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Loop equations for the semiclassical 2-matrix model with hard edges

B. Eynard!

Service de Physique Théorique de Saclay,
F-91191 Gif-sur-Yvette Cedex, France.

Abstract: The 2-matrix model can be defined in a setting more general than polynomial
potentials, namely, the semiclassical matrix model. In this case, the potentials are such that
their derivatives are rational functions, and the integration paths for eigenvalues are arbitrary
homology classes of paths for which the integral is convergent. This choice includes in particular
the case where the integration path has fixed endpoints, called hard edges. The hard edges
induce boundary contributions in the loop equations. The purpose of this article is to give the

loop equations in that semicassical setting.

1 Introduction

Orthogonal polynomials and biorthogonal polynomials, in the context of random matrices, have
been mostly studied for polynomial potentials, on the real axis, or sometimes on homology classes
of contours going from oo to oo [[§]. However, it is possible to define matrix models corresponding
to a more general context, in particular, the “semi-classical” (called so, because it contains all the
classical polynomials). It is defined as follows (see Bertola [I])):

Consider two potentials, (i.e. functions of a complex variable), V;(x) and Va(y) whose deriva-
tives V/(x) and VJ(y) are rational functions (notice that oo maybe a pole of V] (resp. V), this is
the case if V] (resp. Vj) is a polynomial).

Then consider a generalized integration path I' = E” Kij%i X %, such that the following

integral is absolutely convergent:

/e—]tv[‘ﬁ(xHVz(y)—xy]dxdy (1_1)
r
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The possible paths 7 (resp. 7) are described in [, they can be closed or open:
- If v (resp. ) is a closed contour, the result is non-zero only if it encloses a singularity of

e resp. e ¢t

- if 7 (resp. 7) is an open contour, its extremities can be:
e any point in the complex plane, except at the poles of V] (resp. Vi),
e a simple pole of %V{ (resp. %VQ’), with residue € R_,

e a degree > 2 pole of V| (resp. Vj), if v (resp. 7) approaches the pole in a sector where
RIV) > 0 (resp. REYV; > 0).

Some of the extremities are such that e~ Vi(@)+Va(v)-=y] vanishes, they are the poles of V/
(resp. V3) of degree at least 2, as well as the simple poles of &V} (Nresp. 2VY), with residue € R_,
we will call them “poles”. And some extremities are such that et V1(®+V2()=24] does not vanish,

they are arbitrary points in the complex plane, we call them “hard edges”, and write them:
(X1, Xo, ..., XK,) (resp. (Y1,Ya,...,YK,)) (1-2)

Definition 1.1 Consider a path v in the complex plane. Define the set of “normal matrices” on

the path ~y:
Hy(v) == {M € GLy(C) \3U € UN),3(z1,...,an) € ¥", M = Udiag(z1,...,ax)U'} (1-3)

with a measure: v
dM = (H(w, —xj)2> au Hd:pi (1-4)

i>j i=1
where dU is the Haar measure on U(N), and dx; are the tangent vectors to the path . For a
given M € Hy(T"), the matriz U and the eigenvalues z; are not uniquely defined, they are defined
up to a permutation, and a conjugation by a diagonal unitary matrix, however dM 1is invariant

under these operations, and thus is well defined.

For example, if v is the real axis we recognize Hy () = Hy the set of hermitean matrices.

Then, as in [17], we define the set of normal matrices on a generalized path T' = 3, i K Yi X 5

Definition 1.2 Let ' = E” KijY: X 7; be a linear combination of products of paths. We define:

HR(T) = {M;, M € GLy(C)2 \3Uy,U; € U(N)?, 3(1,...,25) € CV, 3y, ..., yn) € CY,
M, = Uydiag(z, . .. ,a:N)UlT, M, = Usdiag(ys, - - - ,yN)UzT,



Vk=1,...,N, diy x} € Yigs Vk=1,...,N, djr yx G’?jk} (1—5)

with a measure dMy dMs such that if (x1,...,xy) are the eigenvalues of My and (yi,...,yn) are
the eigenvalues of My, and xi, € v;, and y, € 7j,

N N
AM; dMy = det (ki ;&™) <H(g; - xj)> (H(y - yj)> dU, dU, Hdwi rlldyi (1-6)
1> 1>] i= =

Our goal is to compute the Schwinger-Dyson equations, also called loop equations in the

context of random matrices, of the following matrix integral:

