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Abstract

Shape optimization amounts to find the optimal shape of a domain which minimizes a given
criterion, often called a cost functional. Here, we are interested in the case where the criterion
is computed through the solution of a partial differential equation, the so-called state equation,
which makes the optimization problem non-trivial. We use a general parameterization of the
unknown boundary in order to preserve the physical general information and we prove the
continuity of the cost functional.

1 Introduction

Varying domains constitute an important type of inverse problems which appear in connection
with a variety of phenomenon in different fields. Shape Identification, free or moving boundary
problems, phase change or elastic contact problems fall into the class of such inverse problems
with a priory unknown domains. Some problems that lead to boundary inverse problems are: the
dam seepage problem [14]; Riabouchinsky flow past circular disks [21]; Falling droplets [35, 32, 38];
the Alt-Caffarelli or Bernoulli problem [4]. The common structure of these problems is that there
are elliptic equations for m unknowns and m + 1 mixed Dirichlet-Neumann conditions on the
unknown surface. Many more problems also fall into this general category, with applications to
aluminium production by electrolytic reduction [13]; groundwater flow [25, 29]; free surface waves
[9]]; semiconductors [2, 16]; electromagnetic casting [33, 31]; the Dam and Bernoulli problems
[10, 37, 28, 22, 17].

There is no previous analytic theory covering this general class of boundary inverse problems,
although there has been progress on individual problems.
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A variety of techniques exist for numerically solving boundary inverse problems, see [14, 26,
16, 1, 11] and the references therein. Among this, shape optimization technique is a useful method
for solving the type of problems mentioned above. This is a variational approach, minimizing an
integral functional over the variable domain having an unknown boundary. For an introduction to
shape optimization, cf [23, 36] and some examples of its use are given in [5, 8, 15, 18, 34].

A general formulation of such optimal shape approaches can be expressed as follows
{

Minimize J(Ω, u)
subject to Ω ∈ Θad and u ∈ U(Ω),

(1)

where U(Ω) denotes the set of solutions of a given partial differential equation on the domain Ω
(state equation on Ω) and Θad is a set of admissible domains.

In order to show the existence of a solution for this type of problems, a widely used method is
to show that the space F = {(Ω, u) , Ω ∈ Θad , u ∈ U(Ω)} is compact with a suitable topology on
F which is induced from topologies on Θad and U(Ω), and that the cost functional J is lower semi
continuous on F [23].

In this paper, we are interested in the continuity of cost functionals that can be associated to
the determination of the location, size and shape of an unknown portion Γ, of the boundary ∂Ω
of a domain Ω ⊂ R2, from given, Dirichlet and Neumann, boundary conditions on this unknown
part of the boundary. More precisely, we consider the boundary cost functional J defined by
J(Ω, u) =

∫

Γ
(u−g)2 dσ, which is associated with problems where a condition of the type u = g has

to be imposed on Γ. The function g is given and u is the solution of a partial differential equation
on Ω. In the case where the unknown boundary Γ is the graph of a function, continuity results for
this type of functionals with a suitable topology on F have been obtained in [6, 10, 24]. However, in
many physical problems this assumption on the unknown boundary is too restrictive. The situation
where the unknown boundary can not be the graph of a function occurs in many engineering
problems such as, for example, the dam problem in non-homogeneous porous media [10, 19, 22],
the Stefan problem [20], optimal insulating and electro-chemistry [3, 17] and the semiconductor
problem [27, 16]. Here, we use a general parameterization of the unknown boundary in order to
preserve the physical general information on this boundary. The topology we use on Θad is just
that associated to the C1 convergence of the parameterizations.

The main result of this paper is the continuity of the trace operator from Hr(Ω) (1 ≥ r > 1
2)

to L2(Γ) with a constant independent of Γ. This is proved in section 3. At this stage, it should be
noted that, in the case of a family of domains with parallel boundaries, a similar result has been
obtained by Lions and Magenes in [30]. The continuity of the cost functional J on the space F is
established in section 4. Actually, we prove the continuity of a more general functional.

