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POLYNOMIAL EQUATIONS WITH ONE CATALYTIC VARIABLE,

ALGEBRAIC SERIES,

AND MAP ENUMERATION

MIREILLE BOUSQUET-MÉLOU AND ARNAUD JEHANNE

Abstract. Let F (t, u) ≡ F (u) be a formal power series in t with polynomial coefficients

in u. Let F1, . . . , Fk be k formal power series in t, independent of u. Assume all these
series are characterized by a polynomial equation

P (F (u), F1, . . . , Fk, t, u) = 0.

We prove that, under a mild hypothesis on the form of this equation, these (k + 1) series
are algebraic, and we give a strategy to compute a polynomial equation for each of them.
This strategy generalizes the so-called kernel method and quadratic method, which apply
respectively to equations that are linear and quadratic in F (u). Applications include the
solution of numerous map enumeration problems, among which the hard-particle model
on general planar maps.

1. Introduction

Let us begin with a classical enumeration problem. We consider walks on the half-line
N, that start from 0 and consist of unit steps ±1. Let F (t, u) ≡ F (u) be their generating
function, where t counts the length (the number of steps) and u the position of the endpoint.
That is to say, F (t, u) =

∑

n,k an,ktnuk, where an,k is the number of n-step walks that end

at level k. Note that F (t, 0) ≡ F (0) is the length generating function of the celebrated Dyck
paths, which are the walks ending at 0 [41, p. 173]. A step-by-step construction of these
walks gives either a recurrence relation of the numbers an,k or, equivalently, the following
functional equation:

F (u) = 1 + tuF (u) +
t

u

(

F (u) − F (0)
)

. (1)

The second (resp. third) term on the right-hand side counts walks ending with a step +1
(resp. −1). Clearly, this equation defines F (u) uniquely as a formal power series in t (with
rational coefficients in u). Observe that the equation

F (u) = 1 + tuF (u) +
t

u

(

F (u) − F1

)

(2)

defines uniquely both F (u) and F1 as formal power series in t, if we impose that F (u) has
polynomial coefficients in u and that F1 is independent of u. Indeed, after multiplying the
equation by u and setting u = 0, we find F1 = F (0), and we are thus back to (1). Finally,
we recall that F (0) is well-known to be algebraic of degree 2,

F (0) =
1 −

√
1 − 4t2

2t2
.

Consequently, F (u) is algebraic too (meaning that it satisfies a non-trivial polynomial equa-
tion, Q(t, u, F (u)) = 0, with rational coefficients).
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2 MIREILLE BOUSQUET-MÉLOU AND ARNAUD JEHANNE

The above example is an instance of the general situation we study in this paper. We
assume that a (k + 1)-tuple (F (u), F1, F2, . . . , Fk) of formal power series in t is completely
determined by a polynomial equation

P (F (u), F1, F2, . . . , Fk, t, u) = 0. (3)

Typically, F (u) has polynomial coefficients in u, and Fi is the coefficient of ui−1 in F (u).
Following Zeilberger’s terminology [49, p. 457], we say that (3) is a polynomial equation with
one catalytic variable u. The aim of this paper is twofold: we prove that the solution of
a (well-founded) equation of the form (3) is always algebraic and we present a strategy to
obtain a polynomial equation it satisfies.

There are several reasons why we like to know that the generating function of some class
of objects is algebraic. Firstly, the set of algebraic series is closed under natural operations
(sum, product, derivatives, composition...). Secondly, these series are reasonably easy to
handle (via resultants or Gröbner bases). In particular, several computer algebra packages
are now able to make the above closure properties effective. Thirdly, algebraic series are
also D-finite and this implies that their coefficients can be computed in a linear number of
operations [41, Ch. 6]. The asymptotic behaviour of these coefficients has a generic form, the
details of which are usually not to hard to obtain. Finally – and, to many combinatorialists,
most importantly – the fact that a class of objects is counted by an algebraic series suggests
that it should be possible to construct these objects recursively by concatenation of objects of
the same type. For many objects, such a construction is easily found, but for others, among
which planar maps [25, 38], the algebraic structure of the objects is far from clear, and
the algebraicity of the generating function gives rise to challenging combinatorial problems.
See [41, Ch. 6] or [31] for a presentation of algebraic series in enumeration.

But let us return to polynomial equations with one catalytic variable. Many combinato-
rialists have fought them before us, and we want to recall some milestones in this history.

1.1. A partial historical account

In 1956 already, Temperley writes, for the perimeter enumeration of column-convex poly-
ominoes , a set of recurrence relations [42, Eq. (7)] that is equivalent, after summation, to

F (u) =
ut2

1 − ut
+

t3u2F (u)

(1 − ut)2
+ 2

t2u2

1 − ut

F (u) − F (1)

u − 1
+ ut

uF (u) − uF (1) − (u − 1)F ′
u(1)

(u − 1)2
.

He proves that F (1) is algebraic, without being able to compute it explicitly (see [29] for a
simple expression of F (1)). Like (1), the above equation is linear in F (u), but it contains
two additional unknown functions, F (1) and F ′

u(1).
The first non-linear equations appear in the early sixties, in the work of Tutte and Brown

on planar maps. For instance, Tutte publishes in 1962 the following equation [43, Eq. (3.7)],
which rules the enumeration of certain triangulations:

F (u) = 1 +
t

u

(

F (u)

1 − uF (u)
− F (0)

)

. (4)

In the following years, more equations of this type are published for various families of planar
maps (non-separable [18, 23], general [44], other triangulations [19], quadrangulations [20]).
All of them involve only one unknown function F1 (and thus read P (F (u), F1, t, u) = 0), and
are quadratic in F (u), apart from the equation on quadrangulations which is cubic. In the
first papers, Tutte and Brown solve these equations by guessing and checking : either they
guess the expansions of F1 and F (u), and then check that their guesses satisfy the functional
equation, or they only guess the expansion of F1, and then prove that the polynomial equation
P (F (u), F1, t, u), taken with the conjectured value of F1, admits one root F (u) that is a
formal power series in t with polynomial coefficients in u. Of course, any equation for which
the value of F1 cannot be guessed remains hopeless with this strategy.
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In 1965, Brown publishes a theorem that deals, at first sight, with a different topic: with
the conditions satisfied by a series in t and u that admits a square root (which is itself
assumed to be a formal power series) [21]. He shows that this theorem allows to solve, in
a systematic way, all equations of the type (3) that are quadratic in F (u) and only involve
one unknown function F1. The quadratic method is born (see [33, Section 2.9] for a modern
account). Brown even manages to solve, with some contorsions, the above-mentioned cubic
equation for quadrangulations [21, Section 4]. At the end of [22], he writes “It is possible
that the method may be effective when more than one unknown series is present”. This hope
was confirmed many years later, in 1994, when Bender and Canfield applied the method to
a quadratic equation with arbitrarily many unknown functions [5].

But let us go back to the sixties. In 1968, in the first volume of The art of computer
programming , Knuth gives for the classical ballot problem an equation that is equivalent
to (1), and presents a “trick” that solves it [34, Section 2.2.1, Ex. 4]. This may have been
the unnoticed birth of the kernel method , which allows to solve systematically equations of
the form (3) that are linear in F (u). This trick may have been better known at that time in
probability theory. At least, the same idea definitely appears in a 1979 paper [28], in a more
difficult, analytic context. The kernel method is currently the subject of a certain revival in
combinatorics [1, 2, 11, 27, 37].

In 1972, Cori and Richard solve again certain linear equations, and also some polynomial
equations with one unknown series F1 [24]. Their technique is very interesting, but the fact
that they deal with equations in non-commuting variables makes it both deeper and more
obscure. Still, the strategy we present here to attack (3) owes a lot to [24].

Since then, equations of the form (3) have continued to appear in various enumeration
problems, mostly involving maps [5, 32], but also polyominoes [7, 8, 30], stack-sortable
permutations [9, 48] and their generalizations [47], lattice walks [2, 10], etc. Examples can
be found were both the degree of the equation and the number of unknown functions is
arbitrarily large. For instance, such equations are hiding in Tutte’s work on the chromatic
polynomial of triangulations [45, Section 5]. Another such set of equations, unbounded in
degree and number of unknowns, is presented in Section 5.3. It deals with the enumeration
of certain Eulerian maps called constellations.

1.2. Contents

The general strategy. The method presented in this paper to solve equations of the
form (3) encapsulates and simplifies all previous approaches, in particular the kernel method
and the quadratic method. It works without any restriction on the degree of the equation
or on the number of unknowns Fi. The general strategy is described in Section 2. Its
justification only takes a few lines. It yields a system of 3ℓ polynomial equations that relate
k + 2ℓ series in t: the unknowns F1, . . . , Fk, first, then ℓ series named U1, . . . , Uℓ, which are
defined as the roots of a certain equation (simply related to the original functional equation),
and finally the values of F (u) at u = Ui, for i = 1, . . . , ℓ. The strategy “works” if, first, ℓ = k
(so that we have as many equations as unknown series), and if the 3k polynomial equations
thus obtained imply the algebraicity of the Fi.

First examples. In Section 3, we apply this strategy to several examples. For each of
them, we observe that the strategy works: we find as many series Ui as we have unknowns
Fi, and we can derive from the system of 3k polynomial equations an algebraic equation for
each Fi. We also relate our approach to the earlier kernel method and quadratic method.

A generic algebraicity theorem. Will this strategy always work? Section 4 answers this
question positively, at least for a well-founded equation of the form

F (u) = F0(u) + t Q
(

F (u), ∆F (u), ∆(2)F (u), . . . , ∆(k)F (u), t, u
)

, (5)
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where F0(u) is a given polynomial in u (with coefficients in a field K of characteristic 0),
Q(x0, . . . , xk, t, v) is another polynomial, and

∆(i)F (u) =
F (u) − F1 − uF2 − · · · − ui−1Fi

ui
.

If we require F (u) to be a formal power series in t with polynomial coefficients in u, and Fi

to be the coefficient of ui−1 in F (u), then this equation defines uniquely F (u). We prove
that F (u), and hence all the Fi, are algebraic.

Algebraicity results for planar maps. Thus the solution of every (well-founded) equa-
tion with one catalytic variable is algebraic. This result urges a combinatorial interlude, in
which we establish for several families of planar maps an equation of this type. The generic
algebraicity theorem tells us, without going further, that their generating functions are al-
gebraic. Our examples include some already studied problems (like the face-distribution of
Eulerian maps, for which we answer positively a question left open in [13]), and some new
ones, like the hard-particle model on general planar maps.

From 3k to 2k, and then k equations. The next question that we address is both
theoretical and practical: it deals with the size of our polynomial system. Assume the
general strategy works and provides a system of 3k equations. Even when k = 2, even for a
computer algebra system, this can be hard to handle. In Section 6 we reduce the system to 2k
equations which involve only the series Fi and Ui. This new system can be described simply
in terms of the discriminant of the polynomial P occurring in (3), taken with respect to its
first variable (we assume that P is at least quadratic in this variable). Our 2k equations say
that this discriminant, evaluated at F1, . . . , Fk, t, u and considered as a polynomial in u, has
k multiple roots U1, . . . , Uk. This extends a result that was known to hold in the quadratic
case and is one of the possible formulations of the quadratic method [33, Section 2.9].

Hence the discriminant and its derivative with respect to u have k roots in common. It
is well-known that two polynomials have one root in common if their resultant is zero. In
Section 7, we recall how to express, by a set of k determinants, the fact that two polynomials
have k roots in common. Applying this to the discriminant and its derivative, we obtain a
set of k polynomial equations that relate F1, . . . , Fk.

A new proof of Brown’s theorem. Before turning our attention to specific examples, we
give in Section 8 a “modern”, and maybe clearer proof of Brown’s theorem on square roots
of bivariate power series1. Recall that this theorem is the basis of the quadratic method.

Practical examples. We discuss in Section 9 how to derive in practise an algebraic equation
for, say, the unknown series F1. We suggest various approaches, which we exemplify on
certain maps called 3-constellations. The associated equation is cubic and involves two
unknown series Fi. In Section 10, we walk in the steps of Bender and Canfield [5] to find the
face-distribution of planar maps. This problem was already solved in two other ways [14], and
we prove that our results are equivalent to the former ones. Finally, we solve in Section 11
the hard-particle model on general planar maps. For other recent applications of our method,
see [6].

Finally, Section 12 discusses a number of open questions.

1.3. Formal power series and their relatives

Let us conclude this introduction with some notation. Let K be a commutative ring. We
denote by K[t] the set of polynomials in t with coefficients in K. If K is a field, then K(t)
denotes the field of fractions in t with coefficients in K. We denote by K the algebraic closure

1As mentioned in Section 8, it seems that there may be a mistake in Brown’s original proof.
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of K. We also consider several sets of series of the form

A(t) =
∑

n≥n0

antn/d,

where n0 ∈ Z, an0
6= 0 and d ∈ N \ {0}. The number n0/d is called the valuation of A(t).

We use the standard notation for the coefficients of a series:

[tn/d]A(t) := an.

In particular,

– K[[t]] is the set of formal power series in t with coefficients in K (n0 ≥ 0 and d = 1),
– K((t)) is the set of Laurent series in t with coefficients in K (d = 1),

– Kfr[[t]] is the set of fractional power series in t with coefficients in K (n0 ≥ 0),

– Kfr((t)) is the set of fractional Laurent series in t (a.k.a. Puiseux series) with coef-
ficients in K (no condition).

Each of these sets is a commutative ring, and the second and fourth are fields if K is a

field. More precisely, K((t)) is the fraction field of K[[t]], and Kfr((t)) is the fraction field of

Kfr[[t]]. If, moreover, K is algebraically closed and has characteristic 0, then so is Kfr((t)) [41,
Thm. 6.1.5].

These notations generalize to series in several indeterminates. In this paper, we will
mostly use series in t and u. Note the following inclusions:

K[t, u] ⊂ K[[t]][u] ⊂ K[u][[t]] ⊂ K[[t, u]] = K[[t]][[u]].

The second set above is the set of polynomials in u whose coefficients are formal power series
in t. The third set is the set of formal power series in t whose coefficients are polynomials in

u. The notation K[[u]]fr[[t]] stands for the set of power series in u and t that are fractional
in t.

All the fields considered in this paper have implicitly characteristic 0.,

2. The general strategy

Let K be a field. In our examples, K will be C, or a field of fractions like C(s1, . . . , sm).
Let F (t, u) ≡ F (u) be a series of K[u][[t]], and let F1(t) ≡ F1, . . . , Fk(t) ≡ Fk be k series of
K[[t]]. In our framework, these k + 1 series are the generating functions of certain families
of objects, counted according to one or two parameters. Assume these series are related by
an equation of the form

P (F (u), F1, F2, . . . , Fk, t, u) = 0, (6)

where P (x0, x1, . . . , xk, t, v) is a non-trivial polynomial in k+3 variables, with coefficients in
K. Assume, moreover, that the above equation defines the (k + 1)-tuple (F (u), F1, . . . , Fk)
uniquely in the set K[u][[t]] × K[[t]]k. Some examples were given in the introduction, and
numerous examples will be given below.

Let us differentiate (6) with respect to u:

F ′(u)
∂P

∂x0
(F (u), F1, . . . , Fk, t, u) +

∂P

∂v
(F (u), F1, . . . , Fk, t, u) = 0.

