi-duality theorem. — In this section, we compute fundamentals
objects of the dual structure. Also, we can construct the bi-dual quantum
groupoid that is the dual quantum groupoid of the dual quantum groupoid
and we establish a bi-duality theorem.

THEOREM 8.25. — The measured quantum groupoid (N, M, o, 3, T, TL,R T, V)

and its bi-dual (N, M a, 3,0, Tr, R, 7,v) coincide. Moreover, we have A =Ag.

Proof. — We know that Jg = J. Then, on a(N) C M N ]\/4\, we have:

B(n) = Jya(n)*Js = Ta(n)*J = R(a(n)) = B(n)
By proposition , we have:

—
Ny

W = U,,W*U,, =W

so that we deduce that the Hopf-bimodule and its bi-dual coincide. We denote
by 7(w) = (w * id)(W) = (id * w)(W*) for all w € M>?. By definition of R
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and R we have for all §,n € D(,H,

5

-~
~

R((id % wypen)(WF)) =

:U>>

(F(@rnen)) = T(@aen o B)
= T(wrane) = (idx wgn.e) (W)
so that ]?E =R. Let w € Z. On note a = %(w) Then, for all © € Z, we have:
w(7(0)") = w((© *id)(W)*) = w((© * id)(W™)) = O((id * w)(W"))
=0(a*) = (£(0)[As(a) = (Aa(a)|A(#(8)))
Since 7(Z) is a core for A this implies w(z*) = (Ag(a)|A(z)) for all z € N;.
)-

definition of A, we get AGW)) = Ao(a) = Ao(R(w)
A and by closeness of Ag we have A(y) Ag(y) for all y € N3. In particular

>1>>

Since 7T(Z> is a core for

ﬁ = T. Finally, we have to compute 7. For example, we can use proposition
, to get for all t € R:

Fo%:fo%:(a? ﬁ*aa‘bgR) f:(af g*aU(P:R)OF:FOT
N N
and we can conclude by injectivity of I'. O

PROPOSITION 8.26. — For allt € R, we have:
Jit — Pfitl](bé‘fitl]q)(sfitA;it

Proof. — By theorem B.24, we know that Ag = P J3d" Jp so that we get,
thanks to the bi-duality theorem that:

Sit p—it it —it it

0" =P I AY Ty = P I3 A" TG
From the previous proposition, it is easy to check on Ag,(z) that JzAJg
coincide with the modular operator of ¥ in the GNS construction (H,¢, Ag;).

Now, by proposition 2.5 of [, this last modular operator is equal to the
closure of Jpé6 1 JpdAs so that we get the result. O

REMARK 8.27. — From this last expression of g, we can directly verify the
following properties which should be satisfied by duality, for all x € M and
s,t e R:

U;% (57t) = Nistgit, azboR( ) = gz’ta.;?(l,)g—it and  D(5%) = o't 1Pa sit
THEOREM 8.28. — The following properties and their dual hold:

- 1(m) = AgmA;t and R(m) = Jgm*Jg forallt c R and m € M
- W(A; s®a As) = (A5 a®ﬂ Ag)W

and W(J;I; 04®B J@) = (J<I> ﬁ®a J@)W

20
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- AgAﬁIf = }\iStAfIng, Agéis = )\iSt&iSAg and Ag&“ = 6“Ag
— J3Jo = )\iJ@J&), JoPJs =P~ 1 and J30J5 = 51
~ PUAL = AP and PG = 5P
Proof. — Since 4 is affiliated to M, JpdJg is affiliated to M’ so that, for all
t € R and m € M, we have:
AZmAZT" = P Jpd" JomJod " Jo P~ = P*'mP~" = 1y(m)

We have already noticed that R is implemented by Jz by definition of ® but
we can recover this point thanks to the bi-duality theorem and the fact that, by
definition, R is implemented by Jg. Now, since we have R((id we, 1on)(W)) =
(id*wy, j5¢)(W) for all §,n € D(oH,v), we easily get the second equality of the
second point from the first point. Also, we know that 7¢((id * we, 7,n)(W)) =
(id * waite Ait 7o) (W) for all t € R from which and from the first point we get
the first equality of the second point. Since 7 and ¢ commute each other, it is
easy to check on Ag(x) the first equality of the last point. Since 7(0) = 4, we
get the last equality of the last point. The last equality of the third point comes
from the fact that 7 is implemented by Ag and that 7(§) = 6. By proposition
5.2 of [Vae01d], we have o (%) = X*!§™ so that we get the second equality of
the third point. Then, for all s,t € R, we have:
AZAG = P J30" JoAF = P Jed" AF Js
— Pith>A7iStAf§5itJ¢. — )\iStAngith;.(sith) — /\ZStAgAg

As far as the fourth point is concerned, the last equality comes from the fact
that R is implemented by Jz and R(0) = d~1. The second one can be directly
checked on Ag (7). Let us prove the first equality. Let 2 belongs to NgND(c¥).

Then, it is easy to see that R(z*) belongs to Ng N D(c?). Remembering that

the modular conjugation of ¥ = ®; associated with %he GNS construction
(H, 1, Ao, ) is equal to A% by proposition 2.5 of [Vae01d], we get:
TgJaha, () = ALTgAT JoAa, (2) = ATz, (0", (27) = AT Ag(Ro oY (x))
= AiAg (0% (R(z*)*) = A1 JapAa(R(z*)) = \iJpJ5 Ag, (2)
O

8.3. Heisenberg’s relations. — We recall that a(N)UB(N) C M C B(N)’
and o(N)UB(N)C M C B(N)" in L(H).
PROPOSITION 8.29. — For allz € M' and y € ]\/4\’, we have:

Wz pRay)=(z o®5y)W
NO NO

Proof. — Straightforward by proposition and by definition of M. O
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PROPOSITION 8.30. — The following equalities hold:
i) MM =a(N) i) M'0NM = B(N)
iit) MNM =p(N) w) M'NM' = JsB(N)Js

Proof. — We start to prove i). We already know that M N Mo B(N). In the
other way, let m € M N M. Then, we have by the previous proposition and the
unitarity of W:
F(m) = W*(l 04®B m)W = W*W(l 8®a m) =1 gQam
NO N N
so that m belongs to B(IN) by proposition . Apply R to get iii) and then
apply R to get iv). Finally apply R to i) to get ii). O

PART II
EXAMPLES

In this part, we present a variety of measured quantum groupoids. First of
all, we are interested in the so-called adapted measured quantum groupoids.
These are a class of measured quantum groupoids with much less complicated
axioms because we are able to construct the antipode. The axiomatic is inspired
by J. Kustermans and S. Vaes’ locally quantum groups with a weak condition on
the basis. That is what we develop first. We also characterize adapted measured
quantum groupoids and their dual among measured quantum groupoids. Then,
we give different examples of adapted measured quantum groupoids and, in
particular, the case of groupoids and quantum groups. In a second time, we
investigate inclusions of von Neumann algebras of depth 2 which can be seen as
measured quantum groupoids but they are not in general of adapted measured
quantum groupoids’ type. Finally, we explain how to produce new examples
from well known measured quantum groupoids thanks to simple operations.

We want to lay stress on a fact: historically speaking, the notion of adapted
measured quantum groupoid was the first one we introduce. The main interest
of the structure is the rather quite simple axioms. So it is easier to find examples
(see sections E, EI E, ) But we discovered examples of quantum space
quantum groupoid (section @) and pairs quantum groupoid (section E) duals
of which are not adapted measured quantum groupoid anymore that is we have
not a dual structure within category of adapted measured quantum groupoid.
Moreover this category do not cover all inclusions of von Neumann algebras
(section E) That’s why we introduce a larger category the now so-called
measured quantum groupoid which answer all the problems.



76 FRANCK LESIEUR

9. Adapted measured quantum groupoids

In this section, we introduce a new natural hypothesis which gives a link
between the right (resp. left) invariant operator-valued weight and the (resp.
anti-) representation of the basis.

9.1. Definitions. —

DEFINITION 9.1. — We say that a n.s.f operator-valued weight T, from M to
a(N) is f-adapted if there exists a n.s.f weight v, on N such that:

ol (B(n)) = B(c"%(n))
for all n € N and t € R. We also say that T}, is f-adapted w.r.t vy,.

We say that a n.s.f operator-valued weight Tx from M to B(N) is a-adapted
if there exists a n.s.f weight vz on IV such that:

o{"(a(n)) = a(o/"(n))

for all n € NV and t € R. We also say that T is a-adapted w.r.t vg.

DEFINITION 9.2. — A Hopf bimodule (N, M, a,3,T) with left (resp. right)
invariant n.s.f operator-valued weight T, (resp. Tgr) from M to «(N) (resp.
B(N)) is said to be a adapted measured quantum groupoid if there exists
a n.s.f weight ¥ on N such that Ty, is f-adapted w.r.t v and Ty is a-adapted
w.r.t v. Then, we denote by (N, M,«,3,T,v, Ty, Tr) the adapted measured
quantum groupoid and we say that v is quasi-invariant.

REMARK 9.3. — If a n.s.f operator-valued weight 77, from M to «(N) is -
adapted w.r.t v and if R is a co-involution of M, then the n.s.f operator-valued
weight Ro Ty, o R from M to B(N) is a-adapted w.r.t the same weight v.

LEMMA 9.4. — If p is a n.s.f weight on N and if an operator-valued weight T,
s B-adapted w.r.t v, then there exists an operator-valued weight S* from M to
B(N), which is a-adapted w.r.t p such that poa~toT, =voB~LoSH. Also, if
X s a n.s.f weight on N and if an operator-valued weight Tr is a-adapted w.r.t
v, then there exists an operator-valued weight Sy from M to a(N) normal,
which is (-adapted w.r.t x such that xo 3 ' oTpr=vo3 1o S,.

Proof. — For all n € N and t € R, we have JfoailOTL (B(n)) = ofoﬁil(ﬂ(n)).
By Haagerup’s theorem, we obtain the existence of S* which is clearly adapted.
The second part of the lemma is very similar. O

Let (N,M,a,B3,T,v, T, Tr) be a adapted measured quantum groupoid.
Then the opposite adapted measured quantum groupoid is (N°, M, 3, «, sy ©
L, v°,Tg,Tr). We put:

d=voaltoT, and U=vof loTg
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We also put S¥ = Sp, and S, = Sig. By @ and @, we have:
Ao (Tp5,) € JoAa(No NNs,) € D((Hs)s,v°)

and we have R%"" (JpAg(a)) = JoAs, (a)J, for all a € Np NN, .

9.2. Antipode. — Then we construct a closed antipode with polar decom-
position which leads to a co-involution and a one-parameter group of automor-
phisms of M called scaling group.

9.2.1. The operator G. — We construct now an closed unbounded operator
on Hg with polar decomposition which gives needed elements to construct the
antipode. We have the following lemmas:

LEMMA 9.5. — For all A € C, x € D(c%) and &,&' € Ao(To, 1, ), we have:

a(z)Ay C Aga(af)(z))
2 RO(AROA) C AYR™(¢)
and O';/)\(< Aéévgl >a,v) =< 57 Aéél >a,v

and:

Bla)AY C AYB(o% ()
(3) ROV (ABE)AY € AYRPV(¢)

and oy (< AYE,E >5,0) =< &, A3 >4 0.
Proof. — Straightforward. O

Then, by [ and proposition , we can define a closed operator
A} o® 3 A} which naturally acts on elementary tensor products for all A € C.
Moreover, for all n € N, we have Jpa(n) = 3(n*)Jg, so that we can define a
unitary anti-linear operator:

Jo a®pzJo: He o®p He — Heo ;0 He

ve ve v
such that the adjoint is Jg 5®a Jo. Also, by composition, it is possible to

define a natural closed anti-linear operator:

Se a®pz 8¢ 1 He o®p Ho — Ho 5®a Ho

ve ve v



78 FRANCK LESIEUR

In the same way, if Fo = S3, then it is possible to define a natural closed
anti-linear operator: Fg 5®a Fs : He 5®a He — Hyp a®ﬂ Hg and we have:

vo

(So a®j Se)" =Fo 5®a Fo

vo

LEMMA 9.6. — For all ¢ € (N N Nr,)*(Ne N N1,), e € No N N, and
all net (ex)rex of elements of Ny N Nr, weakly converging to 1, then

()\g\yal\\y(ek)) (1 B%a J‘I’e‘]‘b)UH‘Ppif(c*) converges to ()\A (C)) Ugépjﬁ\(p(e) n
the weak topology.

Proof. — By , we have, for all k € K:

(Aewa(ek))*(l #%a J<I>€J<I>)UH«,PXf(C*)
= (W ha (o) TG0 o) = ( (c ))‘J:yaA\y(ek)) Pehete)
= ((J\yekJ\p 5%& Uy, )\if(c)) * pgﬁw(e)
= (Aif(c))*U}};(Jq;eZJ\p ﬂ%a 1)9.[;;&1\@(@ = ()‘if( ) Ul p J¢A¢(e)‘]‘1’ek‘]\1’

This computation implies the lemma. O

LEMMA 9.7. — If c € N NN, )* Ny NN1y,), e € Ne N Np,, n € Hy,
v € Hg and a net (ex)rek of Ny ﬂNTR converges weakly to 1, then the net:

(Uny (0 a®j Ao(c))[Juhu(er) 3®a JoeJov))rek

v

converges to (N|(pryns(e)) Up, (Aw(c) a®pv)).

Proof. — It’s a re-formulation of the previous lemma. O

PROPOSITION 9.8. — Let (1;)icr be a (N,v)-basis of oH, 2 € Hy 5®a o,

u € D(oH,v), c € (NoNN7,)*NeNN71,), h € NoeNNr, and e be an element
of Noe NN, N Ng NNy, . Then, we have:

lim D a®5 b (Nahoten) Unna ((3°)'E a5 Aa(e))u a8 Joda(e")

i€l ve ve

exists and is equal to ((p2*)* E|(pJ¢A¢(e)) Uy, (Aw(c) a®p As(h))).
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Proof. — By and , we can compute, for all i € I and k € K:

) Uny (07 °)°E a®p Aa(c)lu a®j Joha(e"))

. Cpx (B
(mi a®og h ()‘Jq,Aq,(ek) y y
"2 a® Aa(c"))lgSeAa(e"))

—(B(< i >0 )N o) Uy (0)'2

=\ hnien) (1 820 < 0yt >0, )Unf (%) E 05 Aa ()| Jae” Joha (h)))
) Unty (B(< 05yt >a,) (0 ") o®5 Aa(c*))|Joe* Jo Ao (h))

—((\Be
_(()\J@ As(er)

Take the sum over ¢ to obtain:
D a®3 BN 0n) Vb (00 E a®5 Aa(c))u a®p Jods(e"))

7:6[ UO VO VO

OYE o®j Ao (c"))|Jo Ao (er) sRa Joe*JoAa(h))

= (UH\I/ ((pu
so that lemma .7 implies:
lim > (0 a5 h* Ny ) Une (1) S a5 Aa(@)u a®p Joha(e?))
el ve ve ve

= (P2 Z P o)) Ul (Aa () a5 Aa(h)
O

PROPOSITION 9.9. — For all a,c € (No NN, )*(NeNN7,), b,d € Ty 1, and

g, h € Ty g, , the following vector:
Uiy Do) A () 80 (V22 0 o)) Unta (@) o5 Aa((cd)")))

belongs to D(Se a®j Se) and the value of 0, (Se a®j Sa) on this vector is

equal to:
v (o¥ (@) Une (Aw(€) a®5 As((ab)")))

Us T(h*)(As(9) p®a (N

Proof. — For the proof, let denote by Z; = Uy (Aw(ab) 4®s As(h)) and by
Ep = U, (Au(cd) 4®p Aa(g)). Then, for all e, f € N, N N N N7, NN,
the scalar product of FgJoAg(e*) a®p FoJosAo(f) by:

Ui D(") (Ao (k) 580 (7w ) Urta (A (@) o5 Ae((d))))
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is equal to the scalar product of JoAg(e) a®j JoAa(f*) by:

vo

Ui D(a)(Aa () 580 (N5 0,10y Ut (A (@) o5 Aa((cd)")))

174

By , this scalar product is equal to the limit over k of the sum over i of:
(Joha(e) a®;Jo e (f)mi a®39"(NJihy (o) Unal (05%) E1 a®gha((cd)*)))

By the previous proposition applied with = = =;, we get the symmetric ex-
pression:
3« *= 3« =
((in,Aq,(f)) ‘—‘2|(pJ¢,Aq,(e))*‘—‘1)

so that, again by the previous proposition applied, this time, with = = Z, we
obtain the limit over k£ of the sum over i of:

(M a®p h*(Angw(ek))*UHw((pfi;“)*Ez a®zAa((ab)"))|JoAa(f) a®jJoAa(e))

ve ve ve

This last expression is equal to the scalar product of:

Up, () (Aa(9) 5®a (L0 e (4e)) Utta (Au(€) a®p Aa((ab)?)))

