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(Dated: April 1, 2005)

We present a quantum description of a planar microcavity photon mode strongly coupled to a
semiconductor intersubband transition in presence of a two-dimensional electron gas. We show that,
in this kind of system, the vacuum Rabi frequency ΩR can be a significant fraction of the inter-
subband transition frequency ω12. This regime of ultra-strong light-matter coupling is enhanced
for long wavelength transitions, because for a given doping density, effective mass and number of
quantum wells, the ratio ΩR/ω12 increases as the square root of the intersubband emission wave-
length. We characterize the quantum properties of the ground state (a two-mode squeezed vacuum),
which can be tuned in-situ by changing the value of ΩR, e.g., through an electrostatic gate. We
finally point out how the tunability of the polariton quantum vacuum can be exploited to generate
correlated photon pairs out of the vacuum via quantum electrodynamics phenomena reminiscent of
the dynamic Casimir effect.

In the last decade, the study of intersubband elec-
tronic transitions1 in semiconductor quantum wells has
enjoyed a considerable success, leading to remarkable
opto-electronic devices such as the quantum cascade
lasers2,3,4. In contrast to the more conventional inter-
band transitions between conduction and valence bands,
the frequency of intersubband transitions is not deter-
mined by the energy gap of the semiconductor material
system used, but rather can be chosen via the thickness of
the quantum wells in the active region, providing tunable
sources emitting in the mid and far infrared.

One of the most fascinating aspects of light-matter
interaction is the so-called strong light-matter coupling
regime, which is achieved when a cavity mode is reso-
nant with an electronic transition of frequency ω12, and
the so-called vacuum Rabi frequency ΩR exceeds the cav-
ity mode and electronic transition linewidths. The strong
coupling regime has been first observed in the late ’80s
using atoms in metallic cavities5,6, and a few years later
in solid-state systems using excitonic transitions in quan-
tum wells embedded in semiconductor microcavities7. In
this regime, the normal modes of the system consist of
linear superpositions of electronic and photonic excita-
tions, which, in the case of semiconductor materials, are
the so-called polaritons. In both these systems, the vac-
uum Rabi frequency ΩR does not exceed a very small
fraction of the transition frequency ω12.

Recently, Dini et al.8 have reported the first demon-
stration of strong coupling regime between a cavity pho-
ton mode and a mid-infrared intersubband transition, in
agreement with earlier theoretical predictions by Liu9.
The dielectric Fabry-Perot structure realized by Dini et

al.8 consists of a modulation doped multiple quantum
well structure embedded in a microcavity, whose mir-
rors work thanks to the principle of total internal reflec-
tion. The strong coupling regime has been also observed
in quantum well infra-red detectors10. As we will show
in detail, an important advantage of using intersubband
transitions is the possibility of exploring a regime where
the normal-mode polariton splitting is a significant frac-

tion of the intersubband transition (in the pioneering ex-
periments by Dini et al.8, 2h̄ΩR = 14 meV compared to
h̄ω12 = 140 meV). Furthermore, recent experiments have
also demonstrated the possibility of a dramatic tuning of
the strong light-matter coupling through application of a
gate voltage11 which is able to deplete the density of the
two-dimensional electron gas.

A few theoretical studies12,13,14 on interband excitonic
transition have pointed out that polariton excitations
have intrinsic non-classical properties, as a result of the
anti-resonant terms of the light-matter coupling. The
importance of these effects is quantified by the ratio be-
tween the vacuum Rabi frequency ΩR and the excitonic
transition frequency ωexc. Unfortunately in the case of
interband exciton-polaritons, the ratio ΩR/ωexc is very
small (typically less than 0.01) and the corresponding
quantum effects are expected to be very weak. For this
reason, the anti-resonant terms in the Hamiltonian can
be generally neglected.

In this paper, we show that in the case of intersub-

band cavity polaritons, it is instead possible to achieve
an unprecedented ultra-strong coupling regime, in which
the vacuum Rabi frequency ΩR is a large fraction of the
intersubband transition frequency ω12. To this purpose,
transitions in the far infrared are most favorable, because
the ratio ΩR/ω12 scales as the square root of the intersub-
band emission wavelength. Within a second quantization
formalism, we characterize the polaritonic normal modes
of the system in the weak excitation limit, in which the
density of intersubband excitations is much smaller than
the density of the two-dimensional electron gas in each
quantum well (in this very dilute limit, the intersubband
excitations behave as bosons). We point out the non-
classical properties of the ground state, which consists of
a two-mode squeezed vacuum. As its properties can be
modulated by applying an external electrostatic bias, we
suggest the possibility of observing quantum electrody-
namics effects, such as the generation of correlated pho-
ton pairs from the initial vacuum state. Such an effect
closely reminds the so-called dynamical Casimir effect,
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whose observation is still an open challenge and is actu-
ally the subject of intense effort. Many theoretical works
have in fact predicted the generation of photons in an
optical cavity when its properties, e.g. the length or the
dielectric permittivity of the cavity spacer material, are
modulated in a rapid, non-adiabatic way26,27,28.