7. / ef¥mvl(M1)+V2(M2)fM1Mz] dM, dM, (1-7)
H3 ()

1.1 Notations

Define the following polynomials, which vanish at all the hard edges:

Ky K;

s(z) = H(x - Xj) = Z spx” (1-8)
=Tl -1) =Y s (19)

The resolvent, (which is a formal series in its large x expansion), is defined by:

W(x) = % <Trx _1M1> (1-10)

And, up to a shift by the potential, it is more convenient to use Y (x):

Y(2) == Vi(2) - W(x) (1-11)

Then, for technical intermediate calculations, define the following expectation values, which

are formal series in their large x expansion:

Ue,y) = = <Tr L Vi) - V2'<M2>>

N T — M1 Yy — M2
(1-12)
1 Vi(y) — Vi(Ms) 1
U V= (T 2 2 T
(z,9,) < oM, y-My, o -M/,

(1-13)



_t Vi(z) = VI(M) V5(y) — V3(M>)
P(z,y) = N <Tr pa—ya = >
(1-14)
A = (2B s0nvn) )

(1-15)

Ba) = (0 500 )
(1-16)

By(z) == % <T1~;(_M]\14)1 M§>
(1-17)
D(z) :=xB(x) + Z Z Ss % (Tr M;‘l_j> B;() (1-18)

Notice that U(z,y) and U(x, y, 2’) are rational functions of y, and P(z,y), is a rational function

of both = and y, whose poles are the same as the poles of V| and V.

2 The loop equations

Loop equations, i.e. Schwinger-Dyson equations, merely express the fact that an integral is invari-
ant under a change of variable. Schwinger equations have been extensively studied in the context
of field theory, and have been of great improtance for the study of matrix models [f]. For the
polynomial 2-matrix model, loop equations were first announced to give algebraic equations by
M. Staudacher [[9], and computed precisely for general potentials, including 1/N? corrections by
M3, [3, [4, [J]. They have been solved recentely by [§] following the method of [[f]. Here, we

follow the method of [I4].

2.1 Generalities

2.1.1 Changes of variables

Consider a change of variable in H2(T'), of the form:

My — My = My + ef (M, My) +f1(My, My) + O(e]) (2-1)



Remark 2.1 Under such a change of variable, the eigenvalues of M| are no longer on paths ;, , but on
some paths ’ygk, which, for € small enough, are small deformations of +;, , and thus the integral is indeed
unchanged. This is true only if we can deform the contours, i.e. not at the extremities. At poles, the
integrand vanishes, so that the integral is still invariant. At hard edges, the integral is invariant only if

M| = M, i.e. f(Mi, Ms) vanishes at hard edges.

To order 1 in |e[, one has:
N / /
exp |~ T (Vi(MS) + Va(Ma) — M)

= (1 —eS(f) —eS(f) + O(|€‘2)) exp [—%Tr (Vi(My) + Va(Ma) — My M)

with
S(f) = 5 T (V{(M) = M) F(M, M)

The measure dM; is multiplied by a Jacobian J, which we expand to order 1 in |e|:

dM; = J(f)dMy = (1 + e (f) +eT(f) + O(*))dM;

Loop equations are obtained by writing that the integral is unchanged, i.e.:

N
Z /dM1 dM, exp [—7Tr (Vi(My) + Va(My) — M1M2)}
= /dM{ dM; exp [—gTr (Vi(M7) + Vo(My) — M{M2)}
= /dM1 AM; (14 € (T (f) = S(f) +e(T(f) = S(f)) + O(le[*))

exp [—gTr (Vi(My) + Vo (M) — M1M2)}
(2-5)

Since this must be true for all argument of €, one must have:
N
0= [ WM () - S exp | ~S TR () + V08) - M)

i.e.

This equation is called a loop equation.

(2-2)

(2-6)

(2-7)

Let us emphasize again that eqP-5, and thus eq.p-7 hold only if f vanishes at the hard edges.



