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Abstract

We present here some algebraic formulas enabel-
ing to define a k-automaton A2 from a given k-
automaton A1 such that the behaviour of A2 is
the behaviour of A1 after erasure of a given set of
letters. This procedure contains as particular case
the algebraic elimination of ε-transitions. The time
complexity of this process is evaluated. In the case
of well-known semirings (boolean and tropical) the
closure is computed in O(n3). When k is a ring,
the complexity can be more finely tuned.

0 Introduction

Automata with multiplicities (or weighted au-
tomata) are a versatile class of transition systems
which can modelize as well classical (boolean),
stochastic, transducer automata and be applied to
various purposes such as image compression, speech
recognition, formal linguistic (and automatic treat-
ment of natural languages too) and probabilistic
modelling. For generalities over automata with
multiplicities see [1] and [10], problems over iden-
tities and decidability results on these objects can
be found in [13], [12] and [11]. One among many
operations which can be applied on the k-automata
is the elimination of a-transitions where a belongs
to a subset of the alphabet A. The aim of this
work is indeed to give algebraic formulas for the
erasure of a-transitions from a k-automata A where
a ∈ Z = {a1, a2, · · · , am} with ai ∈ A. We give a
procedure based on Lazard’s elimination in the case

∗Also in LIPN, Université Paris XIII.

where the set of a-transitions is globally nilpotent.
The result depends only on the computation of the
star M∗ of transition matrix MZ = Ma1

+· · ·+Mam
.

The time complexity of this process is evaluated.
In the case of well-known semirings (boolean and
tropical) the closure is computed in O(n3). When k

is a ring, the complexity can be more finely tuned.

The structure of the paper is the following. Sec-
tion 1 is devoted to recalling general points about
functions on the free monoid (i.e. noncommutative
series) and to the problem of monomial transforma-
tions (i.e. transformation of the words within the
series). In section 2 we expound the star problem in
full generality. Then, after introducing (in Section
3) the notion of k-automaton, we present (in Sec-
tion 4 and 5) our principal result which is an alge-
braic method of erasure of given letter-transitions.
In Section 6, we give more examples and another
complexity result.
A conclusion section ends the paper.

1 Word transformations of series

In the sequel, we discuss the possibility of chang-
ing the monomials of a noncommutative series into
other monomials. As we will deal with finiteness
properties from now on, all the alphabets will be
supposed finite.
A series (noncommutative) S is just a mapping
A∗ 7→ k, where A is an alphabet (i.e. a set) of
(non-commuting) variables and k some set of coef-
ficients (or scalars). When k is endowed with some
operations, it induces structure to the set of series
too. The most popular, for k, is the structure of
a semiring. For generalities on semirings one can
consult [2, 7, 10] or

http://mathworld.wolfram.com/Semiring.html.
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In the sequel, however, semirings will always be
supposed with neutrals. Indeed, here, a semiring
(k,⊕,⊗, 0k , 1k) is a set together with two laws and
their neutrals. More precisely (k,⊕, 0k) is a com-
mutative monoid with 0k as neutral and (k,⊗, 1k)
is a monoid with 1k as neutral. The product is dis-
tributive with respect to the addition and zero is
an annihilator (0k ⊗ x = x ⊗ 0k = 0k ) [7]. The
boolean semiring B = ({0, 1},∨,∧, 0, 1) and the
tropical semiring T = (R+ ∪{∞},min,+,∞, 0) are
well-known examples of semirings.

A series S : A∗ 7→ k can conveniently be denoted
as S =

∑

w∈A∗〈S|w〉w, where 〈S|w〉 = S(w) is the
image of w by S.
Now, after [1], we will say that a family of series
(Si)i∈I is summable iff, for all w ∈ A∗ the set

{j ∈ I|〈Sj |w〉 6= 0} (1)

is finite. In this case, the sum
∑

i∈I Si is the series
T such that

〈T |w〉 =
∑

i∈I

〈Si|w〉 (2)

for all w. Hence, by definition,

∑

i∈I

Si :=
∑

w∈A∗

(

∑

i∈I

〈Si|w〉

)

w. (3)

When I has two elements, one recovers the defini-
tion of the usual sum by

S + T =
∑

w∈A∗

(〈S|w〉 + 〈T |w〉) w (4)

it is straightforward to check that, for this law, the
neutral is the null function.