The present paper is organized as follows. In Sec. I
we describe the system under examination and in Sec.
II we introduce its Hamiltonian. The scaling of the cou-
pling intensity with the material parameters is discussed
in Sec. III, while Sec. IV is devoted to the diagonaliza-
tion of the Hamiltonian and the discussion of the polari-
tonic normal modes of the system in the different regimes.
The vacuum ground state is characterized in Sec. V and
its quantum properties are pointed out. Two possible
schemes for the generation of photon pairs from the ini-
tial vacuum by modulating the properties of the ground
state are suggested in Sec. VI. Conclusions are finally
drawn in Sec. VII.

I. DESCRIPTION OF THE SYSTEM

In the following, we will consider a planar Fabry-Perot
resonator embedding a sequence of nQW identical quan-
tum wells (see the sketch in Fig. 1). Each quantum well
is assumed to be doped with a two-dimensional density
N2DEG of electrons, which, at low temperatures, popu-
late the first quantum well subband. Due to the presence
of the two-dimensional electron gas, it is possible to have
transitions from the first to the second subband of the
quantum well. We will call h̄ω12 the considered intersub-
band transition energy. If we denote with z the growth
direction of the multiple quantum well structure, then
the dipole moment of the transition is aligned along z,
i.e., d12 = d12ẑ. This property imposes the well known
polarization selection rule for intersubband transitions in
quantum wells, i.e., the electric field must have a com-
ponent along the growth direction. We point out that in
the case of a perfect planar structure, the in-plane wave-
vector is a conserved quantity, unlike the wave-vector
component along the z direction. Therefore, all wave-
vectors k will be meant as in-plane wave-vectors, unless
differently stated.

In the following, we will consider the fundamental cav-
ity photon mode, whose frequency dispersion is approxi-
mately given by ωcav,k = c√

ǫ∞

√

k2
z + k2, where ǫ∞ is the

averaged dielectric constant of the cavity spacer and kz

is the quantized photon wavevector along the growth di-
rection. In the case of metallic mirrors, kz = π

Lcav
, with

Lcav the cavity thickness. In the case of total-internal re-
flection mirrors, the wavefunction of the confined photon
mode partially penetrates into the buffer layer, which has
a smaller index of refraction than the cavity one. In this
case, kz = π

Leff
cav

, with Leff
cav = Lcav + Lbuff , where Lbuff

is the penetration length into the buffer layer. Note that
Lbuff is not a constant, but it depends on the cavity pho-
ton propagation angle θ (θ must be larger than the crit-

z

Lcav
q

hw
12

z

E2

q
2DEG

(a)

(b) a(c)
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FIG. 1: (a) Sketch of the considered planar cavity geom-
etry, whose growth direction is called z. The cavity spacer
of thickness Lcav embeds a sequence of nQW identical quan-
tum wells. The energy of the cavity mode depends on the
cavity photon propagation angle θ. (b) Each quantum well
contains a two-dimensional electron gas in the lowest subband
(obtained through doping or electrical injection). The transi-
tion energy between the first two subbands is h̄ω12. Only the
TM-polarized photon mode is coupled to the intersubband
transition and a finite angle θ is mandatory to have a finite
dipole coupling. (c) Sketch of the energy dispersion E1(q) and
E2(q) = E1(q) + h̄ω12 of the first two subbands as a function
of the in-plane wavevector q. The dispersion of the inter-
subband transition is negligible as compared to the one of the
cavity mode. For a typical value of the cavity photon in-plane
wavevector k, one has in fact E2(|k + q|) − E1(q) ≃ h̄ω12.

ical angle for total internal reflection) and on the cavity
photon frequency.

II. SECOND QUANTIZATION HAMILTONIAN

In this Section, we introduce the system Hamiltonian
in a second quantization formalism. In the following,

we will call a†
k the creation operator of the fundamental

cavity photon mode with in-plane wave-vector k. Note
that, in order to simplify the notation, we will omit the
polarization index of the photon mode, which is meant
to be Transverse Magnetic (TM)-polarized (also known
as p-polarization). This photon polarization is neces-
sary to have a finite value of the electric field compo-
nent along the growth direction z of the multiple quan-
tum well structure, direction along which the transition

dipole of the intersubband transition is aligned. b†k will
be instead the creation operator of the bright intersub-
band excitation mode of the doped multiple quantum
well structure. In the simplified case of nQW identical
quantum wells that are identically coupled to the cavity
photon mode, the only bright intersubband excitation is



3

the totally symmetric one, with an oscillator strength
nQW times larger than the one of a single quantum well.
The nQW −1 orthogonal excitations are instead dark and
will be neglected in the following. The creation operator
corresponding to the bright intersubband transition can
be written as

b†
k

=
1

√

nQW N2DEGS

nQW
∑

j=1

∑

|q|<kF

c
(j)†
2,q+k

c
(j)
1,q

, (1)

where N2DEG is the density of the two-dimensional elec-
tron gas in each quantum well and S is the sample area.