2.1.2 Split and merge rules

The rules to compute J(f) are called split and merge rules and can be found in the litterature,
for instance in [[4]. Notice that 7 is linear, and if f is a product, J(f) can be computed by the
chain rule. Thus, it is useful to determine J(f) for some particular f. For any two matrices A
and B, one has:

e Split rule:

1 1 1
A B) =TrA T B 2-8
j( .T—Ml ) g .T—Ml r.T—Ml ( )
or equivalentely:
k—1
J (AM{B) =) TrAM] TeM{ "B (2-9)
=0
e Merge rule:
1 1 1
AT B))=T A B 2-10
j( r(x—Ml )) r.ﬁU—Ml .T—Ml ( )
or equivalentely:
J(ATe (MfB)) =Y TeM] AM{ 7B (2-11)
=0

2.2 Equations

In this section, we write the change of - variable, i.e. function f, and the corresponding loop
equation of type eq.p-1]. We always write the contribution of the Jacobian J in the LHS and the
contribution of the action S in the RHS.

e computation of B(z): from

f(My, My) = s(M;y) 1L 3(Y(2)) = 5(Ms)

r—M  Y(z)— M,
1 5(Y(x) = 53(My)  s(x) —s(My) 3(Y(x)) — 5(Mp)
= s(x)x T, Y(x) = M, T Y(@) = (2-12)

(which indeed vanishes at all hard edges) we get:

i <Tr 1 5(Y () — 5(My)

S@OWE G\ 0L~ Y - g

2 1 1 5(Y(z)) — 5(Ms)

+S<x)ﬁ <T1“x s Trx — M, Y(x)— M, >c

2 Bt 1 xi_Mling — 5(Ms
2ZZST<TrM{ Tra:— ( <))_ ( )>

N —0 i=0 M1 Y(.T) M2




x — M Y(z) — M,
(2 —13)
) — vitany sty - s
_S(x)ﬁ T x — ]\/1[1 Y(x) — M, >

Xr — M1 Y(ZL‘) — M2
2 & gt — MY (2)) — §(My)
o , TMrflsz 1
+N2;;S < T T Y(e) - M, >

2 1 1 5(Y())
—S(fﬁ)m <Trx — M . My Y(z) — M, >c

(2 —14)
e computation of By(z): from

1 Y(x)F - M¥

x— M, Y(x)— M,
_ 1 Y(x)k - M¥ _ s(x) = s(M) Y (x)k — MY
xr— M Y(x)— M, x — M Y(x) — M,

(which indeed vanishes at all hard edges) we get:

f(My, M) = s(M;)

- ot — MY (z)kF — ME
_m ZZST <TI‘M{11 TI‘ZL‘ 1 ({L‘) 2 >

r=0 i=0 r— M Y(r)— M,
s(M; ) o)k — M?
- % <T1"3j <_M]\4>1 (V] (M) — M) };((;13)——]\]\442>
(2 —16)
By(x) = Y (z)Fs(z)W (z)




_i <Tr8(x) — S(Ml) (Vvll(Ml) _ Mg) Y(l‘) — M2 >

N xr — M1 Y(l‘) — M2
ot Trs(x) — s(My) M

N Xr — M1

2 Sl L at— MY (2)F — Mk

o . T Mr—l—zT 1 2
+N?ZZS< Rt V& Y(:c)—M2>

r=0 =0
2 1 1 Y(2)F — M
—s(z)— (T T
@) 3 < T M,z — M, Y(x)— M, [,
(2 - 17)

e Computation of D(x):

D(x) = xB(x)

t /. Vi) - V{(M) 5(Y(x)) - 3(M,)
—xs(x)ﬁ Tr v — M, Y(x) — M, >
t s(z) — s(My) _
_'TN Tr o Ml 8<M2)>
t s(x) — s(My) ., S(Y(x)) — 5(Ms)
—;L’N <T1‘ v — M, (Vi (My) — My) Y (z) — My >
/2 Ky r—1 1 Tt M 5(Y(x)) — s(Mo
+$—QZ%Z;ST<TIM{_ Rr—Ys (Y(i;—f\(@ )>
Ko 5—1~ ; g V/(z) — VI (M, ij_Mg
_s(x)sz:%;%N(TrMQ >N<Tr (x)—Ml( ) Y((x))—M2>
Ky s—1 L s(x) — s(M ) ij_Mg
_Eggs%mzws >%<Tr<$_—;él> <V1<M1>‘M2’ﬁ>
(DO iy sy
Ko osol oy so1—jy 1 US A o1 &= MY Y (2)) — M3
+ZOZ(]$8N<T1"M2 >WZOZOST<TYM1 Tl“x_M1 Y<(:c))—M2>

2 1 1 3(Y(2)) — 5(Ms)
—15(z)~— (T T
m(x)N2< ToM, a—M, Y(@) - My, /.
Ko s—1 . .
ot iy PP 1 1 Y(z) — My
- e (Te My T T
s(0) DD S g (Tr M >N2<%—M1 YT M, Y(z) — M,

s=0 j=0




(2 — 18)

e computation of A(x): By doing a change of variable on M, of the form:

FOn M) = s(h)—

we have:

t2 K2 s—1

3 S<M1) j s—1—j
mZZs <T1“mM5TrM2 ' j>

s=0 j=0 1

= A(z)—zB(z) + % (Trs(M;) 5(Ms))

i.e.