Let U(t) ≡ U be a series of Kfr[[t]]. The series F (U) ≡ F (t, U) is a well-defined fractional
power series in t. The same holds for F ′(U). If, moreover,

∂P

∂x0
(F (U), F1, . . . , Fk, t, U) = 0, (7)

then the above identity implies that

∂P

∂v
(F (U), F1, . . . , Fk, t, U) = 0.
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This simple observation is the key of our solution of equations of the form (6). If we can

prove the existence of k distinct series U1, . . . , Uk, belonging to Kfr[[t]], that satisfy (7), then
the following system of 3k polynomial equations holds: for 1 ≤ i ≤ k,

P
(

F (Ui), F1, . . . , Fk, t, Ui

)

= 0, (8)

∂P

∂x0

(

F (Ui), F1, . . . , Fk, t, Ui

)

= 0, (9)

∂P

∂v

(

F (Ui), F1, . . . , Fk, t, Ui

)

= 0. (10)

A bit of optimism allows us to hope that this system characterizes completely the 3k unknown
series it involves, namely F1, . . . , Fk, U1, . . . , Uk and F (U1), . . . , F (Uk), so that each unknown
series (in particular each Fi) is algebraic. More precisely, we would like this system to have
only a finite number of solutions under the assumption that the series Ui are distinct. This
assumption can be encoded by adding a new unknown X and a new polynomial equation:

X
∏

1≤i<j≤k

(Ui − Uj) = 1. (11)

We prove in Section 4 that this optimism is justified: the solution of a well-founded
equation of the form (5) is indeed shown to be algebraic. However, we do not need this
general theorem to examine and solve specific examples, like (2) or (4). What we do need
is a way to determine how many series U satisfy (7), without knowing the value of F (u) or
F1, . . . , Fk. This turns out to be easy. Let us first clarify what we mean by a root U of a
series Φ(t, u).

Lemma 1. Let Φ(t, u) ∈ K[u]fr[[t]], and U ∈ Kfr[[t]]. Then Φ(t, U) is a well-defined series

of Kfr[[t]]. If this series is zero, we say that U is a root of Φ(t, u). In this case, there exists

Ψ(t, u) ∈ K[u]fr[[t]] such that

Φ(t, u) = (u − U)Ψ(t, u).

More generally, if Φ(t, u) factors as

Φ(t, u) = (u − U)mΨ(t, u),

where Ψ(t, u) ∈ K[u]fr[[t]], the series U belongs to Kfr[[t]] and Ψ(t, U) 6= 0, we say that U is
a root of Φ(t, u) of multiplicity m.

This extends to the case where Φ(t, u) belongs to K[[u]]fr[[t]], if we require that U has no

constant term (that is, vanishes at t = 0). In this case, Ψ(t, u) also belongs to K[[u]]fr[[t]].

Proof. The fact that Φ(t, U) is well-defined is obvious, by definition of the substitution of
series: If

Φ(t, u) =
∑

n≥0

tn/dφn(u),

where φn(u) is a polynomial in u, then

Φ(t, U) =
∑

n≥0

tn/dφn(U),

and the coefficient of tp/q in Φ(t, U), for p/q ≤ k/d, depends only on the polynomials
φ0(u), . . . , φk(u). Now for any indeterminate v,

Φ(t, u) − Φ(t, v) = (u − v)
∑

n≥0

tn/dφ′
n(u, v),

where

φ′
n(u, v) =

φn(u) − φn(v)

u − v
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is a polynomial in u and v. The case v = U proves the second statement of the lemma.
The argument can be adapted without any difficulty to the case where Φ(t, u) belongs to

K[[u]]fr[[t]] and U has no constant term, upon writing

Φ(t, u) =
∑

n,m≥0

φm,numtn/d

with φm,n ∈ K.

The next theorem tells how many roots a series Φ(t, u) has.

Theorem 2. Let Φ(t, u) ∈ K[u]fr[[t]], where K is an algebraically closed field. Assume that
the coefficient of t0 in Φ, that is to say, the polynomial Φ(0, u), is non-zero and has degree

k. Then Φ(t, u) has exactly k roots in Kfr[[t]], counted with multiplicities. Let U1, . . . , Uk

denote these roots. Then

Φ(t, u) = (u − U1) · · · (u − Uk)Ψ(t, u)

where Ψ(t, u) ∈ K[u]fr[[t]].

Proof. The proof is a harmless extension of the proof of the Puiseux theorem, which

establishes the above result (and more) in the case where Φ(t, u) ∈ Kfr((t))[u]. We refer the
reader to [46, Ch. 4]. The coefficients of the Ui can be computed inductively using Newton’s
polygon.

3. First examples

We now apply our general strategy to a few examples.

3.1. Walks on a half-line and the kernel method

We consider here some equations of the form (6) that are linear in F (u). The reader
familiar with the kernel method will not find our calculations very original, and this is
normal: beyond solving these equations, our objective here is to show that our general
strategy reduces to the kernel method when the equation is linear. We refer to [2] for a
systematic treatment of walks on the half-line, based on the kernel method.

Let us first go back to the simplest equation we have met so far, Eq. (2). It can be
rewritten under the form (6):

P (F (u), F1, t, u) = 0,

where

P (x0, x1, t, v) =
(

v − t
(

1 + v2
))

x0 − v + tx1.

Condition (7) reads in this case:

U − t(1 + U2) = 0.

In accordance with Theorem 2, we find that there exists a unique fractional power series in
t that satisfies this equation, namely

U =
1 −

√
1 − 4t2

2t
.

The system (8–10) now reads
(

U − t
(

1 + U2
))

F (U) = U − tF1,

U − t(1 + U2) = 0,

(1 − 2tU)F (U) = 1.
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The first and second equations together imply that

F1 =
U

t
=

1 −
√

1 − 4t2

2t2
.

We have recovered the classical expression of the generating function of Dyck paths. An
expression for F (u) now follows from the original equation P (F (u), F1, t, u) = 0.

Let us now study a problem with more unknown functions. We still consider walks on
the half-line N that start from 0, but they now consist of steps +3 and −2. A step-by-step
construction of these walks gives, for their bivariate generating function F (t, u) ≡ F (u), the
equation

F (u) = 1 + tu3F (u) +
t

u2
(F (u) − F1 − uF2) (12)

where F1 (resp. F2) is the length generating function of walks ending at 0 (resp. 1). This
equation can be rewritten as P (F (u), F1, F2, t, u) = 0, with

P (x0, x1, x2, t, v) =
(

v2 − t(1 + v5)
)

x0 − v2 + tx1 + tvx2.

Condition (7) now reads

U2 − t(1 + U5) = 0.

By Theorem 2, exactly two fractional power series U1 and U2 satisfy this equation, and we
happily observe that two is also the number of unknown series Fi. One may compute the
first terms of the Ui’s using Newton’s polygon:

U1,2 = ±t1/2 +
1

2
t3 ± 9

8
t11/2 +

7

2
t8 + O(t21/2).

In particular, these two series are distinct. The system (8–10) now reads, for i = 1, 2,
(

Ui
2 − t(1 + Ui

5)
)

F (Ui) = Ui
2 − tF1 − tUiF2, (13)

U2
i − t(1 + U5

i ) = 0, (14)

Ui

(

2 − 5 tUi
3
)

F (Ui) = 2 Ui − tF2.

We have thus obtained six equations that relate F1, F2, U1, U2, F (U1) and F (U2). At this
point, there are several ways to conclude. The fastest one is probably to observe that, by (13)
and (14), the series U1 and U2 are the two roots of the following polynomial in u:

R(u) = u2 − tuF2 − tF1.

Thus this polynomial factors as (u − U1)(u − U2), which implies

−tF1 = U1U2 and tF2 = U1 + U2.

One can then eliminate U1 and U2 using (14), and obtain polynomial equations for F1 and
F2. In particular, the generating function F1 of walks ending at 0 satisfies:

F1 = 1 + 2 t5F1
5 − t5F1

6 + t5F1
7 + t10F1

10.

Consider, more generally, the case where the functional equation (6) has degree 1 in F (u)
and can be written as

K(t, u)F (u) = P (F1, . . . , Fk, t, u)

where K(t, u) ∈ K[t, u] is the kernel of the equation, and P (x1, . . . , xk, t, u) is a polynomial
in k + 2 indeterminates. The system (8–10) reads

K(t, U)F (U) = P (F1, . . . , Fk, t, U),

K(t, U) = 0,

K ′
u(t, U)F (U) = P ′

u(F1, . . . , Fk, t, U).

By combining the first and second equations, we see that every root of the kernel that is
finite at t = 0 gives a polynomial equation relating the k unknown series F1, . . . , Fk. This is
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exactly the principle of the kernel method, which has been around since the late 60’s, and is
currently the subject of a certain revival (see [1, 2, 11, 27, 37] and references therein).

3.2. Planar maps and the quadratic method

We consider here rooted planar maps (see Section 5 or [33] for definitions). Let F (t, u) ≡
F (u) be their generating function, where t counts the number of edges, and u the degree of
the root-face. Deleting the root-edge gives [44, Eq. (4)]:

F (u) = 1 + tu2F (u)2 + tu
uF (u) − F (1)

u − 1
. (15)

Multiplying this equation by (u − 1) gives a polynomial equation of the form (6), with one
unknown function F1 := F (1). Condition (7) reads in this case:

U − 1 = 2tU2(U − 1)F (U) + tU2.

By Theorem 2, this equation has a (unique) solution U in the set of fractional power series
in t. It is actually clear on the equation that such a series exists, and is a formal power series
in t (think of extracting the coefficient of tn). Moreover, U 6= 0, 1. From (8–10), we obtain

(U − 1)F (U) = U − 1 + tU2(U − 1)F (U)2 + tU2F (U) − tUF1,

U − 1 = 2tU2(U − 1)F (U) + tU2,

F (U) = 1 + tU(3U − 2)F (U)2 + 2tUF (U) − tF1.

One can eliminate F (U) between the first and second equation, and then between the second
and the third. This gives two equations relating U and F1. We ignore the irrelevant factors
U and U − 1, and eliminate U . This gives an algebraic equation satisfied by F1, containing
three distinct factors. The right one is easily identified, given that F1 = 1 + O(t), and one
concludes that the generating function of planar maps, counted by edges, satisfies

F1 = 1 − 16 t + 18tF1 − 27 t2F1
2.

More generally, an equation of the form (6) having degree 2 in F (u) can be written as

(

2aF (u) + b
)2

= b2 − 4ac = ∆(u),

where a, b, c and ∆ lie in K[t, u, F1, . . . , Fk]. The system (8–10) reads

(

2aF (U) + b
)2

= ∆(U),

2aF (U) + b = 0,

2
(

2a′
uF (U) + b′u

)(

2aF (U) + b
)

= ∆′
u(U).

By combining the first and second equations, we see that every fractional power series U
that cancels 2aF (u) + b cancels the discriminant ∆. By combining the second and third
equations, we see that U is actually a multiple root of the discriminant.

When there is only one unknown function F1, we recover exactly the quadratic method,
as described in [33]: if there exists a series U such that 2aF (U) + b = 0, then ∆(u) admits
a multiple root. Hence the discriminant of ∆(u) with respect to u is zero: this gives an
algebraic equation satisfied by F1.

This will be generalized in this paper to functional equations of the form (6) and of degree
at least two in F (u): we will prove that the discriminant ∆ of P , taken with respect to its
first variable and evaluated at F1, . . . , Fk, t, u, admits each Ui as a multiple root (Section 6).
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3.3. Quadrangular dissections of the disk

Let us now consider a cubic example with one unknown function. This example was
solved by Brown, with some difficulties [21]. Our strategy works without any restriction on
the degree of the equation, and the solution of this cubic example will be just as easy as the
solution of, say, the quadratic equation (15).

The quadrangular dissections of the disk studied by Brown in [20] can be described as the
rooted, non-separable planar maps, with no multiple edges, in which each non-root face has
degree 4 (see Section 5 for definitions). It is easy to see that the root-face of such maps has
an even degree, at least equal to 4. Let an,k be the number of such maps with n + 4 vertices
in which the root-face has degree 2k, and let

F (t, u) ≡ F (u) =
∑

n≥0,k≥2

an,ktnuk−2.

Eq. (5.1) of [20] can be rewritten as

F (u) =
F (u) − F1

u
− t2F1F (u) + 2tF (u)(1 + ut2F (u)) + (1 + ut2F (u))3,

where F1 ≡ F (0) is the generating function of dissections of squares. Condition (7) reads:

U = 1 − Ut2F1 + 2 Ut
(

1 + 2Ut2F (U)
)

+ 3 U2t2
(

1 + Ut2F (U)
)2

.

By Theorem 2, this equation has a (unique) solution U in the set of fractional power series
in t. (It is again clear on the equation itself that such a series exists, and is a formal power
series in t.) Moreover, U 6= 0. From (8–10), we obtain

UF (U) = F (U) − F1 − Ut2F1F (U) + 2UtF (U)(1 + Ut2F (U)) + U(1 + Ut2F (U))3,

U = 1 − Ut2F1 + 2 Ut
(

1 + 2Ut2F (U)
)

+ 3 U2t2
(

1 + Ut2F (U)
)2

,

F (U) = −t2F1 F (U) + 2 tF (U)
(

1 + 2Ut2F (U)
)

+
(

1 + Ut2F (U)
)2

(1 + 4Ut2F (U)).

One can eliminate F (U) between the first and second equation, and then between the second
and the third. This gives two equations relating U and F1. Ignoring the irrelevant factors
U , we then eliminate U . This gives an algebraic equation satisfied by F1, containing three
distinct factors. The right one is easily identified, given that F1 = 1+O(t), and one concludes
that the generating function of quadrangular dissections of a square, counted by the number
of vertices, satisfies

F1 = 1 − 8t + 2t (5 − 6 t)F1 − 2 t2 (1 + 3 t)F1
2 − t4F1

3.

4. A generic algebraicity theorem

Let Q(y0, y1, . . . , yk, t, v) be a polynomial in k + 3 indeterminates, with coefficients in a
field K. We consider the functional equation

F (u) ≡ F (t, u) = F0(u) + t Q
(

F (u), ∆F (u), ∆(2)F (u), . . . , ∆(k)F (u), t, u
)

, (16)

where F0(u) ∈ K[u] is given explicitly and the operator ∆ is the divided difference (or discrete
derivative):

∆F (u) =
F (u) − F (0)

u
.

Note that
lim
u→0

∆F (u) = F ′(0),

where the derivative is taken with respect to u. The operator ∆(i) is obtained by applying
i times ∆, so that:

∆(i)F (u) =
F (u) − F (0) − uF ′(0) − · · · − ui−1/(i − 1)! F (i−1)(0)

ui
.
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Observe that all the equations met in Sections 1 to 3 are of the form (16), or can be eas-
ily transformed into an equation of this form. Clearly, (16) has a unique solution F (t, u)
in K[u][[t]] (think of extracting from (16) the coefficient of tn, for n = 0, 1, 2 . . .). Upon
multiplying (16) by a large power of u, one obtains a polynomial equation of the form

P
(

F (u), F1, . . . , Fk, t, u
)

= 0,

where Fi = F (i−1)(0)/(i − 1)! is the coefficient of ui−1 in F (u), for 1 ≤ i ≤ k. Here is the
main result of this section.

Theorem 3. The formal power series F (t, u) defined by (16) is algebraic over K(t, u).

The proof requires the following result [35, Prop. X.8].

Theorem 4. Let K ⊂ L be a field extension. For 1 ≤ i ≤ n, let Pi(x1, . . . , xn) be a
polynomial in n indeterminates x1, . . . , xn, with coefficients in the (small) field K. Assume
F1, . . . , Fn are n elements of the (big) field L that satisfy Pi(F1, . . . , Fn) = 0 for all i ≤ n.
Let J be the Jacobian matrix

J =

(

∂Pi

∂xj
(F1, . . . , Fn)

)

1≤i,j≤n

.