The fermionic operator c
(j)
1,q annihilates an electron be-

longing to the first subband and j-th quantum well,

while c
(j)†
2,q+k creates an electron in the second subband

of the same well. kF is the Fermi wavevector of the two-
dimensional electron gas, whose electronic ground state
at low temperature is

|F 〉 =

nQW
∏

j=1

∏

|q|<kF

c
(j)†
1,q |0〉cond , (2)

where |0〉cond is the empty conduction band state.
In the following, we will consider the situation of a

weakly excited intersubband transition, i.e.,

1

S

∑

k

〈b†kbk〉 ≪ N2DEG . (3)

In this dilute limit, the intersubband excitation field is
approximately bosonic, namely

[bk, b†k′ ] ≃ δk,k′ . (4)

Starting from the coupled light-matter Hamiltonian
of the semiconductor and retaining only the consid-
ered cavity photon mode for the electromagnetic field
and the considered intersubband transition for the elec-
tronic polarization field, one finds a standard Hopfield-
like Hamiltonian20

H = H0 + Hres + Hanti (5)

which consists of three qualitatively different contribu-
tions, namely

H0 =
∑

k

h̄ωcav,k

(

a†
kak +

1

2

)

+
∑

k

h̄ω12 b†kbk , (6)

Hres = h̄
∑

k

{

iΩR,k

(

a†
kbk − akb†k

)

+Dk

(

a†
kak + aka†

k

)}

, (7)

Hanti = h̄
∑

k

{

iΩR,k

(

akb
−k − a†

kb†−k

)

+Dk

(

aka
−k + a†

ka†
−k

)}

. (8)

H0 in Eq. (6) describes the energy of the bare cavity
photon and intersubband polarization fields, which de-

pend on the numbers a†
kak, b†kbk of cavity photons and

intersubband excitations, respectively.
Hres in Eq. (7) is the resonant part of the light-matter

interaction, depending on the vacuum Rabi energy h̄ΩR,k

and on the related coupling constant Dk. The terms pro-
portional to ΩR,k describe the creation (annihilation) of
one photon and the annihilation (creation) of an inter-
subband excitation with the same in-plane wavevector.
In contrast, the term proportional to Dk contains only
photon operators, because it originates from the squared
electromagnetic vector potential part of the light-matter
interaction. Note that this term in Hres depends on the

photon number operator a†
kak as the bare cavity pho-

ton term in Eq. (6). Hence, it gives a mere blueshift
(Dk > 0) of the bare cavity photon energy h̄ωcav,k.

Finally, Hanti in Eq. (8) contains the usually neglected
anti-resonant terms, which correspond to the simultane-
ous destruction or creation of two excitations with op-
posite in-plane wavevectors. The terms proportional to
ΩR,k describe the creation (or destruction) of a cavity
photon and a intersubband excitation, while the terms
proportional to Dk describe the corresponding process
involving a pair of cavity photons.

Before continuing our treatment, we wish to point out
that the considered Hamiltonian in Eq.(5) contains only
the energy associated to the fundamental cavity mode
(including the zero-point energy

∑

k
1
2 h̄ωcav,k), the en-

ergy associated to the creation of intersubband excita-
tions and the full light-matter interaction between the
considered modes. The energy terms associated to the
other photon modes, the electronic energy of the filled
electronic bands as well as the electrostatic energy as-
sociated to an applied bias have been here omitted for
simplicity, as they do not take part in the dynamics dis-
cussed in the following of the paper.

III. SCALING OF THE INTERACTION

The specific values of the coupling constants ΩR,k and
Dk depend on the microscopic parameters of the inter-
subband microcavity system.

The so-called vacuum Rabi energy h̄ΩR,k is the Rabi
energy obtained with the electric field corresponding to
one photon5,21. For the system under consideration8,9,
the polariton coupling frequency for the TM-polarized
mode22 reads

ΩR,k =

(

2πe2

ǫ∞m0Leff
cav

N2DEG neff
QW f12 sin2 θ

)1/2

, (9)

where ǫ∞ is the dielectric constant of the cavity, Leff
cav the

effective thickness of the cavity photon mode (which de-
pends non-trivially on the boundary conditions imposed
by the specific mirror structures), and neff

QW the effec-

tive number of quantum wells (neff
QW = nQW in the of
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FIG. 2: Coupling ratio ΩR,k/ω12 as a function of the intersub-
band emission wavelength λ12 (µm). Parameters: f12 = 12.9
(GaAs quantum well), cavity spacer refraction index