(2—21)
e Main computation: from

f(My, M) = s(M)

(2-22)

we get:

t - rimi e B — M 3(Y (2) V3 (Y (2)) — 3(Mo) V3 (Mo)
_ﬁ;;sr <T1~M1 Trx_Ml V(o) L, >



t 1 : 5(Y (2)V5(Y () — (M) V5 (Mp)
- <Trs(M1) T (Vi) — ) EE >
(2 - 23)
¢ 1 1 s(Y(2)V5(Y(x)) — $(M2)V5(Mo)
(@) Nz <Trx VAV Y(z)— M, >
= (@)Y (@)Y (2)W(z) ) ,
st T Vi(@) = Vi) S(Y (@) V3 (Y (2)) = 5(Mp) V5 (Mo)
N x — M, Y(z) — M,
t /oos(@) —s(My) o, 5(Y (@) V5 (Y () — (M) V5 (Mp)
N\ T, (M) = ) Y(z) - M, >
s @ = M (Y @)Y (2)) — S(Ma)VE(M)
+-= 2 ; Sy <T1"M1 Tr P Y (x) = M, >
t s(z) — s(My) _ ,
(= sanvon))
—A(z)
(2 — 24)
t* 1 1 s(Y(2)V5(Y(x)) — $(M2)V3(Mo)
(@) 3z <Trx T 7 Y (z) — M; >
2 Ko sml s(M, ) .
+ﬁ;;ss <Trx<_7M)1M2 Tr M; >
= s(@)s(Y (@)Y (2)W(z) , )
_S(x)i <TIV1/<5") — ViI(My) $(Y (2))V5(Y () — $(M>)V5(M>)
N x — M, Y(z) — M,
t s(z) —s(My) ., S(Y (2)V5(Y(2)) — 5(M2) V3 (Ma)
N <Tr v (ViM) = Ak Y(z) - M, >
et 1o = M7 (Y () V5 (Y (x)) — 3(Ma) V3 (M)
—i—mrzz(];sr <T1"M1 Trx_]w1 Y(x) = M, >
t s(z) — s(My) _ ,
— < Trx_—]w1 S(Mz)Vz(Mg)>
oz (T (M) 5(0)
—D(z)
(2 - 25)

Now, inserting the value of D(z), and after tedious but straightforward computations, we get:

3($)§(Y(x))% <Tr9€ —1M1 Trx —1M1 V2/<YY<2§ : ]\V;;(MQ) >c




(2 — 26)

—|—8<$L’)t— <Trx _1M1 Trx _1M1 (Vy(My) — M) §(Y}5$USZ; : i;iw2)>

5(Y (2)) — §(M2)>

t2 1
_S(x)— <TI' TI'

N2 x — M, Y(x) — M,
Ky s—1 t2 . ]_ ;
o) 3 3 (T ey

s=0 7=0
Ko s—1

o Ly P 1 L Y@ -3
_ s = (TrM;~ 77y — (T T
8@);;3 N< PR >N2< oM,z M, Y(z) - My
Ky s—1 2 K-l xi —Mf Y(x>j _M5>

ot s—1—i t r—1—i
+ZZSSN<T1"M2 1 J>WZZST<TIM1 1 MM Y - M

8(%)5(1;(3:)) ((“//;’((S;(f))w—(ﬁ) gV{(x) —Y(z)) — p(x,%
_S(LU)N <Tr 1 - J\Z (VJ(My) — M)

M,
Ko s—1 :
o gy b Vi) = VM) Y(a) — My
s—{(Tr M, ) — (T
+Mzzﬁwr2»ﬂr:hm V() M,

s=0 7=0

t2 K1 r—1

_5(Y(2) = <Tr w (VI(My) — Ma)