by JeAa(f) a®p JoAs(e*) and to the scalar product of:
Uiy T A3(9) 330 O g1 ) U (M) 05 Aa((08))

by JoAs(e*) 5®a JoAs(f). Since the linear span of JpAg(e*) 5®a JoAa(f)

v v
where e, f € Ny, N No N Nj, NN is a core of Fy 5®a Fa, we get that:

U D0 ) A (h) 50 (N2 o)) Uty (Aa (@) o®; Aa((cd)")))

v

belongs to D(Se a®p S¢) and the value of S¢ a®p S on this vector is:

v ve

e Ui T (Ao (0) 50 (N3 o 4ey)) Unta (Au ()o@ Aa((ab))))

vo

O

PROPOSITION 9.10. — There exists a closed densely defined anti-linear oper-
ator G on Hg such that the linear span of:

AReow, ) Ut (Au(a) 0@ Aa((cd)")

vo

with a,c € (N N N1, )*(NMy N N1, ), b,d € Ty 1y, s a core of G and we have:

GOR o (poy) Ut (Aw(@) o®5 Aa((cd)))

Vo
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= O3 0o Ve (80(6) 025 Aa((a))

vo

Moreover, GD(G) = D(G) and G* = idip(G)-

Proof. — For all n € N, let k,, € N, a(n,l),c(n,l) € (No NNz, )*(Ne N Nry)
and b(n,1),d(n,l) € Ty 1, and let w € Hg such that:

kn

Up = Z()\if(afi(b(n,l)*)))*UH‘l’ (Aw(a(n,l)) a®j As((e(n,1)d(n,1))*)) — 0
1=1 ve
kn

Wy = Z()‘if(afi(d(n,l)*)))*UH‘P (Ag(c(n,l)) a®j As((a(n,1)b(n,1))")) — w
=1 ve

We have Uy I'(g*)(Ao(h) 3®a v5) € D(So a®j Se) for all g, h € Tp 5, and

n € N by the previous proposition. Moreover, we have:

ou(Se a®p S<1>)U}}¢F(g*)(/\q>(h) B®a Vp) = U;I@F(h*)(/\@(g) 5®a Wn)

vo

Since Ag(g) and Ag(h) belongs to D((Hs)g,v°), we obtain:

7,(Se o® S¢)U}}¢I‘(g*))\if(h)vn = U;,(bF(h*))\if(g)wn

The closure of S¢ a®f; S¢ implies that U;}q}l"(h*))\/ﬁ\f(g)w = 0. So, apply Upn,,
to get F(h*))\if(g)w = 0. Now, T3 s, is dense in M that’s why /\if(g)w =0
for all g € 73,5, . Then, by @, we have:

IXCswl? = (a(< Aa(9), Aa(g) >suo)wlw) = (Si(0f5(9)0%/5(g") w|w)

By density of 73,5, , we obtain ||w||? = 0 i.e w = 0. Consequently, the formula
given in the proposition for G gives rise to a closable densely defined well-
defined operator on Hg. So the required operator is the closure of the previous
one. O

Thanks to polar decomposition of the closed operator GG, we can give the
following definitions:

DEFINITION 9.11. — We denote by D the strictly positive operator G*G on
Hg (that means positive, self-adjoint and injective) and by I the anti-unitary

operator on Hg such that G = ID'/2,

Since G is involutive, we have I = I*, I? =1 and IDI = D',
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9.2.2. A fundamental commutation relation. — In this section, we establish a
commutation relation between G and the elements (w, 4, *id)(Uy. ). We recall
that W' = Uy, . We begin by two lemmas borrowed from [Eno02.

LEMMA 9.12. — Let & be a (N°,v°)-basis of (Hy)g. For all w’' € D(4Hy,v)
and w € Hy, we have:

W' (W' a4®pw) = Zfz‘ 5®a (wur g * id)(Ww

If we put §; = (W g, * id)(Ww, then a(< &,& >p,u0)0i = §;. Moreover, if
w e D(@(H\p),l/), then 6; € D(d(H\p), l/).

For all v,v' € D((Hy)g,v°) and i € I, there exists (; € D((Hwy)g,v°) such
that a(< &,& >pe)C = ¢ and:

W/ / a®gv Zfz ﬁ@a Cz

Proof. — Lemma 3.4 of [Eno0). O

REMARK 9.13. — If v,v" € Ay(Tw,1,) C D(sH,v) N D(Hg,v°), then, with
notations of the previous lemma, we have (; € D(4H,v) N D(Hg, v°).

LEMMA 9.14. — Let v,v' € D(Hg,v°) and w,w' € D(sH,v). With notations
of the previous lemma, we have:

(Wo,uw * id) (U ) (wor o id)(Ugp) = Z(WQJE +1d)(Up)
in the norm convergence (and also in the weak convergence).

Proof. — Proposition 3.6 of [Eno03]. O

LEMMA 9.15. — Let a,c belonging to (Nq) N Nz, )*Ne N Ngy,).  For all
b,d,a' b, d € Ty, the value of (A°

Un, on the sum over i of:

A ( w (b/*)))
Aw((Wag (ab).&; * id)(W')a") a®5 A (' d)" (we; Ag (cay * id) (W)

18 equal to:

@as @ity * D UFINGE o o) Unta (Au(a) @5 Aa((ed)")

vo

Proof. — First, let’s suppose that a € Ty 1,. By and B.19, we have:
nstwmastea) DRI e 4oy Ut (Au(@) 225 Aa((cd))
= (Wag (@) Ag () * 1) (U )As (Way (a), a0 (0¥, (b)) B®a id)(T'((cd)")))

(wA\p(a/b/) Ag(c'd") *Zd UH@)A‘I) wA\p(ab) Ay (cd) *Zd (P)
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By and the closure of Ag, this expression is equal to the sum over i € T
of:

Ao (W(wry (any.c, *id) (W) A (@b, (wny (eay i, *id) (W) Ag () * 1) (UH,))

Again, and , we obtain the sum over i € I of the value of

Box .
(/\Aq,(a (b’*))) UH\p on:

Ay (Way (ab),& *1d)(W')a") «®j Ao ((¢'d)" (e, ag (cd) * 1d) (W)
A density argument finishes the proof. O

PROPOSITION 9.16. — If v,w € Ay(7g 1) € D(a(Hy),v) N D((Hy)g,v°),
then we have:

(4) (Wo,w *1d) (U, )G C G(ww,v *id)(Uy
(5) and (wy,w * id) Uz, )G* C G*(wy w0 * id) (U, )

Proof. — Let a,c € (Ne N N7, )*(Ne NNr,) and b, d,a’, b, ', d" € Ty 1. By
definition of GG, we have:
O 0 U (A2(0) a3 Aal(@h)") € DIG)
and:
(Whg (@) A () * 1) (UGN o () Utia (Aw(€) a®p Aw((ad)"))

= (Wag (@p),Au () * i) (Ug,)( )\/B\ (o7 b)) Ve (Aw(a) o®pg As((cd)"))

By the previous lemma, this is the sum over i € I of G(A ( Uy, on:

Av (U (d’*)))
Ay (Way (cdy & * 1) (W) a® A (') (we; Ay (ab) * id) (W)

Now, G is a closed operator, so that the sum over ¢ € I of (/\
on:

Aulo® @) Uto

Aw(Why (cdy.& ¥ 1d) (W) a®5 Ao ((a'V)" (We, Ay (ab) * id) (W)

belongs to D(G) and by the previous lemma, we obtain:
(g astea) $ D) VIO v 40 Vs Au(e) o5 Ao((ab)))

= G(wA\p(c’d’) Ag(a’b") *Zd U 4,) )‘/B\a(a\ll (d*))) UH\P(A‘I’(C) a®ﬁ A¢((ab)*))

Now the linear span:
()‘if(g (b )))*UH\I/ (A‘I’(a) a®[§ A‘P((Cd)*))

Vo
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with a,c € (No N Np, )*(Ne NNpy),b,d € Ty 1y}, is a core for G that’s why
the first inclusion holds. The second one is the adjoint of the first one. O

COROLLARY 9.17. — For all v,w € A\p(T‘iTR), we have:
(W’U,w * Zd)(U}Lp)D g D(WA\;I’U,A\I;U) * Zd)(UII'{(;,)

where D = G*G is defined in .

Proof. — We have:

(Waw,v *1d)(Up, )G = (Wsgw,Apsev * id)(Ug, )G by lemma
C G(waysyv,s9w *id)(Ug,) by inclusion ()
= G(waz1ya g0 * 1) (Ul,) by lemma

In the same way, we can finish the proof:

(wWo,w * 1d)(Upy, )D = (wy,w * id)(Uy, )G* by definition
C G (ww,o *x1d)(Ug, )G by inclusion (f)
C G"Gwazty agw * id)(Uy,)
= D(Waz1y Aqw * id)(Uy,) by definition p.11]
O
9.2.3. Scaling group. — In this section, we give a sense and we prove the
following commutation relation Uy, (Av a®p D) = (Ay ®a D)Up, so as

to construct the scaling group 7.

LEMMA 9.18. — For all A € C and x analytic w.r.t v, we have:

a(z)D* € D*a(0”;,(x)) and B(z)D* € D*B(0”;,(x))
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Proof. — For all a,c € (No N N7, )*(Ne NNr1y), b,d € Ty 1, and x analytic
w.r.t v, we have by and :

B GO o ey) U (Au(a) a® Aal(cd)"))

vo

= ﬁ(‘r)()‘if(ggi(d*)))*U‘l’(A‘I’ (C) a®oé A@((ab)*))

v

= (o a7 590 )V (An(€) 0@ As((ab)))

Vo

- ()‘if(ag(d*)))*U‘I’(A\I/(C) a®j Mo (B(z)b"a™))

vo

= GOXT (ot (oo, ) Ve (hu (@) o®5 Aa((cd)")

vo

= G0 (e D g 1)) VolBu(a) 0@ An((ed)"))

Now, the linear span of:

()‘if(ggi(b*)))*[]\ll (A\I/ (a) a®é A@((Cd)*))

vo

where a,c¢ € (No NN, )*(Noy NN1y,),b,d € Ty 1, }, is a core for G, so that we
have:

Ax)G € Gala”; y(2"))
Take adjoint to obtain a(2)G™ € G*B(0y)5(x7)). So, we conclude by:
a(z)D = a(z)G*G C G*B(0]),(27))G € Da(o”,(x))
The second part of the lemma can be proved in a very similar way. O

We now state two lemmas analogous to relations (ﬁ) and (H) for U and we
justify the existence of natural operators:

LEMMA 9.19. — For all A\ € C, x € D(c”,,) and £,¢" € Ao (Tw,1y,), we have:

Blz)AY C AYB(0” 5 (2))
(6) RPV(ASEA; N C AR (€)

and 0¥\ (< AYE € >p0) =< £, AYE >5.,0

and:
a()Ay C AYa(o”,(2))
(7) R (AJOAN C AR (€)

and 0¥\ (< AYE € >5,0) =< & AYE >0
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Proof. — Tt is sufficient to apply @ to the opposite adapted measured quan-
tum groupoid for example. O

Then, we can define, for all A € C, a closed linear operator Aé, 8P D>
v
which naturally acts on elementary tensor products of Hy g®, Heo. With
1%

relations (f]) in hand, we also get a closed linear operator A, 4®s D* on

Hy 4®p5 Hop.
ProprosITION 9.20. — The following relation holds:
(8) U, (Aw a®p D) = (Aw p®a D)V,

Proof. — By , we have, for all v,w € Ay(Ty 1,) and v/, w’ € D(D):
(Utte (v 6®p V)| Agw R Dw') = ((Wo,agw * id)(Ug, J0' | Dw’)

= (D(wAgl(Aw)yA\pw * id)(Uﬁ@)vﬂw')
= (wagw,w *id)(Ug, ) D' |w')
= (U (Agv @5 DV)|w 5@q w')

By definition, we know that Ag (7w 7,) ©@ D(D) is a core for Ay p®4 D so,

for all u € D(Ag p®q D), we have:
Uk (v a®p V)|(Aw 5®a D)u) = (Up, (Awv a®p Dv')u)
Since Ay g®q D is self-adjoint, we get:
(Ay 3®a D)Ug, (v @®Og V') =Up, (Agv @@Og Dv')

Finally, since Ay (7w 1) © D(D) is a core for Ay 4®3 D and by closeness of

Ay g®q D, we deduce that:
U}/qq) (A\p a®g D) - (qu JeLSP D)U}Lp

Because of unitarity of Uy, , we get that (Ay a®p D)Up,C Ug(Aw 3Ra D)
and by taking the adjoint, we get the reverse inclusion:

(Ay p®a D)Up, C Uy, (Aw a®p D)
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We know begin the construction of the scaling group 7 strictly speaking. We
also prove a theorem which state that A(Uj;) = M and generalize proposition

1.5 of [KV0J].
DEFINITION 9.21. — We denote by Mpr the weakly closed linear span of:

{(w pra id)(D(x)) | € M, we M} st Ik eRY, wo B < kv}

Also, we denote by My, the weakly closed linear span of:

{(id gxq w)(T(x)) | z€M, we M} st Ik € RY, woa < kv}

By and B.50, My is equal to the von Neumann subalgebra A(U},) of M.
Also, My, is a von Neumann subalgebra of M. Moreover, we know a(N) C Mg
and B(N) C My, so that My g*, Mpg makes sense. Also, we have, for all

m € M:

(9) F(m) S ML B*a MR
N
LEMMA 9.22. — There exists a unique strongly continuous one-parameter

group T of automorphisms of Mg such that T¢(x) = D~ %xD™ for all t € R
and x € Mpg.

Proof. — By commutation relation (f), for all t € R and v, w € Ay (Ty 1), we
get that:

D™ (wo,w i) (Up, ) D" = (Wazit, auy *1d) (U,

Consequently, we obtain D~®MgD* = Mp which is the only point to show.

O
LEMMA 9.23. — We have 7e(a(n)) = a(c} (n)) for alln € N and t € R.
Proof. — Straightforward by lemma . O

PROPOSITION 9.24. — We have (o) gxq 7—t) oL =T oo} for allt € R.
N

Proof. — By proposition and thanks to the previous lemma, it is possible
to define a normal *-automorphism O';Ij gxa T—t of M gxo Mp. By relation
N

N
(@), the formula makes sense (7 is just defined on Mg). By relation (§), we can
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compute for all m € M and t € R:
(0F s%a 7o) oT(m) = (A 50 DY(M)(AG" 580 D7)

v

= (AY @0 D), (M a@s)UG{AG" 5®a D7)
= Up, (AF a®p D) (m a®p1) (A" 4@ DU,
= Utz (07 (m) a5 1)U, =T(o}" (m))

O

We are now able to prove that we can re-construct M thanks to the funda-
mental unitary.

THEOREM 9.25. — If < F' >~V is the weakly closed linear span of F' in M,
then following vector spaces:

Mp =< (w g*q id)(T(m)) | m e M,we M} ke R stwopf <kv>""

A(Uy) =< (wo,w *id)(Uy) | v € D(a(Hu), p),w € D((Hy)g, %) >
M =< (id gxq w)(T(m)) | me M,we M ke R stwoa <kv>""

A(Un) =< (id * wo,0)(Un) | v € D((Hy), 1) 5,0 € D(a(Hy), p) >~
are equal to the whole von Neumann algebra M.

Proof. — We have already noticed that Mg = A(Uy) and M = A(Ug).
Then, we get inspired by [KV0J]. By P23, we have 7(a(n)) = a(a¥(n)) so:
My, =< (id gxq wort)(T(m)) |m € M,w € (Mg)f,k € RT s.t woa < kv >~V

By P24, we have 0¥ ((id gxa w)['(m)) = (id gxa w o 7)['(0} (m)) that’s why

o (M) = My, for all t € R. On the other hand, by B.11, restriction of ¥ to
M, is semi-finite. By Takesaki’s theorem ([Str81], theorem 10.1), there exists a
unique normal and faithful conditional expectation E from M to My, such that
U(m) = W(E(m)) for all m € M*. Moreover, if P is the orthogonal projection
on the closure of Ay (Ny N ML) then E(m)P = PmP.

So the range of P contains Ay ((id gxq w)I'(z)) for all w and z € Nyg. By

right version of implies that P = 1 so that E is the identity and M = M.
If we apply the previous result to the opposite adapted measured quantum
groupoid, then we get that M = Mp. O

COROLLARY 9.26. — There exists a unique strongly continuous one-parameter
group T of automorphisms of M such that, for allt € R, m € M andn € N:

7i(m) = D™'mD", ry(a(n)) = a(o} (n)) and 7.(8(n)) = B(c} (n))
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Proof. — Straightforward from the previous theorem and . First property

comes from and the second one from . O
DEFINITION 9.27. — The one-parameter group 7 is called scaling group.
Let us notice that it is possible to define normal *-automorphisms 7 gxq 7

N
and 7, gxq of of M 5®, M for all t € R, thanks to the previous commutation

N N
relations and recalls about tensor products.