√
ǫ∞ =

3, neff

QW = 50, N2DEG = 5 × 1011 cm−2 and θ = 60◦. The
Fabry-Perot resonator is a λ/2-microcavity. Results obtained
from the analytical expressions in Eqs. (14) and (15).

quantum wells which are identically coupled to the cav-
ity photon field and which are located at the antinodes
of the cavity mode electric field). The oscillator strength
of the considered intersubband transition reads

f12 = 2m0ω12d
2
12/h̄ , (10)

where m0 is the free electron mass and d12 is the electric
dipole moment of the transition. Under the approxima-
tion of a parabolic energy dispersion of the quantum well
subbands, the oscillator strengths of the different inter-
subband transitions satisfy the f -sum rule23

∑

j

f1j = m0/m∗, (11)

where m∗ is the effective electron mass of the conduction
band. In particular, for our case of a deep rectangular
well, the sum rule is almost saturated by the first inter-
subband transition f12 ≃ m0/m∗. Finally, θ is the prop-
agation angle inside the cavity (which is different from
the propagation angle in the substrate), and is related to
the in-plane wavevector k by k/kz = sin θ/ cos θ.

As we will see in the next section, the relevant pa-
rameter quantifying the importance of the quantum ef-
fects considered in this paper is the dimensionless ratio
ΩR,kres

/ω12, where kres is the resonance in-plane wavevec-
tor such as h̄ωcav,kres

= h̄ω12. In the system studied
by Dini et al.8, this ratio is already significant, namely
ΩR,k/ω12 = 0.05. Here, we show that the ratio ΩR,k/ω12

can be largely increased designing structures in the far
infra-red, by increasing the number of quantum wells and
by choosing semiconductors with smaller effective mass.

Let be θres the cavity propagation angle corresponding

to kres. From the relation

kres =
ω12

c

√
ǫ∞ sin θres , (12)

we get that for metallic mirrors

Lcav =
λ12

2
√

ǫ∞cos θres
, (13)

where 2π/λ12 = ω12/c. Under these conditions, the light-
matter coupling ratio at the resonance angle is

ΩR,kres

ω12
= η

√

λ12 , (14)

with

η =

√

e2 f12 sin2 θres cos θres N2DEGnQW

πm0c2
√

ǫ∞
. (15)

Note that the prefactor given in Eq.(15) has a weak de-
pendence on λ12. In fact, in the limit case of a rectan-
gular quantum well with high potential barriers, f12 =
0.96 m0/m⋆ and does not depend at all on λ12. More
refined calculations23 including the non-parabolicity of
the semiconductor band and the finite depth of the po-
tential well show that f12 has a moderate dependence on
the emission wavelength λ12 (it actually increases with
λ12). Hence, the normalized vacuum Rabi frequency
ΩR,kres

/ω12 increases at least as
√

λ12. The predictions
of Eqs. (14) and (15) are reported in Fig. 2 for a sys-
tem of 50 GaAs quantum wells and a doping density
N2DEG = 5 × 1011 cm−2. For an intersubband emission
wavelength of 100µm, the ratio ΩR/ω12 can be as high as
0.2. The values in Fig. 2 can be significantly increased
using semiconductors with smaller effective mass, such as
InGaAs/AlInAs-on-InP24.

To complete our description, we need to provide the ex-
plicit expression for the coefficient Dk, which quantifies
the effect of the squared electromagnetic vector potential
in the light-matter interaction. Generalizing Hopfield’s
procedure20 to the case of intersubband transitions, we
find that all the intersubband transitions give a contri-
bution to Dk, namely

Dk =

∑

j f1j

f12

Ω2
R,k

ω12
. (16)

However, as the oscillator strength of a deep rectangular
well is concentrated in the lowest transition at ω12, the
effect of the higher transitions is a minor correction

Dk ≃ 1.04
Ω2

R,k

ω12
≈

Ω2
R,k

ω12
. (17)

Note that for a quantum well with a parabolic confine-
ment potential V (z) = (1/2)m∗ω2

12z
2, the expression

Dk = Ω2
R,k/ω12 would be exact, since in this case all the

intersubband oscillator strength is exactly concentrated
in the lowest transition ω12.
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FIG. 3: Normalized polariton frequencies ωLP,k/ω12 and
ωUP,k/ω12 as a function of ΩR,k/ω12 for Dk = Ω2

R,k/ω12. The
calculation has been performed with ωcav,k = ω12. Note that
for a given microcavity system, ΩR,k/ω12 can be tuned in-situ

by an electrostatic bias, which is able to change the density
of the two-dimensional electron gas.