. 12 N poteip T = My V3(Y(
V(@) DD <T1"M1 R A Sy 72

r=0 i=0

Mwmww—mww»wmw®+M%ﬁﬁgt$%§

P <Trs(x) — s(M) - 5(Y(x)) — g(M2)>

N2 x — M, Y(z) — M,
o Ki r—1 o ai— M 5(Y(z)) — s(M;
+% ; ;Sr (TrMi=") <Tr z — M, (V2(Mo) — M) ( Y((II)C; — ]\512 )>
+% z; ]ios (Tr M3~ <Trw (V{(My) — M) %>

Ki r—1 Ky s—1 ' — MY (z) — M§>

3 = r—1—i s—=1—j
53 3 RGN NSV R (Rt G

r=0 =0 s=0 j=0



which we write as follows:

(2-27)

where E(x,y) is a rational fraction of both x and y with poles at the poles of V/ and Vj, and at
the hard edges:

)
t Vi(x) =VI(My) o o Sly) = 3(My)
SN\ T (U M) e >
1 dENE .t s—1—j Vl( ) ‘/1,<M1) yj - Mg
- > <T M > < r— M y— M, >
s(z) —s(M) ., Vi(y) — V3(Ms)
=) (o) - ary P BERD

K1 r—1 .
1 1 i 2 — My Vi(y) — V3 (M)
, TeMT 1 T 1 72 2
+S(.T) N? r=0 =0 ’ < H ' T — Ml Yy— M2
1 t T s(x) — s(My)
— — (Tr
s(z)s(y) N x — M

(VI VA(M) ~ MaVI(0) — MVY(1) + Mty =32 )

(e) — s(ML) - 5(y) — 5(M2) o
1 t? s(x) — s(M; — S(M,
s(x)é(y)ﬁ@ P VAV >

1 2 S 1 x' — Mj S(y) — s(Ma)
R EERE 23 ) s (T ) <T —3 L (V) (M) — Ml)w>

r=0 =0
1 2 & - — s(My) g — M
— o (Te M~ 2 2V (W (My) — M 2
+S<“ ZZ (Trag) — (Vi) 2)y_M2

KlrlKgsl . - Mlzyj_Mg
»Ss (TrM{~ ‘ TMS
N?’;;;;SS (D) (T )"y n
(2 — 28)

and in the right hand side of eqP-27, we have:

1 1 V3(Y(z)) — V3 (Ma)
- <Tr:c B VA VAR V0% S >

1 1 : S(Y(x)) — 8(M,)
<TI'$ _ Ml TI":L‘ — Ml (‘/2(M2) — Ml) _ >C




R 1 sY() — ()
@) g{T:c—MlT Y(x) = My >

1 2 1 . 1
s (T T M
) OZS < ' oM >
Jj=0 ¢
2 s—1

K . .
1 e 1 1 Y(z) - M]
c—{(Te M) (T T 2
Y(a: ZS G (T >< T M, M, Y(z) - M,
K1 r—1 Ko s—1 ¢

EREREID ) 9) DI

rOzOsOJO

— MY (z) — M]
—TMSl] TeMr iy Y 2
<r ><r .T—Ml Y(.T)—M2>

) o 2 (g 0 -y IS

(2 — 29)

2.3 Examples

Equation eq.-27 looks rather terrible, but it is actualy very simple to use. Let us illustrate it on

simple examples.

2.3.1 No hard edges

If there is no hard edges, we have s(z) =1 and $(y) = 1, and the loop equation becomes:

(VAY () =) (Vi (@)=Y ()~ Pl Y () + = 1 <Trx—1M1Trx—1M1 (Yy(fag MQ(MZ)>
(2-30)

which is the well known loop equation of the 2-matrix model with polynomial potentials [[[4].

2.3.2 1-matrix model

Consider the 1-matrix model with weight e~ IV T g equivalent to a 2-matrix model where

M is gaussian, i.e. V3 (y) =y, 5(y) =1, V'(x) = V/(x) — x. The equation eq.p-27 becomes:

Blay) = (-oV@)+r-y) - <Tr - AV4’<M>>
Lot/ sle) = s(M)
_@N <Tr P V(M)>




(2 —31)

and in the right hand side of eqP-27, we have:

L(z) = <Trx _lM Tr- _1M> (2-32)

Since E(x,y) is quadratic in y, this equation defines an hyperelliptical curve.