PROPOSITION 9.28. — We have I'o 1, = (14 pxq 7t) oI for allt € R.
N

Proof. — By and co-product relation, we have for all t € R:
(id gka T)(0} pra T—t) o = (id gko D)ooy
= (T gxqid)[o O’El =(To O';P g*a T—t)I
= (0} p*a Tt p*a T—t)(I' grq id)D

= (U;:I/ p*a [(T—t p*a T—¢)oT])oT

Consequently, for all m € M, w € M, k € RT such that wo 3 < kv, we have:

Fo7y0((Woo}) praid)l = (w ga id gk id) (o) gxa(loT_4))oT
= (W pka id pro id)(0F gra[(T_t s*a T_t) 0 T))
=[(7—¢ p*a T—t)oT]o((woay) ke id)T
The theorem allows us to conclude. |
PROPOSITION 9.29. — For all x € M Na(N)', we have I'(z) = 1 gQqy = &
x € B(N). Also, forallx € MNB(N), we have T'(z) =z gQq 1 & g a(N).
N

Proof. — Let x € M N «a(N)" such that I'(z) = 1 Q4 x. For all n € N, we
N
define in the strong topology:
Ty = % /ezp(—n2t2)afj(z) dt analytic w.r.t o¥,

and:

Yn = % /exp(antQ)T,t(z) dt belongs to a(N)'.
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By , we have I'(z,,) =1 g®q yn. If d € (MyN M, )T, then, for all n € N,
N

we have dz, € Mg N Mr,. Let w € M and k € RT such that woa < kv.
By right invariance, we get:

w o TR(dl‘n) = W((\I] ﬁ*a ’Ld)(l—‘(dl‘n)))

V((id pra w)(I(drn))) = V((id gra (ynw))(T(d)))

w((¥ gra id)(T'(d))yn) = w(Tr(d)yn)

Take the limit over n € N to obtain Tr(dz) = Tr(d)x for all d € MgNMrp,
and, by semi-finiteness of Tr, we conclude that z belongs to S(N). Reverse
inclusion comes from axioms. If we apply this result to the opposite adapted
measured quantum groupoid, then we get the second point. o

9.2.4. The antipode and its polar decomposition. — We now approach defini-
tion of the antipode.

LEMMA 9.30. — We have (wy,u * id)(Up, )D* C D)\(WA;*U,A‘;W *id)(Ug, )
for all x € C and v,w € Ao (Tw 1y,)-

Proof. — Straightforward from relation (§). O

ProrosiTION 9.31. — If I is the unitary part of the polar decomposition of
G, then, for all v,w € D((Hy)g,v°), we have:

I(w‘]‘l,w,v * Zd)(UIIL};)I = (LUJ\I,U,U, * ’Ld)(U}/r{q))

Proof. — We have (wy * id)(Upy, )DY/? C DY (w172 g1/2,, % id)(U}, ) for
v L

all v, w € Ay (7w 1,,) by the previous lemma. On the other hand, by inclusion
@), we have:

(o, % id)(Up,, ) D2 = (w0 % id) (U, )G T © DY (wy o % id) (Upg, )
So I(ww,v * id) (U, ) = (WA;1/2U7A}I/21U xid)(U}y, ) and, by B.2d, we have:
I(wwm * Zd)(U};@)I = (WA\II/2U],A;1/2U * Zd)(U}; = (u}_]\pvﬁj\l,w * ’Ld)(U}i@)
O

COROLLARY 9.32. — There exists a *-anti-automorphism R of M defined by
R(m) = Im*I such that R? = id. (We recall that I denotes the unitary part of
the polar decomposition of G).

Proof. — Straightforward from the previous proposition and theorem . O
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DEFINITION 9.33. — The unique *-anti-automorphism R of M such that
R(m) = Im*I, where I denotes the unitary part of the polar decomposition of
G, is called unitary antipode.

DEFINITION 9.34. — The application S = R7_;/5 is called antipode.

The next proposition states elementary properties of the antipode. Straight-
forward proofs are omitted.

PROPOSITION 9.35. — The antipode S satisfies:
i) for allt € R, we have ;o R=Ro1 and 0S5 =S50
ii) SR = RS and S? =1_;
ii1) S is densely defined and has dense range
iv) S is injective and ST = R7ij = 750 R
v) for all x € D(S), S(z*) € D(S) and S(S(z)*)* ==«

9.2.5. Characterization of the antipode. — In , we define the antipode by
giving its polar decomposition. However, we have to verify that S is what it
should be.

9.2.5.1. Usual characterization of the antipode.—

PROPOSITION 9.36. — For all v,w € Ay(Ty 1y), (Ww,v *id)(Uy, ) belongs to
D(S) and we have:

S((wWaw,v * Zd)(UIILL;,)) = (Ww,p * id)(qu,)

Moreover, the linear span of (wy . * id)(Uy, ), where v,w € Ay(Ty,1y), is a
core for S.

Proof. — By P.30, we have (wy,» *id)(Uy, ) € D(1_i/2) = D(S) and:
S(ww,w *id)(Ug,)) = R((WAQI/;W’A‘IP/;U *id)(Uy, )
= (Wsgv,aySgw *id)(Ug, ) by proposition P-31,
= (Wu,p *1d)(Ug by lemma J.20}

The involved subspace of M is included in D(7_; /2) by , weakly dense
in M by theorem and 7-invariant by which finishes the proof. O

COROLLARY 9.37. — For a,b,c,d € Ty 1y, (Way(a),Ae®) B*a id)(I'(cd)) be-
longs to D(S) and we have: 0
S((Way (a),Aw(v) oo id)(L(cd))) = (Way (e),Au (0%, (d)) oo id)(D(a (a)b"))
Proof. — By , we know that:
(WAg (a),Ag(b) o*a id)(D(cd)) = (Way () ag (b0, (@) * 1) (Up,,)
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which belongs to D(S). Then, by and , we have:
S((Wag(a),aed) *a id)(T(cd))) = S((Way (cay,Agbo?, (@) * 1) (W)

= (Way (cd), Au (bo¥, (a)) * 1d) (W)

= (WA (0¥ (a)p7), A (o (d+er) * 1) (W)

= (Wag (c), A (0¥, (d*)) oo id)(T(0}’ (a)b*))
O

9.2.5.2. The co-involution R. — In this section, we give a new expression of
R and we show that it is a co-involution of the adapted measured quantum
groupoid.

PROPOSITION 9.38. — For all a,b € Ny N Nr,,, we have:
R((Wryag(a) pxa id)(L(b7D))) = (Wiyae () p*a id)(I'(a"a))

Proof. — The proposition comes from the following computation:
R((WJ\FA\P(G),J\PA\II(G) B*a id)(I'(b™D)))
= R((WAy (b*0), Ty Aw (a*a) * id) (U, by corollary B-19,
= (WAy (a*a), oAy (b-b) * 0d)(Ug, ) by definition of R,
= (WigAe(b),Jure () B*a id)(T(a"a)) by corollary B.19.

REMARK 9.39. — We notice that R is Tr-independent.
PROPOSITION 9.40. — We have Ia(n*) = $(n)I for alln € N and Roa = (3.
Proof. — By , we have, for all x € Ty 1:

B(x)GD~Y2 C Ga(o_i2((z)) C GD™Y2a(z*) C Ia(x*)

and, on the other hand, B(x)GD~Y? C B(z)I so that Ia(z*) = B(x)I. The
result holds by normality of ac and S. O

By [Sau83H], there exists a unitary and anti-linear operator I 5®a I from
Hg®aH onto Ha®gH the adjoint of which is I a®g 1. Also, there exists an
anti- 1somorphlsm R B*a R from M g*a M onto M o*g M and, by definition
of R, we have, for all X EM pgxq M. o

N

(R ﬁ]’\(fa R)(X):(I Qo I)X*(I a®oﬁ I)
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We underline the fact that, if w € M, then wo R € M} and, if there exists
k € R* such that woa < kv, then wo Ro 3 < kv. Also, if § € M and
k' € RT are such that § o 8 < k'v, then § o Ro o < kv. Then, we have
wR B*a R = (w a*g3 9) o (R B*a R).

LEMMA 9.41. — For all a,x € Nr, NNy, w € MT and k € RT such that
woa < kv, we have:

w o R((wrynu(a) g*a id)(I'(x))) = (Aw((id fa w)(T(a"a)))|JuAw (z))

Proof. — Let b € Ny, N Ny. By P38, we can compute:

wo R((Wryny(a) p*a id)(L'(0°D))) = w((Wiyag @) s*a id)(T'(a"a)))
= ((id pra w)(T'(a"a))Ju Ay (b)|Jo Aw (D))
= (JubJu Ay ((id gxo w)(T(a*a)))|JuAw(D))

= (Aw((id pro w)(I'(a*a)))|JoAw (b))
Linearity and normality of the expressions imply the lemma. O

PROPOSITION 9.42. — We have ¢yo 0 (R gxq R)oT' =T o R.
N

Proof. — Let a,b € Np, "Ny, w,0 € M and k, k' € R" such that woa < kv
and 6 o 3 < k’'v. Then, we can compute by and the previous lemma:

(O pra W) o R((wryay(a) fa id)(T'(0*D))))

v

(0 pra W)(T((Wiyaev) s*a id)(I(a”a))))

v

= (WrgAu(b) B*a O pra w)(id p*a )(I'(a*a))
= (WrgAu(d) B*a O gra w)(T g id)(T'(a*a))
= (WrgAe) ra O)[L((id pxo w)([(a*a)))]

= (Aw((id pra 00 R)(I(6°D)))|JuAw((id sxa w)(T(a"a))))
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Observe the symmetry of the last expression and use it to proceed towards the
computation:

(A ((id oo w)(I'(a”a)))| oAy ((id g*a b0 R)(I'(6°0))))
= (Wi (a) o wo R)[I((id oo 0o R)(I'(6"D)))]
= (WrgAu(a) ra wo Rt gra 0o R)(T p*a id)((b"D))
= (Wi Au(a) grawo Bl gr 0o R)(id p*a I)(I(6°0))
=(woR g*a 00 R)(T((wry Ay (a) g*a id)((b*D))))
= (w op 0)(R p*a R)(T((wrg A (a) oo id)(I'(b"D))))

= (0 pra w)sno (R pra R)(T((Wryry(a) s*a id)(T'(b7°D))))

Theorem easily implies the result. O
9.2.5.3. Left strong invariance w.r.t the antipode.— In this section, T' denotes

a left invariant n.s.f weight from M to a(N). We put ® = voa~toT’, Jp the
anti-linear operator and Ag/ the modular operator which come from Tomita’s
theory of &', 0® its modular group and V = (Ur)j, i-e the fundamental
unitary associated with T’. The next proposition is the left strong invariance
w.r.t S.

PROPOSITION 9.43. — Elements (id * wy ) (V') belong to the domain of S for
all v,w € Mg/ (Tor 7v) and we have S((id % wy ) (V) = (id * wy ) (V).

Proof. — By B.19, we have (id * w)(V) = (wo R * id)(Uy,) for all w. If
@(x) = w(z*), then, by P.36, we have:
S((id*w)(V)) = S((wo Rxid)(Ug,)) = (wo Rxid)(Uy
= [(@o R xid)(Uy,)]"
= [(id+0)(V)]* = (id * w)(V™)

LEMMA 9.44. — For all v € D(D'Y?) and w € D(D'?), we have:
(Wo,w *id) (V)" = (WIDfl/Zu,IDlﬂw *id)(V)

Proof. — We have (id * wy . )(V) € D(S) = D(1_;/2) for all v',w’ belonging
to Ag/ (7o 1) by and, since 7 is implemented by D~!, we have:



MEASURED QUANTUM GROUPOIDS 95

(id * Wy o ) (V)DY? C DY21_ 1o ((id % war 00 ) (V)
= D'2R(S((id * wur ) (V)))
= DY21[(id % wyr o ) (V)T
= DY2[(id % wyr o ) (V).
Then, for all v € D(D'/?) and w € D(D'/?), we have:

= ((id % Wapr o ) (V) DY 2 Iv| D712 [w)

= (DY2I(id % wyr 1) (V)| DY 2 Tw)

= (wl(id * Wy V)

= ((wy,w * id)(V)*w',0")

Then, the proposition holds. o

((WIDfl/%,IDl/?w * id)(V)w’|v

PROPOSITION 9.45. — The following relations are satisfied:
i) (I o®cJo )V =V*(I 3®4 Jor);
Ne N

ZZ) (D71 a®e A@’)V - V(D71 ﬂ®a Aqy);
iii) (Tt gk OF )ol" I‘oot for allteR
N

where €(n) = Jpra(n*)Jg for allm € N.

Proof. — We denote by S¢ the operator of Tomita’s theory associated with &’
and defined as the closed operator on Hg such that Ag (Ner NNG,) is a core
for Sg/ and SerAg/ (z) = Ag/(z*) for all z € Ng NNG,. Then, by definition, we
have Ag/ = S3,S¢ and S¢r = Jor Ay, 12, Moreover, for all m € M and t € R,
we have o (m) = A%, mAZ™.

First of all, we verify these relations make sense. We have to prove some
commutation relations. We can write for all n € 7, and y € Ngr N NG,

Sara(n)Ae (y) = Serhar(a(n)y)
— Ag(y*a(n%)) = (0" 5(n)) Sar A (3)
so &(0”,; 5(n))Ser € Sera(n) and by adjoint a(n)Sg, C S3,6(075(n). Then:
a(n)Ae = a(n)Sg Ser S Sg:a(0])y(n)Ser  Agralo; (n))

Since B(n)D~t C D~'3(c¥(n)), the second relation makes sense. On an other
hand, we know that I3(n) = a(n*)l and Ja(n) = €(n*)Jp to terms of the
first relation. Finally, for all ¢ € R, we have:

nof=pBo0’ and o’ (a(n)) = A a(n)AG! = a(oy (n))

which finishes verifications.
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Let v,w € Ap(7s.5, ). By B.6, we know that (w,. s*a id)(I'(y)) belongs to

N NNa NN, NN, for all y € N NN NN, ﬂ/\/'q’;,f/ By , we can write
(Wo,wxid)(VF)Ae (y) = Ao (wow g*a 1d)(T(y))) so that (wy w*id)(V*)As (y)

belongs to D(Sg/). Then, we compute:
S (wo,w *1d) (V") Ao (y) = SorAar ((Wo,w gra id)(I'(y)))

v

= Aor(@uy gra id)(T(y7))
— (@ id) (V) A ()
= (Ww,w *1d)(V") Ser A (y)
Since Ag (N N Nor N NG, NNG/) is a core for S/, this implies:
(10) (@ id)(V*) S0 C S (o % i) (V)
Take adjoint so as to get:
(11) (W *1d)(V)Sg C S/ (wy,w * id)(V)
Then, we deduce by the previous lemma:
(Wo,w *1d)(V)Agr = (wy, *id) (V) S35 Sar
C S3/(wyw *1d) (V) S
= S [(WID*U?w,IDl/?v id)(V)]" Sar
Then by inclusion ([[0]) and the previous lemma, we have:
(Wo,u % id)(V) A € SgrSar [(Wrp1/2v,rp-1/2, * 1d) (V)]
= Ag/(Wp1/211p1/2y p-1/211 D—1/24 * 1) (V)
= Ag/(Wpy,n-10 *id)(V)
Consequently, like relation (E), we easily deduce that:
(D71 a®e AV =V(D™' 304 As)

Let’s prove the first relation. By inclusion ([L0), for all v € D(N~1/2) and
w € D(D'/?), we have:

Jor (W, # id) (V) Jar AL = Jar (W, * id)(V*) S
(12) C Jor Sar (wye * id) (VF)
= AN (w0 * id)(V*)

For all p,q € D(A}I)/?), we have by ii):
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(e *id)(V)p, AF%0) = (V' (0 a@eD)lw 50 Ay%)
= (V'(v o8 p)|D7V2DP0) 50 AgP)
= (D72 p@u APV (v 0@ p)IDY 2w 50 q)
= (V*(D~ Y% o8 AYPp) DY 2w 5®4 q)

= ((@p 1720, prr2 *id) (V) A plg).
Since A(lb/,Q is self-adjoint, we get:

(Wp-1/20, /20 *id) (V)AY? C AP (W * id) (V)
Also, by the previous lemma, we have:

(WD—I/Z,U,DI/Z,UJ * zd)(V*) = (le/szfl/zU * Zd)(V)*

= (Wrw, v * id)(V)
That’s why (W, 10 * id) (V)Al/,2 C A}I)//Q(wuyw *id)(V*). Since A;/,Q has dense
range, this last inclusion and @) imply that:
(Wrw, 1w *1d) (V) = Jor (W * 3d) (V") Jgr

Then, we can compute:

(I a0 Jo )V (I 5@ Jor)(v 500 @)|w o®c q)
V(Iw ®a Joq)/[v o®e Jorp)

= (
= ((Wrw,1v % 1d)(V)Jarq|Jop) = (Jor (Ww,v * id)(V*)q|Jap)
= (o +id)(V)plg) = (V(v @0 @)l a8 q)

so that the first relation is proved. We end the proof by the last equality. We
know that I" is implemented by V', o? by Ag and 7 by D so that the relation
comes from (D! @, Ag)V = V(D! 384 Agr) like p.24. O

If we take TV = T, then V = W*, Jo» = Jp and Ag = Ag so that we have
the following propositions:

PROPOSITION 9.46. — For all v,w € Ao(Ta,s,), (id * wy ) (W) belongs to
D(S) and:

S((id * Wy, ) (W) = (id * wy 4 ) (W)
PROPOSITION 9.47. — We have (wy,w*id)(W*)* = (W1 p-1/2, 1p1/2,*%id) (W)
for all v € D(DY?) and w € D(D/?).
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PROPOSITION 9.48. — The following relations are satisfied:

i) (I a®p Jo)W* =W(I @4 Jo) ;
Neo N
i) (D7 @4 Ag)W* =W*(D™! 30, As) ;

iii) (1; pka of)ol =T ool forallt € R.
N

We summarize the results of this section in the three following theorems:

THEOREM 9.49. — Let (N, M, o, 3,T,v,T1, Tr) be a adapted measured quan-
tum groupoid and W the pseudo-multiplicative unitary associated with. Then
the closed linear span of (id % wyw)(W) for all v € D(,Hs,v) and w €
D((Ho)g,v°) is equal to the whole von Neumann algebra M.