IV. INTERSUBBAND POLARITONS

As all the terms in the Hamiltonian H = H0 + Hres +
Hanti are bilinear in the field operators, H can be exactly
diagonalized through a Bogoliubov transformation. Fol-
lowing the pioneering work by Hopfield20, we introduce
the Lower Polariton (LP) and Upper Polariton (UP) an-
nihilation operators

pj,k = wj,k ak + xj,k bk + yj,k a†
−k + zj,k b†−k , (18)

where j ∈ {LP, UP}. The Hamiltonian of the system
can be cast in the diagonal form

H = EG +
∑

j∈{LP,UP}

∑

k

h̄ωj,k p†j,kpj,k , (19)

where the constant term EG will be given explicitly later.
The Hamiltonian form in Eq. (19) is obtained, provided
that the vectors

~vj,k = (wj,k, xj,k, yj,k, zj,k)T (20)

satisfy the eigenvalues equation

Mk~vj,k = ωj,k~vj,k (21)

with ωj,k > 0. The Bose commutation rule

[pj,k, p†j′,k′ ] = δj,j′δk,k′ (22)

imposes the normalization condition

w∗
j,kwj′,k + x∗

j,kxj′,k − y∗
j,kyj′,k − z∗j,kzj′,k = δj,j′ . (23)
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FIG. 4: Mixing fractions for the Lower Polariton (LP)
mode as a function of ΩR,k/ω12 (see Eq. (18) in the text).
The calculation has been performed for the resonant case
ωcav,k = ω12 , as in the previous figure. Panel (a): |wLP,k|2
(thin solid line), |xLP,k|2 (thick solid line). Note that for
ΩR,k/ω12 ≪ 1, |wLP,k|2 ≃ |xLP,k|2 ≃ 1/2. Panel (b):
|yLP,k|2 (thin dashed line), |zLP,k|2 (thick dashed line). For
ΩR,k/ω12 ≪ 1, |yLP,k|2 ≃ |zLP,k|2 ≃ 0. The Upper Polariton
(UP) fractions (not shown) are simply |wUP,k|2 = |xLP,k|2,
|xUP,k|2 = |wLP,k|2, |yUP,k|2 = |zLP,k|2, |zUP,k|2 = |yLP,k|2.

The Hopfield-like matrix for our system reads

Mk =







ωcav,k + 2Dk −iΩR,k −2Dk −iΩR,k

iΩR,k ω12 −iΩR,k 0
2Dk −iΩR,k −ωcav,k − 2Dk −iΩR,k

−iΩR,k 0 iΩR,k −ω12






.

(24)
The four eigenvalues of Mk are {±ωLP,k,±ωUP,k}. Under
the approximation Dk = Ω2

R,k/ω12 (i.e., all the oscillator

strength concentrated on the ω12 transition), detMk =
(ωcav,k ω12)

2, giving the simple relation

ωLP,k ωUP,k = ω12 ωcav,k , (25)

i.e., the geometric mean of the energies of the two po-
lariton branches is equal to the geometric mean of the
bare intersubband and cavity mode energies. The de-
pendence of the exact polariton eigenvalues as a function
of ΩR,k/ω12 is reported in Fig. 3, for the resonant case
ωcav,k = ω12.

A. Ordinary properties in the limit ΩR,k/ω12 ≪ 1

In the standard case ΩR,k/ω12 ≪ 1, the polariton op-
erator can be approximated as

pj,k ≃ wj,k ak + xj,k bk , (26)
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with |wj,k|2 + |xj,k|2 ≃ 1. This means that the annihi-
lation operator for a polariton mode with in-plane wave-
vector k is given by a linear superposition of the photon
and intersubband excitation annihilation operators with
the same in-plane wavevector, while mixing with the cre-
ation operators (represented by the coefficients yj,k and
zj,k) is instead negligible [see Fig. 4]. In this limit, the
geometric mean can be approximated by the arithmetic
mean and Eq. (25) can be written in the more usual
form:

ωLP,k + ωUP,k ≃ ωcav,k + ω12 . (27)

For the specific resonant wavevector kres such that
ωcav,kres

= ω12, the polariton eigenvalues are

ωLP (UP ),kres
≃ ω12 ∓ ΩR,kres

, (28)

and the mixing fractions are |wLP,kres
|2 ≃ |xLP,kres

|2 ≃
1/2.

B. Ultra-strong coupling regime

When the ratio ΩR,k/ω12 is not negligible compared to
1, then the anomalous features due to the anti-resonant
terms of the light-matter coupling becomes truly rele-
vant.

In the resonant ωcav,kres
= ω12 case and under the ap-

proximation Dk = Ω2
R,k/ω12, the polariton frequencies

are given by

ωLP (UP ),kres
=

√

ω2
12 + (ΩR,kres

)2 ∓ ΩR,kres
, (29)

which, as it is apparent in Fig. 3, corresponds to
a strongly asymmetric anti-crossing as a function of
ΩR,kres

/ω12. This is due to the combined effect of the
blue-shift of the cavity mode frequency due to the terms
proportional to Dk in Eq. (7), and of the anomalous
coupling terms in Eq.(8).