If det(J) 6= 0, then each Fj is algebraic over K.

Proof of Theorem 3. The idea is of course to apply the general strategy of Section 2. How-
ever, in order to avoid multiplicities in the roots Ui, we first introduce a small perturbation
of (16). Let ǫ be a new indeterminate, and consider the equation

G(u) ≡ G(z, u, ǫ) = F0(u)+ǫkz∆(k)G(u)+z2Q
(

G(u), ∆G(u), ∆(2)G(u), . . . , ∆(k)G(u), z2, u
)

(17)
where F0 and Q are the same polynomials as above. Again, this equation admits a unique
solution in the ring of formal power series in z with coefficients in K[u, ǫ]. Moreover,
G(z, u, 0) = F (z2, u), so that it suffices to prove that G(z, u, ǫ) is algebraic over K(z, u, ǫ).

We now apply to (17) our general strategy. Our first task will be to convert (17) into a
polynomial equation of the form (6). Let x0, x1, . . . , xk and v be some indeterminates. For
0 ≤ i ≤ k, let

Yi =
x0 − x1 − vx2 − · · · − vi−1xi

vi

and let

R(x0, x1, . . . , xk, z, v) = x0 − F0(v) − ǫkzYk − z2Q
(

Y0, Y1, . . . , Yk, z2, v
)

. (18)

Then

R
(

G(u), G1, . . . , Gk, z, u
)

= 0,

with Gi = G(i−1)(0)/(i − 1)!. Moreover, R is a polynomial in z and the xi, but a rational
function in v. So let m be the smallest integer such that

P (x0, x1, . . . , xk, z, v) := vmR(x0, x1, . . . , xk, z, v) (19)

is a polynomial in z, v and the xi (with coefficients in K(ǫ)). Then m ≥ k (because of the
term ǫkzYk occurring in R) and Eq. (17) now reads

P
(

G(u), G1, . . . , Gk, z, u
)

= 0. (20)

Let us apply to (20) the general strategy of Section 2. We need to find sufficiently many
fractional power series U in z, with coefficients in some algebraic closure of K(ǫ), satisfying

∂P

∂x0

(

G(U), G1, . . . , Gk, z, U
)

= 0.
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Let us focus on the non-zero solutions U . The above condition is then equivalent to

Uk = ǫkz + z2
k
∑

i=0

Uk−i ∂Q

∂yi

(

F (U), . . . , ∆(k)F (U), z2, U
)

.

By Theorem 2, this equation has exactly k solutions U1, . . . , Uk, which are fractional power
series in z with coefficients in an algebraic closure of K(ǫ). More precisely, the Newton-
Puiseux algorithm shows that these series can be written as

Ui = ǫ ξis (1 + V (ξis)) (21)

where s = z1/k, ξ is a primitive kth root of unity and V (s) is a formal power series in s with
coefficients in K(ǫ), having constant term 0. In particular, the k series Ui are distinct.

The following system of 3k polynomial equations thus holds:

∀i ∈ [1, k],



















P
(

G(Ui), G1, . . . , Gk, z, Ui

)

= 0,

P ′
0

(

G(Ui), G1, . . . , Gk, z, Ui

)

= 0,

P ′
v

(

G(Ui), G1, . . . , Gk, z, Ui

)

= 0,

where P ′
0 and P ′

v respectively denote the derivatives of P with respect to x0 and v. The
above system relates 3k unknowns, namely the Ui, the G(Ui), and the series G1, . . . , Gk, and
has coefficients in K(ǫ, z). Let us now apply Theorem 4. The Jacobian matrix is represented
below for k = 3. The rows are indexed by the 3k equations, and the columns by the 3k
unknowns, taken in the following order: G(U1), U1, . . . , G(Uk), Uk and finally G1, . . . , Gk. We
denote any series of the form S (G(Ui), G1, . . . , Gk, z, Ui) by S(Ui) for short. The notation
P ′

i means that the derivative of P is taken with respect to the variable xi.












































P ′
0(U1) P ′

v(U1) 0 0 0 0 P ′
1(U1) · · · P ′

k(U1)
P ′′

0,0(U1) P ′′
0,v(U1) 0 0 0 0 ⋆ · · · ⋆

P ′′
0,v(U1) P ′′

v,v(U1) 0 0 0 0 ⋆ · · · ⋆

0 0 P ′
0(U2) P ′

v(U2) 0 0 P ′
1(U2) · · · P ′

k(U2)
0 0 P ′′

0,0(U2) P ′′
0,v(U2) 0 0 ⋆ · · · ⋆

0 0 P ′′
0,v(U2) P ′′

v,v(U2) 0 0 ⋆ · · · ⋆

0 0 0 0 P ′
0(Uk) P ′

v(Uk) P ′
1(Uk) · · · P ′

k(Uk)
0 0 0 0 P ′′

0,0(Uk) P ′′
0,v(Uk) ⋆ · · · ⋆

0 0 0 0 P ′′
0,v(Uk) P ′′

v,v(Uk) ⋆ · · · ⋆













































.

Recall that

P ′
0(Uj) = P ′

v(Uj) = 0 (22)

for all j, so that the top line in each 3 × 2 rectangle is actually zero. Consequently, the
determinant factors into k blocks of size 2 and one block of size k:

det(J) = ±
k
∏

j=1

(

P ′′
0,0(Uj)P

′′
v,v(Uj) − P ′′

0,v(Uj)
2
)

det (P ′
i (Uj))1≤i,j≤k . (23)

Our aim is to prove that this Jacobian is not zero.

1. Assume

P ′′
0,0(Uj)P

′′
v,v(Uj) − P ′′

0,v(Uj)
2 = 0. (24)

Let us differentiate twice the functional equation (20) with respect to u. We first obtain

G′(u)P ′
0(G(u), . . . , u) + P ′

v(G(u), . . . , u) = 0
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and then

G′′(u)P ′
0(u) + G′(u)2P ′′

0,0(u) + 2G′(u)P ′′
0,v(u) + P ′′

v,v(u) = 0,

where, as above, the notation S(u) actually stands for S(G(u), G1, . . . , Gk, t, u). For u = Uj,
in view of (22), the latter equation becomes

G′(Uj)
2P ′′

0,0(Uj) + 2G′(Uj)P
′′
0,v(Uj) + P ′′

v,v(Uj) = 0.

The assumption (24) implies that the quadratic equation in x

x2P ′′
0,0(Uj) + 2xP ′′

0,v(Uj) + P ′′
v,v(Uj) = 0

has a double root. The previous equation shows that this root is G′(Uj), so that

G′(Uj)P
′′
0,0(Uj) + P ′′

0,v(Uj) = 0.

Given that P ′
0(Uj) = 0, this is equivalent to saying that the series

P ′
0(G(u), G1, . . . , Gk, t, u)

admits u = Uj as a multiple root, whereas we have seen that the k non-zero roots of this
equation are distinct. We have thus obtained a contradiction, and so (24) cannot hold.

2. Let us now focus on the second part of the expression (23) of the Jacobian. From (19)
and (18), we derive that for j ≥ 1, and indeterminates x0, x1, . . . , xk, z and v:

P ′
j(x0, . . . , xk, z, v) = vmR′

j(x0, . . . , xk, z, v) = −vm



ǫkz
∂Yk

∂xj
+ z2

k
∑

ℓ=j

∂Yℓ

∂xj
Q′

ℓ(Y0, . . . , Yk, z2, v)





where Q′
ℓ denotes the derivative of Q(y0, . . . , yk, t, v) with respect to yℓ. Given that

∂Yℓ

∂xj
= −vj−ℓ−1,

the above derivative can be rewritten

P ′
j(x0, . . . , xk, z, v) = vm−k



ǫkzvj−1 + z2
k
∑

ℓ=j

vk−ℓ+j−1Q′
ℓ(Y0, . . . , Yk, z2, v)



 . (25)

Let us specialize this to P ′
j(Ui) ≡ P ′

j(G(Ui), G1, . . . , Gk, z, Ui). By (21), this is a formal

power series in s = z1/k, with coefficients in K(ǫ, ξ). Moreover, z = sk = o(U j−1
i ) for

1 ≤ j ≤ k, so that, in view of (25), the first term in the expansion of P ′
j(Ui) in s is

(ξiǫs)m+j−1.

(Recall that ξik = 1.) The last factor in the determinant (23) of the Jacobian matrix J reads

det (P ′
i (Uj))1≤i,j≤k = det

(

(ξiǫs)m+j−1
)

1≤i,j≤k
+ higher powers of s.

But

det
(

(ξiǫs)m+j−1
)

i,j
=

k
∏

j=1

(ǫs)m+j−1
k
∏

i=1

(ξi)m det
(

(ξi)j−1
)

i,j
.

The last term is the VanderMonde of the ξi. It equals

±
∏

1≤i<j≤k

(

ξi − ξj
)

and it is not zero, since ξ is a kth primitive root of unity.
We have at last proved that the determinant of the Jacobian matrix associated with our

system of 3k polynomial equations is not zero. By Theorem 4, the series Gi are algebraic
over K(z, ǫ). Recall that Gi is, up to a multiplicative constant, the derivative G(i−1)(0) of
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G(u). In view of (17), the series G(z, u, ǫ) is algebraic over K(z, u, ǫ). By specializing ǫ to 0,

we conclude that F (t, u) = G(
√

t, u, 0) is algebraic over K(t, u).

5. Algebraicity results for planar maps

A planar map is a 2-cell decomposition of the oriented sphere into vertices (0-cells), edges
(1-cells), and faces (2-cells). Loops and multiple edges are allowed (Figure 1(a)). The degree
of a vertex (or a face) is the number of incidences of edges to this vertex (or face). Two maps
are isomorphic if there exists an orientation preserving homeomorphism of the sphere that
sends cells of one of the maps onto cells of the same type of the other map and preserves
incidences. We shall consider maps up to isomorphisms.

(a) (b)

Figure 1. (a) A rooted planar map on the sphere – (b) Canonical repre-
sentation on the plane.

A map is rooted if one of its edges, called the root edge, is distinguished and oriented. In
this case, the map can be drawn in a canonical way in the plane, by deciding that the infinite
face lies to the right of the root-edge. This face is sometimes called the root-face. Its degree
is called the outer-degree. The starting point of the root-edge is the root-vertex. A corner of
a face F is a 3-tuple (e1, v, e2), where e1 and e2 are edges, v is a vertex, and e1, v and e2 are
met consecutively when walking around the face F in counterclockwise order. The number
of corners of F is thus its degree. In the map of Figure 1, the root-face has three corners.
In what follows, we consider only rooted maps, and the word “rooted” is often omitted.

A map M is separable if it contains a vertex whose deletion disconnects M . For instance,
the map of Figure 1 is separable, since deleting the root-vertex disconnects it.

The dual map M∗ of a map M describes the incidence relation between the faces of M
(Figure 2). To construct M∗, create a vertex in every face of M : this gives the vertices of
M∗. The edges of M∗ are in bijection with the edges of M : for each edge e of M , incident
to the faces f1 and f2, create an edge of M∗ that crosses e and joins the vertices of M∗

corresponding to f1 and f2. The root-edge of M∗ is chosen canonically.

Figure 2. Construction of the dual map.
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5.1. The face-distribution of planar maps

Many functional equations for planar maps are based on the deletion of the root-edge.
Here, we write an equation for the series F (t, u; z1, . . . , zm, . . .) = F (t, u; z) that counts
rooted planar maps by the number of edges (variable t), the outer-degree (variable u) and
the number of finite faces of degree i (variable zi) for all i ≥ 1. This equation essentially
appears in an old paper of Tutte [44, Eq. (1)].

Lemma 5. The generating function F (t, u; z) ≡ F (u) satisfies

F (u) = 1 + tu2F (u)2 + t
∑

i≥1

zi

F (u) −∑i−2
j=0 ujFj

ui−2
,

where Fj is the coefficient of uj in F (u).

Proof. Take a planar map M . If it is not reduced to a single vertex, delete the root-edge
(but not its endpoints). Then

– either two connected components are left, which we can root in a canonical way
(Figure 3). The generating function of such maps is tu2F (u)2,

– or only one connected component is left, which we can root in a canonical way. Let
j be its outer-degree, and let i be the degree of the finite face that has been deleted
with the root-edge of M . Then i ∈ [1, j + 1]. The generating function of maps of
this second type is

t
∑

j≥0

(

Fj

j+1
∑

i=1

ziu
j−i+2

)

.

Adding the two contributions gives a functional equation for F (u) which

– specializes to (15) when zi = 1 for all i,
– gives the equation of Lemma 5 upon exchanging the order of the summations on i

and j.

�
�
�

�
�
�

�
�
�

�
�
�

i

Figure 3. The decomposition of planar maps.

One may think that there is in F (t, u; z) an unpleasant lack of symmetry: why should
one count only the finite faces of a given degree? Let G(t; z1, . . . , zm, . . .) = G(t; z) count
rooted planar maps by the number of edges (variable t) and the number of faces (finite or
not) of degree i (variable zi). Observe that, by duality, G(t; z) also counts planar maps by
the number of edges and the number of vertices of degree i. We call G the face-distribution
generating function of planar maps (equivalently, the vertex-distribution generating function
of planar maps).
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Lemma 6. The face-distribution generating function of planar maps, G(t; z), is related to
the series F (t, u; z) of Lemma 5 by

G(t; z) =
1

t
[u2]F (t, u; z).

Proof. Take a map M with outer-degree 2. The root-face is incident to two edges: delete
the non-root one to obtain a planar map M ′. This transformation is bijective and the degree
distribution of finite faces in M coincides with the degree distribution of all faces in M ′.

The equation of Lemma 5 was solved in [5] in the case where zi = 1 if i ∈ D and zi = 0
otherwise, for a given set D. More recently, the vertex-distribution generating function of
planar maps was characterized in [14] via two methods: first, by a matrix integral calculation,
and then using a purely bijective approach. In Section 10, we provide an alternative solution
to this problem, and prove that it is equivalent to [14]. For the moment, observe that the
generic algebraicity theorem of Section 4 (Theorem 3) implies the following:

Corollary 7. Let m ≥ 1, and let F (t, u; z1, . . . , zm) be the generating function of rooted
planar maps in which no finite face has a degree larger than m (as above, t counts edges, u
the outer-degree, and zi the number of finite faces of degree i). Similarly, let G(t; z1, . . . , zm)
be the face-distribution generating function of rooted planar maps in which no face has a
degree larger than m. Then both series are algebraic.

Proof. These series F and G are obtained by setting zi = 0 for all i > m in the series
F and G of Lemmas 5 and 6. The equation of Lemma 5 has then the generic form (16).
By Theorem 3, its solution F (t, u; z1, . . . , zm) is algebraic over Q(t, u, z1, . . . , zm). Since
the extraction of coefficients preserves algebraicity, Lemma 6 implies that G(t; z1, . . . , zm) is
algebraic too.

5.2. The face-distribution of Eulerian planar maps

The question we address here is similar to that of Section 5.1, but is made harder by the
fact that we now deal with Eulerian maps, that is, with maps in which all vertices have an
even degree. The faces of an Eulerian map can be uniquely coloured in black and white in
such a way

– the infinite face is white,
– every black face is only adjacent to white faces, and vice-versa.

Let F (t, u; x1, x2, . . . ; y1, y2, . . .) = F (t, u; x, y) be the generating function of these maps,
where t counts edges, u the outer-degree, xi the number of (finite) white faces of degree i,
and yi the number of black faces of degree i (all black faces are finite).