THEOREM 9.50. — Let (N, M, o, 8,T,v,T1, Tr) be a adapted measured quan-
tum groupoid and W the pseudo-multiplicative associated with. If we put ® =
voa~toTy, then there exists an unbounded antipode S which satisfies:

i) for all x € D(S), S(z)* € D(S) and S(S(z)*)* ==

it) for all v,w € Ae(Ta,s,), (id * wy ) (W) belongs to D(S) and:

S((id * wy ) (W) = (id % wy ) (W)

S has the following polar decomposition S = R7; /5, where R is a co-involution
of M satisfying R?> = id, Roa= 3 and syoo (R pg*o R)ol' =T oR, and where
N

T, the so-called scaling group, is a one-parameter group of automorphisms such
that o= ooy, o8 = [ ooy satisfyingT o1, = (1 gxa ) oL for all
N

teR. S, R and 7 are independent of Tr, and of Tg.
Moreover, RoTroR is a n.s.f operator-valued weight which is right invariant
and a-adapted w.r.t v.

THEOREM 9.51. — Let (N,M,«,3,T,v,T1,,Tr) be a adapted measured
quantum groupoid. If R is the co-involution and T the scaling group, then
(N,M,«, 3,1, Ty, R, 7,v) becomes a measured quantum groupoid.

Proof. — By hypothesis, we know that v, = ¢”, for all t € R so that ~ leaves
v invariant. By theorem and proposition , we can construct a co-
involution R and a scaling group 7 such that (N, M, «, 3,1, T1,, R, T, V) becomes
a measured quantum groupoid. O

9.3. Uniqueness, modulus and scaling operator. — By the general the-
ory of measured quantum groupoids, theorems and can be applied and
we get the following two theorems in the adapted measured quantum groupoids
case:
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THEOREM 9.52. — Let (N, M, o, 3,T,v,T1, Tr) be a adapted measured quan-
tum groupoid. If T' is a left invariant operator-valued weight which is 3-adapted
w.r.t v, then there exists a strictly positive operator h affiliated with Z(N) such
that, for all t € R:

voa ol = (voa "t oTL)sm

We have a similar result for the right invariant operator-valued weights.

THEOREM 9.53. — Let (N, M, «, 8,T,v, Ty, RoTy, 0o R) be a adapted measured
quantum groupoid. Then there exists a strictly positive operator § affiliated with
M called modulus and then there exists a strictly positive operator \ affiliated
with Z(M)Na(N)NB(N) called scaling operator such that [Dvoa~toTroR :
Dvoa=toTy); = M5 it for all t € R.
Moreover, we have, for all s,t € R:
[Dv o aloTror,:Drvoa~to T = TSt
[Dl/oof1 oTpoRoTs: Dvoa™! oTpoR]; = TSt

¢ 1 .
/ [Drvoa=toTpoc?® °Tiol . Dyoa=toTy], = N
[DroatoTroRo JSVOO‘AOTL :DvoatoTypoR]; = "
ii) ROA) =X\, R(0) =671, (6) =6 and :(\) = A ;
iii) 0 is a group-like element i.e I'(§) =3 gR®q 0.

N

Nevertheless, in the setting of adapted measured quantum groupoids, we
can improve the previous results. We want to precise where ¢§ sits and the
dependence of fundamental elements with respect to the quasi-invariant weight.

PrROPOSITION 9.54. — The scaling operator does mot depend on the quasi-
invariant weight but just on the modular group associated with. If5 is the class
of & for the equivalent relation 61 ~ 0o if, and only if there exists a strictly
positive operator h affiliated to Z(N) such that 6 = B(h)6%a(h~™), then §
does not depend on the quasi-invariant weight but just on the modular group
associated with.

Proof. — If /' is a n.s.f weight on N such that oV = o”, then there exists
a strictly positive h affiliated to Z(NN) such that v/ = v,. We just have to
compute:

DV oa ™ oTroR: DV oa™ o Ty
=[DvpoatoTLoR: D®oR);[D®oR: DP|;[DP®: Dvyoa ' oTy);
= B([Dvy, : DU )N §"a([Dv : Duply) = A2 B(h*)o" a(h~)
O
PROPOSITION 9.55. — The modulus § is affiliated with M Na(N) N B(N) .
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Proof. — Since ® = v o 7! 0 S, with the notation of section @, we have:
A5 6" = [D®oR: D, = [DRo T, o R: DSL];

which belongs to M N B(N)’. Since A is affiliated with Z(M), we get that J is
affiliated with M NB(N)’. Finally, since R(J) = J, we obtain that ¢ is affiliated
with M Na(N) NB(N). O

Let ¢/ be a n.s.f weight on N such that there exist strictly positive operator

it2
h and k affiliated with N strongly commuting and [Dv/ : Dv], = k= hit for all
t € R. By [Vae01d] (proposition 5.1), it is equivalent to o¥(hi*) = kisthis for
all s, € R and v/ = vy, in the sense of [Vac01d]. This hypothesis is satisfied, in

particular, if ¢ and 0¥ commute each other. In this cas, k is affiliated with
Z(N).

PROPOSITION 9.56. — There exists a n.s.f operator-valued weight T} from M
to a(N) which is B-adapted w.r.t V' such that, for all t € R, we have:

—it2

(DT} : DTy], = B(k—2 h')

Proof. — By @, there exists a n.s.f operator-valued weight Sy from M to
B(N) such that voa~t 0Ty, = vo B~ o Sy sothat Sp, is a-adapted w.r.t v.
Then, again by @, there exists a n.s.f operator-valued weight T} from M to
a(N) such that v/ o 8710 S =voa~toT} so that T} is -adapted w.r.t v/
Then, we compute the Radon-Nikodym cocycle for all ¢ € R:

[DT} : DTy)y = [Dvoa™'oT}] :Dvoa™toTy);
=[DvVopB toS:DrvoB oS

—it2

= B([DV' : DVJ,) = Bk k')

COROLLARY 9.57. — We hawve:

voa loT} = (oo 'oTL)gn and vVoa 'oTy = (voa ' oTL)amsm)

Proof. — Come from [[Vae0l4] (proposition 5.1) and the following equality, for
it2 —it2

allt €R, [Dv oatoT) : Dvoa toTy), = alk™= )B(k™=2 )a(hi*)3(hi). O

PROPOSITION 9.58. — T7 is left invariant.
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Proof. — Let a € /\/l;, . By left invariance of T, we have:
L

(id gko V' oot oTy)(T(a)) = (id gka voa t oTy)(T'(a))

v’ v

= (’Ld B*a (I/ o 0471 o TL)B(h))(F(GJ))

v

= (id pravoa ' o Tr)(T(B(h'/?)aB(h'/?)))

174

= To(B(h'/?)ap(h'/?)) = T'(a)

We state the right version of these results:

PROPOSITION 9.59. — There exists a n.s.f right invariant operator-valued
weight T}, which is a-adapted w.r.t V' such that, for all t € R, we have:

[DT}, : DTR]y = a(k™> h')
Moreover, we have:
vof~t oTh = (vo pt oTR)am) and Vopt oTh = (vo gt o TR)a(h)B(h)
LEMMA 9.60. — The application IV’/ defined by the following formula:

1€ 5@am) = FHE 580 alht )

for all € € H and n € D(oH,v) N D(a(h'/?)), is an isomorphism of B(N) —
a(N)'°-bimodules from H g®q H onto H g®q H.

Proof. — For all x € N,, we have:
a(@)a(h'*)n = a(@h'/?)n = RV (n)A, (xh'/?) = R (n) Ay ()

so that a(h'/2)n € D(oH,v) and R*" (a(h'/?)n) = R*¥(n). Also, we recall
that J,, = J k=8 J ki/8], by [] (proposition 2.5). Then, we have:

B8 5@a ah?)m B3 s@a al(h'/)ns)
= (B(J < a(h ), a(h )y >E 0 )BT 8)E|BRT8)E)

= BT BT ETEIE T, < nuyme >0, Tk TEYE KR &)
=B <m,n2 >4, L)) = (&1 s®a &2 s@a m2)
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REMARK 9.61. — For all £ € D(Hg,v°) and € D(oH,v), we have:

IV (¢ 5@an) = B3)E s@a a(h?)) =€ 504 a(k™/EhY?)

v

= Blog) (W) #®a (k™) = Bloy),(k~En12))e 5®a 1]

= BRI 50 alo o (W20 = BUETRIAE 520

PROPOSITION 9.62. — Let (N, M,c,3,T,v,T,,Tr) be a adapted measured
quantum groupoid.  There exists a adapted measured quantum groupoid
(N,M,o,3,T',v, T}, Tf) fundamental objects of which, R', v/, X', ¢’ and P’,
are expressed, for allt € R, in the following way:

i)RR=R,N=Xand ¥ =4
i) Tl = Ad .o »
i) 7 (k™2 h=it)B(k"T hit)

—it it2

iii) Pt = a(kS WGk ™% h=it) Jpa(k™s hiV)B(k =5 h=it) Jo Pt

o Tt = Ado([Dv':Du)?)B([Dv':Dv)y) © Tt

Proof. — The existence of (N, M, o, 3,T,v',T},Tf) has been already proved.
We put & =v'oa™ o Ty and W' = v/ 0 f7' o T, Let 2,y € Ny N Nyr. By
[VaeOla] (proposition 2.5), we have:

Jo Ay (x) = Joak™/3)B(k/®) Jya(k/®)B(k™®) Jy Ay (za(RY/?)B(h?))
WigrAgr(z) = Wa(ki/8)B(k=i/8)Jy Ay (za(hl/2)B(h1/2))

Then, we easily verify

)\ﬁ,a,.l/ . _ Iu')\ﬁ,a,.u
a(kH/9)B(k=4/%) Ju Ay (wa(h1/2)B(01/2) = Lv Aakire) 1y Au(za(nt/?))

We compute:
(WJ\I,/A\I,/(I) ﬁ*{a Zd)(F(y*y))
= (Wa(k1/3)B(k~1/) Ju Ay (wa(h1/2)B(h1/2)) F*a id)(I'(y™y))

= (Wa(ki/8) Jy A (za(r?/2)) B%a 1d) (L (YY)

= (W Ay (wak-i/5n1/2)) pxa 1d)(T'(y"y))
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Apply R to get:
Rl(@1,: 00001 %0 10)(T(5")

= (WigAu(y) s*aid)(T(a(k/ M)z za(k™5h1/?)))

= (Wa(k-i/511/2) Jg Ay (3) oa id)(T'(z"z))

= (Wa(ki/®).1g A (ya(h1/2)) o*a id)(T'(z"z))

= Wy Ay (v) o*a id)(D(2"2)) = R'[(Wry Ay (2) g% id)(I'(y*y))]

so that R=R'. For alla € M, { € D(Hg,v'?) and t € R, we have:
7 ((we g*a id)(T'(a)))
= r(a(k™/Sh™ ) (we pxa id)(D(a))a(k/*h=12)
= a(oy (kPR ) m((we pra id)(D(a))alof (Kh712)
— QbR 0y g g id) (D0, (@) )a(k /2SR
By [Vac01d] (proposition 2.4 and corollaire 2.6), we know that:
(Wagre s*a id)(T(0¥(a)))

= 2 2 o id)(D(Ad " v
T e nnagie 10 WAL =y 7))
so that:
7t((we pxa id)(I'(a))
= Ad o( ga id) (D (0¥, (a)))

it2
a(k—t/2+i/8h—1/2)ﬂ(kt7hit)

174

w it2 :
Bk RI)ALT'E

— alk R BEE R (wpsre e id)(T(o Y (@)))alk S BBk E h )
= a(k7F R BES RYT(we gra id)(T(a)))alks RGBS B

Consequently, we have:
T1(2) = a(k*E BB B )r (2)a(k 5 A=) Ak BY)
for all z € M and t € R. Now, we compute the Radon-Nikodym cocycle:
[DV oa ™t oT' oR: DV oo™ oT'];
= [DV'a 'T'R: Dva*TR)[Dva'TR : Dva 'T};[Dva™*T : Dv'a™ T},

— o([DV' : DU)B(DY : DV NS i a([Dv : DV'],)B([Dv : DV']%,)
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it? -
which is equal to NSt Finally, we express the manageable operator P’ in
terms of P. We have, for all z € Ny N Ny and ¢ € R:

P g (x) = N2 A (7 ()

i

= X2Ag(a(k*S h) B0 h ) r (2)a(k ™ b Bk hit)a(hV/2)B(h1/2))

which is equal to the value of:

—1

/2 it 2t it
A 20k BB b= ) Jealks hiY)B(k

i h_it)a(/{:t/2)ﬁ(/{it/2)J¢
on Ag(7¢(z)a(h'/?)B(h/?)) and the value of:

—1

N2 (kS B BT R Jpa(k™E BBk

) _

';t h*'ﬂ)[]q)
on Ag (7 (za(h'/?)B(h'/?))) which is:

—it2 —it?

(k'S KBk ) Jpa(k's hit)A(k ™ h)Jo P g (x)

O

’

Thanks to these formulas, we verify for example that 7/(a(n)) = a(of (n)),
1 (B(n)) = B(c? (n)) and 7’ is implemented by P’.

PROPOSITION 9.63. — Let (N,M,a,3,T,v, T, Tr) be adapted measured
quantum groupoid and let Ty, be an other n.s.f left invariant operator-valued
weight which is B-adapted w.r.t v. Then fundamental objects R, 7, \, 6 and
P of the adapted measured quantum groupoid (N, M,a,3,T, v, TL,TR) can be
expressed in the following way:

B:R,%:T, A=Xand P="P
6 = da(h)B(h™") where h is affiliated with Z(N) s.t. Tt = (T1)sn)

e

1

Proof. — By uniqueness theorem, there exists a strictly positive operator h
affiliated with Z(N) such that voa='oT, = (voa~to T1)s(n) and, for all
t € R, we have [DTy, : DTt], = B(h™). We have already noticed that R and
7 are independent w.r.t left invariant operator-valued weight and g-adapted
w.r.t v. We compute then Radon-Nykodim cocycle:

[Dl/ﬂilRTLR : DyoflfL]t
= [DvB~'RTLR : DvB~'RTLR];[D¥ : D®],[Dva~ Ty, : Dva™ Ty
= R([DTy, : DT1)*,)[DY : D®|,[DT}, : DTy
_ a(hit))\§5itﬁ(h—it) _ )\@yta(hit)ﬁ(h—it)
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Then, it remains to compute P. If, we put ® = v o ™! o Ty, we have, for all
teRand x € N, NNg:
PNz () = MM (7u(w) = X2 Aa(ri(2) (/%)) = X2 Aa (i (2B(h'/?)
= P Ag(2B(h/?)= P ()
o
THEOREM 9.64. — Let (N, M, o, 3,T,v,T1,,Tg) and (N, M,«a, 3,1, 0", T}, TF)

be adapted measured quantum groupoids such that there exist strictly pos-
itive operators h and k affiliated with N which strongly commute and

[Dv' : Dv], = k' hit for all t € R. For all t € R, fundamental objects
of the two structures are linked by:
i) R =R
- /! —
i) 7, = Ad e I Ado([Dv':Dv)2) (D' :DV)y) © Tt
iii) X =\
iv) 6 =46 where 5 and &' h(we been deﬁned n proposmon -
’U) Plzt _ Oé(k? hzt)ﬁ( lt)J@Ck(k hzt)ﬁ( zt)J Pzt

Proof. — We successively apply the two previous propositions. o

We summarize results concerning the change of quasi-invariant weight in the
following theorem:

THEOREM 9.65. — Let (N, M, «, 8,1, v, Ty, RoTy, 0o R) be a adapted measured
quantum groupoid. If V' is a n.s.f weight on N and h, k are strictly positive
operators, affiliated with N, strongly commuting and satisfying [Dv' : Dv]y =
k§ hit for all t € R, then there exists a n.s.f left invariant operator-valued
weight Ty, which is B-adapted w.r.t v'. Moreover, if (N,M,o, 8,1,V , T}, Tp) is
an other adapted measured quantum groupoid, then, for allt € R, fundamental
objects are linked by:

i) R = R

- ! —

i) 7, = Ad e e O Ado([Dv':Dv)2)B(Dv':DV)y) © Tt
iii) N =

iv) 8" =6 where § and &' have been defined in proposition [9.5)
v) Pt = a(k™S WA= h=it) Jpa(k™s hit)8(k ™ lzﬂhP“

—it?