2 Notations and definitions

Let D be a fixed C1 open connected bounded subset of R2. An admissible domain Ω will be an
open subset of D. The boundary ∂Ω of Ω is assumed to consist in two parts ∂Ω = Γ0 ∪Γ such that
Γ0 ∩ Γ = ∅, meas(Γ0) > 0 and meas(Γ) > 0, where Γ is the free boundary part defined by

Γ = Γ(ϕ) = {ϕ(t) = (ϕ1(t), ϕ2(t)) ; t ∈ [0, 1]},
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ϕ : [0, 1] → R2 is a parameterisation and Γ is assumed to have its endpoints on the boundary of D

(see figure 1). In fact, in this general setting, the curve Γ(ϕ) can divide D into two open subsets.
This is the case for example when D is simply connected. We have then to choose Ω. We can make
for example the following choice : We follow the natural orientation given by the parameterisation
and take the open set whose exterior unit normal boundary vector is on the left.

We shall also write Ω = Ω(ϕ) to indicate the dependence on the parameterization ϕ.

Ω = Ω(ϕ)

Γ0

Γ(ϕ)

D

Figure 1: An example of the considered domain Ω = Ω(ϕ).

We shall denote by ν(x) the exterior unit normal vector to ∂D at x ∈ ∂D.
Define Vad to be the set of vector functions ϕ ∈ C1

(
[0, 1],R2

)
satisfying the following conditions :

|ϕ(t)| ≤ C0, ∀t ∈ [0, 1],

C1|t− t′| ≤ |ϕ(t)− ϕ(t′)| ≤ C2|t− t′|, ∀t, t′ ∈ [0, 1],

ϕ([0, 1]) ⊂ D and, for t = 0 or 1, ϕ(t) ∈ ∂D,

for t = 0 or 1, |ν(ϕ(t)).ϕ′(t)| ≥ ε0, (2)

and, for all t ∈ [0, 1], d(ϕ(t), ∂D) ≥ ε1 t(1− t), (3)

where C0, C1, C2, ε0 and ε1 are positive fixed constants, d(ϕ(t), ∂D) is the distance of the point ϕ(t)
from the boundary ∂D, and we are using the standard notations |(a, b)| = √

a2 + b2, (a, b).(a′, b′) =
aa′+bb′. Note that the assumptions (2) and (3) are made to insure that the curve Γ(ϕ) touches the
boundary ∂D only two times (with the endpoints) and in a transverse manner. The consequence
of this is that the domain Ω(ϕ) is Lipschitz regular.

Clearly, Vad is a closed and bounded subset of C1([0, 1],R2).
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Now, the set Uad of admissible functions will be any compact subset of Vad. In other words,
Uad is a subset of Vad whose elements and their derivatives are equicontinuous as it follows from
Ascoli-Arzelà theorem. An example of such a set Uad is that of a closed subset of Vad which is
bounded in C1,δ

(
[0, 1] ,R2

)
for some δ such that 0 < δ ≤ 1.

The space of admissible domains is then defined by :

Θad = {Ω = Ω(ϕ) ⊂ D ; ϕ ∈ Uad} .

Note that the elements of Θad are uniformly Lipschitz open sets of R2 and so they satisfy the
uniform cone property [34].

Assume that u = u(Ω) ∈ H1(Ω) is the solution of a well posed problem such as
{

LΩ u = f in Ω
L∂Ω u = h on ∂Ω,

(4)

where Ω ∈ Θad and LΩ and L∂Ω are partial differential operators on Ω and ∂Ω respectively.
The cost functional J we are interested in is then defined on the set

F = {(Ω(ϕ), u(Ω)) ; Ω(ϕ) ∈ Θad and u(Ω) solves (4) on Ω(ϕ)}

by
J(Ω(ϕ), u(Ω)) =

∫

Γ(ϕ)
(u(Ω)− g)2 dσ,

where g is a given function on D having essentially the same regularity as u(Ω). For simplicity and
without any restriction on our study, we shall assume that g = 0.

Now, the customary problem of shape optimization or optimal shape design is

to minimize J(Ω, u) on F . (5)

As we have already said, this minimization problem is usually solved by endowing the set F with
a topology for which F is compact and J is lower semi-continuous. Let us therefore define the
topology we shall work with. First, we define the convergence of a sequence (ϕn)n ⊂ Uad by

ϕn −→ ϕ ⇐⇒
{

ϕn −→ ϕ uniformly on [0, 1]
ϕ′n −→ ϕ′ uniformly on [0, 1]

(6)

that is, iff ϕn → ϕ in the C1 topology. Then, the convergence of a sequence (Ωn)n ⊂ Θad, such
that Ωn = Ω(ϕn), to Ω = Ω(ϕ) ∈ Θad is simply defined by