These same effects contribute to the non-trivial evo-
lution of the Hopfield coefficients shown in Fig. 4. The
anomalous Hopfield fractions |yLP,k|2 and |zLP,k|2 signif-
icantly increase because of the anomalous coupling, and
eventually become of the same order as the normal ones
|xLP,k|2 and |wLP,k|2. Due to the normalization condi-
tion

|wj,k|2 + |xj,k|2 − |yj,k|2 − |zj,k|2 = 1 , (30)

this affects the ordinary fractions |wLP,k|2, |xLP,k|2 as
well. Owing to the blue-shift of the cavity photon fre-
quency induced by the light-matter coupling, at the
resonance wavevector k = kres the lower polariton be-
comes more matter-like (i.e., |xLP,kres

|2 > |wLP,kres
|2 and

|zLP,kres
|2 > |yLP,kres

|2), while the upper polariton more
photon-like. In this resonant case, the UP Hopfield coef-
ficients (not shown) are simply related to the LP ones
by: |wUP,kres

|2 = |xLP,kres
|2, |xUP,kres

|2 = |wLP,kres
|2,

|yUP,kres
|2 = |zLP,kres

|2, |zUP,kres
|2 = |yLP,kres

|2.
V. THE QUANTUM VACUUM

A. The normal vacuum state |0〉 for ΩR,k = 0

In the case ΩR = 0 (negligible light-matter interac-
tion), the ground state of the considered system is the
ordinary vacuum for the cavity photon and intersubband
excitation fields. Such ordinary vacuum satisfies the re-
lation

ak|0〉 = bk|0〉 = 0 , (31)

which means a vanishing number of photons and inter-
subband excitations:

〈0|a†
kak|0〉 = 〈0|b†kbk|0〉 = 〈0|a†

kbk|0〉 = 0 (32)

and no anomalous correlations, i.e.,

〈0|akak′ |0〉 = 〈0|bkbk′ |0〉 = 〈0|akbk′ |0〉 = 0 . (33)

B. The squeezed vacuum state |G〉

With a finite ΩR,k, the ground state of the system |G〉
is no longer the ordinary vacuum |0〉 such that:

ak|0〉 = bk|0〉 = 0 , (34)

but rather the vacuum of polariton excitations:

pj,k|G〉 = 0 . (35)

As shown in Eq. (18), the polariton annihilation opera-
tor are in fact linear superpositions of annihilation and
creation operators for the photon and intersubband ex-
citation modes. By inverting Eq.(18), one gets









ak

bk

a†
−k

b†−k









=









w∗
LP,k w∗

UP,k −yLP,k −yUP,k

x∗
LP,k x∗

UP,k −zLP,k −zUP,k

−y∗
LP,k −y∗

UP,k wLP,k wUP,k

−z∗LP,k −z∗UP,k xLP,k xUP,k

















pLP,k

pUP,k

p†LP,−k

p†UP,−k









, (36)
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FIG. 5: Solid line: normalized differential zero-point energy
(per mode) ∆ωZP (k)/ω12 as a function of ΩR,k/ω12. Dashed
line: Dk/ω12. Dotted line: normalized correlation contribu-
tion ∆ωcorr

ZP (k)/ω12. The calculation has been performed with
ωcav,k = ω12.

from which, using Eq. (35) and the boson commutation
rules, we obtain that the ground state contains a finite
number (per mode) of cavity photons and intersubband
excitations:

〈G|a†
kak|G〉 = |yLP,k|2 + |yUP,k|2 (37)

〈G|b†kbk|G〉 = |zLP,k|2 + |zUP,k|2 , (38)

as well as some correlation between the photon and in-
tersubband fields:

〈G|a†
k
bk|G〉 = y∗

LP,kzLP,k + y∗
UP,kzUP,k . (39)

Moreover, significant anomalous correlation exist be-
tween opposite momentum components of the fields:

〈G|aka−k|G〉 = −w∗
LP,kyLP,k − w∗

UP,kyUP,k (40)

〈G|bkb−k|G〉 = −x∗
LP,kzLP,k − x∗

UP,kzUP,k (41)

〈G|bka−k|G〉 = −x∗
LP,kyLP,k − x∗

UP,kyUP,k . (42)

In quantum optics25, the properties of the ground state
|G〉 are typical of those of a so-called two-mode squeezed
vacuum. Note that usually this kind of quantum state
is obtained though pump-induced parametric nonlinear-
ities. In contrast, in the present intersubband cavity po-
lariton system, the intra-cavity two-mode squeezed vac-
uum is obtained without any pump excitation, but it is
instead produced by the sizeable anti-resonant terms of
the light-matter coupling.