9.4. Characterization. — In theorem , we explain how a adapted mea-
sured quantum groupoid can be seen as a generalized quantum groupoid. But
it is easy to characterize them among measured quantum groupoids.
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THEOREM 9.66. — A measured quantum groupoid is a adapted measured quan-
tum groupoid if, and only if v = o” if, and only if 0 is affiliated with MNa(N)'N
B(N)".

Proof. — Straightforward. O

In general, we have not a duality within adapted measured quantum
groupoid category that is the dual structure coming from measured quantum
groupoid is not a adapted measured quantum groupoid anymore. We can be
even more precise by characterizing dual objects of adapted measured quantum
groupoids.

THEOREM 9.67. — A measured quantum groupoid is the dual of a adapted
measured quantum groupoid if, and only if vy = o¥, for alt € R.

Proof. — Let us denote by M a measured quantum groupoid and by M its
dual. By the bi-duality theorem and the previous theorem, M is the dual of a
adapted measured quantum groupoid if, and only if Mis a adapted measured
quantum groupoid if, and only if y_; = 4 = of for all t € R. O

Also, we can deduce a precise result concerning duality within adapted mea-
sured quantum groupoids:

THEOREM 9.68. — For all adapted measured quantum groupoid (N, M, o, 3, T, v, Ty, Tr),
the dual measured quantum groupoid is a adapted measured quantum groupoid
if, and only if the basis N is semi-finite.

Proof. — (N, ]/\4\, o, B, f‘) equipped with TZ et EOTZ oRisa adapted measured
quantum groupoid if, and only if there exists a nsf weight 7 on N such that,
for all t € R, we have o = aft. In this case, ¥ is ¢” invariant, so there
exists a strictly positive operator h affiliated to the centralizer of v such that
[D0 : Dv]; = h'. Then, for all z € N, we have 0”,(z) = h'o¥(x)h~" and
0”91 (z) = hzh~%. Then of is inner for all ¢t € R and N is semi-finite by
theorem 3.14 of [] Conversely, if N is semi-finite, there exists a nsf trace
tr on N and a strictly positive operator hsuch that v = tr(h.). So o = tr(h=1.)
satisfies conditions. O

10. Groupoids

DEFINITION 10.1. — A groupoid G is a small category in which each mor-
phism v : 2 — ¥ is an isomorphism the inverse of which is v~!. Let G0}
the set of objects of G that we identify with {y € G|y o~y = ~}. For all
v € G,y :x — vy, we denote x = v~y = s(y) we call source object and
y = vy~ ! = r(y) we call range object. If G2} is the set of pairs (y1,72) of G
such that s(y1) = 7(v2), then composition of morphisms makes sense in G{2}.
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In [], J. Renault defines the structure of locally compact groupoid G
with a Haar system {\*, v € G{°}} and a quasi-invariant measure p on G{°},
We refer to [ for definitions and notations. We put v = p o A. We refer
to [Co7d] and [[ADRO(] for discussions about transversal measures.

If G is o-compact, J.M Vallin constructs in [] two co-involutive Hopf
bimodules on the same basis N = L*(G1% u), following T. Yamanouchi’s
works in ] The underlying von Neumann algebras are L>°(G, v) which
acts by multiplication on H = L?(G,v) and L(G) generated by the left regular
representation L of G.

We define a (resp. anti-) representation « (resp. ) from N in L>*(G,v)
such that, for all f € N:

al(fy=for and QB(f)=fos

For all i, j € {a, 8}, we define Gl{i»} C G x G and a measure sz such that:

H ;®; H is identified with L*(G2, 12;)
N

For example, Ggi is equal to G2} and 1/?37& to v2. Then, we construct a

unitary We from H o®q H onto H 5®q H, defined for all € € L2(GS4, V2 .a)
H K
by:
WG&(Sv t) = 5(55 St)
for v2-almost all (s,t) in G123},
This leads to define co-products I'¢ and I'¢ by formulas:

To(f) =Wo(l a®a WG and Ta(k) =Wk s®a HWg
N

for all f € L*°(G,v) and k € L(G), this explicitly gives:

La(f)(s,t) = f(st)
for all f € L®(G,v) and v?-almost all (s,t) in G2},
Fa(L(h)é(e,y) = /G h(s)E(s™ a, 571 y)dA" ) (s)

for all € € L? (Gfg;, V2 o), h a continuous function with compact support on G
and ui,a-almost all (z,y) in Gi?i Moreover, we define two co-involutions jg
and ]/E by:

je(N)(@) = fl@™)
for all f € L°°(G,v) and almost all z,

jalg) = Jg*J



108 FRANCK LESIEUR

for all g € £(G) and where J is the involution J¢ = ¢ for all ¢ € L?(G). Finally,
we define two n.s.f left invariant operator-valued weights Ps and Pg:

— [ J@iNO@) ad Pa(Li) = alfiow)
G
for all continuous with compact support f on G v-almost all y in G.

THEOREM 10.2. — Let G be a o-compact, locally compact groupoid with a
Haar system and a quasi-invariant measure pon units. Then:

(LOO(G{O} ’ ,LL), LOO(Ga V)v a, 67 FGv 12 PG; jGPGjG)
18 a commutative adapted measured quantum groupoid and:
(LOO(G{O}v /L)a E(G)v a,a,la, Hy PijGPGjG)

is a symmetric adapted measured quantum groupoid. The unitary Vg = W§ is
the fundamental unitary of the commutative structure.

Proof. — By [Val9g] (th. 3.2.7 and 3.3.7), (L°(G°}, 1), L®(G, v), o, 5,Tc)
and (L= (G} u), £(G), a, a Fg) are co-involutive Hopf bimodules with left in-
variant operator-valued weights; to get right invariants operator-valued weights,
we consider jgPgje and 3/51/32;]/5

Since LOO(G ,v) is commutative, P is adapted w.r.t p by [Val9d] (theorem
3.3.4), ol "oPs fives point by point «(N) so that Pg is adapted w.r.t p.

Fmally, for all e, f, g continuous functions with compact support and almost
all (s,t) in G2}, we have, by B.14:

(1 ﬁ%a Je\Wa(f a%a 9)(s,1) = e(t)f(s)g(st) = Ta(9)(f 5®a €)(s,t)
-1 ﬁ%a JeJ)Un(f oo 9)(s,t)

so that we get Uy = Wg. O

REMARK 10.3. — In the commutative structure, modular function d’c’l—;l and

modulus coincide and the scaling operator is trivial.

We have a similar result for adapted measured quantum groupoids in the
sense of Hahn ([Hah784] and [Hah78H)):

THEOREM 10.4. — From all measured groupoid G, we construct a commuta-

tive adapted measured quantum groupoid (L™ (G{O}, ), L°°(G l/) a,3,Ta, u, Pa, jaPaja)
and a symmetric one (L>®°(G{%}, n), £(Q), o, a Fg,,u,Pg,nggjg) Objects

are defined in a similar way as in the locally compact case. The unitary Vg is

the fundamental unitary of the commutative structure.
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Proof. — Results come from [[Yam93] for the symmetric case. It is sufficient to
apply in this case, technics of [Val9¢] for the commutative case and invariant
operator-valued weights. O

CONJECTURE 10.5. — If (N, M, o, 3,1, u, T, Tr) is a adapted measured
quantum groupoid such that M is commutative, then there exists a locally
compact groupoid G such that:

(N; M,Oé,ﬁ,F,M,TL,TR) =~ (LOO(G{O}aM)aLOO(Ga V)aaaﬁa FG,[L,PG,jGOPGOjG)

11. Finite quantum groupoids

DEFINITION 11.1. — (Weak Hopf C*-algebras [BSz96]) We call weak Hopf
C*-algebra or finite quantum groupoid all (M,T, k,e) where M is a finite
dimensional C*-algebra with a co-product I' : M — M ® M, a co-unit ¢ and
an antipode k : M — M such that, for all z,y € M:

i) T is a *~homomorphism (not necessary unital);

ii) Unit and co-unit satisfy the following relation:

@)z )I(1)(1ey)) = e(zy)
iii) ~ is an anti-homomorphism of algebra and co-algebra such that:
—(kox)2 =1
- (m(k®id) ®id) (T @ id)I'(z) = (1@ 2)I'(1).
where m denote the product on M.

We recall some results [NVO0Q], [NV0J and [BNS9J. If (M,T,k,¢) is a
weak Hopf C*-algebra. We call co-unit range (resp. source) the application
et = m(id ® k)T (resp. €5 = m(k ® id)I'). We have kK oy = g4 0 k. There
exists a unique faithful positive linear form h, called normalized Haar measure
of (M,T',k,e) which is k-invariant, such that (id ® h)(I'(1)) = 1 and, for all
x,y € M, we have:

(14 ® W1 ©y)T) = (& DT 0 )
Moreover, Ej = (h @ id)I' (resp. Ej = (id ® h)I') is a Haar conditional
expectation to the source (resp. range) Cartan subalgebra e5(M) (resp. range

e:(M)) such that ho Ef = h (resp. ho E} = h). Range and source Cartan
subalgebras commute.

By [Da03), [Nik0J], and [Val0d], we can always assume that K,y = id
thanks to a deformation. In the following, we assume that the condition
holds.

Since h ok = h and ke; = €5k, we have hoe; = hoe;.

THEOREM 11.2. — Let (M,T,k,¢) be a weak Hopf C*-algebra, h its normal-
ized Haar measure, E (resp. EL) its source (resp. range) Haar conditional
expectation and e;(M) its range Cartan subalgebra. We put N = e,(M),
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a = idy, B = KN, [ the co-product I' viewed as an operator which takes
value in:

M B*a M ~ (M®M>1"(1)
N

and = hoa =hof3. Then (N, M,a,ﬂ,f‘,u,EZ,Eﬁ) is a adapted measured
quantum groupoid.

Proof. — « is a representation from N in M and, since ﬁfgt(M) =id, B is a
anti-representation from N in M. They commute each other because Cartan
subalgebras commute and k o e, = €5 0 k. For all n € N, there exists m € M
such that n = e;(m). So, we have:

D(a(n)) = L(e(m)) = T(1)(e:(m) ® DI(1) = a(n) %a 1

Also, we have I'(3(n)) = 1 3®q B(n) and T is a co-product. Then
N

(N, M, «,3,T) is Hopf bimodule. Moreover, for all n € N and ¢ € R, we
have:

ol (B(n)) = o (B(n)) = o H (B(n)) = 01" (B(n))
= B(a"7 ™% (n)) = B(o" ()

and Ej is f-adapted w.r.t u. Since Ej = ko E} ok, then E} is a-adapted w.r.t
I O

THEOREM 11.3. — Let (N, M, o, 3,T,v,T1, Tr) be a adapted measured quan-
tum groupoid such that M is finite dimensional. Then, there exist I, k and ¢
such that (M,T, k,¢e) is a weak Hopf C*-algebra.

Proof. — By .4, we identify via I%,, L?(M) ®q L*(M) with a subspace
N

of L*(M) ® L*(M). We put T'(z) = I} I'(x)(I4,)*. By [ValOl] (definition
2.2.3), the fundamental pseudo-multiplicative unitary becomes a multiplicative
partial isometry on L2(M) ® L2(M) of basis (N, a, 3,3) by I = v éI/V(Igﬁo[)*.
I is regular in the sense of [Val0l] (definition 2.6.3) by .3 Moreover, if we
put H = L*(M), then Try(R(m)) = Trg(m) for all m € M because R is
implemented by an anti-unitary, so Trgy o8 = Trgoa = Tryg o B and we
conclude by [[ValOl] (proposition 3.1.3). O

REMARK 11.4. — With notations of section .3, & and S are linked by:

k() = a(ng/?d"?)B(ng V2d=1/%) S (x)a(ng /2 Y2)B(ny/2d'?)
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12. Quantum groups

THEOREM 12.1. — adapted measured quantum groupoids, basis N on which is
equal to C are exactly locally compact quantum groups (in the von Neumann

setting) introduced by J. Kustermans and S. Vaes in [KV0J].

Proof. — In this case, the notion of relative tensor product is just usual tensor
product of Hilbert spaces, the notion of fibered product is just tensor product
of von Neumann algebras and the notion of operator-valued weight is just
weight. O

13. Compact case

In this section, we show that pseudo-multiplicative unitaries of compact
type in the sense of [Eno02 correspond exactly to adapted measured quantum
groupoids with a Haar conditional expectation.

DEFINITION 13.1. — Let W be a pseudo-multiplicative unitary over N w.r.t
a,(,0. Let v be a n.s.f weight on N. We say that W is of compact type
w.r.t v if there exists £ € H such that:

i) € belongs to D(Hﬁ, v°)N D(oH,v) N D(Hg, v°);
11) < 555 >/é’l/0:< 555 >a,u:< §7§ >ﬁ,v°: 1
iif) we have W(§ ;®an) =& a®gnforallne H.

In this case, £ is said to be fixed and bi-normalized. We also say that W is
of discrete type w.r.t v if W is of compact type.

By [Eno0g] (proposition 5.11), we recall that, if W is of compact type w.r.t
v and £ is a fixed and bi-normalized vector, then v shall be a faithful, normal,
positive form on N which is equal to wg o v = wg 0 B = we oﬁ and it is called
canonical form.

PROPOSITION 13.2. — Let (N, M,a, 3,T) be a Hopf bimodule. Assume there
exist:

i) a n.f left invariant conditional expectation from E to a(N);
it) a n.f right invariant conditional expectation from F to B(N);
iii) a n.f state v on N such that voa o E=vof toF.

Then (N,M,a,B3,T,v,E,F) is a adapted measured quantum groupoid.
Moreover, if R,7,\ and § are fondamental objects of the structure, then we
have F = RoEoR and A = 6 = 1. Finally, Ayoa-10g(1) is co-fized and
bi-normalized, and the fundamental pseudo-multiplicative unitary W is weakly

reqular and of discrete type in sense of [[Eno02 (paragraphe 5).
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Proof. — For all t € R and n € N, we have:

P (Bn) = o7° *E(B(n) = 07" (B(n)) = B(o¥,(n))

Also, we have:
of (a(n)) = o7 °F(a(n)) = o7°* P (a(n)) = a(o} (n))

so that (N, M,«,3,T,v, E, F) is a adapted measured quantum groupoid. By
definition, we have:

it2
[Dyoa_loEoR:Duoa_loE]t:)\tT(S“f

On the other hand, since voa~' o E = vo 37! o F and by uniqueness, there
exists a strictly positive element h affiliated with Z(N):

[Dvoa 'oEoR:Dvoa'oFE];=[DRoFEoR:DF]; =alh")

We deduce that A = 1 and § = a(h), so a(h™!) =6~ = R(6) = B(h) and by
[Eno0q] (5.2), we get h = 1.

We put @ =voa~toFE. If (&)ics is a (N°,v°)-basis of (Hg)g then, for all
v e D(Hg,v°):

Un(v a®s Aa(1)) = Y & p®a Aa((wog gxa id)(T(1)))
ve i€l v v
=Y & 5®a al<v,& >pu0)Aa(1) =v @4 Aa(1)
It is easy to see that Ag(1) belongs to D((Hs)s,v°) N D(aHe,v) and satisfies
<Ae(1),A0(1) >4 ,.=< Aa(1),As(1) >q,,=1 so that, by continuity, we get
Un(v a®j Aa(1)) = v 3®a Aa(l) for all v € H ie Ag(1) is co-fixed and
bi-normalized. Since voa™'oE =& = vo 3! o F, we have by B.6, for all
neN,:
Bn")As(1) = B(n*)JeAa(1) = JoAr(1)A, (n)
so that Ag(1) is S-bounded w.r.t v° and R%"’(Ag(1)) = JoAr(1)J,. Conse-
quently, Ag(1) is bi-normalized and W is of discrete type. O

COROLLARY 13.3. — Let W be a weakly reqular pseudo-multiplicative unitary
over N w.r.t o, 3,0 of compact type w.r.t the canonical form v. If & a fixed
and bi-normalized vector, we put:

i) A the von Neumann algebra generated by right leg of W;
i) T'(z) = 0o W(x o®5 1)W*0, forallz e A ;

iii) E = (we pxq id) ol and F = (id gxq we)oT.
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Then (N, A, o, B,T,v, E, F) is a adapted measured quantum groupoid such that
E and F are n.f conditional expectations. Moreover, if R,7,\ and § are the
fundamental objects of the structure, we have ' = RoEo R, A\ =0 =1 and
the fundamental unitary is Ww.