Ωn −→ Ω ⇐⇒ ϕn −→ ϕ. (7)

Denote by ũ the uniform extension of u from Ω to an open smooth bounded domain B (a disc, for
example), such that D ⊂ B (see [12]). We define the convergence of a sequence (un)n of solutions
of (4) on Ω(ϕn) to u the solution of (4) on Ω(ϕ) by

un −→ u ⇐⇒ ũn ⇀ ũ weakly in H1(B). (8)

4



Finally, the topology we put on F is the one induced by the convergence defined by

(Ωn, un) −→ (Ω, u) ⇐⇒
{

Ωn −→ Ω
un −→ u.

(9)

Thus, the compactness of F with respect to this topology depends on the type of the state problem
(4) and on the compactness of Θad with respect to the convergence (7). At this stage, we have to
say that it is not our objective here to prove the compactness of F , the setting being too general.
But since Uad is compact, one can obtain the compactness of F from the continuity of the state
problem (4), which is based on the following (reasonable) condition : There exists a constant C > 0
such that ‖u(Ω)‖1,Ω ≤ C, ∀Ω ∈ Θad. Anyhow, the chosen topology is rather natural, is used in
many applied problems and, as we shall see, it allows to prove the continuity of the cost functional
J and even the continuity of more general boundary functionals (see section 4).

3 Continuity of the trace operator

In this section, we give a proof of the trace theorem which allows us to estimate the norm of the
trace operator by a constant independent of the free boundary Γ.

Theorem 1 Let u be in Hr(B), 1 ≥ r > 1
2 , and Ω(ϕ) ∈ Θad. Then, there exists a constant K

independent of ϕ such that
‖u‖0,Γ(ϕ) ≤ K ‖u‖r,B

where ‖ · ‖0,Γ(ϕ) is the L2(Γ(ϕ))-norm and ‖ · ‖r,B is the Hr(B)-norm.

The proof of this result is based on the following constructions and techniques.
Let ϕ ∈ Uad. By using standard techniques, we can construct a continuous extension operator

from C1
(
[0, 1] ,R2

)
to C̃1

(
[−1, 2] ,R2

)
= {ϕ ∈ C1

(
R,R2

)
; supp(ϕ) ⊂ [−1, 2]}, such that the

extension ϕ̃ of ϕ to R satisfies
‖ϕ̃′‖L∞(R) = ‖ϕ′‖L∞([0,1]), (10)

where ‖ · ‖L∞ is the L∞-norm.

Now, let χ ∈ D(R) such that χ ≥ 0,
∫

R
χdx = 1 and supp(χ) ⊂ [−1, 1]. We define the function

ψk = (ψ1,k, ψ2,k), k ∈ N∗, on R as a regularized function of ϕ̃, that is,

ψk(t) =
∫

R
ϕ̃(t− τ) χ(kτ) k dτ.

Note that
ψ′k(t) =

∫

R
ϕ̃′(t− τ)χ(kτ) k dτ.

Since ϕ̃′ is continuous, it is well known that ψ′k converges uniformly to ϕ̃′ on any compact subset
of R as k −→∞. In particular,

lim
k−→∞

‖ψ′k − ϕ′‖L∞([0,1]) = 0.

In fact, we can show that for any ε > 0, there exists kε ∈ N∗ independent of ϕ such that, for k ≥ kε,

‖ψ′k − ϕ′‖L∞([0,1]) < ε.
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Indeed, we have

|ψ′k(t)− ϕ̃′(t)| = |
∫

R

(
ϕ̃′(t− τ)− ϕ̃′(t)

)
χ(kτ) k dτ |

≤
∫

R
|ϕ̃′(t− τ

k
)− ϕ̃′(t)|χ(τ) dτ.

Since the extension operator is continuous from C1
(
[0, 1] ,R2

)
to C̃1

(
[−1, 2] ,R2

)
, the functions

ϕ̃′, are equicontinuous and uniformly continuous when ϕ describes Uad. So, for ε > 0, there exists
γε > 0 independent of ϕ such that

∀t, t′ ∈ R, |t− t′| ≤ γε implies that |ϕ̃′(t)− ϕ̃′(t′)| ≤ ε, ∀ϕ ∈ Uad. (11)

Hence, for k such that
|τ |
k
≤ 1

k
≤ γε and all t ∈ R,

|ψ′k(t)− ϕ̃′(t)| ≤
∫

R
ε χ(τ) dτ = ε.