The Hopfield coefficients xj,k, yj,k, wj,k, zj,k strongly
depend on the vacuum Rabi energy ΩR,k, which, in
the case of the intersubband cavity polaritons, can be
dramatically modulated, e.g., by changing the density

N2DEG of the two-dimensional electron gas in each quan-
tum well via an external electrostatic bias. This property
leads to a dramatic tunability of the quantum vacuum of
our system. A few observable consequences of this re-
markable fact are discussed in sec.VI.

C. The vacuum state energy

Also the energy EG of the quantum ground state has a
significant dependence on the coupling ΩR,k. Defining E0

as the ground state energy of the uncoupled (ΩR,k = 0)
system, we have that:

EG −E0 =
∑

k

[

h̄Dk −
∑

j∈{LP,UP}
h̄ωj,k(|yj,k|2 + |zj,k|2)

]

.

(43)
Note that this energy difference includes only the contri-
bution of the zero-point fluctuations of the intersubband
polariton field and does not take into account the other
contributions coming, e.g. from the change of the elec-
trostatic energy of the system (which is imposed by an
applied bias), as already discussed at the end of Sec. II.
The (always positive) term Dk in Eq.(43) is the zero-
point energy change due to the mere blue-shift of the
bare cavity mode frequency and does not correspond to
any squeezing effect. The second term is instead due to
the mixing of the bare modes: as it is usual for a correla-
tion contribution, it gives a negative contribution to the
energy.

It is interesting to study the differential ”zero-point”
energy per mode h̄∆ωZP (k), whose sum over all the k-
modes gives the quantum ground state energy difference
EG − E0. The differential ”zero-point” frequency reads

∆ωZP (k) = Dk + ∆ωcorr
ZP (k) , (44)

where the (negative) correlation contribution reads

∆ωcorr
ZP (k) = −

∑

j∈{LP,UP}
ωj,k (|yj,k|2 + |zj,k|2) . (45)

These quantities (normalized to ω12) are plotted in Fig.
5 as a function of ΩR,k/ω12 for the resonant case ωcav,k =
ω12. Although it is the diagonal blueshift which gives the
dominant contribution to the ground state energy shift,
the negative contribution due to the correlation effects
is important, being as large as −0.13h̄ω12 already for
ΩR,k/ω12 = 0.5. This correlation-induced energy shift
is closely related to the generation of correlated photon
pairs out of the vacuum that will be discussed in the next
section.

VI. TUNING THE QUANTUM VACUUM:

QUANTUM RADIATION EFFECTS

The possibility of tuning the quantum vacuum suggests
that the present system could be a potential laboratory



8

qres
qresqres
qres

Vbias

FIG. 6: Sketch of a possible set-up for the generation of
correlated photon pairs in the intersubband cavity system.
Through an electric gate, it is possible to change the den-
sity of the two-dimensional electron gas and consequently the
vacuum Rabi energy of the intersubband cavity system. A
modulation of the bias is expected to induce the emission of
correlated photon pairs with opposite in-plane wavevectors.
This kind of radiation can be optimally guided out of the
cavity through wedged lateral facets, with inclination equal
to the resonance angle θres.

to study Quantum Electro-Dynamics (QED) phenomena,
which are reminiscent of the dynamic Casimir effects26,27.
In a typical arrangement, the modulation of the zero-
point energy of a cavity system via the vibration of the
cavity mirrors is predicted to result in the emission of
photon pairs by means of the dynamical Casimir effect
(the so-called quantum vacuum radiation)28,29. As the
modulation strength predicted for our system is orders
of magnitude larger than in the optical cavities typically
considered for the observation of the dynamical Casimir
effect, we expect that a much stronger vacuum radiation
should be observable.

A. Abrupt switch off of the vacuum Rabi energy

To give a flavor of the possible QED scenarios in the
present cavity system without embarking in complicate
calculations, we consider a rather idealized gedanken ex-
periment, which allows us to grasp the essential physics
of the problem. Let us suppose that the considered in-
tersubband cavity system is in the ground state |G〉. As
we have already discussed, the squeezed vacuum |G〉 con-
tains a finite number of cavity photons and intersubband
excitations because of the correlations due to the anoma-
lous coupling terms in Eq.(8).

If one switches off the vacuum Rabi frequency ΩR,k of
the system in an abrupt, non-adiabatic way by suddenly
depleting the electron gas, the photon mode does not
have the time to respond to the perturbation and will
remain in the same squeezed vacuum state as before.

As this state is an excited state of the Hamiltonian
for ΩR,k = 0, the system will relax to its ground state,
which is now the standard vacuum, by emitting the extra
photons predicted in Eq.(37) as radiation. One possible
way to collect this quantum vacuum radiation is through

the set-up sketched in Fig. 6, which allows one to collect
the photons which are emitted with internal propagation
angle θ around the resonance value θres.