Proof. — By [EV0(] (6.3), we know that (N, A, a, 3, T") is a Hopf bimodule. By
[Eno0g (theorem 6.6), E is a n.f left invariant conditional expectation from .A
to a(N). By [Eno0d] (propositions 6.2 and 6.3), F' is a n.f right invariant condi-
tional expectation from A to S(N). Moreover, we clearly have wg o E = wg o F'
sothat voa ' o E =vof3 ! oF. We are in conditions of the previous propo-
sition an we get that (N, A4, a,83,T,v, E, F) is a adapted measured quantum
groupoid, FF = Ro Fo R and A = 6 = 1. Finally, by [[Eno02 (corollaire 7.7),
W is the fundamental unitary. (More exactly, it is 0,0 W¥o, where W is the
standard form of W in th sense of (paragraph 7)). O

The converse is also true and so we characterize the compact case:

COROLLARY 13.4. — Let (N, M, «, 3,T) be a Hopf bimodule. We assume there
exist:

i) a co-involution R;

it) a n.f left invariant conditional expectation from E to a(N).
Then there exists a n.f state v on N such that (N, M, «, 3,T,v, E, Ro EoR) is
a adapted measured quantum groupoid with trivial modulus and scaling operator
and the fundamental unitary of which is of discrete type w.r.t v.

Proof. — We put F = R o E o R which is a n.f right invariant conditional
expectation from M to S(N). We also put:

E = B : BN) = a(Z(N)) and F = Fla(x, : a(N) — B(Z(N))
We have, for all m € M:
FE(m) 3®4a 1= (F ke id)(E(m) R4 1)
N N N

= (F pgxq id)(id gxq E)I'(m)
N N

= (id ﬁza E)(F ﬂ]’\(fa id)F(m)

—(id pra E)1 50 F(m) =1 s8a EF(m)
N N N

so, if FE(m) = ((n) for some n € Z(N), then EF(m) = a(n). Moreover, we
have:

EF(m) 3@ 1=EF(m) s®q 1= (id g*o E)T(F(m))
N N N
= (id o¥a E)(1 a%a F(m)) =1 a%a EF(m)
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so that a(n) = B(n). Consequently EF(m) = FE(m) and EF = FE is a n.f
conditional expectation from M to:

N =a({n € Z(N),a(n) = B(n)}) = B({n € Z(N),a(n) = B(n)})
Also, we have RW = id. So, if w is a n.f state on N, we have wo Foff = woFoa

and v = wo Eo 3 = wo F o« satisfies hypothesis of : then, corollary
holds. (]

COROLLARY 13.5. — Let (N,M,a,3,0,v,T1,,Tr) be a adapted measured
quantum groupoid such that Ty, is a conditional expectation. Then there exists
a n.f state v on N such that v = 0¥ and the fundamental unitary is of
discrete type w.r.t V.

Proof. — Let R be the co-involution. By the previous corollary, there exists
a n.f state v/ on N such that (N, M,a, 5,1,V , Ty, Ro Ty, o R) is a adapted
measured quantum groupoid. Since Ty, is S-adapted w.r.t v and v/, we have
oV =0ov. We easily verify that the fundamental unitary of the first structure
coincides with that of the last one which is of discrete type w.r.t v/ by the

previous corollary. O

14. Quantum space quantum groupoid

14.1. Definition. — Let M be a von Neumann algebra. M acts on H =
L3(M) = L2(M) where v is a n.s.f weight on M. We denote by M’, (resp.
Z(M)") the commutant of M (resp. Z(M)) in L(L?>(M)). Let tr be a n.s.f

trace on Z(M). M’ x« M =M ® M acts on L>(M) ® L?>(M). There
Z(M) Z(M) tr

exists a n.s.f operator-valued weight T from M to Z(M) such that v =troT.

Let o (resp. [3) be the (resp. anti-) representation of M to M’ & M such
Z(M)

that a(m) =1 ® m (resp. B(m) = j(m) ® 1) where j(z) = Jya*J, for
Z(M) Z(M)
all z € L(L2(M)).

ProrosIiTION 14.1. — The following formula:

I [L2(M)  L3(M)] ga [L(M) @ LX(M)] — LX(M) @ L*(M)  L*(M)

A (y) ® N pRa ZE— a(y)= @7

tr
for allm € L>(M),= € L* (M) ® L*(M) and y € M, defines a canonical
tr

isomorphism such that we have I(fm ® z] gQ®a Z) = (a(M)Z & z)I, for
Z(M) v Z(M)

allme M, z€ Z(M)" and Z € L(L*(M)) Z(a;w) M.

Proof. — Straightforward. O
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We identify (M’ © M) gko (M' ® M) with M/ ® Z(M) ® M
Z(M) M Z(M) Z(M) Z(M)

and so with M’ ® M. We define a normal *-homomorphism T" by:
Z(M)

M @ M- (M & M) sgxa (M @ M)

Z(M) Z(M) v Z(M)
n @ m—I'h @ 1 @ mI=[1 ® m] 5®a [n ® 1]
Z(M) Z(M)  Z(M) Z(M) Z(M)

I is, in fact, the identity trough the previous isomorphism.

THEOREM 14.2. — Ifwe put Tp =id * T and R=<zuapo(j @ j), then
Z(M) Z(M)
(M,M" ® M,«a,B,T,v,RoTroR,Tr) becomes a adapted measured quantum
Z(M)
groupotd w.r.t v called quantum space quantum groupoid.
Proof. — By definition, I' is a morphism of Hopf bimodule. We have to prove

co-product relation. For all m € M and n € M’, we have:

(T groid)oT(n @ m)=[1 & m] g®a [l ® 1] gRQu[n ® 1]

Z(M) Z(M) v Z(M) v Z(M)
=(id gxaT)oT'(n @ m)
v Z(M)

Now, we show that T is right invariant and a-adapted w.r.t v. So, for all
m € M,n € M" and £ € D(o(L*(M) @ L*(M)),v°), we put ¥ =vo L oTg
tr

and we compute:

we((¥ pra id)F(nZg@ m)) =V((id grawe)((l © m] Qa0 @ 1))

M) v Z(M) v Z(M)
=V([1 @ m(<[n @ 1]§E>au))
Z(M) Z(M)
=v(<n ® T(m)&E>an)
Z(M)
=we(n @ T(m))=we(Tr(n @ m))
Z(M) Z(M)
Finally, we have for all ¢t € R:
1o _ w0 _ ) ao”
¢ = 0y (M ® M)NB(M) = Ot (M @ M)N(M _x L(L*(M)))
Z (M) Z (M) Z (M)
v %
— 0, Z(M) Z(M) ® M:(l‘d ® o‘é/) n e =1 ® o‘é’
Z(M) Z(M) Z (M) Z(M)

so that off oa(m) =1 ® o¥(m) = a(o¥(m)) for all t € R and m € M.
Z(M)

Since it is easy to see that R is a co-involution, we have done. O
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14.2. Fundamental elements. — By , we can compute the pseudo-
multiplicative unitary. Let first notice that ® =1/ * v =W sothat A\=§ =

Z(M)
1 and:

a=1 ® ida=id ® 1,=j ® landf=1 ® j
Z(M) Z(M) Z(M) Z(M)

For example, we have D((H @ H)j ,.) D H ® D(H;,v°) = H ® A,(N,) and
tr ’ tr tr
3,0° _ \tr pj,v° __\tr
for all n € H and y € N,,, we have R%""(n ® Au(y) = MRV (Au(y) = Ay

LEMMA 14.3. — We have, for alln € H and e € N, :

IpPe =A"Jed, @ 1land INDC = pl"(1 ®
PngJ,,Ay(e) n Jv€ 2001 A ey = Pn ( 2(0) y)
Proof. — Straightforward. O

PROPOSITION 14.4. — We have, for allE € H @ H,n € H and m € N,,:
tr

W E @3 @A) = (e (1 & m)E)
Lo tr tr Z (M)

Proof. — For all m,e € N, and m’, e’ € N/, we have by the previous lemma:

’ 3,0 _ ’ B,
Io(m” & My senrgnne = 8 1 & mMIOLL s

=(m @1 m)\’" ndyed, @ 1
( ) JU/AU/(E) Z(M)

= Alfl’,;/el.]y/l\v/ (m’)JI/eJl/ Z%) m

On the other hand, we have by :

(1 © 1] §8a[Jvedy © Jed )W P ,
(I 2(01) ] ﬁu [Jure 2(a1) eJy]) pAw(m)@Aw(m)

_ / % o,
= (Jure'Jy Z%) Jued, Z%) niw pAU,(m’)gAul(m’)

Then, by and taking the limit over e and e’ which go to 1, we get for all
=ecH®H:
tr

W' E 08 (A (M) © Ay(m) = (A, (m) © (1_© m)E)

y tr tr Z (M)

Now, if £ € D(4(H ® H),v), by continuity and density of A,/ (N, ) we have
tr
forall Z € D(,(H ® H),v):
tr

w(

(1]

a®p (@ Ay(m))) =I"(n®@ (1 ® m)E)
Lo tr tr Z(M)
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Since n ® A,(m) € D((H ® H)g ), the relation holds by continuity for all
tr tr ’
EeH®H. O
tr

REMARK 14.5. — If oy, is the flip of L2(M) ® L?(M), then o4, 0 3 = B0 oy,
tr

andif I'=(1 ® ou)l(ow 5®a [l ® 1])o,0, then I’ is the identification:
Z(M) v Z(M)

I': [LH(M) ®@ L*(M)] o®4 [L*(M) @ L*(M)] — L*(M) @ L*(M) © L*(M)
tr ° tr tr tr
E 5%a 1@ Au(y)] =1 @ aly)=
for all n € L?*(M),Z € L*(M) ® L?>(M) and y € M. Consequently, by the
tr

previous proposition W* = I*I’.

COROLLARY 14.6. — We can reconstruct the von Neumann algebra thanks to

W:

M' @ M =< (idwog) (W) |€ € D(H @ H)3,0%), 1 € D(a(H © H),v) >~
Z(M) T T

Proof. — By B.23, we know that:

< (td*we ) (W) € € D((H ® H)g,v°,m € D(a(H (tgu H),v)>"Vc M EX) : M
T r Z(M

Let n,€ € H and m,e € N,,. Then, for all 21,2, € H ® H, we have by :
tr

((ed * wn?;Au(m)@i@;J,,A,,(e))(W*)El |Z2)

= (W' E1 o83 19 Am)DIZ2 5 €@ LA

=M1 & ME)E 59 €8 LA
r Z(M) v tr

=1l ® MmEle (e, ® 1)=))
tr - Z(M) tr Z(M)

= ((< 7’],€ >t7‘ Jl,e*JV ® m)El|Eg)
Consequently, we get the reverse inclusion thanks to the relation:
(id*Wn®Au(m),§®J,,A,,(e))(W*) =< 7775 >t Jve*Jy ® m
tr tr Z(M)
Now, we compute G so as to get the antipode.

ProrosITION 14.7. — If F,, = S} comes from Tomita’s theory, then we have:
Gzatro(Fu®Fu)
tr
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Proof. — Let a=J,a1J, ® as,b=J,b1J, ® ba,c=Jyc1d, ® coand

Z(M) Z(M) Z(M)
d=J,d1J, ® d2 be elements of M’ ® M analytic w.r.t v/ x wv. Then,
zZ(M Z(M) Z(M)
by [14.3, the value of (A& )*W* on

Au (075 (01)) @A (07;(b3))

(A (Jvardy) @ Av(az)] a®p [Aw (Judicidy) ® Au(dzes)]

is equal to:
O st o) T (A (Fudici ) @ (s ) @ Au(dicsan)

o a1 8, 00| (0 (i) § A (ar ) @ Auldeon)
< d3e3A(@2) A0, (05)) >t A (i 1,) @ 0% (b)) A (yan )

=< Ay(a2b2),Ay(CQd2) >y JUAV( TCT) g J,,Al,(albl)
Consequently, by definition of G:

G |:< Al,(ang),Al,(CQdQ) > JuAy(dTCT) (? J,,Al,(albl)

T

is equal to the value of G( A (g B)EA (e, (b*))) W* on:
[Av(Jvardy) g Ay (az)] a®p [Avr (Judicyd )® Ay (d3c3)]

which is equal to the value of (/\i,/( o2 (A1) @A (0" (d*)))*W* on:

Aoy @ A(e2)] o [ (ubiaid,) @ Ay (b3a5)

vo

This last vector is < A, (cada), Ay (azbs) >t J,AL(bial) ® J,A,(c1dy). Since

tr
G is closed, we get:

G JVA (dlcl) p JVAI,(albl)] = |:J1,A (blal) p JVAV(Cldl)
so that G coincides with o4 (F, ® F). O
tr

The polar decomposition of G = ID'/? is such that D = A;' @ A and
tr
I = o04.(J, ® J,) so that the scaling group is 74 = th (* : of for allt € R and
tr Z(M
the unitary antipode is R = ¢z(py0 () ® j). We also notice that v/ % v
Z(M) Z(M)

is T-invariant.
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REMARK 14.8. — If M is the commutative von Neumann algebra L>°(X),
then the structure coincides with the quantum space X.

14.3. Dual structure. — Here we compute the dual structure and we ob-
serve that this is not of adapted measured quantum groupoid’s type.

PROPOSITION 14.9. — For all e,y € N,, and n,{ € H, we have:

(wAu(y)nggJuAu(e) * Zd)(W) =1 Z%) Jye*JV(pZT)*Utrpffy
Proof. — ForallZ € H® H,£ € H and m € N, we have:
tr

((WA,,(y)gn,cgJVAy(e) *id)(W)Z[¢ ® Ay (m))
= ([Au(y) ® nl s®a EIW([C ® Johu(€)] a®5[§ ® Ay (m)]))

= (1 ® yEREDC@mIA(e) = (E @y ¢ Jel,A (m))
Z(]\/I) tr tr tr tr tr tr

=((1 ® pNZE(1 @ ouplhcded,)(E A,
(( Z(M) pn ) |( Z(M) Ot py ¢ € )(6 o (m)))

=((1 ® Jue*Ju(p’éT)*otTp?y)EK ® Ay (m))
Z(M) tr

O

COROLLARY 14.10. — We have M/ @ M =1 ® Z(M)' which is identi-
Z(M) Z(M)

fied with Z(M)'.

Proof. — We already know that a(M) U 3(M) C M~ ® Msothatl ®

Z(M) Z(M)

Z(M) Cc M'" ® M. The reverse inclusion comes from the previous proposi-
Z(M)

tion.. O

With this identification between 1 ® Z(M)" and Z(M)’, the dual struc-
Z(M)

ture admits M for basis, id for representation and j for anti-representation.
The dual co-product necessarily satisfies I'(mn) = m ;®;q n for all m € M

and n € M'. If I, is the canonical isomorphism from LQ(]\Z) i ®ia L?(M) onto

L3(M) given by I, (A, (z) j®an) = a(z)n for all z € N, and 771/6 L?(M), then

we have I, (m g®q n) = anL, and we can identify the von Neumann algebra

M’ gxo M with VZ(M) and the von Neumann algebra Z(M)' gxo Z(M)' with
M

M
Z(M)'. The dual co-product is then identity through this identification.
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LEMMA 14.11. — We have /A\((wgy,\y(m)@]y,\v(e) x id)(W)) = (m*

Jye*J,)2 for allm,e € N, et =€ D((H S@ H)g,v°).

Proof. — Let my, mo € N,,. Then, we have:

AWz, @1, * W) (W)|Aw (Jumady) 280 Ay (m2))

= w= m e JI/ *Jy ® ms
W= A, ( )ggJ,/A,/()( mile 2 5)

(omidy @ m3)E[Ay(m) ® J,A(e))
Z(M) tr

(ElmJ, AL (my) <tg> Jyed, Ay (ms2))
(m* @ Jye*J)Z|Au (Jymid,) @ Ay(ma))
Z(M) tr

O

ProroSITION 14.12. — The dual operator-valued weight TE coincide with T—!

in sense of proposition 12.11 of [Str81]. Also, the dual operator-valued weight

Ty, coincide with joT 1o j.