Concatenation, extended by the Cauchy product,
will read

S.T =
∑

w∈A∗

(

∑

uv=w

〈S|u〉〈T |v〉

)

w. (5)

The neutral is the Dirac unital charge supported
by ε ∈ A∗, the empty word. As this causes no
confusion, this function will still be denoted by ε

and more generally a Dirac unital charge supported
by w ∈ A∗ will be identified to w.

Endowed with the two preceding laws and neutrals
kA∗

is a semiring denoted k〈〈A〉〉.

The support of a series is the set of words where it
takes non zero values i.e.

supp(S) = {w ∈ A∗|〈S|w〉 6= 0} (6)

A series with finite support is called a (noncom-
mutative) polynomial. The set of these series is a
subsemiring of k〈〈A〉〉 denoted k〈A〉.

Let now B be another alphabet. Every (set-
theoretical) mapping Φ : A 7→ B∗ can be uniquely
extended to A∗ as a morphism of monoids by

Φ(a1a2 · · · an) = Φ(a1)Φ(a2) · · ·Φ(an) (7)

even if n = 0 that is to say Φ(εA∗) = εB∗ . In the
same way Φ is extended by linearity to a morphism
Φalg : k〈A〉 7→ k〈B〉 by

Φalg

(

∑

w∈A∗

〈S|w〉w

)

=
∑

w∈A∗

〈S|w〉Φ(w). (8)

This is well-defined as the sums here are, in fact,
finite.

At this point, the question which must be consid-
ered here is:

How much Φalg can be extended to k〈〈A〉〉 ?

The first attempt can be performed using formula
(8). In this case we must ask that the family of
monomials of the second member, namely

(

〈S|w〉Φ(w)
)

w∈A∗

(9)

be summable. Denoting classically the preimage of
a word w ∈ B∗ by Φ−1(w), one can check that the
summability is equivalent to condition (FF):

(FF) For all w ∈ A∗ , the set supp(S) ∩ (Φ−1(w))
is finite.

If the formal series S satisfies (FF), we say that it
is Φ-finite. The set of Φ-finite series in k〈〈A〉〉 is de-
noted k〈〈A〉〉Φ−finite. We denote by α(?) and (?)α
the left and right external product respectively, and
we show now that it is a subalgebra of k〈〈A〉〉.

Theorem 1 The set k〈〈A〉〉Φ−finite is closed by +,
·, α(?) and (?)α (the right and left scaling).
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Proof. As supp(S1 +S2) ⊆ supp(S1)∪ supp(S2),
supp(αS1) ⊆ supp(S1) and supp(S1α) ⊆ supp(S1)
for S1, S2 ∈ k〈〈A〉〉 and α ∈ k, the stability is shown
for +, α(?) and (?)α.

Now, for the Cauchy product, one has:

supp(S1S2) ⊆ supp(S1)supp(S2). (10)

Then, for every v ∈ B∗ one has,

supp(S1S2) ∩ Φ−1(v) ⊆

⋃

v=v1v2

(supp(S1) ∩ Φ−1(v1))(supp(S2) ∩ Φ−1(v2))

the right hand side being a finite set if S1, S2 ∈
k〈〈A〉〉Φ−finite. �

In case S is Φ-finite, we can set

Φ(S) =
∑

w∈A∗

〈S|w〉Φ(w) (11)

which extends Φ.

Remark 1 i) Every polynomial is Φ-finite.
ii) The star of a series S∗ need not be Φ-finite even
if S is. The simplest example is provided by

A = B = {a}, Φ(a) = ε, S = a (12)

then S is Φ-finite and not S∗.