If we set yi = 0 for i 6= 2, the series F (t, u; x, y) only count those Eulerian maps in
which every black face has degree 2. Contracting every black face into a single edge gives a
planar map whose face-distribution coincides with the white face-distribution of the original
Eulerian map. Consequently, F (t, u; z1, z2, . . . ; 0, 1, 0, . . .) is the series studied in Lemma 5,
and the problem addressed here generalizes the previous one.

In order to obtain a functional equation for F (t, u; x, y), we will delete all the edges of
the black face incident to the root-edge. We call this face the black root-face. A face is called
a polygon if the number of vertices it contains coincides with its degree.

Definition 8. An Eulerian map M is a skeleton if the following conditions hold:

(i) each of the connected components that remain after deleting the edges of the black
root-face R is either a single vertex or a polygon,

(ii) every edge that is incident to the white root-face is also incident to the black root-face.
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A connected component of M \R is called an internal component of M if none of its vertices
belong to the infinite face. Otherwise, it is said to be an external component of M .

The fourth map of Figure 4 is a skeleton. Among its non-root black faces, two are
external, and two are internal. The following observation will be useful to prove that the face-
distribution generating function of Eulerian maps with faces of bounded degree is algebraic.

Lemma 9. Let m ≥ 1. There exists only a finite number of skeletons in which the black
root-face and all the finite white faces have degree at most m.

Proof. Let us first bound the number of white faces. Condition (i) implies that each white
face of a skeleton shares at least one edge with the black root-face. Conversely, each edge
of the black root-face belongs to exactly one white face. Since there are, by assumption, at
most m such edges, the number of white faces is at most m. By assumption, the finite white
faces have degree at most m. Condition (ii) implies that this is also true for the infinite
white face. Consequently, the total number of edges that are incident to a white face — that
is, the total number of edges — is at most m2. Since there only exists a finite number of
maps having a given number of edges, the result follows.

Proposition 10. Let S denote the set of skeletons. The generating function F (t, u; x; y) ≡
F (u) counting Eulerian maps according to the above-defined parameters satisfies

F (u) = 1 +
∑

S∈S



ud(S)ti(S)yi(S)

∏

k≥1

x
wk(S)
k

∏

k≥1

F
Ik(S)
k

∏

k≥0

(

∆(k)F (u)
)Ek(S)



 ,

where for any skeleton S, d(S) is the outer-degree, i(S) is the degree of the black root-face,
wk(S) is the number of finite white faces of degree k, and Ik(S) (resp. Ek(S)) is the number
of internal (resp. external) components of degree k. As above, Fj denotes the coefficient of
uj in F (u), and for k ≥ 0,

∆(k)F (u) =
F (u) −∑k−1

j=0 ujFj

uk
.

Proof. Take an Eulerian map M , not reduced to a single vertex. We first describe how
to associate a skeleton to M . This construction is illustrated in Figure 4. Let R denote
the black root-face of M . Consider the set of connected components that are left after the
deletion of the edges of R (since we do not delete the vertices of R, some of these components
may be reduced to a single vertex). The corresponding sub-maps of M are called, for short,
the components of M . Each component is itself an Eulerian map. In order to obtain a
skeleton, we are going to modify the components of M , while keeping the black root-face R
unchanged. In each component, delete every edge that is not in the infinite face of M \ R:
in the resulting map M1, every component has only black (finite) faces (Figure 4(b)). Then
“inflate” each component into a black polygon having the same outer-degree (Figure 4(c)).
This gives an Eulerian map M2. Finally, contract every edge of M2 that is incident to the
white root-face but not to the black root-face. This gives a skeleton S (Figure 4(d)). The
finite white faces of S are in one-to-one correspondence with the finite white faces of M that
are adjacent to R, and this correspondence preserves the degree.

Conversely, take a skeleton S with black root-face of degree i. We wish to find the
generating function of Eulerian maps M associated with S. To obtain these maps, one
must:

– Replace every internal component of degree k by an Eulerian map of outer-degree
k; this gives the factors Fk in the functional equation of Proposition 10.
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– Replace every external component of degree k by an Eulerian map of outer-degree
j ≥ k. Then j − k edges of this map contribute to the outer-degree of the final map
M . This gives the factors ∆(k)F (u) in the equation.

The remaining factors take care of R and its edges, and of the contribution of the white faces
of S. The result follows.

(b)

(d)(c)

(a)

R

M M1

M2 S

Figure 4. From an Eulerian map M to a skeleton S. In step (b), all white
faces that are not adjacent to the black root-face R disappear. In step (c),
all connected component that are left after deleting the black root-face are
inflated to polygons. Finally, in step (d), all edges that are incident to the
white root-face but not to the black root-face are contracted.

Corollary 11. Let m ≥ 2. Let F (t, u; x1, . . . , xm; y1, . . . , ym) be the generating function of
Eulerian planar maps whose finite faces have degree at most m, counted, as above, by the
number of edges, the outer-degree, and the degree-distribution of black and white finite faces.

Similarly, let G(t, u; x1, . . . , xm; y1, . . . , ym) be the generating function of Eulerian planar
maps in which all faces have degree at most m, counted by the number of edges, the outer-
degree, and the degree-distribution of white and black faces.

Then F and G are algebraic.

Proof. The series F is obtained by setting xi = yi = 0 for all i > m in the series of
Proposition 10. In the equation given in this proposition, it is clear that the skeletons in
which either the black root-face, or one of the finite white faces, has degree more than
m, have a zero contribution. By Lemma 9, the right-hand side of the functional equation
contains only finitely many terms, so that one can apply Theorem 3, and conclude that
F (t, u; x1, . . . , xm; y1, . . . , ym) is algebraic.

In particular, the coefficient of ui in this series is algebraic. Given that

G(t, u; x1, . . . , xm; y1, . . . , ym) =

m
∑

i=0

xiu
i [ui]F (t, u; x1, . . . , xm; y1, . . . , ym),
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the algebraicity of G follows.
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Note. It was already proved in [13] that F2, the coefficient of

u2 in the series F (t, u; x, y), is algebraic. The above corollary
thus extends this earlier result, and actually seems difficult to
obtain via the combinatorial approach of [13]. However, as far
as F2 is concerned, the result of [13] is more precise than a sim-
ple algebraicity statement, since a system of 2m+3 polynomial
equations defining F2 is given explicitly, together with its com-
binatorial interpretation. Let us compare the size of this system
with the number of unknown series in our functional equation.
The skeleton of an Eulerian map in which all finite faces have degree at most m may contain
a component of degree (m− 1)2 (see the figure for an example with m = 5), but no more, so
that the functional equation contains approximately m2 unknown functions. Consequently,
the size of the polynomial system given by our general strategy is quadratic in m.

Example. Let us illustrate Proposition 10 by writing a functional equation for the generat-
ing function of Eulerian maps in which all finite faces have degree 2 or 3. The corresponding
skeletons are shown in Figure 5. Proposition 10 gives the contribution of each skeleton in the
functional equation (for the sake of simplicity, the variable t is omitted: it is easily recovered
upon replacing yi by tiyi).

uy2x3∆
(2)F (u)u2y2F (u)2

×2×2

uy2x2∆F (u) uy3x2F (u)

uy3x
2
3∆

(4)F (u)

uy3x3∆F (u)u3y3F (u)3
uy3x

2
2∆

(2)F (u)

2u2y3x3F (u)∆(2)F (u)

2u2y3x2F (u)∆F (u)

uy3x3F1F (u)

2uy3x2x3∆
(3)F (u)

Figure 5. The skeletons that are involved in the enumeration of Eulerian
maps with finite faces of degree 2 and 3. The multiplicities account for the
number of possible rootings.

The functional equation reads:

F (u) = 1+u2y2F (u)2+u3y3F (u)3+uy3(x2+x3F1)F (u)+u (x2y2 + 2ux2y3F (u) + x3y3)∆F (u)

+u
(

x3y2 + 2ux3y3F (u) + x2
2y3

)

∆(2)F (u) + 2ux2x3y3∆
(3)F (u) + ux2

3y3∆
(4)F (u).

We may check the validity of this equation as follows. Replacing yi by tiyi, we derive from
this equation the first terms of the expansion in t of F (u). Retaining only the coefficient
of u2, we obtain the expansion of the series F2 that counts maps of outer-degree 2, and we
check that this expansion is (fortunately!) in adequation with the algebraic equations of [13].

5.3. Constellations

We focus in this section on the enumeration of certain Eulerian planar maps defined by
constraints on their face degrees. Let m ≥ 2. An Eulerian planar map M , having its faces
bicolored in such a way the infinite face is white, is an m-constellation if
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– the degree of every black face is m,
– the degree of every white face is a multiple of m.

An example of a 3-constellation is given in Figure 6. As explained in [12], these maps are
closely connected to minimal transitive factorizations of permutations.

1

2

3

2

1

1

2

3

1
1

31

3

Figure 6. A 3-constellation with its canonical labelling of root 3.

The above conditions guarantee that it is possible to label all vertices, with labels taken
from the set {1, 2, . . . , m}, in such a way that in every black face, the vertices are labelled
1, 2, . . . , m in counterclockwise order. Moreover, if we fix the label of the root-vertex to be
i, then there is a unique labeling satisfying the above property, which we call the canonical
labeling of root i.

Let

F (t, u) ≡ F (u) =
∑

n,d

an,dt
nud =

∑

d

Fdu
d, (26)

where an,d is the number of m-constellations having n black faces and outer-degree md. This
series is a specialization of the face-distribution generating function of Eulerian planar maps
studied in Section 5.2. More precisely, if, in the series F (t, u; x, y) of Proposition 10, we set

{

xi = 1 if m divides i,
xi = 0 otherwise,

and

{

ym = 1,
yi = 0 if i 6= m,

we obtain the series F (tm, um), with F (t, u) defined by (26). However, the functional equa-
tion of Proposition 10, specialized to the above values of xi and yi, contains infinitely many
terms. We give in Proposition 12 an equation with finitely many terms defining F (t, u).
Before we do so, let us examine cases m = 2 and m = 3.

2-Constellations. Take a 2-constellation not reduced to a single vertex, label the root-
vertex with 2 and the other vertices canonically. Each black face has degree 2 and contains
a vertex labelled 1 and a vertex labelled 2. Contract each black face to a single edge: this
gives a bipartite map, that is, a map in which every face has an even degree. The series
F (t, u) thus counts bipartite maps by the number of edges (t) and half the outer-degree (in
other words, the number of corners labelled 1 in the infinite face). Deleting the root-edge as
we did in Section 5.1 for general maps now gives

F (u) = 1 + tuF (u)2 + t
∑

d≥0

Fd

(

ud + · · · + u
)

= 1 + tuF (u)2 + tu
F (u) − F (1)

u − 1
. (27)

Observe that the deletion of the root-edge in a bipartite map corresponds to the deletion of
the black root-face in the associated 2-constellation. The study of 2-constellations will be
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useful in Section 5.4, where we count certain maps with bicolored vertices. However, it is
a bit too simple to foresee what happens for general m-constellations. This is why we also
treat below the case of 3-constellations.

3-Constellations. Take a 3-constellation C not reduced to a single vertex, label the root-
vertex with 3 and the other vertices canonically. Let R denote the black root-face. Erase all
the edges of R (but not its vertices). This leaves a set of connected components, which are
constellations, and which we root in a canonical way (Figure 7).

1

3

2

1

3

2

C1

1

3

2

C1

C2

1

3

2

31

2

(a)

(e)

(b) (c)

(d)

1

R
R R

R
R

2

Figure 7. The decomposition of 3-constellations. The dashed arrows indi-
cate how to root the components after the deletion of the black root-face.

Five cases occur, depending on which vertices of R end up in the same component. For
the first case, the generating function is clearly tuF (u)3. The second and third cases are
symmetric and thus give the same generating function. Note that the component C1 in
Figure 7(b) must have outer-degree 3 at least, and that the number of ways to glue a
(rooted) 3-constellation C1 of outer-degree 3d to the face R is d. If the jth corner labelled
2 of the infinite face of C1 is glued to R, then 1 + 3(j − 1) edges of C1 contribute to the
outer-degree of C. Thus the generating function in the second case is

tu2/3F (u)
∑

d≥1



Fd

d
∑

j=1

u1/3+j−1



 = tuF (u)
F (u) − F (1)

u − 1
.

In the fourth case, the component C2 does not contribute to the outer-degree of C, but this
case is otherwise similar to the previous one. The generating function is now

tuF (1)
F (u) − F (1)

u − 1
.

Finally, in the fifth case, the component C1 has degree 3d with d ≥ 2. Assume the jth corner
labelled 3 of the infinite face of C1 is glued to R, as well as the kth corner labelled 2. Then
1 ≤ j < k ≤ d and the generating function of this last case is

tu1/3
∑

d≥2



Fdu
2/3

d−1
∑

j=1



uj−1
d
∑

k=j+1

1







 ,

which, after two summations, reduces to

tu
F (u) − F (1) − (u − 1)F ′(1)

(u − 1)2
.
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Finally, the generating function of 3-constellations satisfies

F (u) = 1+ tuF (u)3 + tu(2F (u)+F (1))
F (u) − F (1)

u − 1
+ tu

F (u)− F (1) − (u − 1)F ′(1)

(u − 1)2
. (28)

m-Constellations. In order to write a functional equation for general m-constellations, we
need the notion of non-crossing partitions [40]. A partition P of the set {1, 2, . . . , m} is non-
crossing if one cannot find i < j < k < ℓ such that i and k are in the same block, j and ℓ are in
the same block, but i and j are not in the same block. A block B of a non-crossing partition
P is internal if there exists another block B′ such that minB′ < min B ≤ max B < maxB′.
Otherwise, it is external. Let Pm denote the set of non-crossing partitions of {1, 2, . . . , m}.
Proposition 12. Let m ≥ 2. The generating function F (t, u) ≡ F (u) of m-constellations,
defined by (26), satisfies:

F (u) = 1 + tu
∑

P∈Pm

m−1
∏

k=1

(Gk−1)
Ik(P )

m
∏

k=1

(

F (u) −∑k−2
i=0 (u − 1)iGi

(u − 1)k−1

)Ek(P )

,

where

Gi =
1

i!

∂iF

∂ui
(1)

and Ik(P ) (resp. Ek(P )) denotes the number of internal (resp. external) blocks of cardinality
k in the partition P .

Note that

Gk−1 = lim
u→1

F (u) −∑k−2
i=0 (u − 1)iGi

(u − 1)k−1
.

The above equation defining F (u) has degree m in F (u) and involves m − 1 additional
unknowns series Gi, for 0 ≤ i ≤ m − 2.
Proof. The proof is based again on the deletion of the black root-face. We call this face the
root m-gon and denote it by R.
1. Decomposition of constellations. Take a constellation C that is not reduced to a
single vertex. Label the root-vertex by m, and all the other vertices in a canonical way.
Erase all the edges of the root m-gon R (but not its vertices). This leaves a number of
constellations, which we root in a canonical way (Figure 8). For each of them, the label of
the root-vertex is minimal among the labels of the vertices that it shares with R.

i1

i2

ik

ik i1

i2

R

Figure 8. The decomposition of m-constellations. The dashed arrow indi-
cates how to root the component after the deletion of the black root-face.
One has i1 < i2 < · · · < ik.