So, we can take kε = [
1
γε

] + 1, where [ · ] denotes the integral part.

Now, to the given ϕ ∈ Uad, we associate the function Φ ∈ C1
(
[0, 1]× R,R2

)
defined by

Φ(t, s) = ϕ(t) + sψ′kε
(t)⊥ , s ∈ R, (12)

where we are using the notation (a, b)⊥ = (−b, a). In what follows, we shall omit the index kε and
write ψ instead of ψkε .
The following lemma is basic for the proof of Theorem 1.

Lemma 1 There exists a small enough s0 > 0 such that s0 is independent of ϕ ∈ Uad and the
following three assertions hold.
(i) The Jacobian, JΦ, of Φ is such that

|JΦ| ≥ 1
2
C2

1 on [0, 1]× [−s0, s0] . (13)

(ii) There exists C3 > 0 independent of ϕ such that

|Φ(t, s)− Φ(t′, s′)| ≤ C3 |(t− t′, s− s′)|, ∀(t, s), (t′, s′) ∈ [0, 1]× [−s0, s0]. (14)

(iii) Φ is injective in [0, 1]× [−s0, s0], and, more precisely,

|Φ(t, s)− Φ(t′, s′)| ≥
√

2
4

C1 |(t− t′, s− s′)|, ∀(t, s), (t′, s′) ∈ [0, 1]× [−s0, s0]. (15)

where C1 is the same constant as that in the definition of Uad.

Proof :
(i) We have that

Φ′ =

(
ϕ′1 − sψ′′2 −ψ′2
ϕ′2 + sψ′′1 ψ′1

)
.
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So,

JΦ = det(Φ′) = ϕ′1 ψ′1 + ϕ′2 ψ′2 + s (ψ′′1 ψ′2 − ψ′1 ψ′′2)

= |ϕ′|2 + ϕ′ · (ψ − ϕ)′ − sψ′′ · ψ′⊥.

It follows from the definition of ψ = ψkε that

‖ψ′⊥‖L∞([0,1]) ≤ ‖ψ′‖L∞(R) ≤ ‖ϕ̃′‖L∞(R)

∫

R
χ(kετ) kε dτ‖ϕ̃′‖L∞([0,1]) ≤ C2 (16)

and

‖ψ′′‖L∞([0,1]) ≤ ‖ψ′′‖L∞(R) ≤ ‖ϕ̃′‖L∞(R) k2
ε

∫

R
|χ′(kετ)| dτ ≤ C2 kε

∫

R
|χ′(τ)| dτ ≡ C ′

2kε. (17)

Using equations (16), (17) and the inequality C1 ≤ ‖ϕ′‖L∞([0,1]) ≤ C2, which follows from the
definition of Uad, we obtain

|JΦ| ≥ C2
1 − C2 ε− |s|C2 C ′

2kε ≥ C2
1 − C2 (ε + s0 C ′

2kε), ∀s, |s| ≤ s0.

Finally, choosing ε and s0 so small that

C2 (ε + s0 C ′
2kε) ≤ 1

2
C2

1 ,

we obtain
|JΦ| ≥ 1

2
C2

1 on [0, 1]× [−s0, s0] .

(ii) We have, for all (t, s) ∈ [0, 1]× [−s0, s0],

|ϕ′(t) + sψ′′(t)⊥| ≤ ‖ϕ′‖L∞([0,1]) + s ‖ψ′′‖L∞([0,1])

≤ C2 + s0 C ′
2kε,

and
|ψ′(t)⊥| ≤ ‖ψ′‖L∞([0,1]) ≤ C2.

Hence, if C3C2(1 + s0kε‖χ′‖L1), we obtain, by Taylor formula,

|Φ(t, s)− Φ(t′, s′)| ≤ C3 |(t− t′, s− s′)|,

for all (t, s), (t′, s′) ∈ [0, 1]× [−s0, s0].
(iii) Let us now show that Φ is injective in [0, 1]× [−s0, s0], for s0 small enough and independent
of ϕ. To this end, we shall show that there exists a constant M such that

|Φ(t, s)− Φ(t′, s′)| ≥ M |(t− t′, s− s′)|, ∀(t, s), (t′, s′) ∈ [0, 1]× [−s0, s0].