2.3.3 1-matrix model with only one hard edge

In particular, consider s(z) = (z — a), we have:

(TeV/(M))  (2-33)

N

Elz,y) = (y— 2)(V'(2) + 7 — ) — — <Tr V/(x) - V’(M)> 1t

x—M z—aN
2.3.4 1-matrix model with only two hard edges

In particular, consider s(z) = (z — a)(x — b), we have:

Bew) = -0y - g (m O
- —m% (Tr (2 + M — a — b) V/(M)) + #2@;-5)
2.3.5 2-matrix model with only one hard edge
Consider s(x) = (x — a) and 3(y) = 1, we have:
Bow) =) t><<¥(<v) (—]Z)) Pl )yv> - oy
x—aN S — M,

(2 — 35)
and in the right hand side of eqP-27, we have:

1 1 Vi(Y(z)) — V(M)
La) = <Trx—M1 R A S N VA >




2.3.6 2-matrix model with only two hard edges
Consider s(z) = (z — a)(x — b) and 5(y) = 1, we have:
(

E(x,y) - (Va(y)

_ﬁﬁ <T1“ (l‘ + M1 —q— b) (V'l/(Ml) . Mg) ‘/2/(?/; : LQ/(MQ)>
12/ Vily) — V3(OM)
v )

(2—-37)
and in the right hand side of eqP-27, we have:

_ 1 1 Vi(Y(x)) — V3 (M)
L) = <Trx B A V A V0 gy ) >
(2 — 3%

2.3.7 2-matrix model with only one hard edge in x and one hard edge in y
Consider s(z) = (z — a) and 5(y) = (y — b), we have:

Blry) = 04 - 2)() —9) - Pley) +
o 1 Tr‘/1<x) — ‘/1<M1) (‘/;(MQ) . Ml)

ly) v Vi(y) — Vi (My)
/ o\Y) — Vo 2
T (Vi) - ) = >

s(x)
1 ¢ , B
‘Wﬁ (Tr (V(My) V3 (My) — MyVi(Ms) — MV (M) + My M) )

s(x)5(y)

Y
8

R
—~

zl= ==

/\/\

(2 — 39)

and in the right hand side of eqp-27, we have:

_ 1 1 V3(Y(z)) — V3 (Ma)
L) = <Tr:c VAP VAR U S ) >
1 1 1 _—
e (T T 040k -V )
(2 — 40)

3 Large N limit, algebraic curve

In the large N limit, eq-27 reduces to an algebraic equation:

E(z,Y(z)) = 0 (3-1)



One should notice that in the large N limit, there is the factorization [f: < TrTr >=< Tr ><
Tr >, so that x and y play symmetric roles [I7].

We see that E(x,y) has poles only at the poles of V/ and zeroes of s in x and at the poles of
Vy and the zeroes of s in y.

3.1 Behaviour near hard edges

near an hard edge r — X, such that s(X;) = 0, we have:

Y2($) N X, T

i s(x) N x — M
K1 r—1
1 : t xt — Mt
- , T Mrflfl ~ (T 1
+s(x) r:211SN< ' N< rx_M’l>
+finite (3-2)
Thus:
1 t S(Ml)
2 _ v / _
RVl = oo (T B () - )
K1 r—1 l
1 t t X, — M
— TMT*lfl (T 7 1
W(X)EHSNU ! N<IXZ—M1>
(3-3)

Hard edges are at the same time poles of Y (z), and zeroes of dz, so that Y (z)dz is finite.

3.2 Behaviour near poles of the potential

Near a finite pole £ of V{(x), we have:

Y () ~ Vile) = W(E)+ O — &) (3-4)
thus
Res Y (z)dx = Res Vi (a)d (3-5)
Near a pole at oo, we have:
V(@) ~ Vi) - - +0(/s?) (3-6)

thus
Rges Y(z)de =t (3-7)



3.3 Determination of the algebraic equation F(x,y)

So far, we know that F(z,y) is a rational function of x and y, we know its form, and its behaviour
near poles, but most of the coefficients are not determined by the loop equations.

The remaining coefficients of E(z,y), as usual, are determined by extra requirements, which
depend on how the matrix model is defined, i.e. on the purpose for which we introduce the matrix
model.

The two most frequent definitions of the matrix model are (we mainly follow the presentation

of [IH]):

3.3.1 Case of the convergent matrix model

In this case, the matrix model is defined by the convergent integral eq[I=7. For generic potentials
e
and thus the function Y (x) also, has a large N limit, but no 1/N expansion. This fact can be

and hard edges In Z has a large N limit Fp, but has no 1/N series expansion. The resolvent,
understood from the work of [H].