Associate with C the partition P of {1, 2, . . . , m} defined as follows: i and j belong
to the same block if and only if the vertices labeled i and j in R end up in the same
connected component after deleting the edges of R. By planarity of C, the partition P is
non-crossing. To each block B of P , there corresponds a constellation CB (the associated
connected component).
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The outer-degree of C is

ext(P ) +
∑

B external

δ(CB , C), (29)

where ext(P ) is the number of external blocks of P and δ(CB , C) is the number of edges of
CB that contribute to the outer-degree of C.
2. Construction of constellations. Conversely, let P be a non-crossing partition of
{1, 2, . . . , m}. We wish to find the generating function of the m-constellations associated
with P .

Take first a root m-gon R, and label it canonically, the root-vertex being labeled m. Then,
for each block B of P , take a constellation CB of outer-degree md, for some d ≥ 0. Label
its root-vertex by min B, and the other vertices in a canonical way.

For each block B, we need to glue the component CB to the m-gon R, and to keep track of
the number of edges of CB that will contribute to the outer-degree of the final constellation
C. Let B = {i1, i2, . . . , ik} with 1 ≤ i1 < i2 < · · · < ik ≤ m. If one walks around the
root-face of CB, starting from the root-edge, the labels read at the corners of the root-face
form the word u = (i1 · · · i2 · · · ik · · · )d. From now on, we identify the corners of this face
with the letters of u. For r = 1, . . . , k, glue the jrth corner labeled ir to the (unique) vertex
labeled ir in R. To be consistent with the way we have chosen to root the components in
the decomposition of a constellation, j1 must be 1. The condition for the final map to be
planar is

1 ≤ jk < · · · < j2 ≤ d

(see Figure 8). Hence the component CB must have outer-degree at least m(k−1) and there

are
(

d
k−1

)

ways of gluing CB to R.
If B is an internal block, none of its edges contribute to the outer-degree of C. Otherwise,

δ(CB , C) =

{

md if k = 1,
ik − i1 + m(jk − 1) if k ≥ 2.

For jk fixed, the number of ways of choosing jk−1, . . . , j2 is
(

d−jk

k−2

)

.

By (29), the outer-degree of the final constellation C is thus

ext(P ) +
∑

B external

(

max B −min B + m (j(B, C) − 1)
)

= m + m
∑

B external

(

j(B, C)− 1
)

,

where j(B, C) = d + 1 if B is a singleton and CB has outer-degree md, and j(B, C) is the
number jk defined above if B has at least two elements.

Putting together the above results, one can write the generating function of m-
constellations associated with the partition P as

tu

m−1
∏

k=1





∑

d≥k−1

(

d

k − 1

)

Fd





Ik(P )



∑

d≥0

Fdu
d





E1(P )
m
∏

k=2





∑

d≥k−1



Fd

d
∑

j=1

uj−1

(

d − j

k − 2

)









Ek(P )

,

where Fd is the coefficient of ud in F (u), that is, the generating function of constellations
having outer-degree md, and Ik(P ) (resp. Ek(P )) denotes the number of internal (resp.
external) blocks of cardinality k in the partition P .

Clearly, with the notation defined in the proposition,

∑

d≥k−1

(

d

k − 1

)

Fd = Gk−1 and
∑

d≥0

Fdu
d = F (u).
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Now

d
∑

j=1

uj−1

(

d − j

k − 2

)

=

d−1
∑

i=0

ud−i−1

(

i

k − 2

)

=
ud−k+1

(k − 2)!

dk−2

dvk−2

(

1 − vd

1 − v

)∣

∣

∣

∣

v=1/u

(use Leibnitz’ formula)

=
ud−k+1

(k − 2)!

(

1 − vd

(1 − v)k−1
(k − 2)! −

k−2
∑

i=1

(

k − 2

i

)(

d

i

)

i!(k − 2 − i)!vd−i

(1 − v)k−i−1

)∣

∣

∣

∣

∣

v=1/u

=
ud−k+1

(k − 2)!

(

(k − 2)!
ud − 1

(u − 1)k−1
uk−1−d −

k−2
∑

i=1

(k − 2)!

(

d

i

)

uk−d−1

(u − 1)k−i−1

)

=
1

(u − 1)k−1

(

ud − 1 −
k−2
∑

i=1

(

d

i

)

(u − 1)i

)

=
1

(u − 1)k−1

(

ud −
k−2
∑

i=0

(

d

i

)

(u − 1)i

)

.

Consequently,

∑

d≥k−1



Fd

d
∑

j=1

uj−1

(

d − j

k − 2

)



 =
1

(u − 1)k−1

(

F (u) −
k−2
∑

i=0

(u − 1)i

i!
F (i)(1)

)

,

and the proposition follows.

Note. The above functional equations for constellations were obtained a few years ago by the
first author of this paper. They were used to conjecture that the number of m-constellations
having n black faces is

Cm(n) =
(m + 1)mn−1

[(m − 1)n + 2][(m − 1)n + 1]

(

mn

n

)

.

This conjecture was then proved in a bijective way [12].

5.4. Hard particles on planar maps

We consider here rooted planar maps in which the vertices are either vacant, or occu-
pied by a particle, with the constraint that two adjacent vertices cannot be both occupied.
In [13], it was shown that the generating function of such decorated maps (rooted at an edge
with vacant endpoints) is a specialization of the vertex-distribution generating function of
bipartite planar maps, and it was proved to be algebraic as soon as the degree of the vertices
is bounded.

Here, we provide an independent approach for the case of unbounded degrees. We say
that an edge is frustrated if it has an occupied endpoint (so that the other endpoint is
vacant)2. Let F (t, s, x, y, u) ≡ F (u) be the generating function of maps with hard particles
rooted at a vacant vertex, counted by the number of edges (t), frustrated edges (s), vacant
vertices (x), occupied vertices (y), and number of white corners in the infinite face (u). Let
G(t, s, x, y, u) ≡ G(u) be defined similarly for maps with hard particles rooted at an occupied
vertex. As observed by Gilles Schaeffer [39], it is not hard to adapt the equation written for
bipartite maps (27) so as to obtain equations for F (u) and G(u).

2The terminology is standard in magnetism models like the Ising model.
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Lemma 13. The series F (u) and G(u) defined above are related by

F (u) = x − y + G(u) + tu2F (u)2 + tu
uF (u) − F (1)

u − 1
,

G(u) = y + tsuF (u)G(u) + tsu
G(u) − G(1)

u − 1
.

Proof. As in Section 5.1, these equations follow from the deletion of the root-edge. From
Figure 9 one derives

F (u) = x + G(u) − y + tu2F (u)2 + t
∑

j≥0 Fj

(

u + · · · + uj+1
)

,

G(u) = y + + tsuF (u)G(u) + ts
∑

j≥0 Gj

(

u + · · · + uj
)

,

where Fj (resp. Gj) is the coefficient of uj in F (u) (resp. G(u)). The result follows.

F (u) = +

+

+ +

+G(u) =

Figure 9. The decomposition of planar maps carrying hard particles.

Since the second equation is linear in G(u), it is easy to eliminate G(u). This gives a
polynomial equation involving F (u), F (1) and G(1), and we can foresee that its solution will
be algebraic. We solve this equation in Section 11 (in the case x = y = 1).

6. From 3k to 2k equations: the role of the discriminant

We assume again that k + 1 power series in t, denoted F (u), F1, . . . , Fk, are related by a
functional equation of the form

P (F (u), F1, . . . , Fk, t, u) = 0. (30)

Here, P (x0, x1, . . . , xk, t, v) is a polynomial with coefficients in a field K, the Fi belong to
K[[t]] and F (u) belongs to K[u][[t]]. As discussed in Section 2, for every fractional power
series U ≡ U(t) such that

P ′
0(F (U), F1, . . . , Fk, t, U) = 0, (31)

a system of three polynomial equations relating U, F (U) and the unknown functions Fi holds:


















P
(

F (U), F1, . . . , Fk, t, U
)

= 0,

P ′
0

(

F (U), F1, . . . , Fk, t, U
)

= 0,

P ′
v

(

F (U), F1, . . . , Fk, t, U
)

= 0.

We say that the functional equation is generic if there exist k distinct series Ui in K
fr

[[t]]
satisfying (31). In this case, the strategy of Section 2 provides a system of 3k polynomial
equations relating the series Ui, F (Ui) and Fi for 1 ≤ i ≤ k (more precisely, a system of
3k + 1 equations, since one has to take into account the fact that the Ui are distinct, thanks
to an equation of the form (11)).
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The aim of this section is to eliminate the series F (Ui), and to reduce the system to
2k (+1) equations involving only the series Ui and Fi. The key of this reduction is the
following theorem, which also considers the case of multiple roots Ui.

Theorem 14. Assume that the functional equation (30) holds, and that the series U ∈
K

fr
[[t]] is a root of multiplicity ℓ of P ′

0 (F (u), F1, . . . , Fk, t, u), with ℓ ≥ 1. Assume also that
the degree of P (x0, . . . , xk, t, v) in x0 is at least 2, and let ∆(x1, . . . , xk, t, v) be the discrimi-
nant of P (x0, . . . , xk, t, v) with respect to x0. Then, as a polynomial in v, ∆(F1, . . . , Fk, t, v)
admits the series U as a root of multiplicity at least 2ℓ. In other words, for 0 ≤ i ≤ 2ℓ − 1,

∂i∆

∂vi
(F1, . . . , Fk, t, U) = 0.

Recall that the discriminant of a polynomial P (x) = anxn + · · ·+a0 such that an 6= 0 can
be expressed as

∆ = (−1)n(n−1)/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 an−1 · · · a2 a1 a0

an · · · a2 a1 a0

. . .
. . .

. . .

an · · · a0

n (n − 1)an−1 · · · 2a2 a1 0
nan · · · a1

. . .
. . .

nan · · · a1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (32)

The above square matrix has size 2n− 1, and the coefficients that are not indicated equal 0.
In the generic case, Theorem 14 provides a system of 2k equations:

∀i ∈ [1, k],

{

∆(F1, . . . , Fk, t, Ui) = 0,
∆′

v (F1, . . . , Fk, t, Ui) = 0,
(33)

which we complete with the distinctness condition (11). But it may also happen that the se-
ries P ′

0 (F (u), F1, . . . , Fk, t, u) has a multiple root. In this case, the system derived from The-
orem 14 contains more equations than unknowns. An example is provided in Section 9.2.2.

In order to simplify the proof of Theorem 14, we first reduce it to the case U = 0. Define

S(x, v) := P (x, F1, . . . , Fk, U + v) and G(u) := F (u + U).

Then S(x, v) is a polynomial in x and v with coefficients in L = K
fr

((t)), and G(u) is a

series of K[u]fr[[t]], and hence of L[[u]]. The functional equation (30) and the assumption of
Theorem 14 respectively imply

S(G(u), u) = 0 and
∂S

∂x
(G(u), u) = uℓΦ(u) (34)

with Φ(u) ∈ K[u]fr[[t]] ⊂ L[[u]] (the second identity follows from Lemma 1). Thanks to this
reduction, we will derive Theorem 14 from the following proposition.

Proposition 15. Let L be an algebraically closed field, and let S(x, v) be a polynomial in x

with coefficients in Lfr[[v]], of degree n ≥ 2 in x. Suppose that there exist two elements G(u)

and Φ(u) in Lfr[[u]] such that

S(G(u), u) = 0 and
∂S

∂x
(G(u), u) = uℓΦ(u).

Then the discriminant of S(x, v) with respect to x, denoted ∆(v), is divisible by v2ℓ in Lfr[[v]].

The first step in the proof of Proposition 15 is the following “exchange” lemma.
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Lemma 16. Under the assumptions of Proposition 15, suppose, moreover, that
∂2S
∂x2 (G(0), 0) 6= 0. Then there exists H(u) and Ψ(u) in Lfr[[u]] such that

S(H(u), u) = u2ℓΨ(u) and
∂S

∂x
(H(u), u) = 0.

Proof of Lemma 16. We look for a solution of the equation S′
x(H(u), u) = 0 in the form

H(u) = G(u) + uℓY (u), with Y (u) ∈ Lfr[[u]]. Using Taylor’s formula, we write

S(G(u) + z, u) =

n
∑

i=1

zi

i!

∂iS

∂xi
(G(u), u), (35)

and

∂S

∂x
(G(u) + z, u) =

n−1
∑

j=0

zj

j!

∂j+1S

∂xj+1
(G(u), u).

We thus want to find out whether there exists Y ≡ Y (u) in Lfr[[u]] satisfying

n−1
∑

j=0

uℓjY j

j!

∂j+1S

∂xj+1
(G(u), u) = 0,

that is,

∂S

∂x
(G(u), u) +

n−1
∑

j=1

uℓjY j

j!

∂j+1S

∂xj+1
(G(u), u) = 0,

which, after dividing by uℓ, reduces to

Φ(u) +

n−1
∑

j=1

uℓ(j−1)Y j

j!

∂j+1S

∂xj+1
(G(u), u) = 0.

This is a polynomial equation in Y with coefficients in Lfr[[u]]. By Theorem 2, the number

of roots lying in Lfr[[u]] is

degY

(

Φ(0) + Y
∂2S

∂x2
(G(0), 0)

)

.

The assumption of Lemma 16 implies that this degree is 1, so that the equation S′
x(H(u), u) =

0 admits a solution of the form H(u) = G(u)+uℓY , with Y ≡ Y (u) in Lfr[[u]]. Then, by (35),

S(H(u), u) =

n
∑

i=1

uℓiY i

i!

∂iS

∂xi
(G(u), u)

= u2ℓY Φ(u) +
n
∑

i=2

uℓiY i

i!

∂iS

∂xi
(G(u), u),

which is divisible by u2ℓ in Lfr[[u]].

Proof of Proposition 15. Let S̃(x, v) = S(x, v) + ǫ(x− G(v))2 + ǫ(x− G(v))n, where ǫ is

a new indeterminate. Then S̃(x, v) belongs to Mfr[[v]][x], where M is the algebraic closure
of L(ǫ). Moreover,

S̃(G(u), u) = 0 and
∂S̃

∂x
(G(u), u) =

∂S

∂x
(G(u), u) = uℓΦ(u).

Also,

∂2S̃

∂x2
(G(0), 0) =

∂2S

∂x2
(G(0), 0)+2ǫ(1+δn,2) 6= 0 and

∂nS̃

∂xn
(x, 0) =

∂nS̃

∂xn
(x, 0)+ǫ(2δn,2+n!) 6= 0.
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The discriminant of S̃(x, v) with respect to x can be written as follows [35, Ch. V, § 10]:

∆̃(v) = ±nnan(v)n−1
∏

X(v)∈R

S̃(X(v), v) (36)

where an(v) ∈ Mfr[[v]] is the coefficient of xn in S̃(x, v) and R = {X(v) ∈ Mfr((v)) :

S̃′
x(X(v), v) = 0}.
The condition ∂nS̃

∂xn (x, 0) 6= 0, combined with Theorem 2, implies that all the elements of

R are actually in Mfr[[v]]. Hence all the series S̃(X(v), v), for v ∈ R, lie in Mfr[[v]]. The

condition ∂2S̃
∂x2 (G(0), 0) 6= 0, combined with Lemma 16, implies that one of the elements of

R, say H(v), is such that S̃(H(v), v) is divisible by v2ℓ. By (36), v2ℓ divides ∆̃(v) in Mfr[[v]].

Since ∆̃(v) is a polynomial in ǫ, this implies that each of its coefficients is divisible by v2ℓ.

Since its constant coefficient is equal to ∆(v), we conclude that v2ℓ divides ∆(v) in Lfr[[v]].