Next we show that Φ : k〈〈A〉〉Φ−finite 7→ k〈〈A〉〉 is
a morphism of algebras.

Theorem 2 For any S, T ∈ k〈〈A〉〉Φ−finite,

Φ(S + T ) = Φ(S) + Φ(T ), Φ(ST ) = Φ(S)Φ(T ),

Φ(αS) = αΦ(S), Φ(Sα) = Φ(S)α

2 The star calculus over a semir-

ing

Generalities over semirings can be found in [10]. In
the sequel, the star of a scalar is introduced by the
following definition:

Definition 1 Let x ∈ k, the scalar y is a right
(resp. left) star of x if and only if x ⊗ y ⊕ 1k = y

(resp. y ⊗ x ⊕ 1k = y ).

If y ∈ k is a left and right star of x ∈ k, we say that
y is a star for x and we write y = x� .

Example 1

1. For k = C (and more generally any field), any
complex number x 6= 1 has a unique star which
is y = (1 − x)−1. In the case |x| < 1 , we
observe easily that y = 1 + x + x2 + · · · .

2. Let k be the ring of all linear operators (R[x] →
R[x]). Let X and Yα defined by X(x0) = 1,
X(xn) = xn−nxn−1 with n > 0 and Yα(xn) =
(n + 1)−1xn+1 + α with α ∈ R. Then XYα +
1 = Yα and there exists an infinite number of
solutions for the right star (which is not a left
star if α 6= 0 ). This example explains the
expressions right and left star.

3. For k = T (tropical semiring), any number x

has a unique star y = 0.

4. (Star of a series) Let S ∈ k〈〈A〉〉. We say
that the series is proper if the coefficient of
the empty word is zero 〈S|ε〉 = 0. The family
(Si)i∈N is summable and the star is given by
S∗ = ε+S +S2 + · · · . More generally, the star
(?)∗ of a noncommutative formal series is well-
defined if and only if the star of 〈S|ε〉 exists
[10, 1]. Then S∗ = α�(S0α

�)∗ if α = 〈S|ε〉
and S = α + S0.

The set k〈〈A〉〉rat is the closure of k〈A〉 by the
sum, the Cauchy product and the star.

We can observe that if the opposite −x of x exists
then right (resp. left) stars of x are the right (resp.
left) inverses of (1⊕(−x)) and conversely. Any right
star x�r equals any left star x�l as x�l = x�l⊗((1⊕
(−x)) ⊗ x�r) = (x�l ⊗ (1 ⊕ (−x))) ⊗ x�r = x�r .
Thus, in this case, the star is unique.

If n is a positive integer then the set kn×n of square
matrices with coefficients in k has a natural struc-
ture of semiring with the usual operations (sum
and product). The (right) star of M ∈ kn×n

(when there exists) is a solution of the equation
MY + 1n×n = Y (where 1n×n is the identity ma-
trix).
Let M ∈ kn×n be given by

M =

(

a11 a12

a21 a22

)
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where a11 ∈ kp×p, a12 ∈ kp×q, a21 ∈ kq×p and
a22 ∈ kq×q such that p + q = n. Let N ∈ kn×n

given by

N =

(

A11 A12

A21 A22

)

with

A11 = (a11 + a12a22
∗a21)

∗ (13)

A12 = a11
∗a12A22 (14)

A21 = a22
∗a21A11 (15)

A22 = (a22 + a21a11
∗a12)

∗ (16)

Theorem 3 If the right hand sides of the formulas
(13), (14), (15) and (16) are defined, the matrix M

admits N as a right star.