Proof. — Via the identification between M~ ® M and Z(M)', we have, by

Z(M)

proposition :
(WE,AU(m);@JUAU(e) wid)(W) = Je* 1o ) ouwpl Iy

Let m,e,y € N, and n € H. On one hand, we compute:

A (@r on A mio e * D W)IE = llm A (9) © Je* Tl

= (< Jye*dun, Jue* Jun > Ay (m*y)| Ay (m™y))
On the other hand, we have:

||A((WAU(y)§n,AU(m§JUAU(e) * id)(W)))HQ

(I)((pf;,‘,e* J,/n)*o—t”‘pf(,, (y*m) (pf\ry(y*m))*oﬁp?ye*.hn)

= (i)((p?]:e*.]un)*[etr(AV(y*m)’ AV(y*m)) ® 1]p?,‘,e*.],ﬂ])
Z(M)

= &(< Jye*dun, Juet Jyn > 0 (AL (y™m), Ay (y*m)))
Then we conclude that, for all m,y € N,, we have:
S0 (Au(ym), Ay (y"m))) = [|A, ()| = [|A 2T A, (y*m)|?

= VI(QV(JVAV(y*m), J,,Al,(y*m))) =v'o T_l(etT(JVAV(y*m), J,,A,,(y*m)))

—vojoT Vo (0" (A, (y*m), Ay (y*m))

Therefore TZ =joT 'oj and we get the proposition.

O
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ProrosSITION 14.13. — The dual quantum space quantum groupoid can be
identify with (M, Z(M)',id, j,v,id,j o T~1oj, T~1) which is a measured quan-
tum groupoid but not a adapted measured quantum groupoid. Moreover, ex-
pressions for co-involution and scaling group are given, for all x € Z(M)' and
teR:

R(z) = J,2*J, and #(z) = AlzAj"

Proof. — The proposition gathers results of the section. Nevertheless we lay
stress on the following point. We have, for all t € R and m € M:

ol " (m) = 0T, (m) = ¥, (m)

instead of o} (m) to have a adapted measured quantum groupoid. O

REMARK 14.14. — If M is a factor, L(H) is the von Neumann algebra under-
lying the structure of quantum space quantum groupoid whereas M’ ® M is
the underlying von Neumann algebra of the dual structure. In general, they
are not isomorphic. Nevertheless, if M is abelian or if M is a type I factor
(and henceforth a sum of type I factors cf. paragraph ), the structure is
self-dual. In the abelian case M = L>°(X), we recover the space groupoid X.
This example comes from the inclusion of von Neumann algebras ([Eno0d)):

ZM)ycMczZM) c...

15. Pairs quantum groupoid

15.1. Definition. — Let M be a von Neumann algebra. M acts on H =
L?>(M) = L2(M) where v is a n.s.f weight on M. We denote by M’ the
commutant of M in £(L?*(M)). M’ ® M acts on L*(M) ® L*(M).

Let o (resp. () be the (resp. anti-) representation of M to M’ ® M such
that a(m) = 1 ®@ m (resp. B(m) = j(m) ® 1) where j(z) = J,z*J, for all
x € L(LZ(M)).

ProrosiTION 15.1. — The following formula:
I:[L*(M) @ LX(M)] p®a [L*(M) @ L*(M)] — L*(M) ® L*(M) ® L*(M)

Au(y) @1 s®a E— a(y)E@1n

for all p € L>(M),Z € L*(M) ® L*(M) and y € M, defines a canonical
isomorphism such that we have I([m @ z] gQq [y @ n]) = (y @ mn @ x)I, for

allme M,n € M' and z,y € L(L*(M)).

Proof. — Straightforward. O
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Then, we can identify (M’ @ M) gxq (M' @ M) with M' @ Z(M)® M. We
M

define a normal *-homomorphism I" by:
M@M— (M ®@M) gxo (M @ M)

n@m—I"mM1em)I=[19m] 3Qq[n®1]

THEOREM 15.2. — (M, M’ ® M,a,B3,T,v,V ®id,id®v) is a adapted mea-
Z(M)
sured quantum groupoid w.r.t v called pairs quantum groupoid.

Proof. — By definition, I' is a morphism of Hopf bimodule. We have to prove
co-product relation. For all m € M and n € M’, we have:
(T graid)oT(n@m)=[10m| gRa[1®1] g4 [n®1]

— (id B*a F) o F(?’L & m)

R=co(8,®pB,), wherec: M@ M — M ® M’ is the flip, is a co-involution so
it is sufficient to show that T, = v/ ®id is left invariant and B-adapted w.r.t v.
Letm € M,n € M'and £ € D((L*(M)®L?*(M))g,y0). We put ® = voa~loTy,
and we compute:

we((id gra P)'(n®@m)) = B((we p*a id)([1©m] pQa [n®1]))

(
O([n® ] (<L ®mlE, & >p.e0))
"(n)v(< [L@mlg, & >p.0)

=1 (n)we(1 @ m) = we(Tr(n@m))
Finally, we prove that Tp = Ro T o R = id ® v is a-adapted w.r.t v. For all
t € R, we have:

I
<

Tr _ V' ®v % . v
ot =0y T j(mreM)ns(My =0t |z(meM = WO 0] z0neM

so that we have for all t € R and m € M:
o/ " oa(m) =1® 0/ (m) = alof (m))
O

REMARK 15.3. — If M = L*°(X), we find the structure of pairs groupoid
X x X.

15.2. Fundamental elements. — By , we can compute the pseudo-
multiplicative unitary. Let first notice that ® =1/ @ v = ¥ so that A= =1
and:

a=1®idad=id®1,3=F,®1land f=1® 4,
For example, we have D((H ® H); ,,) D H ® D(Hg,,v°) = H® Ay (N,) and

for all p € H and y € N, we have RO’ (n@ A, (y)) = Ay RV (A, (y)) =
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LEMMA 15.4. — We have, for alln € H and e € N, :
B, _ B,a _
Ipn®J,,Ay(e) =\, Jved, ®1 and I)‘Ay(y)®n =pp(1®y)
Proof. — Straightforward. O

PROPOSITION 15.5. — We have, for allE € H® H,ne€ H and m € N,,:
WHE a®5 (n@ A, (m))) =I"(n® (1 @m)E)

v

Proof. — For all m,e € N, and m’,e’ € N,/, we have by the previous lemma:

B, _ B,
IT(m" ©@m)p; s (en@anne) = (M O LMD e, @
= (m' ® 1 ® m))\JV,AV/(e/)J,/t?J,/ ® 1
= AJV/E’JV/AV/ (m’)JyeJI/ KXm

On the other hand, we have by [[5.1:

HL@1] 580 [T Ty ® Joe )W 5 e,

_ * o,
= (Jule/JV/ 39 Jl,eJl, ® 1)IW pAw(m’)@Aw(m’)

Then by and taking the limit over e and e’ which go to 1, we get for all
=ec H® H:

W (E @5 (A (m') @ Ay(m))) = I* (A (m) @ (1@ m)E)
Now, if 2 € D(o(H ® H),v), by continuity and density of A,/ (N,/), we have
forall Z € D(,(H ® H),v):
WHE a®5 (n©Ay(m))) = I"(n© (1@ m)Z)
Since n ® Ay(m) € D((H @ H); ,,.), the previous relation holds by continuity
forall =€ H® H. O

REMARK 15.6. — If o denotes the flip of L2(M) ® L2(M), then c o3 = oo
and if I' = (1® 0)I(0 5®a [1 ® 1])oye, then I is the identification:

I': [LH(M) @ L*(M)] o®5 [L*(M) ® L*(M)] — L*(M) @ L*(M) © L*(M)

v

E Qo M@ AL(Y)] = n®aly)=

for all n € L3(M),E € L*(M) ® L*(M) and y € M. Consequently, by the
previous proposition W* = I*I".
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COROLLARY 15.7. — We can re-construct the underlying von Neumann alge-
bra thanks to W :

M' @M =< (id*we,,)(W") | £ € D(H @ H)z,v°),n € D(o(H® H),v) >~

Proof. — By , we know that:
< (id * we.)(W*) | € € D((H & H) 3,1°,n € D(o(H @ H),v) >"C M'® M
Let 7,& € H and m, e € N,,. Then, for all 21,2, € H ® H, we have, by [[5.4:

((id * wyeA, (m).co A, () (WF)E1]Z2)
= (W*(E1 a®z @A, (M))|Z2 580 @ JyAy(e))

vo

= (I"(n® (1 @m)=1)[=E, 8% §® J,A(€))

=n®(1lem)EE (JeJ ® 1)=,)
= Ml&)((Jve"J, © m)E:|E2)

Consequently, we get the reverse inclusion thanks to the relation:

(13) (id * WyeA, (m),cat,A, () (W) = (0|§)(Jue*J, @ m)

Now, we compute G so as to get the antipode.

PROPOSITION 15.8. — If I}, = S} comes from Tomita’s theory, we have:

G=o0(F,®F,)

Proof. — For all a = Jya1J, ® as,b = J,01J, ® ba,c = Jyc1J, ® co and
d = J,d1J, ® ds be analytic elements of M’ ® M w.r.t v ® v. Then, by ,
we have:

%% %UI/Z@IW o ) W (Bro0(0) 0@ Apran(Judi Ty © d5)e"))

Vo

= (X 1/2(171 Yo, o,z 1 (B (Judici Jy) @ (1@ dyc3)Avigy(a))

= [0, 050 (1€ 01 00))] (Aur(Tudici ) @ (19 dic)Avrzy(a))
= (dyc3Ap(a2)[Ay (07 (03))) A (Judicidy) @ ¥ 5 (b1) A (Juas dy)
v(dycyasbs) J,AL(dic}) @ J,AL(a1by)
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Consequently, by definition of G, we have:
G [v(diciagbs) J, AL (dicy) ® JuAu(a1by)]
= GO s ot 0)) W (Auro(@) a5 Ao ((Judiy © )
= Ot s, ) T (Aon(€) a5 Avon(1,01, @ b3)a°))
= v(biascads) J,Ay(ba)) ® J,Au(c1dr)
Since G is anti-linear, we get:
G LA (dicl) ® JuAy(arbr)] = [Ju Ay (bia]) @ Ju Ay (c1dy)]

so that G coincides with o(F, ® F,). O

The polar decomposition of G = ID'/? is such that D = A;! ® A, and
I =%(J,®.J,) so that the scaling group is 7, = 0¥, ® ¥ for all t € R and the
unitary antipode is R = ¢o (8, ® 3,). We also notice that v’ ® v is 7-invariant.

COROLLARY 15.9. — We have D(S) = D(U;’;Q) ®D(0,,5) and we have
S(Jyed, @m*) = Jyai”/Q(m)JV ® aii/Q(e*)
for all e,m € D(}),). Moreover (id x we,)(W) € D(S) and:
S((id * we ) (W) = (id * we ) (W)

for all§;n € D(o(H @ H),v)ND((H ® H),1°).

Proof. — The first part of the corollary is straightforward by what precedes.
Let (,m € H and e,m € D(o;’/Q). By B, we have:

S((id * weg g, A, () mon, (m) (W) = S((CIn)Jved, @ m™)
= () J a5 (m)J ® a2, (e”)
= (id * weg g, Ay () n@, (m)) (W)

Since S is closed, we can conclude. O

15.3. Dual structure. — We are now computing the dual structure.

PROPOSITION 15.10. — For all e,y € N, and n,{ € H, we have:

(WA, (p@n.cot i, (e) * 1d) (W) = 1@ J,e* ], ptXpny
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Proof. — ForallZ2€ H® H,¢£ € H and m € N, we have:

(Wa, (@n.coti, e * id)(W)EIE @ A, (m))
([Au(y) @n] a0 EW([(® L AL(e)] a®j [€® Au(m)]))

v

(1eyEenEte@md,Ale) =(En¢f0y*¢® JeJ,A,(m))
((1 ® pn)El(l 0 EPy*CJVeJV)(§ & Au(m)))
(1@ Joe™ TupeSopy)ZIE @ Ay (m))

COROLLARY 15.11. — We have M’ ® M = 1 ® L(H).

Proof. — By definition, we recall that:
M @M =< (ws, z,%id)(W)|E1 € D(H®H)s,1°),Z3 € D(o(HRH),v) >~

and we notice that L(H) ® 1 C a(M)' N B(M)’. First of all, we prove that

M@McC1l®L(H). Let =€ Hyp € Hand m € N,. For all » € L(H), we
have:

(1®1] s®a [z@1)W(E o®s [n® JoAL(m)])
=(1®1] gQaz@INI"(n®@ (1 @mM)E) =I"(2n @ (1 @ m)E)
SWHE a0 0 ® JAm)

=WH[1®1] 3@ [z@1)(E a®j [n© J,AL(m)))

Therefore, we get that ([1®1] g®q [z @ 1)W* =W*([1®1] gQa [z ®@1]) for
all z € L(H). Thus, we get:
M @M c (L(H)®1) =1 L(H)

Then, we prove the reverse inclusion. By the previous proposition, we state
that, for all v,w € H:

(WA, en.cana, e * id)W)(v@w) = (1@ Jye"J,)py-(1® X)p, (v © w)

=v® (wly"¢)Jue"Jun
and therefore we have:
M @ M D< WA, (y)®1,(® T, Ay (e) * Zd)(W) | m, C S H; e,y < NI/ >
=< 1®p|prank 1 projection >""“=1® L(H)
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We verify that (M’ ® M)N MeM=1M = a(M). The dual co-product
is given by I'(Z) = 0, W(Z ®q 1)W*0o, for all T € M’ @ M. We us the
following identification: '

$:1® L(H) — L(H)
1@z —=

which is implemented by A. where e € H is a normalized vector.Then, we know
that ® 5%, @ is the identification between [1 ® L(H)] ;®q [1 ® L(H)] and

L(H) g, ma LOH) =~ L(H).

v

PROPOSITION 15.12. — We have W*o,(Ae 8,®id Ae) = I*(Ae @ Ae)I, for all

vector e € H of norm 1.

Proof. — Let m € N, and n € H. We have:
W0, (Ae 3, ®id Ae)(Av(m) 5, ®ian) =Wroy([e® Ay(m)] ;@a [e @)

v

=W (e@n] «®5le®Ay(m)]) =I"(e ® e ® mn)

vo

=TI"Ae @A), (Au(m) g, ®ia M)

COROLLARY 15.13. — For all x € L(H), we have:

(@ gxa ®)o Pod Y(z) =TIz,

v

Proof. — Let x € L(H) and e € H be a vector of norm 1. We have:

(@ g*a @) o Lod(z)

v

= (Ae 8,®id AD)ove W([1® 1] 30 1@ 1)Wou(Ae 3, ®ia Ac)

174

=LA@ A)I([1®a] 50 (1@ 1) (A ® A

=DAN)(1@1ex)(Ae @A), = [ial,

|

Now, we are computing the dual operator-valued weight.

LEMMA 15.14. — We have A((wz, A, (m)@J, A, () * id)(W)) = (m* @ Jye*J,)=
forallm,e e N, et Z€ D((H ® H)g,v°).
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Proof. — Let my, ma € N,,. We have:
(A(wz, A, ()@ (e) * 1) (W) Ao (Jymad, @ ma))
= WE,Ay(m)®JVAV(e)(JumTJl/ & m;) = ((JVm;{JV ® m;)ElAV(m) Y JVAV(e))
= (ElmJ, AL (m1) ® JyeJ Ay (m2)) = (m* @ J,e* J)E|Av g (JomaJ, @ ma))
O

PROPOSITION 15.15. — We have TL = id ® F,, where E, is the operator-
valued weight from L(H) to M obtained from the weight V.

Proof. — Let m,e,y € N, and n € H. On one hand, we compute:
1A (w2, my@s,a, @) * ) WDIP = [[m*Au(y) @ Joe* Ll
= [|Jye” Ll ?|| Ay (m*y)||?
On the other hand, by proposition , we have:
1A ((wz A, (m)@a, A () * 8d) (W)
= é(p;(l ® X)py-n, (m)(1 @ Jyedy)(1 @ Jve*JV)pZ*Ay(m)(l ® X)pn)
= [[Jve" unlPE(1 ® (A, (m"y) ® Ay (m"y)))
where & ® £ is the operator of L£(H) such that (£ ® )v = (v[§)€. Then, if
£ € D(S,), then we have:

(1@ (E®8))

dv ,
[1SuEl[* = (Avgfe) = (7 7616) = v(0” (&, €))
voE, (@& =voa ol (1® (E®E))

We also have the following formulas, for all x € L(H) and ¢t € R:

Rloz)=1® J,2*J, and #H(1®@z)=1® AzA;"
The right invariant operator-valued weight is given by: Th = RoTrLoR =
(id® E,).

PROPOSITION 15.16. — The dual pairs quantum groupoid can be identify with
(M, L(H),id,j,id,v, E,, E,) which is a measured quantum groupoid but not a
adapted measured quantum groupoid. Moreover, expressions for co-involution
and scaling group are given, for all x € L(H) and t € R:

R(z) = J,a*J, and F(z) = AlzA"

Proof. — The proposition gathers results of the section. Nevertheless we lay
stress on the following point. We have, for all t € R and m € M:
E

oy " (m) = oZ,(m)

instead of o} (m) to have a adapted measured quantum groupoid. o
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REMARK 15.17. — If M = L*°(X), we find the structure of pairs groupoid
X x X. This example comes from the inclusion of von Neumann algebras

([Eno0d)):
Cc McCL(LAM)) C LIAM)@MC ...