Proof of Theorem 14. Let us return to (34). By Proposition 15, if the degree of S(x, v)
in x is at least 2, the discriminant of S(x, v) with respect to x, denoted here δ(v), has
a root of multiplicity at least 2ℓ at v = 0. We want to prove that the same holds for
∆(F1, . . . , Fk, t, U + v). How is this polynomial (in v) related to δ(v)?

• If S(x, v) has degree n in x, then ∆(F1, . . . , Fk, t, U + v) = δ(v), and the theorem
follows from Proposition 15.

• If S(x, v) has degree at most n−2, then (32) shows that ∆(F1, . . . , Fk, t, v) = 0, and
the result is trivial.

• If S(x, v) has degree n − 1, then (32) gives ∆(F1, . . . , Fk, t, U + v) = an−1(v)2δ(v),
where an−1(v) is the coefficient of xn−1 in P (x, F1, . . . , Fk, t, U + v).

– If n = 2, then P (x, F1, . . . , Fk, t, U + v) = a1(v)x + a0(v), where a0(v) and

a1(v) belong to K
fr

[[t]][v]. Then P ′
0(x, F1, . . . , Fk, t, U + v) = a1(v) and the

assumption of Theorem 14 tells us that 0 is a root of a1(v) of multiplicity ℓ,
and hence a root of multiplicity 2ℓ of ∆(F1, . . . , Fk, t, U + v) = an−1(v)2.

– If n ≥ 3, then S(x, v) has degree at least 2, and the theorem follows again from
Proposition 15.

7. From 2k to k equations: resultants and their generalization

In the previous section, we have shown how to reduce our polynomial system to 2k + 1
equations, at least in a generic situation. This system says that the polynomials (in v)
∆(F1, . . . , Fk, t, v) and ∆′

v(F1, . . . , Fk, t, v) have k distinct roots in common. It is well-known
that two polynomials have one root in common if and only if their resultant vanishes. This
is the result we generalize in this section: we give a criterion that tells when two polynomials
P and Q have k roots in common. If the respective degrees of P and Q are m and n, this
criterion involves k determinants of respective order m + n, m + n − 2,. . . , m + n − 2k + 2.
In a generic situation, these determinants directly provide k equations between the series
F1, . . . , Fk, with no mention of the series Ui. Whether these equations are as small as they
can be is another story...

Let P (X) =
∑m

i=0 aiX
i and Q(X) =

∑n
i=0 biX

i, where the coefficients ai and bi belong
to a field L. For 0 ≤ k < min(m, n), we define a matrix Sk(P, Q) having m + n − 2k rows
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and columns by:

Sk(P, Q) =































am · · · a0

. . .
. . .

am · · · a0

. . .
...

am · · · ak

bn · · · b0

. . .

bn · · · bk































where the first n− k rows are filled up with the coefficients ai of P and the m− k last ones
by the coefficients bi of Q. The other entries are zero. In particular, S0(P, Q) is the Sylvester
matrix of P and Q (and its determinant is the resultant of P and Q). In general, Sk(P, Q)
is obtained by deleting the k last rows of a’s, the k last rows of b’s, and the 2k rightmost
columns in the Sylvester matrix of P and Q.

The following theorem is a simple adaptation of [4, Prop. 4.33].

Theorem 17. Let k ≤ min(m, n). If the polynomials P and Q have k common roots,
counted with multiplicities, then for 0 ≤ i ≤ k − 1,

det Si(P, Q) = 0.

Conversely, if the above determinants vanish, then either P and Q have k common roots, or
am = bn = 0.

8. A new proof of Brown’s theorem

Theorem 18 below is essentially due to Brown [21]. It has been used several times in
the past to solve functional equations of the form (3). Its application is straightforward
for quadratic equations (see [5, 32] and the discussion at the end of this section), but more
elusive when the degree in F (u) is larger (see [21, Section 4] for a solution of the cubic
equation of Section 3.3 based on this theorem).

In this section, we give a new proof of, and a new point of view on Brown’s theorem3.
Here is our formulation of this theorem.

Theorem 18. Let ∆(t, u) ∈ K[[t]][u], where K is a field. If ∆ has a square root in K[[t, u]],
then it can be factored as

∆(t, u) = c2t2p(1 + tS(t))
(

1 + tuR1(t, u)
)(

ud + tR2(t, u)
)2 k
∏

i=1

(

(

1 − u

αi

)di

+ tuQi(t, u)

)

,

where

– p, d, and the di’s are nonnegative integers,
– c belongs to K and the αi’s belong to K, the algebraic closure of K,
– S(t) ∈ K[[t]],
– R1(t, u) and R2(t, u) belong to K[[t]][u], with degu(R2) < d,
– Qi(t, u) belongs to K[[t]][u], and degu(Qi) < di.

Moreover, if ∆ has a square root in K[u][[t]], then it can be factored as

∆(t, u) = c2t2p(1+ tS(t))
(

1+ tuR1(t, u)
)(

ud + tR2(t, u)
)2 k
∏

i=1

(

(

1 − u

αi

)di

+ tuQi(t, u)

)2

,

3Or maybe we should write that we give a proof of this theorem, since there seems to be a mistake in
Brown’s proof [21]: in the equation that follows (2.12), why aren’t there any terms Ur−1V1, . . . , U0Vr?
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with the same conditions as above.

What is remarkable in the above factorizations is the fact that some factors are squared.
We will derive this theorem from the combination of two results. The first one is a factor-
ization theorem which has an independent interest and will be used in Sections 9 and 10.

Theorem 19 (Factorization Theorem). Let ∆(t, u) be a non-zero polynomial of K[[t]][u],
where K is a field. Then ∆ admits a unique factorization as

∆(t, u) = ctp(1 + tS(t))
(

1 + tuR1(t, u)
)(

ud + tR2(t, u)
)

k
∏

i=1

(

(

1 − u

αi

)di

+ tuQi(t, u)

)

,

with the same conditions as in Theorem 18. The roots of ∆(t, u) that are infinite (resp. zero,
finite and non-zero) at t = 0 are the roots of the first (resp. second, third) factor above.

Proof. Let us first recall that the units of K[[t]][u] and K[[t]] coincide, and are the series
c(1 + tS(t)), where c ∈ K \ {0} and S(t) ∈ K[[t]].

Now consider an irreducible polynomial of K[[t]][u], denoted P (t, u), of degree d in u. By
definition, P is not a unit. If d = 0, then

P (t, u) = tI(t),

where I(t) is unit of K[[t]]. If d > 0, then P (0, u) 6= 0 (otherwise P would be divisible by
t). Moreover, P (t, u) is also irreducible in K((t))[u]. The roots U1, . . . , Ud of P are of the
form [41, Prop. 6.1.6]

Ui =
∑

n≥n0

an

(

ξit1/d
)n

where n0 ∈ Z ∪ {+∞}, an0
6= 0, the coefficients an lie in K, and ξ is a primitive dth root of

unity in K. We consider three cases, depending on whether n0 is negative, positive or zero.

Case 1: n0 < 0. Then all the roots of P are infinite at t = 0. By Theorem 2, degu P (0, u) =
0. Thus P can be written P (t, u) = P (t, 0) + tuR(t, u) with degu R(t, u) = d − 1. Since by
assumption P (0, u) 6= 0, we have P (0, 0) 6= 0, so that P (t, 0) is a unit in K[[t]]. Denoting
P (t, 0) = P0(t), we have

P (t, u) = P0(t) (1 + tuR1(t, u))

with R1(t, u) ∈ K[[t]][u].

Case 2: n0 > 0. All the roots of P are zero at t = 0. By Theorem 2, degu P (0, u) = d.
More precisely, P (0, u) = cud for some c ∈ K \ {0}. Denoting by Pd(t) the coefficient of ud

in P , we thus have P (t, u) = Pd(t)u
d + tR(t, u) where degu R(t, u) < d, and Pd(0) = c 6= 0.

Thus Pd(t) is a unit of K[[t]], and we can write

P (t, u) = Pd(t)
(

ud + tR2(t, u)
)

,

where R2(t, u) ∈ K[[t]][u] and degu R2(t, u) < d.

Case 3: n0 = 0. All the roots of P are equal to some α 6= 0 when t = 0, with α ∈ K. As in
Case 2, degu P (0, u) = d, and more precisely

P (0, u) = c
(

1 − u

α

)d

where c ∈ K \ {0}. In particular, P (0, 0) = c 6= 0, so that P (t, 0) ≡ P0(t) is a unit
in K[[t]]. Thus we can write P (t, u) = P0(t) (1 + uR(t, u)) where R(t, u) ∈ K[[t]][u] and

degu R(t, u) = d − 1. Setting t = 0 gives P (0, u) = P0(0) (1 + uR(0, u)) = P0(0)
(

1 − u
α

)d
.

Finally,

P (t, u) = P0(t)

(

(

1 − u

α

)d

+ tuQ(t, u)

)
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where

Q(t, u) =
R(t, u) − R(0, u)

t

belongs to K[[t]][u] and has degree at most d − 1 in u.

Now take ∆ ∈ K[[t]][u], as in the statement of the theorem. Factor ∆ into irreducible
polynomials of K[[t]][u]. Write each irreducible factor in the above canonical form. Then,
group together the irreducible factors whose roots are infinite (resp. zero, equal to αi 6= 0)
at t = 0. This gives for ∆ a factorization of the prescribed form.

The uniqueness of this factorization is a consequence of the two following facts:
– the roots of the first (resp. second, third) factor are exactly the roots of ∆(t, u) that are

infinite (resp. zero, equal to αi 6= 0) at t = 0,
– these factors are normalized (they have either constant term 1, or leading coefficient 1).

This concludes the proof.

In order to prove Brown’s theorem (Theorem 18), we only need to combine the above
factorization theorem with the following proposition.

Proposition 20. Let ∆(t, u) ∈ Kfr[[t]][u], where K is a field. The roots of ∆(t, ·) belong to

K
fr

((t)).

If ∆ has a square root in K[[u]]fr[[t]], then every root U of ∆ that vanishes at t = 0 has
an even multiplicity in ∆.

If ∆ has a square root in K[u]fr[[t]], then every root U of ∆ that is finite at t = 0 has an
even multiplicity.

Proof. Assume ∆(t, u) = δ(t, u)2, with δ ∈ K[[u]]fr[[t]]. Let U ≡ U(t) be a root of ∆ that

vanishes at t = 0. Then δ(t, U) is a well-defined series in Kfr[[t]], which must be 0. Thus U
is a root of δ(t, u), and by Lemma 1,

δ(t, u) = (u − U)Ψ(t, u) (37)

where Ψ(t, u) ∈ K[[u]]fr[[t]], so that

∆(t, u) = (u − U)2Ψ(t, u)2.

Thus U is a root of ∆ of multiplicity at least 2.
More generally, let us prove by induction on m ≥ 0 that, if U has multiplicity at least

2m + 1 in ∆, then it actually has multiplicity at least 2m + 2. The case m = 0 has just been
proved. Now take m ≥ 1, and assume

∆(t, u) = (u − U)2m+1∆1(t, u) = δ(t, u)2

with ∆1(t, u) ∈ K
fr

[[t]][u]. As argued above, U is a root of δ(t, u), and the factorization (37)
gives

∆̃(t, u) := (u − U)2m−1∆1(t, u) = Ψ(t, u)2.

The induction hypothesis implies that U is a root of ∆̃(t, u) of multiplicity at least 2m, and
thus a root of ∆(t, u) of multiplicity at least 2m + 2. This completes the proof of the first
statement of the proposition.

The proof of second statement is very similar. It relies on the fact that if δ(t, u) lies in

K[u]fr[[t]], then all roots U of ∆ that are finite at t = 0 can be substituted for u in δ(t, u).
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We are finally ready for a
Proof of Theorem 18. Take ∆(t, u) ∈ K[[t]][u] and consider its canonical factorization,
given by Theorem 19. Assume ∆(t, u) = δ(t, u)2, with δ ∈ K[[u, t]]. If q is the valuation in t
of δ, then the valuation in t of ∆ is p = 2q. Thus p is even. Now

t−2q∆(t, u) =
(

t−qδ(t, u)
)2

.

Setting t = 0 in this identity shows that the constant c occurring in the canonical factorization
of ∆ is a square of K.

By Proposition 20, each root of ∆ that vanishes at t = 0 has an even multiplicity in ∆.
This means that every irreducible factor of ∆ occurring in the term (ud + tR2(t, u)) actually
occurs an even number of times. This implies that d is even, and that this term can be
factored as (ud/2 + tR̃2(t, u))2. This completes the proof of the first statement.

The proof of the second statement is very similar: now, each root of ∆ that is finite at
t = 0 must have an even multiplicity.

Let us finally discuss how Brown’s theorem may be used to solve a quadratic equation with
one catalytic variable [5, 32]. We start from a (k+1)-tuple of series, denoted F (u), F1, . . . , Fk,
such that F (u) ∈ K[u][[t]] and Fi ∈ K[[t]] for all i. We assume they satisfy

(

2aF (u) + b
)2

= ∆(u), (38)

where a, b and ∆ are polynomials in F1, . . . , Fk, t and u, with coefficients K. Obviously, ∆
has a square root in K[u][[t]] (namely, the series 2aF (u) + b). Hence the second part of
Theorem 18, applies: the canonical factorisation of ∆ contains several squared factors.

Let us now adopt the notation of Theorem 18. In order to determine the degrees in u
of R1, R2 and the Qi, one has to decide how many roots of ∆ are infinite (resp. equal
to zero, equal to αi) when t = 0. This can be done routinely using Newton’s polygon
method. (Curiously, these degrees are only guessed in [5] and [32]. This forces the authors
to check afterwards the validity of their assumption.) One then introduces a new set of
indeterminates (the coefficients of the polynomials R1, R2 and Qi) and obtains a system of
polynomial equations by comparing the coefficient of uj in ∆ and in its factorisation, for all
j. This is illustrated in Sections 9.3 and 10 (even though we do not use Brown’s theorem, but
rather a combination of our general strategy with the factorization theorem, Theorem 19).

To conclude, let us underline one important difference between the quadratic case and
the general case. As shown by (38), in the quadratic case, every root of ∆ that is finite at
t = 0 has an even multiplicity. For a general (i.e., non-quadratic) equation, Theorem 14
exhibits a certain number of multiple roots of ∆, which are finite at t = 0. But ∆ may also
have simple roots (or roots of odd multiplicity) that are finite at t = 0. In the example of
Section 11 below, ∆ has two simple roots that are finite at t = 0.

9. Practical strategies

The general strategy presented in Section 2 to solve functional equations of the form
P (F (u), F1, . . . , Fk, t, u) = 0 yields a system of polynomial equations (3k + 1 equations in
a generic case) relating the unknown series Fi, some auxilliary series Ui, and the values of
F (Ui). Section 6 performs the elimination of the F (Ui), yielding a system of 2k+1 equations.
Section 7 even goes further by eliminating the Ui, but the k equations it provides are often,
in practise, unnecessarily big. At any rate, it is always easy to write a system of 2k + 1
equations relating the series Fi and Ui.

In most combinatorial problems, one is interested in finding the minimal equation satisfied
by F1, or at least a “nice” system involving all the Fi, if such a system exists. As discussed
in [31, Section 4], three main methods can be used to reduce further the size of our system:
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the paper-and-pencil approach, the resultant approach, and the Grbner basis approach. Note
that our system of 2k+1 equations contains k times the “same” pair of equations (see (33)),
which means that the elimination of the Ui must be performed with care not to loose any
information.