Proof. We have to show that N is a solution
of the equation My + 1n×n = y . By computation,
one has MN+1=
(

a11 a12

a21 a22

)(

A11 A12

A21 A22

)

+

(

I 0p×q

0q×p I ′

)

=

(

a11A11 + a12A21 + I a11A12 + a12A22

a21A11 + a22A21 a21A12 + a22A22 + I ′

)

where 0p×q is the zero matrix in kp×q, I = 1p×p and
I ′ = 1q×q . We verify the relations (13), (14), (15)
and (16) by:

a11A11 + a12A21 + I = a11A11 + a12a
∗
22a21A11 + I

= A11(a11 + a12a22
∗a21) + I

= A11

a11A12 + a12A22 = a11a11
∗a12A22 + a12A22

= (a11a11
∗ + 1)a12A22

= a11
∗a12A22

= A12

a21A11 + a22A21 = a21A11 + a22a22
∗a21A11

= (1 + a22a22
∗)a21A11

= a22
∗a21A11

= A21

a21A12 + a22A22 + I ′ = a21a11
∗a12A22 + a22A22 + I ′

= (a22a21a11
∗a12)A22 + I ′

= A22

�

Similar formulas can be stated in the case of the
left star. The matrix N is the left star of M with

A11 = (a11 + a12a22
∗a21)

∗

A12 = A11a12a22
∗

A21 = A22a21a11
∗

A22 = (a22 + a21a11
∗a12)

∗

In [8] and [17], similar formulas are expressed for
the computation of the inverse of matrices when k

is a division ring (it can be extended in the case of
rings).

The formulas described above are valid with matri-
ces of any size with any block partitionning. Matri-
ces of even size are often, in practice, partitionned
into square blocks but, for matrices with odd di-
mensions, the approach called dynamic peeling is
applied [9]. More specifically, let M ∈ kn×n a ma-
trix given by

M =

(

a11 a12

a21 a22

)

where n ∈ 2N + 1 . The dynamic peeling consists
of cutting out the matrix in the following way: a11

is a (n − 1) × (n − 1) matrix, a12 is a (n − 1) × 1
matrix, a21 is a 1× (n−1) matrix and a22 is a 1×1
matrix.

Theorem 4 Let k be a semiring. The right (resp.
left) star of a matrix of size n ∈ N can be computed
in O(nω) operations with:

• ω ≤ 3 if k is not a ring,

• ω ≤ 2.808 if k is a ring,

• ω ≤ 2.376 if k is a field.

Proof. For n = 2m ∈ N , let T+
m , T×

m and T ∗
m

denote the number of operations ⊕ , ⊗ and � in k

that the addition, the multiplication and the star

4



of matrix respectively perform on input of size n .
Then

T ∗
0 = 1

T ∗
m = 2T+

m−1 + 8T×
m−1 + 4T ∗

m−1

by Theorem 3, for arbitrary n , we add some ze-
roes at the matrix. If k is a ring, using Strassen’s
algorithm for the matrix multiplication [20], it is
known that at most 16nlog2(7) operations are nec-
essary. If k is a field, using the Coppersmith and
Winograd’s algorithm [3], it is known that at most
16n2.376 operations are necessary. �

The actual running time complexity for the com-
putation of the right (resp. left) star of a matrix
depends on T� , T� and T�, but it depends also on
the representation of coefficients in machine. In the
case k = Z for example, the multiplication of two
integers is computed in O(m log(m) log(log(m))),
using FFT if m bits is necessary [19].

Theorem 5 The space complexity of the right
(resp. left) star of a matrix of size n ∈ N is
O(n2 log(n)).

Proof. For n = 2m ∈ N and k a semiring, let E∗
m

denote the space complexity of operation ∗ that the
star of matrix perform on input of size n. Then

E∗
0 = 1

E∗
m = 12 · 22m−1 + 4E∗

m−1

�

The running of the algorithm needs the reservation
of memory spaces for the result matrix (the star
of the input matrix) and for intermediate results
stored in temporary locations.

To end, we complete the picture about the mor-
phism Φ defined in (2) by showing that it carries
the star.

Theorem 6 Let S ∈ k〈〈A〉〉Φ−finite such that
Φ(S∗) ∈ k〈〈B〉〉Φ−finite then

Φ(S∗) =
(

Φ(S)
)∗

. (17)

1 2
a |1

a |3
b |1

a |1
b |4

3 1

Figure 1: A N -automaton

Proof. One has S∗ = ε + SS∗ then Φ(S∗) =
ε + Φ(S)Φ(S∗). �

Remark 2 A Φ-finite series need not be rational
as shown by the example:

A = B = {a, b}, Φ(a) = Φ(b) = a, S =
∑

|u|a=|u|b

u

(18)
where S is not rational but Φ-finite.