Let (t, s), (t′, s′) ∈ [0, 1]× [−s0, s0]. We have

Φ(t, s)− Φ(t′, s′) = ϕ(t)− ϕ(t′) + sψ′(t)⊥ − s′ ψ′(t′)⊥

= ϕ(t)− ϕ(t′) + (s− s′) ψ′(t)⊥ + s′(ψ′(t)⊥ − ψ′(t′)⊥). (18)
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Now, we discuss two cases :
First case, if |s− s′| ≤ η |t− t′|, η small enough, we have

|Φ(t, s)− Φ(t′, s′)| ≥ C1 |t− t′| − η |t− t′| ‖ψ′‖L∞([0,1]) − s0 ‖ψ′′‖L∞([0,1]) |t− t′|
≥ (C1 − η ‖ψ′‖L∞([0,1]) − s0 ‖ψ′′‖L∞([0,1])) |t− t′|
≥ (C1 − η C2 − s0 C ′

2kε) |t− t′|

≥ (C1 − η C2 − s0 C ′
2kε)

(
1
2
|t− t′|2 +

1
2

1
η2
|s− s′|2

) 1
2

.

Assuming that η ≤ 1, we obtain

‖Φ(t, s)− Φ(t′, s′)‖ ≥ 1√
2

(C1 − η C2 − s0 C ′
2kε) |(t− t′, s− s′)|.

Second case, if |s − s′| ≥ η |t − t′|, we can rewrite the terms ϕ(t) − ϕ(t′) and (s − s′) ψ′(t)⊥ in
(18) as

ϕ(t′)− ϕ(t) = (t′ − t) ϕ′(t) + (t− t′)
∫ 1

0

(
ϕ′(t + τ(t− t′))− ϕ′(t)

)
dτ

and
(s− s′) ψ′⊥(t) = (s− s′) (ϕ′(t))⊥ + (s− s′)

(
ψ′(t)− ϕ′(t)

)⊥
.

We know that
‖ψ′ − ϕ′‖L∞([0,1]) ≤ ε

and, from (11), that there exists γε > 0 independent of ϕ such that

|t− t′| ≤ γε implies that |ϕ′(t + τ(t− t′)− ϕ′(t)| ≤ ε, ∀τ ∈ [0, 1]. (19)

Hence,

|s− s′| ≤ η γε implies that |
∫ 1

0

(
ϕ′(t + τ(t− t′)− ϕ′(t)

)
dτ | ≤ ε. (20)

Thus, for s0 ≤ 1
2 η γε , we have

|Φ(t, s)− Φ(t′, s′)|
≥ | − (t− t′) ϕ′(t) + (s− s′) ϕ′(t)⊥| − ε |t− t′| − ε |s− s′| − s0 ‖ψ′′‖L∞([0,1]) |t− t′|

≥
(
|t− t′|2 |ϕ′(t)|2 + |s− s′|2 |ϕ′(t)|2

) 1
2 − (2ε + s0 C ′

2kε) |(t− t′, s− s′)|
≥ (C1 − 2 ε− s0 C ′

2kε)|(t− t′, s− s′)|.

The constants ε, η and s0 can be chosen such that, for example,

η C2 + s0 C ′
2kε ≤ C1

2
, 2 ε + s0 C ′

2kε ≤ C1

2
and s0 ≤ 1

2
η γε.

Hence, it suffices to take

η =
C1

4C2
, ε =

C1

8
and s0 = min

{
C1γε

8C2
,

C2

8C2kε‖χ‖L1

}
.

This shows that there exists s0 independent of ϕ, such that Φ is injective in [0, 1]× [−s0, s0] and

|Φ(t, s)− Φ(t′, s′)| ≥
√

2
4

C1 |(t− t′, s− s′)|, ∀(t, s), (t′, s′) ∈ [0, 1]× [−s0, s0].
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Proof of theorem 1 :
Let us denote by I =]0, 1[ and J =]− s0, s0[ and let us consider u ∈ Hr(B) (1

2 < r ≤ 1). We have
that

u(ϕ(t)) = u|Γ ◦ ϕ(t), ∀t ∈ [0, 1],

and, on the other hand,

u(ϕ(t)) = u(Φ(t, s))|s=0 ≡ v(t, s)|s=0, ∀t ∈ [0, 1],

where Φ is the function defined in (12) and v = u ◦Φ. From the above lemma, we have that Φ is a
C1 diffeomorphism from I × J onto an open set of R2 which is some tubular neighborhood of Γ,

and thus v ∈ Hr(I × J ). Now,

‖u‖0,Γ(ϕ) ≤ C2 ‖u ◦ ϕ‖0,I = C2 ‖v(t, s)|s=0‖0,I ,

and, according to the standard result on the continuity of the trace operator from Hr(I × J )
to L2(I × {0}) (for r > 1