The paper and-pencil approach has been amply illustrated in Section 3. In almost all
examples presented there, there was actually a single unknown function F1. In this case, as
soon as one finds a series U that cancels P ′

0(F (u), . . . , t, u), the discriminant ∆ has a double
root (Theorem 14), and one obtains immediately an equation for F1 by writing that

the discriminant of the discriminant vanishes.

We also studied in Section 3 one equation involving two unknown series Fi, but it was linear
in F (u) and of an especially simple form.

In this section, we gather a number of practical strategies that permit to solve bigger
examples. We advise the reader who would be interested in the practical aspects of our
method to read what follows with a computer algebra system at hand. All the strategies we
suggest have been tested on the same example (except the Grbner one, which seems to be
too brutal to work). Two more examples are provided in Sections 10 and 11.

9.1. Brute force on 3k + 1 equations

The laziest approach naturally consists in feeding a Grbner basis package with the 3k(+1)
equations obtained in the generic case, and let it work. The aim is to obtain either a
polynomial system defining the series Fi, or a single algebraic equation for, say, F1. One has
to choose carefully a monomial order. See [26] for generalities on Grbner bases, and [3] for
a recent study of the complexity of Grbner computations.

Unfortunately, this lazy approach often fails, because the computation tends to take
forever. This is why we only give here a very simple — and somewhat degenerate — example.

Return to the second example of Section 3.1, Eq. (12). Form a set S of 5 equations
consisting of (14) for i = 1, 2, the right-hand side of (13) for i = 1, 2 again, and the
distinctness condition X(U1 − U2) = 1. The Maple command
Groebner[univpoly](F1, S, {X, U1, U2, F1, F2}) directly gives

F1 = 1 + 2 t5F1
5 − t5F1

6 + t5F1
7 + t10F1

10.

9.2. Bare hands elimination on 2k + 1 equations

9.2.1. The number of 3-constellations. Let us consider now the equation (28) that de-
fines the generating function of 3-constellations. It has degree 3 in F (u) and contains two
unknown series F1 = F (1) and F2 = F ′(1). Multiplying by (u − 1)2 gives an equation of
the form P (F (u), F1, F2, t, u) = 0. Theorem 2, applied to P ′

0(F (u), F1, F2, t, u), shows that
this series has two roots, U1 and U2. Indeed, P ′

0(F (u), F1, F2, t, u) reduces to (u − 1)2 when
t = 0. The original functional equation gives the first terms of F (u):

F (u) = 1 + tu + 3 (u + 1)ut2 + 2
(

6 u2 + 10 u + 11
)

ut3 + O(t4),

and the equation P ′
0(F (Ui), F1, F2, t, Ui) = 0 provides the first terms of U1 and U2:

U1,2 = 1 ± t1/2 + 2 t ± 5 t3/2 + 15 t2 ± 48 t5/2 + O(t3).

In particular, the series Ui are distinct. Let ∆(F1, F2, t, v) ≡ ∆(v) be the discriminant
of P (x, F1, F2, t, v), taken with respect to x. By Theorem 14, ∆(v) admits U1 and U2 as
multiple roots. But ∆(v) factors as tv(v − 1)4R1(v), where R1 is a polynomial in F1, F2, t
and v of degree 5 in v. Since Ui 6= 0 and Ui 6= 1, we conclude that U1 and U2 are double
roots of R1. Let R2(v) be the derivative of R1 with respect to v. Then R1 and R2 have the
roots U1 and U2 in common.

The rest of the elimination procedure is schematized in Figure 10. The labels on the
arrows indicate which variable is eliminated (using a resultant) at each stage.
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R5(t, U1, U2)

R6(t, U1, U2)

U1 6= U2

F1

R3(F1, t, U1)

R3(F1, t, U2)R1(F1, F2, t, Ui)

R2(F1, F2, t, Ui)

F2

R7(t, Ui)

F2

F1

R4(F2, t, U1)

R4(F2, t, U2)

Uj

Figure 10. The bare-hand elimination procedure for k = 2.

We first eliminate F2 between R1(F1, F2, t, Ui) and R2(F1, F2, t, Ui). The polynomial thus
obtained factors in much smaller terms than R1 or R2. Knowing the first terms of F (u), U1

and U2 allows us to decide which factor vanishes. We thus obtain R3(F1, t, Ui) = 0, with

R3(F1, t, v) = t2v4F1
2 + 2 tv2F1(v − 1)(v − 3) − 4 tv2 + v4 − 8 v3 + 22 v2 − 24 v + 9.

Similarly, if we eliminate F1 between R1(F1, F2, t, Ui) and R2(F1, F2, t, Ui), and then choose
the right factor, we obtain an equation of the form R4(F2, t, Ui) = 0, of degree 8 in Ui.

We now eliminate F1 between R3(F1, t, U1) and R3(F1, t, U2). The resultant naturally
contains a factor (U1 −U2), which we know to be non-zero. Choosing the right factor among
the remaining ones provides a first equation between U1 and U2, of the form R5(t, U1, U2) =
0. Similarly, eliminating F2 between R4(F2, t, U1) and R4(F2, t, U2) provides another such
equation, say R6(t, U1, U2) = 0. Finally, eliminating one of the Ui’s between R5 and R6 gives
R7(t, Ui) = 0, with

R7(t, v) = (t − 4)
3
v6 − 4 (21 t + 44) (t − 4) v5 −

(

180 t + 2944 + 27 t2
)

v4

−18 (−332 + 15 t) v3 + 27 (−235 + 9 t) v2 + 3402 v − 729.

We have finally obtained the algebraic equation (on Q(t), of degree 6) satisfied by each of
the series Ui. It remains to eliminate U1 between R3(F1, t, U1) and R7(t, U1) to obtain, by
extraction of the relevant factor, the (cubic) algebraic equation satisfied by F1:

F1 = 1 − 47t + 3t2 + 3t(22 − 9t)F1 + 9t(9t − 2)F 2
1 − 81t2F 3

1 . (39)

Recall that F1 counts 3-constellations by their number of black triangles.

9.2.2. An example with multiple roots Ui. Consider the functional equation

F (u) = u + t

(

F (u)3 − 3 + 2
F (u) − F (0)

u
− t

F (u) − F (0) − uF ′(0)

u2

)

. (40)

Clearly, it has a unique power series solution. The first terms of the expansion of F are:

F (u) = u + (u3 − 1)t + u2(3u3 − 1)t2 + 3u4(4u3 − 1)t3 + u6(55u3 − 12)t4 + · · ·
After multiplying by u2, our functional equation reads P (F (u), F (0), F ′(0), t, u) = 0, for
some polynomial P (x0, x1, x2, t, u). We are looking for fractional series U that satisfy
P ′

0(F (U), F (0), F ′(0), t, U) = 0, that is

(U − t)2 = 3tU2F (U)2. (41)

By Theorem 2, this equation has two solutions, counted with multiplicities. Let us denote
them U1 and U2. Using the first terms of F (u), one derives from (41) the first terms of the
series Ui. Remarkably, one finds Ui = t + O(t9) for i = 1, 2.

This observation leads us to conjecture that the series Ui are the same, so that (41) has a
only one solution, of multiplicity 2. Let ∆(x1, x2, t, v) be the discriminant of P (x0, x1, x2, t, v)
taken with respect to x0. If U1 = U2 ≡ U , then, by Theorem 14, the series U is a root of ∆



36 MIREILLE BOUSQUET-MÉLOU AND ARNAUD JEHANNE

of multiplicity at least 4. As ∆ factors as tv2D, for some polynomial D ≡ D(v) of degree 8
in v, our assumption implies that for 0 ≤ i ≤ 3,

∂iD

∂vi
(F (0), F ′(0), t, U) = 0.

This gives 4 equations involving 3 unknowns, namely F (0), F ′(0) and U .
Let us first eliminate F ′(0) between D(U) and D′(U). The resultant thus obtained reads

t10U6(U − t)6R1, where R1 is a polynomial in t, U and F (0), of degree 8 in U . The first few
terms of F (0) and U , which we have computed, rule out the possibility that U = 0, but are
not sufficient to decide which of the factors (U − t) and R1 are zero.

So let us first assume that U = t. Taking the resultant in F ′(0) of D(U) and D′′(U) gives
F (0) = −t. Returning to ∆ provides F ′(0) = 1. Set now F (0) = −t and F ′(0) = 1 in the
original functional equation (40). This gives the following cubic equation in F (u):

tu2F (u)3 − (u − t)2F (u) + (u − t)3 = 0.

By Theorem 2, this equation has only one solution that is a formal power series in t. The
form of the equation suggests to write F = (u − t)G, so that G satisfies G = 1 + tu2G3.

Hence, our assumption that (41) has a double root has led us to the conjecture that the
solution of (40) is F = (u− t)G, where G is the unique series in t satisfying G = 1 + tu2G3.
It is now straightforward to check that this series F satisfies F (0) = −t, F ′(0) = 1, and that
the original functional equation (40) holds. Given that this equation has a unique power
series solution, we have solved it.

9.3. Applying the factorization theorem to the discriminant

We exploit here the factorization theorem, Theorem 19, in combination with Theorem 14,
which implies that the discriminant ∆(F1, . . . , Fk, t, v) admits k multiple roots.

Our example is again the equation for 3-constellations studied in Section 9.2.1. There,
k = 2, and the discriminant reads ∆(F1, F2, t, v) = tv(v − 1)4R1, where R1 is a polynomial
in F1, F2, t and v, of degree 5 in v. By Theorem 14, ∆ admits two double roots U1 and U2,
and we have seen that they are actually double roots of R1. What about the fifth root of
R1? Setting t = 0 in R1 gives a polynomial in v of degree 4, so the fifth root of R1 is infinite
at t = 0.

Theorem 19, combined with the form of the series Ui, implies that R1 factors as

R1 = ctp(1 + tS)(1 + tvR)
(

(1 − v)2 + tvQ0 + tv2Q1

)2

(42)

where S, R, Q0 and Q1 belong to C[[t]]. Setting t = 0 in this identity immediately gives c =
−4 and p = 0. Setting v = 0 gives S = 0. Extracting the coefficient of v gives an expression
of Q0 in terms of R and F1. Extracting the coefficient of v2 gives an expression of Q1 in terms
of R, F1 and F2. We now replace Q0 and Q1 by their expressions in (42). The extraction of
the coefficients of vi, for i = 3, 4, 5 gives a system of 3 polynomial equations relating R, F1

and F2. The elimination of R and F2 yields back (after some heavy intermediate steps) the
algebraic equation (39) satisfied by F1.

9.4. Writing directly k equations

We exploit here the results of Section 7 (Theorem 17), which provide directly a system of
k equations between the series Fi. Our guinea-pig is again the equation for 3-constellations
studied in Section 9.2.1. In order to apply Theorem 17, we need two polynomials P and Q
having 2 roots in common. With the notation of Section 9.2.1, these polynomials can be
either ∆ and ∆′

v, or R1 and R2, or R3 and R4: the latter pair being the simplest, we decide
to start from it. Then P has degree m = 4 and Q has degree n = 8. The Sylvester matrix of
P and Q, denoted S0(P, Q) in Section 7, has size 12. By Theorem 17, its determinant D0 —
the resultant of P and Q — is zero, as well as the determinant D1 of the matrix S1(P, Q),
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obtained by deleting the last two columns, as well as the last row of a’s (the 8th row) and
the last row of b’s (the 12th row).

The determinant D0 is found to factor into two terms. The relevant one has degree 8 in
F1 and degree 4 in F2. The second determinant, D1, does not factor, and has degrees 14 and
6 in F1 and F2 respectively. Still, Maple agrees to eliminate F2 between D1 and the relevant
factor of D0. The corresponding resultant contains four different factors, and the one that
vanishes yields (39) again.

We observe that two of the above factors are squared. The occurrence of repeated factors
in iterated resultants is a systematic phenomenon, which we discuss in Section 12.

10. The degree distribution of planar maps

Let us return to the equations of Lemmas 5 and 6, which characterize the face-distribution
of rooted planar maps. In this section, we solve these equations by generalizing the approach
of [5]. Then we compare our solution to the result obtained in [14] for the same problem.

Theorem 21. There exists a unique pair (R1, R2) of formal power series in t with coefficients
in Q[z1, z2, . . .] such that

R1 =
t

2

∑

i≥1

zi[u
i−1]R−1/2 and R2 = t − 3R2

1 +
t

2

∑

i≥1

zi[u
i]R−1/2, (43)

where
R = 1 − 4uR1 − 4u2R2.

Let G(t; z) = G(t; z1, z2, . . .) be the generating function of rooted planar maps, counted by
the number of edges (variable t) and the number of faces of degree i (variable zi). Then

t2(tG(t; z))′ = (R2 + R2
1)(R2 + 9R2

1),

where the derivative is taken with respect to t, and

tG(t; z) =
1

t

(

R2 + R2
1

) (

3R2 + 15R2
1 − 2t

)

+ R1[u]
β√
R

− 1

2
[u2]

β√
R

where
β =

∑

i≥1

ziu
−i.

Comments
1. The equations defining R1 and R2 can also be written in terms of β:

R1 =
t

2
[u−1]

β√
R

and R2 = t − 3R2
1 +

t

2
[u0]

β√
R

. (44)

2. Let m be a positive integer, and set zi = 0 for i > m. Then G(t; z) is the face-distribution
generating function of planar maps in which all faces have degree at most m. The right-hand
sides of the equations defining R1 and R2 now involve only finitely many terms, so that these
two series are actually algebraic. The same holds for G(t; z) (as stated in Corollary 7), and
the above theorem makes this algebraicity explicit by providing a system of three polynomial
equations defining R1, R2 and G. For instance, the generating function of planar maps in
which all faces have degree 3, counted by edges and faces, satisfies

t2G(t; z) =
(

R2 + R1
2
) (

3R2 + 15R2
1 − 2t − 24 tzR1R2 − 56 tzR1

3
)

with
R1 = zt

(

R2 + 3R1
2
)

and R2 = t − 3R1
2 + zt

(

6R1R2 + 10R1
3
)

.

Proof. The existence and uniqueness of the series Rj is clear: think of extracting inductively
from the equations (43) the coefficient of tn. The fact that R1 and R2 are multiples of
t implies that only finitely many values of i are involved in this extraction, so that the
coefficient of tn in R1 and R2 is a polynomial in the zi.
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We now want to relate R1 and R2 to the face-distribution of planar maps. As noted in [5,
p. 13], it suffices to prove our results when zi = 0 for i > m, for any m ≥ 3. Then the
equation of Lemma 5 may be written the form P (F (u), F1, . . . , Fm−2, t, u) = 0:

um−2F (u) = um−2 + tumF (u)2 + tθ1(u)F (u) − t
m−2
∑

j=0

ujFj θj+2(u), (45)

where θk(u) is the following polynomial in u, of degree m − k:

θk(u) =

m
∑

i=k

ziu
m−i.

Note that F0 = 1. This equation coincides with Eq. (2.2) of [5], apart for the value of θk.
We now apply the general strategy of Section 2. The condition P ′

0(F (U), F1, . . . , t, U) = 0
reads:

Um−2 = 2tUmF (U) + tθ1(U).