We do not know under which conditions of Φ, the
image of a rational series is rational (see below for
an example of such Φ).

3 Automata with multiplicities

Let A be a finite alphabet. A weighted automaton
(or linear representation) of dimension n on A with
multiplicities in k is a triplet (λ, µ, γ) where:

• λ ∈ k1×n (the input vector),

• µ : A → kn×n (the transition function),

• γ ∈ kn×1 (the output vector).

Such automaton is usually drawn by a directed val-
ued graph (see Figure 1). A transition (i, a, j) ∈
{1, . . . , n}×A×{1, . . . , n} connects the state i with
the state j . Its weight is µ(a)ij . The weight of
the initial (final) state i is λi (respectively γi ). The
mapping µ induces a morphism of monoid from A∗

to kn×n. The behaviour of the weighted automaton
A belongs to k〈〈A〉〉. It is defined by:

behaviour(A) =
∑

u∈A∗

(λµ(u)γ)u.

More precisely, the weight 〈behaviour(A), u〉 of the
word u in the formal series behaviour(A) is the
weight of u for the k-automaton A [2]).

5



1 2 3
c |3

3 1

b |2

a |1

Figure 2: A N {b, c}-automaton

Example 2 The behaviour of the automaton A of
Figure 1 is

behaviour(A) =
∑

u,v∈A∗

3|u|a+14|v|buav

Let u = ab. Then, its weight in A is:

λµ(u)γ = λµ(a)µ(b)γ

=
(

3 0
)

(

3 1
0 1

)(

1 0
0 4

)(

0
1

)

= 12.

Let k〈〈A〉〉rec be the set of series which are the
behaviour of some weighted automata. The cele-
brated Theorem [18] of Schützenberger says that:

k〈〈A〉〉rec = k〈〈A〉〉rat.

A k Z-automaton AZ is a k-automaton over an al-
phabet with a subset of distinguished letters AZ =
B ∪ Z (see Figure 2). The letters of Z are under-
stood as ε-transitions.

Example 3 In Figure 2, the behaviour is
18b

(
∑

i∈N
2i(ab)i

)

c = 18b(2ab)∗c.

4 Algebraic elimination

Let Z ⊆ A, B = A − Z and Φ be the morphism
from A∗ to B∗ defined by

{

Φ(x) = x if x ∈ B,
Φ(x) = ε otherwise.

We remark that the set of antecedents of u =
a1a2 . . . an ∈ A∗ by Φ can be written Φ−1(u) =
Z∗a1Z

∗a2 · · ·Z
∗anZ∗ (this is actually an instance

of Lazard’s elimination theorem [15]). For S ∈
k〈〈Aε〉〉 , define

Φ(S) =
∑

u∈A∗

(
∑

Φ(v)=u

〈S|v〉)u.

if
∑

Φ(v)=u〈S|v〉 is defined.

Elimination of letter-transitions is the art of remov-
ing, in a given automaton A1, the transitions bear-
ing letters choosen in a given subset, say Z, of an
alphabet A so as to get a modified automaton A2

with the behaviour. The first example where this is
possible is when the transition matrices µ(z) with
z ∈ Z are (globally) nilpotent, it means that there
exists a bound l such that

(w ∈ Z∗and|w| ≥ l =⇒ µ(w) = 0). (19)

Proposition 1 Let AZ = (λ, µ, γ) be a weighted
Z-automaton. If µ(Z) is (globally) nilpotent then
behaviour(AZ) satisfies (FF) .