2), there exists a constant β, independent of v, such that ‖v|s=0‖0,I ≤
β‖v‖r,I×J for all v ∈ Hr(I × J ). Hence,

‖u‖0,Γ(ϕ) ≤ C2 β ‖v‖r,I×J .

Next, there exists a constant C4 independent of ϕ, such that

‖v‖r,I×J ≤ C4 ‖u‖r,B.

Indeed, we have
∫ ∫

I×J
|u(Φ(t, s))|2 dt ds =

∫ ∫

Ω̃
|u(x, y)|2 |det((Φ−1)′(x, y)| dx dy

where Ω̃ = Φ(I × J ) and (x, y) = Φ(t, s), and it follows from Lemma 1 that
∫ ∫

I×J
|u(Φ(t, s))|2 dt ds =

∫ ∫

Ω̃
|u(x, y)|2 dx dy

|detΦ′(Φ−1(x, y))|
≤ 2

C2
1

∫ ∫

Ω̃
|u(x, y)|2 dx dy

≤ 2
C2

1

‖u‖2
0,Ω̃

.

Thus,

‖u ◦ Φ‖2
0,I×J ≤

2
C2

1

‖u‖2
0,Ω̃

. (21)

On the other hand, setting U = I × J , we have from Lemma 1
∫ ∫

U×U
|u ◦ Φ(t, s)− u ◦ Φ(t′, s′)|2

|(t, s)− (t′, s′)|2r+2
dt dt′ ds ds′

=
∫ ∫

Ω̃×Ω̃

|u(x, y)− u(x′, y′)|2
|Φ−1(x, y)− Φ−1(x′, y′)|2r+2

× |det((Φ−1)′(x, y)| |det((Φ−1)′(x′, y′)| dx dx′ dy dy′

≤ 4
C4

1

∫ ∫

Ω̃×Ω̃

|u(x, y)− u(x′, y′)|2
|Φ−1(x, y)− Φ−1(x′, y′)|2r+2

dx dx′ dy dy′,
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Since Φ is Lipschitz of constant C3, we have that

|Φ−1(x, y)− Φ−1(x′, y′)| ≥ 1
C3

|(x− x′, y − y′)| ∀(x, y), (x′, y′) ∈ Ω̃× Ω̃. (22)

Therefore,
∫ ∫

U×U
|u ◦ Φ(t, s)− u ◦ Φ(t′, s′)|2

|(t, s)− (t′, s′)|2r+2
dt dt′ ds ds′

≤ 4
C4

1

C2+2r
3

∫ ∫

Ω̃×Ω̃

|u(x, y)− u(x′, y′)|2
|(x, y)− (x′, y′)|2r+2

dx dx′ dy dy′.

≤ 4C2+2r
3

C4
1

‖u‖2
r,B (23)

(21) and (23)imply the theorem when r < 1.

When r = 1, we estimate the partial derivatives of in the same manner (one can also estimate
‖u‖r,B by ‖u‖1,B). This achieves the proof of the theorem.

Now, as a consequence of Theorem 1, we state and prove the following convergence result which
essentially says that u|Γn −→ u|Γ. It will also be needed in next section.

Corollary 1 Let (ϕn)n ⊂ Uad be a sequence such that ϕn → ϕ in the sense of (6), that is for the
C1 convergence, and let u ∈ H1(B). Then

lim
n−→∞u ◦ ϕnu ◦ ϕ in L2([0, 1]).