If one neglects the losses due to the background ab-
sorption by the dielectric material forming the microcav-
ity, an estimate of the number of emitted photons can
be obtained as follows. The number of photon states
(per unit area) in the 2D momentum volume d2k is sim-
ply d2k/(2π)2. Hence, the differential density of photons
(per unit area) in the 2D momentum volume d2k is

dρphot =
d2k

(2π)2
〈G|a†

kak|G〉 , (46)

where the photon number 〈G|a†
kak|G〉 in the quantum

ground state is given by Eq. (37). Now, all the expecta-
tion values depend only on |k| and hence we can rewrite
the momentum volume as d2k = 2πkdk. Knowing that
the in-plane wavevector k is given by the relationship
k = kz tan(θ) and using Eq. (12), we find the final result

dρphot

dθ
(θres) =

1

2π

ω2
12

c2
ǫ∞ tan(θres)〈G|a†

kak|G〉 . (47)

To give a numerical application of Eq. (47), let us
consider a intersubband cavity system with h̄ω12 = 140
meV, resonance angle θres = 65◦ and h̄ΩR,kres

= 7 meV
(these are approximately the values in the sample mea-
sured by Dini et al8). For these parameters, Eq. (47)
gives the differential photon density dρphot/dθ ≃ 1× 105

cm−2 rad−1.
Note that the emission corresponding to the k-mode

is correlated to the emission corresponding to the mode
with opposite in-plane wavevector, as shown in Eq. (40).
Indeed, the ”quantum vacuum radiation” here described
consists in the emission of correlated photon pairs30.

B. Periodic modulation of ΩR,k

The requirement of a abrupt, non-adiabatic, switch-off
of the Rabi coupling ΩR,k imposes very stringent limits
on the time-scale τsw over which the electrostatic bias has
to be applied. In particular, we expect that in order to
maximize the quantum vacuum radiation generation oc-
curs, τsw has to be at least comparable to the oscillation
period of the lower polaritonic mode.

It is then perhaps more accessible from an experimen-
tal point of view to try to detect the vacuum radiation
by periodically modulating the vacuum Rabi frequency
at an angular frequency ωmod

ΩR,k(t) = Ω̄R,k + ∆ΩR,k sin(ωmodt). (48)

Note that in principle this kind of modulation can be ob-
tained not only through a gate-induced depletion of the
two-dimensional electron gas11, but also by modulating
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the dipole moment of the intersubband transition or al-
ternatively the reflectivity of the mirrors. As all the rele-
vant physical quantities in the present problem (polariton
energies, Hopfield coefficients, ground state energy) de-
pend in a nonlinear way on the vacuum Rabi frequency
h̄ΩR,k, we expect that for large modulation amplitudes
high order harmonics of the fundamental modulation fre-
quency ωmod will play a significant role in the quantum
process28 which is responsible for the vacuum radiation
generation. In particular, emission will be enhanced if

ωj,k + ωj′,−k = r ωmod , (49)

with r being a generic positive integer number, and
j, j′ = {LP, UP}. This is the phase-matching condi-
tion for the generation of two polaritons with opposite
momentum. As usual, the narrower the polaritonic reso-
nance, the stronger the resonant enhancement.

A complete calculation of the spectral shape and inten-
sity of the emitted radiation is however beyond the scope
of the present paper and is currently in progress. In or-
der to accomplish that goal, one has to carefully consider
the coupling of the cavity system to the extra-cavity field
and take into account for the non-radiative losses of the
electronic system31.

VII. CONCLUSIONS

In conclusion, we have shown that in the intersubband
cavity polariton system, a new regime of ultra-strong cou-
pling can be achieved, where the vacuum Rabi frequency
ΩR is a large fraction of the intersubband transition fre-
quency ω12. This scenario appears to be easier to achieve

in the far infrared, since the ratio ΩR/ω12 scales as the
square root of the intersubband transition wave-length.
In the ultra-strong coupling regime, the usually neglected
anti-resonant terms of the light-matter coupling start
playing an important role. In particular, the quantum
ground state of system is no longer the ordinary vac-
uum of photons and electronic excitations, but rather a
two-mode squeezed vacuum, whose properties strongly
depend on the ratio ΩR/ω12. As this quantity can be
dramatically tuned by applying an electrostatic bias, we
have pointed out the possibility of observing interesting
quantum electrodynamic effects reminiscent of the dy-
namical Casimir effect, i.e. the generation of correlated
photon pairs out of the initial polariton vacuum state.
Future investigations will study more in detail these ef-
fects, taking fully into account the radiative coupling of
the cavity system to the extracavity field as well as elec-
tronic losses.
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