16. Inclusions of von Neumann algebras

Let My € M; be an inclusion of von Neumann algebras. We call basis
construction the following inclusions:

My C My C My = JiM{J1 = Endyg(L*(My))
By iteration, we construct Jones’ tower My C M7 C My C M3 C ---

DEFINITION 16.1. — If M{NM; C M{NMy C M{NMs is a basis construction,
then the inclusion is said to be of depth 2.

Let T1 be a n.s.f operator-valued weight from M; to My. By Haagerup’s
construction [Btr81] (12.11) and [EN9{] (10.1), it is possible to define a canoni-
cal n.s.f operator-valued weight T5 from M, to M such that, for all z,y € N7,
we have:

Tr(A7, (2)A1, (y)*) = 2y”

By iteration, we define, for all 4 > 1, a n.s.f operator-valued weight T; from M;
to M;_1. If ¢g is n.s.f weight sur My, we put 1; = ;1 o T;.

DEFINITION 16.2. — [EN94] (11.12), [EV0Q] (3.6). T} is said to be regular if

restrictions of Ty to M| N Mz and of T3 to M| N M3 are semifinite.

PROPOSITION 16.3. — (3.2, 3.8, 3.10). If My C M is an inclusion
with a regular n.s.f operator-valued weight Ty from M; to My, then there exists
a natural *-representation © of M\ N Mz on L?(M} N Ms) whose restriction to
M} N Ms is the standard representation of M{N My. Moreover, the inclusion
is of depth 2 if, and only if m is faithful.

The following theorem exhibits a structure of measured quantum groupoid
coming from inclusion of von Neumann algebras.

THEOREM 16.4. — Let My C My be a depth 2 inclusion of o-finite von Neu-
mann algebras, equipped with a regular nsf operator-valued weight Ty in the
sense of [Eno0(] and [Eno04]. Moreover, assume there exists on My N M a
nsf weight x invariant under the modular automorphism group Ty. Then, by

theorem 8.2 of , we have:
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(1) there exists an application L from M} N M, to

(Mo N M) j%ia (Mg Ma)
M(/)ﬁMl

such that (M{§ N My, M{§N Mg,id,jl,f) is a Hopf-bimodule, (where id means
here the injection of Mé N M into M(’) N My, and j1 means here the restriction
of j1 coming from Tomita’s theory to M N My, considered then as an anti-
representation of M) N My into M) N Msz). Moreover, the anti-automorphism
J1 of M{N Ms is a co-involution for this Hopf-bimodule structure.

(2) the nsf operator-valued weight T, from M0 My to M{N M, restriction of
the second canonical weight construct from Jones’ tower and Ty, is left invari-
ant. N

(3) Let x2 be the weight x o Ts; there exist a one-parameter group of automor-
phisms Ty of M{N Ma, commuting with the modular automorphism group oX2,
such that, for allt € R, we have:

fOO'i(2 = (ﬁ j1%id O'i@)of
X
Moreover, we have j, o Ty = T4 © J1.
Then, (M{NMy, M{NMa,id, ji, T, /f;,jl, T,X) 48 a measured quantum groupoid.
Proof. — We have ® = x3. Then, by proposition 6.6 of [Eno04], we have the

relation between R and I'. Also, we notice that 7 coincide with oX on MyN M,
by theorem 5.10 of || and that we have, for all n € MyN M; and t € R:

o2 (j1(n)) = 02 (1 (n)) = jr (o (n))
by corollary 4.8 and by 4.1 of [Eno04]. So that, v = o™ leaves y invariant by
hypothesis. O

Then we can show that the dual structure coincide with the natural one on
the second relative commutant of Jones’ tower.

THEOREM 16.5. — Let My C My be a depth 2 inclusion of o-finite von Neu-
mann algebras, equipped with a reqular nsf operator-valued weight Ty in the
sense of [Eno0(] and [Eno04]. Moreover, assume there exists on My M a nsf
weight x invariant under the modular automorphism group T;.

(1) there exists an application T from M| N Ms to

(M} 0 Mz) j*jpoj, (M7 N Ms)
MM,

such that (M) N My, M{ N Ms, ja 0 j1,751,1") is a Hopf-bimodule, where j1,ja
come from Tomita’s theory. Moreover, the anti-automorphism jo of M| N Ms
s a co-involution for this Hopf-bimodule structure.
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(2) the nsf operator-valued weight T from M{NMs to M{NMsy = j1 (M{NM),
restriction of the second canonical weight construct from Jones’ tower and T,
is left invariant.

(3) Let x3 be the weight x o T;; there exist a one-parameter group of automor-

phisms T¢ of M{ N Ms, commuting with the modular automorphism group oX#,
such that, for allt € R, we have:

™ X3 _ (~ ... . X3 =
Foo® = (Tt jikxjsojs 07°) 0l
X

Moreover, we have jo 0 Ty = T; © jo.

Then, (M{NMy, M{NMs, ja0j1, j1, T, ﬂ,jg, T,X) is the dual measured quantum
groupoid of M{ N Mz (equipped with the structure described on .

Proof. — All objects are constructed from the fundamental unitary that’s why
the Hopf-bimodule structure of the dual coincide with the structure on the
second relative commutant. The uniqueness theorem implies that the dual
operator-valued weight coincide with the restriction of T3 upto an element of
the basis. O

We can’t characterize, at this stage, inclusions of von Neumann algebras
among measured quantum groupoids. A way to answer the question is to know
if each measured quantum groupoid acts on a von Neumann algebra .

17. Operations on adapted measured quantum groupoids
17.1. Elementary operations. —

17.1.1. Sum of adapted measured quantum groupoids. — A union of groupoids
is still a groupoid. We establish here a similar result at the quantum level:

PROPOSITION 17.1. — Let (N;, M;, o, B33, Uiy v, Th, Th)icr be a family of

adapted measured quantum groupoids. In the von Neumann algebra level, if we

identify @,;c; Mi pra M; with (@iel Mt) B%a (@iel MZ-), then we get:
N;

ier Vi
9 9
(DN D i P e D 5. DT D DT D Th)
el el i€l iel el el i€l i€l

a adapted measured quantum groupoid where operators act on the diagonal.
Proof. — Straightforward. O

In particular, the sum of two quantum groups with different scaling constants
([VV0J] for examples) produce a adapted measured quantum groupoid with
non scalar scaling operator.
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17.1.2. Tensor product of adapted measured quantum groupoids. — Cartesian
product of groups correspond to tensor product of quantum groups. In the
same way, we have:

PROPOSITION 17.2. — Let (N;, M;, o, 3, Ui, v, Th, T) be adapted measured

quantum groupoids fori =1,2. If we identify (M1 g, %0, M1)Q(M2 gy*a, M)
N, N2

with (M1 ® M2) 8,8 *a10as (M1 @ Ma) as von Neumann algebras, then we

N1®Na2
have:

(N1 ® Noy My @ M, 1 @ iz, 1 @ B2, 1 @ To, vy @ v, T} @ TF, Th @ T3)

i a adapted measured quantum groupoid.
Proof. — Straightforward. O

17.1.3. Direct integrals of adapted measured quantum groupoids. — In this
section, X denote o-compact, locally compact space and u a Borel measure on
X. Theory of hilbertian integrals is described in [Tak0J].

PROPOSITION 17.3. — Let (Np, My, o, Bp, Up,vp, T}, Th)pex be a family of

adapted measured quantum groupoids. In the von Neumann algebra level, if we

. . &) @ @

identify [ M, %o My,du(p) and (fX M, d,u(p)) Gxa (fx M, du(p)) ,
Np JR Np dp(p)

we have:

(/ij du(p),/jMp du(p),/japdu(p),/jﬁp dp(p), - -
® ®

/X deu(p),/x Vp du(p%/jﬁ@(p%/sz’%du(P))

i a adapted measured quantum groupoid.
Proof. — Left to the reader. O

[BIadq] gives examples. In this case, the basis is L®(X) and a = § = f.
The fundamental unitary comes from a space onto the same space and then
can be viewed as a field of multiplicative unitaries.

17.2. Opposite and commutant structures. —

DEFINITION 17.4. — We call Hopf-bimodule morphism from (N, M1, a1, 31,T1)
to (N, M2, g, 82,'2) a morphism 7 of von Neumann algebras from M; to My
such that:
i) moag =ag et mof1 =P ;
i) Toom=(m gy*a, m)oT.
N



MEASURED QUANTUM GROUPOIDS 133

Also, we call anti-morphism of Hopf-bimodule from (N, My, a1, 51,T1) to
(N, M3, a3, 82,T2) a morphism j of von Neumann algebras from M; to My
such that:
i) joarw =paet jof =as;
11) Fg Oj = (j 51*041 j) Orl.
N

DEFINITION 17.5. — For all Hopf-bimodule (N, Mi,aq,01,'1) and all 1-1
morphism of von Neumann algebras « from M; onto Ms, Ms, (N, Ma, 7 o
a1, mo B, (T g%, ®) ol omr~!) is a Hopf-bimodule called Hopf-bimodule

N

image by m. Also, if j is a 1-1 anti-morphism of von Neumann algebras

from M; onto Ms, then (N° Ms,joai,j0B1,(j g*a, j)oloj 1) isisa
N

Hopf-bimodule called Hopf-bimodule image by j.

PROPOSITION 17.6. — Let ® a 1-1 morphism from (N, Mi,aq,(1,T1) onto
(N, Ma, a9, 32,T2). If (N, My, c1,51,T1, R, T, 7,v) is a measured quantum
groupoid, then (N, Ma,az,B2,Ta,ro Ron L roT on Lrorontv)isa
measured quantum groupoid such that:

)\2 = W(Al) et 52 = W((Sl)

We denote by &' = VoafloTL and ®2 = ®lox~1. If I is the unitary from Hgr
onto Hg2 such that IAg1(a) = Ag2(m(a)) for all a € N1, then fundamental
unitaries are linked by:

Wa = (I a1®ﬁ1 I)Wl(l* B2@as I*)
Neo N

Proof. — Tt is easy to state that (N, My, ag, 32,2, o Ror~ !, moTon ! 7o
7o 7w 1 v) is a measured quantum groupoid. For all v € D((Hg1)g,,v°),
a € N, N Ng1 and (N9, v°)-basis (& )ier of (Hg1)s,, we have:

WII" 0@, I")(Iv 0, ®5, Av2(7(a)) = Wi (v 0,®5, Avi(a))
Ne ve ve

= Zgl 81 ®ay A<I>1((UJU7€¢ B1¥ay Zd)rl(a’))
= & 5% Aot (Woe gira id)(T gka, 7 a(7(a))))
i€l v v N
= (I* B2 Das I*) ZI& B2 Qas Aqﬂ((whh[& B2KXaz Zd)FQ(a’))
N il v v
= (I* ﬁz%az I*)WQ*(IU a2®ﬁ2 A‘Iﬂ(ﬂ-(a)))
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Then, we have proved that W = (I o,®5 IWi(I* 5,®a, I*). For all
No N
a,b € Njr,; N Naoj, we have:

Ro((id m%@ W2 Aya (n(a)))La(m(b7)m(b)))
= (id ﬁy%az WigaAge (x(b)))T2(m(a”a))
= (id 02 B W Ay (m (b)) (T pr¥an m)I'1(a"a)
=7((id g, @anl Wy a,m)T1(a"a)) = TRi((id s, Q,?fl W11 Agr () T1(D7D))
= mRym((id g2 B0z WJ2Ags (r(a)))Ta(m(D")m(b)))

from which we get that Ry = 7o Ry o7~ ! and then Sy = 70 S; o m~! and

Ty = ot o~ ! thanks to fundamental unitaries. Finally, we have for all ¢ € R:
[D®% 0 Ry : D®?); = [DP' o Ry ot : DB o771,
= 7([D®' o R, : D®Y];) = 77()\1)%77(61)“
and, so we have d = m(d1) and A = m(Ay1). O

PROPOSITION 17.7. — Let j a 1-1 anti-morphism from (N, My, aq,(1,T1)
onto (N°, My, o, B2,T2). If (N, My, a1, 31,11, R, T, 7,v) is a measured quan-
tum groupoid, then (N°, My, B2, a2,T2,jo Roj~t joT oj jor 4057110
is a measured quantum groupoid such that:

)\2 :](Al_l) et 52 :j(51)

We denote by ®' = v o afl oTy and ®> = &' o j71. If J is the unitary
from Hgr onto Hg2 such that IAgi(a) = Jp2Ag2(j(a*)) for all a € Ng1, then
fundamental unitaries are linked by:

WQ = (J a1®g1 J)Wl(J* 042®ﬁ2 J*)
No N

Proof. — The proof is very similar to the previous one. O

DEFINITION 17.8. — We call opposite quantum groupoid the image by the
co-involution R of the Hopf-bimodule, denoted by (N, M, «, 3,1, R, T1, T, v)°P.
THe Hopf-bimodule is then the symmetrized one (N°, M, 3, a, sy o T).

REMARK 17.9. — If N is abelian, « = 3, I' = ¢y o I' then the measured
quantum groupoid is equal to its opposite : we speak about symmetric quantum
groupoid.

We put j the canonical *-anti-isomorphism from M onto M’ coming from
Tomita’s theory, trivial on the center of M and given by j(x) = Jez*Jp. Then,
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we have joa = B and we put o = j o §. We can construct a unitary j o*%5 J

NO
from M’ 0% 5 M’ onto M g*q M the adjoint of which is j g4 J.
Neo N N
DEFINITION 17.10. — We call commutant quantum groupoid the image by j

of the Hopf bimodule. It is denoted by (N, M,a, 8,T, R, Ty, 7,v)¢. The Hopf-
bimodule is equal to (N°, M’,3,0,(j gxa j)oT' 0j). We put I'® = (j gxa
N N

j)oT oj.
We describe fundamental objects of the structures.

PROPOSITION 17.11. — We have the following formulas:
i) WP =0,0W™ 0,0, RP? =R, 777 =7_4, 0P =51 et \P = \71 ;
it) We=(Jo p®a Jo)W(Jo ,®;Jo), R =jRj, 7{ = jT—1j, 6° = j(5)
N No

et A= \"L.

Proof. — Tt is an easy consequence of propositions and except for the
relation between W°P and W’. For all v € D(,Hy,v), a € N, N Ny, and
(N,v)-basis (1;)ier of oHg, we have:

(W) oue(Au(a) a®pv) = (W) (v a®p Au(a)

= Zni a®p A\I'((wv,m a*p id)(gN o F(a)))
iel ve ve
— 0, S Aw(id ks o )T(@))
iel ve v

=0, W'(Aw(a) a®pv)
Then, we have proved that WP = g, W0 ,0. O

COROLLARY 17.12. — We have W' = (Jg a(}iﬁ J;I;)O’VW*O‘,,(J(% @Ql?og Jé).

Proof. — Tt is a consequence of the previous proposition and proposition .
O

REMARK 17.13. — The application j o R, implemented by Jod, gives an iso-
morphism between the measured quantum groupoid and the opposite of the
commutant one.

PROPOSITION 17.14. — We have the following equalities:
Z) (N,M,Oz,ﬂ,F,V,TL,TR)OpA = (N,M,Q,Q,F,V,TL,TR)AC
“) (N,M,Q,Q,F,V,TL,TR)C/\ = (N,M,Q,Q,F,V,TL,TR)/\OP
iii) (N, M, o, 8, T, v, Ty, Tr)® ¥ = (N, M, o, 8, T, v, Ty, TR)P ©
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Proof. — The dual of the opposite and the commutant of the dual have the
same basis N°. The von Neumann algebra of the first one is generated by
the operators (w * id)(W*P) so is equal to Jg{(w * id)(W)}"Jz = M’. The
representation and the anti-representation over NV are both given by B and a.
Finally, for all x € M’, we have:

[PNz) = 0, WP(z o®p 1)(WP) 0,0 = W (1 @4 x)W'
Ne N

By the previous corollary, we have:

LPN2) = 0, (J5 a®p J3)W (Jg2d5 s®a YW(T 5®s J3)0me
N v

=(J3 ;®a J3)T(J32J5)(J5 5®p J3) = e (z)

So i) is proved. ii) comes from i) and the bi-duality theorem.

The opposite of the commutant and the commutant of the opposite have the
same basis N and the same von Neumann algebra M’. The representation
and the anti-representation are both given by g and B By [], we have
Jy = A/*Jg. Then we get, for all z € M’

I () = (Ju o®s Jo)snT(Jozdv)(Jo o®j Ju)

174

= ¢no(Jo a®p Jo)T(JoxJs)(Js a®3 Jo)T€ P ()

ve ve

because /4 € Z(M) N a(N) N B(N) So iii) is proved.
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