Proof :
First, it follows from the density of D(B) in H1(B) (see [?]) that, for a given ε > 0, there exists
υε ∈ D(B) such that

‖υε − u‖1,B ≤ ε

3
√

C1 K
,

where K is the constant of Theorem 1. Next, we can write

‖u ◦ ϕn − u ◦ ϕ‖0,[0,1] = ‖u ◦ ϕn − υε ◦ ϕn + υε ◦ ϕn − υε ◦ ϕ + υε ◦ ϕ− u ◦ ϕ‖0,[0,1]

≤ ‖u ◦ ϕn − υε ◦ ϕn‖0,[0,1] + ‖υε ◦ ϕn − υε ◦ ϕ‖0,[0,1]

+‖υε ◦ ϕ− u ◦ ϕ‖0,[0,1]. (24)

Now, by Theorem 1,

‖υε ◦ ϕn − u ◦ ϕn‖0,[0,1] =
(∫ 1

0
|υε ◦ ϕn(t)− u ◦ ϕn(t)|2 dt

) 1
2

≤
√

C1 K ‖υε − u‖1,B,

and according to the Lebesgue convergence theorem, we have

lim
n−→∞ ‖υε ◦ ϕn − υε ◦ ϕ‖0,[0,1] = lim

n−→∞

(∫ 1

0
|υε ◦ ϕn(t)− υε ◦ ϕ(t)|2 dt

) 1
2

= 0

Thus,

‖υε ◦ ϕn − u ◦ ϕn‖0,[0,1] =
(∫ 1

0
|υε ◦ ϕn(t)− u ◦ ϕn(t)|2 dt

) 1
2

≤
√

C1 K ‖υε − u‖1,B ≤ ε

3
, (25)
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‖υε ◦ ϕ− u ◦ ϕ‖0,[0,1] =
(∫ 1

0
|υε ◦ ϕ(t)− u ◦ ϕ(t)|2 dt

) 1
2

≤
√

C1 K ‖υε − u‖1,B ≤ ε

3
, (26)

and there exists N ∈ N∗ such that n ≥ N implies

‖υε ◦ ϕn − υε ◦ ϕ‖0,[0,1] =
(∫ 1

0
|υε ◦ ϕn(t)− υε ◦ ϕ(t)|2 dt

) 1
2

≤ ε

3
. (27)

Hence, for n ≥ N ,

‖u ◦ ϕn − u ◦ ϕ‖0,[0,1] =
(∫ 1

0
|u ◦ ϕn(t)− u ◦ ϕ(t)|2 dt

) 1
2

≤ ε, (28)

which ends the proof of the corollary.

4 Applications

We now apply Theorem 1 to study the continuity of the boundary cost functional

J(Ω, u) =
∫

Γ
|u|2dσ

which appears in many problems of optimal shape design, often as a shape optimization formulation
of the Dirichlet type condition of a free boundary problem. Of course, Theorem 2 below can also
be considered as a continuity result for the trace operator with respect to the couple (u,Γ).

Theorem 2 The functional J is continuous on F with the topology induced by the convergence
defined in (9).

Proof :
Let {(Ωn, un)}n be a sequence of F , such that Ωn = Ω(ϕn), Ω = Ω(ϕ) and

(Ωn, un) −→ (Ω, u) as n −→∞ .

In what follows, the functions under consideration are of course the extensions ũ, ũn ∈ H1(B),
but for simplicity we shall drop the “˜”. To show that J(Ωn, un) −→ J(Ω, u), let us prove that√

J(Ωn, un) −→ √
J(Ω, u). We have:

∣∣∣∣
√

J(Ωn, un)−
√

J(Ω, u)
∣∣∣∣

=
∣∣∣‖un ◦ ϕn · |ϕ′n|

1
2 ‖0,[0,1] − ‖u ◦ ϕ · |ϕ′| 12 ‖0,[0,1]

∣∣∣

≤
∥∥∥un ◦ ϕn · |ϕ′n|

1
2 − u ◦ ϕ · |ϕ′| 12

∥∥∥
0,[0,1]

≤
∥∥∥(un ◦ ϕn − u ◦ ϕn) |ϕ′n|

1
2

∥∥∥
0,[0,1]

+
∥∥∥(u ◦ ϕn − u ◦ ϕ) |ϕ′n|

1
2

∥∥∥
0,[0,1]

+
∥∥∥u ◦ ϕ

(
|ϕ′n|

1
2 − |ϕ′| 12

) ∥∥∥
0,[0,1]

≤ ‖un − u‖0,Γn
+

√
C2 ‖(u ◦ ϕn − u ◦ ϕ)‖0,[0,1] +

1√
C1
‖u‖0,Γ sup

[0,1]

∣∣∣|ϕ′n|
1
2 − |ϕ′| 12

∣∣∣

≤ ‖un − u‖r,B +
√

C2 ‖(u ◦ ϕn − u ◦ ϕ)‖0,[0,1] +
1

2C1
‖u‖0,Γ sup

[0,1]

∣∣ϕ′n − ϕ′
∣∣ , (29)
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1
2 < r < 1, by Theorem 1. The theorem follows from Corollary 1 and the compactness of the
injection of H1(B) into Hr(B).