Proof. Let w = a1a2 · · · an one has

supp(S)∩Φ−1(w) = supp(S)∩
(

Z<la1 · · ·Z
<lanZ<l

)

where Z<l stands for ε+Z+Z2+· · ·Z l−1, as if w =
zn0a1z

n1a2 · · · z
n−1anzn with one nj ≥ l, 〈S|w〉 =

0. �

Remark 3 It can happen that the sum of the tran-
sitions µ(z) is nilpotent but no of the individual
matrices. Let, for example, take Z = {z1, z2}, A =
Z ∪ {a} and

µ(z1) =

(

0 1
1 0

)

, µ(z2) =

(

0 1
−1 0

)

,

λ =
(

1 0
)

, γ =

(

1
0

)

. (20)

The family does not fulfill (FF) as the sequence z2n
1

is in supp(S) ∩ Φ−1(ε).

5 Examples and discussion

In the previous paragraph, we have given an alge-
braic method to eliminate the Z -transitions from a
weighted Z -automaton A1 with behaviour S. The
result is a weighted automaton with Φ(S) as be-
haviour if behaviour(A2) = S. The proposition
below gives the complexity in case when Z reduces
to a single letter ε̃.

6



1
2

3 4
1 1

1
2a

1
4b

1
2a

1
2b 1

3 ε̃

1
2 ε̃

1
3 ε̃

Figure 3: A Q ε-automaton

Proposition 2 Let k be a semiring. The elimina-
tion of ε-transitions is computed in O((|A|+1)×nω)
if n is the dimension of the weighted ε-automaton.

Proof. First we compute the matrix µ(Z)∗ .
Then set λ′ = λ , γ′ = µ∗

ε̃γ and µ′(a) = µ∗
ε̃µ(a) for

each letter a ∈ A . �

Remark 4 One could also with the same result set
λ′ = λµ∗

ε̃ , µ′(a) = µ(a)µ∗
ε̃ for each letter a ∈ A and

γ′ = γ .

In the next example, we will apply our algebraic
method on a Q ε-automaton.

Example 4 The linear representation of Figure 3
is:

λ =
(

1 0 0 0
)

, µε̃ =









0 0 0 0
0 0 1

2 0
0 1

3
1
3 0

0 0 0 0









,

µ(a) =









0 1
2 0 0

0 0 0 0
0 0 0 1

2
0 0 0 0









,

µ(b) =









0 0 1
4 0

0 0 0 0
0 1

2 0 0
0 0 0 0









, and γ =









0
0
0
1









.

By computation:

λ′ =
(

1 0 0 0
)

,

γ′ = µ∗
ε̃γ =









0
0
0
1









, µ∗
ε̃ =









1 0 0 0
0 4

3 1 0
0 2

3 2 0
0 0 0 1









,

1 2 3 4
1 1

1
2a

1
4b

1
2a

b

1
2b

a

Figure 4: A Q-automaton

µ′(a) = µ∗
ε̃µ(a) =









0 1
2 0 0

0 0 0 1
2

0 0 0 1
0 0 0 0









and µ′(b) = µ∗
ε̃µ(b) =









0 0 1
4 0

0 1
2 0 0

0 1 0 0
0 0 0 0









.

The resulting automaton is presented in Figure 4
and its linear representation is (λ′, µ′, γ′).

6 Conclusion

Algebraic elimination for Z-automata has been pre-
sented which reduces to the problem of removing
the ε-transitions when Z consists of a single letter
ε̃.
The problem of removing the ε-transitions is
originated from generic ε-removal algorithm for
weighted automata [16] using Floyd-Warshall and
generic single-source shortest distance algorithms.
Here, we have the same objective but the methods
and algorithms are different. In [16], the principal
characteristics of semirings used by the algorithm
as well as the complexity of different algorithms
used for each step of the elimination are detailed.
The case of acyclic and non acyclic automata are
analysed differently. Our algorithm here works
with any semiring and the complexity is unique for
the case of acyclic or non acyclic automata. It is
more efficient when the considered semiring is a
ring.
The domain of validity of this algorithm is much
more extended than the domain of the equivalence,
therefore analytic elimination of transitions will be
the subject of a forthcoming work.
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