By Theorem 2, this equation has m−2 solutions, U1, . . . , Um−2, which are fractional series in
t (with coefficients in an algebraic closure of Q(z1, . . . , zm)). All of them vanish at t = 0. By
Theorem 14, these series are multiple roots of the discriminant ∆(u) ≡ ∆(F1, . . . , Fm−2, t, u).
This discriminant is found to be

∆(u) =
(

tθ1(u) − um−2
)2 − 4tum



um−2 − t

m−2
∑

j=0

ujFjθj+2(u)



 . (46)

It has degree (at most) 2m− 2 in u, and it reduces to u2(m−2) when t = 0. By the Newton-
Puiseux theorem, this implies that the series Ui, for 1 ≤ i ≤ m − 2, are the only roots of
∆(u) that are finite at t = 0, and that they have multiplicity 2 exactly. The remaining roots
are infinite. The canonical factorization of ∆(u) (Theorem 19) thus reads:

∆(u) = ctp(1 + tS(t))
(

1 + tuS1(t, u)
)(

um−2 + tS2(t, u)
)2

where S1 has degree (at most) 1 in u and S2 has degree at most m− 3. Setting t = 0 in (46)
shows that p = 0 and c = 1. Setting u = 0 then gives t2(1 + tS(t))S2(t, 0)2 = t2z2

m, and we
finally choose to write the canonical factorization of ∆(u) with the notation of [5]:

∆ = RQ2

with

R = 1 − 4uR1 − 4u2R2 and Q = tzm +

m−2
∑

i=1

Qiu
i.

The Ri and Qi are power series in t with coefficients in Q(z1, . . . , zm).
The derivations of the equations defining the Ri, and of the expression of (tG)′, now

faithfully follow [5]. Let us simply recall where (43) comes from. Solving (45) gives

2tumF (u) = um−2 − tθ1(u) ±
√

∆(u) = um−2 − tθ1(u) + Q
√

R, (47)

so that

Q =
2tum + tθ1(u) − um−2

√
R

+ O(um+1). (48)

Recall that Q(u) has degree m − 2 in u. Extracting the coefficients of um−1 and um in the
above identity gives (43).

Let us finally derive an expression for G(t; z). By (48),

Qi = [ui]
tθ1(u) − um−2

√
R

for 0 ≤ i ≤ m − 2. (49)
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Now by Lemma 6 and (47),

2t2G = 2tF2 = [um+2]Q
√

R =

m−2
∑

i=0

Qi[u
m+2−i]

√
R

=
m−2
∑

i=0

[ui]
tθ1(u) − um−2

√
R

[um+2−i]
√

R by (49)

=

m+2
∑

i=0

[ui]
tθ1(u) − um−2

√
R

[um+2−i]
√

R −
m+2
∑

i=m−1

[ui]
tθ1(u) − um−2

√
R

[um+2−i]
√

R

= [um+2]
(

tθ1(u) − um−2
)

−
m+2
∑

i=m−1

[ui]
tθ1(u) − um−2

√
R

[um+2−i]
√

R

= −
2
∑

i=−1

[ui]
tβ − u−2

√
R

[u2−i]
√

R,

where β = u−mθ1(u). The expected expression of G(t; z) follows, upon using (44).

In [14], another characterization of the face-distribution of planar maps was obtained,
using two different methods: first, using matrix integrals, and then by a purely combinatorial
approach. Both methods yield the same expression for the series G(t; z), but this expression
differs from that of Theorem 21. Our aim is now to relate these two different expressions.
Let us first recall the expression of [14].

Theorem 22 ([14]). There exists a unique pair (S1, S2) of formal power series in t with
coefficients in Q[z1, z2, . . .] such that

S1 = t[v0]W and S2 = t + t[v−1]W (50)

where

W =
∑

i≥1

ziP
i−1 and P = v + S1 + S2/v.

The face-distribution generating function of rooted planar maps, denoted above G(t; z), sat-
isfies

tG(t; z) = S2
1 + S2 − 2S1[v

−2]W − [v−3]W.

Proposition 23. The solutions to the face-distribution problem given by Theorems 21 and
22 are related as follows.

(i) The auxilliary series Ri and Si satisfy

S1 = 2R1 and S2 = R2 + R2
1.

Moreover, for all ℓ ≥ 0,

[uℓ]
β√
R

= [v0]P ℓ+1W.

(ii) The following identities, valid for all k ≥ 0 and j ∈ Z,

[vj ]P k+1W = [vj−1]P kW + S1[v
j ]P kW + S2[v

j+1]P kW,

[vj ] P kW = S−j
2 [v−j ]P kW,

allow one to express any term [vj ]P kW as a linear combination of terms [v−i]W ,
for i ≥ 0, with coefficients in Q(S1, S2).
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(iii) Rewrite the expression of G(t; z) given in Theorem 21 in terms of S1, S2 and P
using (i). Then, use (ii) to rewrite this in terms of S1, S2 and the [v−i]W , for
i ≥ 0. Use finally (50) to express [v0]W and [v−1]W in terms of S1 and S2: The
resulting expression of G(t; z) is that of Theorem 22.

Proof. (i) Let us introduce the series

R̄1 :=
S1

2
, R̄2 := S2 −

S2
1

4
and R̄ := 1 − 4uR̄1 − 4u2R̄2 = (1 − uS1)

2 − 4u2S2.

We want to prove that R̄, R̄1 and R̄2 satisfy (43) (with bars over all unknowns). In view
of (50), the first equation in (43) holds if and only if

[v0]W =
∑

j≥0

zj+1[u
j ]R̄−1/2.

Given that W =
∑

j zj+1P
j , it suffices to prove that for all j ≥ 0,

[v0]P j = [uj ]R̄−1/2, (51)

or, upon taking generating functions, that
∑

j≥0

uj [v0]P j = R̄−1/2.

But
∑

j≥0

uj[v0]P j =
∑

j≥0

uj
∑

k≥0

(

j

2k

)(

2k

k

)

Sj−2k
1 Sk

2

=
∑

k≥0

(

2k

k

)

Sk
2

u2k

(1 − uS1)2k+1

=
1

1 − uS1

(

1 − 4u2S2

(1 − uS1)2

)−1/2

= R̄−1/2.

(By convention,
(

b
a

)

= 0 unless 0 ≤ a ≤ b.) The first equation of (43) follows. The second
one reads, in view of (50),

2[v−1]W + S1[v
0]W =

∑

i≥1

zi[u
i]R̄−1/2.

In order to prove it, it suffices to check that for all j ≥ 0,

2[v−1]P j + S1[v
0]P j = [uj+1]R̄−1/2,

= [v0]P j+1 by (51).

This is easily proved by first extracting the coefficient of v0 in P j+1 = (v+S1+S2/v)P j, and
then noticing that S2[v]P j = [v−1]P j (this comes from the fact that P j is left unchanged
when replacing v by S2/v). Since R̄1 and R̄2 satisfy (43), they coincide respectively with
the series R1 and R2. The second result of (i) follows from (51).

The first identity of (ii) is simply obtained by writing

P k+1W = (v + S1 + S2/v)P kW,

and extracting the coefficient of vj . The second one follows from the fact that P , and hence
W , is left invariant upon replacing v by S2/v.

Finally, (iii) is a straightforward verification.
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11. Hard particles on planar maps

Let us return to the equations established in Lemma 13 for planar maps carrying hard
particles. We will solve this system when x = y = 1. That is, the series F (u) ≡ F (t, s, u)
counts maps rooted at a vacant vertex by the total number of edges (variable t), the number
of frustrated edges (variable s) and the number of white corners in the root-face (variable
u). The series G(u) ≡ G(t, s, u) counts maps rooted at an occupied vertex, according to the
same statistics.

The first step consists in eliminating G(u). This gives an equation of the form
P (F (u), F (1), G(1), t, u) = 0, which is cubic in F (u).

The next steps require a computer, but otherwise copy faithfully the bare-hands strategy
of Section 9.2.1. We do not give the details. Let us simply mention that, when s = 1, the
two series Ui that cancel P ′

0(F (u), F (1), G(1), t, u) are formal power series in
√

t:

U1,2 = 1 + t ± t3/2 + 4t2 ± 17/2t5/2 + O(t3)

while, when s 6= 1, they are formal series in t with coefficients in Q(s):

U1 = 1 + t +
(3 s − 4) t2

s − 1
+

(

−25 + 64 s + s4 + 12 s3 − 51 s2
)

t3

(s − 1)
3 + O(t4),

U2 = 1 + st +
s2 (−2 + 3 s) t2

s − 1
+

s2
(

−28 s3 + 13 s4 + 16 s2 − 2
)

t3

(s − 1)
3 + O(t4).

Another interesting observation is that, in all cases, some of the roots of the discriminant
∆(u) ≡ ∆(F (1), G(1), t, u) that are finite at t = 0 are simple. For instance, when s = 1, this
discriminant has two simple roots, U3 and U4, of the following form:

U3,4 = 1 ± 2 it1/2 − 5 t∓ 13 it3/2 + O(t2).

In other words, ∆(u) does not have a square root in K[u][[t]] (by Proposition 20). The other
roots of ∆(u) that are finite at t = 0 are U1, U2, 0 and 1, and have an even multiplicity.

At the end of the elimination procedure, one obtains a pair of quartic polynomial equations
for the series F (1) and G(1). The corresponding curves have genus 0 (as is often the case for
hard-particle models [15]), and we have found, with the help of the algcurves package of
Maple, a simple parametrization of them. In this form, our results are begging for a purely
combinatorial derivation, in the vein of [13, 16, 17].

Proposition 24. Let T ≡ T (t, s) be the unique formal power series in t with constant term
0 satisfying

T (1 − 2T )(s − 3T + 3T 2) = s2t.

Then T has actually coefficients in N[s]. Morever, the generating functions F (t, s, 1) ≡ F (1)
and G(t, s, 1) ≡ G(1) that count planar maps carrying hard particles (rooted, respectively, at
an empty and an occupied vertex) satisfy

s3t2F (1) = T 2
(

s − 4 T − 3 sT + 15 T 2 + sT 2 − 15 T 3 + 4 T 4
)

,

s4t2G(1) = T 3
(

s − 3 T + 3 T 2
) (

s − 4 T − 3 sT + 14 T 2 − 9 T 3
)

.

Proof. The only result that does not follow from the elimination of U1 and U2 is the fact
that T has coefficients in N[s]. By writing

T = sS, S =
t

(1 − 2sS)(1 − 3S(1 − sS))
, S(1 − sS) = t

1 − sS

1 − 2sS

1

1 − 3S(1 − sS)
,

it is easy to prove by induction on n that the coefficient of tn in S and in S(1− sS) belongs
to N[s]. Since T = sS, the same holds for the coefficients of T .
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By studying the singular behaviour of the series F (1) and G(1) when s = 1, one obtains
the following corollary.

Corollary 25. The number of n-edge planar maps carrying hard particles is equivalent to

α

(

3

√

39509 + 23436
√

62 − 3

√

−39509 + 23436
√

62 + 38

3

)n

n−5/2 ≃ α(15.4...)nn−5/2,

for some positive constant α.

Proof. We apply the general principles that relate the singularities of an algebraic series to
the asymptotic behaviour of its coefficients [31]. Since T , F (1) and G(1) have non-negative
coefficients, their radius of convergence is one of their singularities. The expressions of F (1)
and G(1) show that their singularities are also singularities of T . As the leading coefficient
of the equation defining T does not vanish, the singularities of T are among the roots of the
discriminant of its minimal polynomial, that is, among the roots of

δ = 18432t3 − 1545t2 + 38t− 1.

The only real root of δ is ρ ≃ .065. Hence ρ is the radius of convergence of T , F (1) and G(1).
The modulus of the other two roots of δ is less than ρ. So ρ is actually the only singularity
of T , F (1) and G(1). A local expansion of these three series in the neighborhood of t = ρ
shows that T has a square root type singularity, while F (1) and G(1) have a singularity
in (1 − t/ρ)3/2. This implies that the nth coefficient of F (1) and G(1) is asymptotic to
αρ−nn−5/2 for some positive constant α (which is not the same for F (1) and G(1)). But
ρ−1 is exactly the constant occurring above in the corollary.

Note. A similar study can be conducted for a generic value of s ∈ (0, +∞). We have not
worked out all the details, but it seems that the above pattern persists for all s ∈ R+. In
other words, there is no (physical) phase transition in this model. At any rate, it is not very
hard to prove that the radius of convergence ρ(s) is a smooth function of s, equal to the
branch of

18432 s4ρ3 − 3 s2ρ2
(

963 − 2496 s + 2048 s2
)

+ 2 ρ
(

16 s2 + 21 s − 18
)

(4 s − 3)2 − (4 s − 3)3

that equals 1/12 at s = 0.

12. Concluding remarks and questions

Let us begin by bragging a bit about some positive points of this paper. We have proved
that the series F (t, u) given by a functional equation of a certain type (see (16)) are algebraic.
As illustrated in Section 5, this tells us that a number of enumerative problems have an
algebraic generating function, without having to solve them in detail. Our general strategy
gives a system of 3k polynomial equations. Its reduction to 2k equations (Section 6) has a
theoretical interest, and tells us what is left of the “quadratic method” for equations that
are no longer quadratic.

However, the practical aspects of our approach probably require more work. Generally
speaking, we are lacking an efficient elimination theory for polynomial systems which, as (8–
10) or (33), are highly symmetric. The case of 3-constellations, solved by different approaches
in Section 9, shows that even when the final result is relatively simple (here, F1 satisfies a
cubic equation), the intermediate steps may involve big polynomials. Does this mean that
3-constellations are somehow pathological, or that we have not conducted the calculations
in the best possible way (or both...)? We have no definite answer to this question, but the
following observations may be of some interest:
1. The degree of F (u) may be very big compared to the degrees of the original functional
equation. Consider, for instance, the enumeration of walks on the half-line N, that start
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from 0 and take steps +k and −ℓ, where k and ℓ are coprime. The case (k, ℓ) = (3, 2) was
solved in Section 3.1. In general, the equation reads

(uℓ − t(1 + uk+ℓ))F (u) = uℓ − t

ℓ−1
∑

i=0

uiFi.

Its solution satisfies [11, Ex. 4]:

tF0 = tF (0) = (−1)ℓ+1
ℓ
∏

i=1

Ui,

where U1, . . . , Uℓ are the ℓ roots of the kernel that are finite at t = 0. It can be proved that
F0 has degree exactly

(

k+ℓ
k

)

. When ℓ = k − 1, this degree is exponential in k, even though
the original equation is linear in F (u) and all the Fi (and has degree 2k − 1 in u).

2. Certain resultant calculations yield systematically repeated factors. Imagine we are trying
to find a polynomial equation for F1, starting from P (F (u), F1, F2, t, u) = 0. At some point,
we end up with two polynomials R(u) and Q(u), with coefficients in K[F1, F2, t], which have
two roots in common. We thus apply Theorem 17: the determinants D0 and D1 of S0 and
S1 vanish. We take the resultant of D0 and D1 in F2 to obtain a polynomial equation for
F1. Then every factor in this resultant has multiplicity at least 2 [36, Thm. 3.4].

Moreover, a similar reduction might apply to equations with a single unknown function
F1. For such equations, we obtain a polynomial equation for F1 by writing that the iterated
discriminant discrimv(discrimxP (x, F1, t, v)) vanishes. Again, if P is a generic polynomial
in x, F1 and v of total degree d ≥ 3, then it is conjectured that this iterated discriminant has
repeated factors [36, p. 384]. Note that this does not mean that we will always meet such a
factor in our examples, since they do not have generic coefficients. This is illustrated by the
following example, which is a generalization of the equation for planar maps (Section 3.2):

F (u) = 1 + atu2F (u)2 + tu
uF (u) − F (1)

u − 1
.

There, the iterated discriminant is an irreducible polynomial of degree 4 in F1 – but the
equation we start from is not a generic equation of total degree 5.

Finally, let us underline that it is still an unsolved problem to enumerate m-constellations
starting from the equations of Proposition 12 (even though the result is known to be re-
markably simple [12]).
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