Last, we establish the following more general continuity result. It concerns a general boundary
cost functional of the form

J(Ω, u) =
∫

Γ
f(x, u(x))dσ (30)

where f is a real continuous function defined in R2 × R (or R2 × C if u is allowed to take complex
values) such that

|f(x, u)| ≤ C
(
1 + |u|2

)
(31)

for all x and u, C being a positive constant. Note that it follows from (31) that J is well defined
on F .

Theorem 3 Under the above assumptions, J is continuous on F with the topology induced by the
convergence defined in (9).

Proof :
Taking the same sequence (Ωn, un) as in the beginning of the proof of Theorem 2, we can write

J(Ωn, un)I1(n) + I2(n) + J(Ω, u)

where
I1(n) =

∫ 1

0
[f(ϕn(t), un(ϕn(t)))− f(ϕ(t), u(ϕ(t)))] |ϕ′n(t)| dt,

I2(n) =
∫ 1

0
f(ϕ(t), u(ϕ(t)))

(|ϕ′n(t)| − |ϕ′(t)|) dt.

I2(n) is easy to estimate. Indeed, obviously,

|I2(n)| ≤ C

∫ 1

0
(1 + |u(ϕ(t))|2)dt sup

[0,1]

∣∣ϕ′n − ϕ′
∣∣ ,

so,
lim

n−→∞ I2(n) = 0.

To treat I1(n) , we need the following lemma which improves Corollary 1.

Lemma 2 Let (ϕn) ⊂ Uad be a sequence such that ϕn −→ ϕ ∈ Uad in the sense of (6), and let
u, un ∈ H1(B) such that un converges weakly to u in H1(B). Then, un ◦ ϕn −→ u ◦ ϕ in L2([0, 1]).

Proof :
We have

‖un ◦ ϕn − u ◦ ϕ‖0,[0,1] ≤ ‖un ◦ ϕn − u ◦ ϕn‖0,[0,1] + ‖u ◦ ϕn − u ◦ ϕ‖0,[0,1]

≤ 1√
C1

‖un − u‖0,Γn
+ ‖(u ◦ ϕn − u ◦ ϕ)‖0,[0,1]

≤ K√
C1

‖un − u‖r,B + ‖(u ◦ ϕn − u ◦ ϕ)‖0,[0,1] ,
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Γn = Γ(ϕn), 1
2 < r < 1, by Theorem 1. Thus, the lemma follows from Corollary 1 and the

compactness of the canonical injection of H1(B) into Hr(B).

End of proof of Theorem 3: Since un ◦ ϕn −→ u ◦ ϕ in L2([0, 1]), there exists a subsequence
unk

◦ ϕnk
and v ∈ L2([0, 1]) such that (see[7])

unk
◦ ϕnk

−→ u ◦ ϕ, a.e. and |unk
◦ ϕnk

| ≤ v, a.e. (32)

Consider now I1(nk). We have :

• [f (ϕnk
(t), unk

(ϕnk
(t)))− f (ϕ(t), u(ϕ(t))) ] |ϕ′nk

(t)| −→ 0, a.e.

• |f (ϕnk
(t), unk

(ϕnk
(t)))− f (ϕ(t), u(ϕ(t)))| |ϕ′nk

(t)| ≤ C2C(2 + v(t)2 + |u(ϕ(t))|2), a.e.

So, it follows from the Lebesgue convergence theorem that I1(nk) −→ 0. However, this does not al-
low us to conclude. Therefore, consider limJ(Ωn, un). Since (J(Ωn, un)) is a bounded real sequence,
this limit exists and is equal to limJ(Ωnk

, unk
) for some subsequence. Now,

limJ(Ωn, un) = limJ(Ωnk
, unk

) = limJ(Ωnkl
, unkl

)

where (nkl
) is such that the subsequence unkl

◦ ϕnkl
satisfies (32). Hence, by the argument given

above,
limJ(Ωn, un) = limJ(Ωnkl

, unkl
) = J(Ω, u).

Of course, the same argument works for limJ(Ωn, un), and this proves the theorem.
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