The large N limit of Y (z) obeys an algebraic equation E(z,Y (z)) = 0.

Now, consider an arbitrary E(:p,y) satisfying the correct behaviours near poles. It gives a
function Y (), and from it one can compute the free energy F, (see the formula in [f]). The Y ()
which is the large N limit of the resolvent is the one for which R(Fy) is minimal (see [[3, f]]). That

implies in particular that for any contour C on the algebraic curveE(z,y) = 0, one has:
vC %%Y(m)dw =0 (3-8)
C

On an algebraic curve of the type E(z,y) = 0, there are at most 2 x genus independent irreducible
cycles, (plus contours around poles), and one can check that the number of constraints of type eq.B]
B, exactly matches the number of coefficients of F(x,y) not determined by the pole behaviours.
Thus, condition eq.B-§, determines E(z,y) completely. In case there are several solutions, one

determines a unique one, by choosing the absolute minimum of Fjy.

3.3.2 Case of the formal matrix model

The formal matrix model can be defined in a combinatoric way, as a formal series, generating
discrete surfaces. The formal expansion is obtained by expanding the matrix integral eq.[-7] with
the Feynman graph technics [f], [[d, [].

In that model, In Z has a 1/N expansion by definition, as well as the resolvent, and all ex-
pectation values. The resolvent of the formal matrix model, is thus obtained by solving the loop
equation eq.P=27, order by order in 1/N?2.



That model, in addition to the potentials and hard edges, depends on a “vacuum” around
which the Feynman expansion is performed. This vacuum is characterized by a set of “filling
fractions”, as follows (see [[J] for more details): The potential Vi(z) 4+ Va(y) — zy has a certain

number of extrema, which are given by the algebraix equation:

Viw) =y, Vi(y) == (3-9)

1.e.

Vi(Vi(z)) = = (3-10)

Let us call K the degree of that algebraic equation, i.e. the number of its solutions:

(Elayl)v"'v(fKayK) (3-11)

The eigenvalues of matrices My, My which extremize Tr(V; (M) 4+ Va(Ms)— My M) must be among
the K solutions described above, or can be trapped on contours stopping at hard edges. The filling
fractions (€, ..., €x 1k, +K,) represent the number of eigenvalues equal to each solutions of eq.B-10,

i.e. there are Ne; eigenvalues of M; equal to Zp,... One must have:

K+K1+Ka2

Y oa=1 (3-12)

i=1
The average number of eigenvalues of M; in the vicinity of a point (Z,7), is a contour integral of

the resolvent, along a contour which surrounds (7, 7):

2irNei = — ¢ W(x)de = }’{ Y (2)da (3-13)
A, A;
and it can be non-zero only on irreducible cycles of the algebraic curve.
Thus, in the Formal matrix model, a set of irreducible cycle contour integrals are fixed. One
can verify that the number of filling fractions matches exactely the number of coefficients of E(x,y)
not determined by the pole behaviours, Thus, eq.B-13 is sufficient to determine completely the

rational function E(z,y).

4 Conclusion

The purpose of this article was to write down the loop-equations for the so-called semiclassical
2-matrix model. We find, that the loop equation becomes an algebraic equation E(x,y) = 0 in
the large N limit, with poles at the poles of the potentials, and at the hard edges. The hard edges
are such that the resolvent has a simple pole, and dx has a zero, so that the differential form ydx

is regular.



The loop equation determines the form of the algebraic equation E(z,y), but does not de-
termine its coefficients. The coefficients are determined by extra asumptions, related to which
definition of the matrix model is consiered. In the formal matrix model, the A cycle integrals of
ydx are fixed parameters of the model, and that determines F(z,y) completely. In the conver-
gent matrix model, the real parts of both A and B cycle integrals of ydx must vanish, and that
determines E(x,y) completely.

Let us also remark that the function eq-27 E(z,y) is unchanged under the exchange = < y,
Vi < Vi, s <> §, which is the generalization of Matytsin’s duality property [L7:

X(Y(2) =2 (4-1)

The consequences of that algebraic equation, can then be studied. This is done for instance
in [B]. One can also expect to generalize the works of [{], or [, or [, i.e. the computation of all

correlation functions and their 1/N? expansion, and further, compute the expansion of the free

energy [T, [[T].
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