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Instantaneous frequencies of a chaotic system
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Abstract. The structure and geometry of high-dimensional, complex dynamical systems
is usually hidden under a profusion of numerical data. We show that time-frequency anal-
ysis allows one to analyze these data regardless of the number of degrees of freedom. Our
method takes snapshots of the system in terms of its instantaneous frequencies defined as
ridges of the time-frequency landscape. Using the wavelet transform of a single trajectory,
it can characterize key dynamical properties like the extent of chaos, resonance transitions
and trappings.
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1. Introduction

Multi-dimensional, complex systems tend to overwhelm the researcher with data:
think of fluid dynamical data from the oceans or the millions of trajectories that
today’s powerful computers can generate in an instant. It is not only computers
that generate reams of data of complex dynamical systems, but in many areas of
science and engineering, experimental techniques to observe real-time dynamical
phenomena have also developed at a pace far more rapid than the theory required
to make sense of such data. In this article we show how to break through this
thicket, regardless of the number of degrees of freedom, by time-frequency analysis
[1].

For low dimensional systems, the geometric framework of dynamical systems the-
ory gives a way of understanding these data. This point of view, due to Poincaré,
asks about the relationship between all possible trajectories, rather than the evolu-
tion of individual trajectories. This leads immediately to the notion of phase space
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structure as a key notion for making sense of the many and varied regimes that a
nonlinear dynamical system can exhibit.

In this paper, we present a tool to penetrate the dynamics of such systems
through the geometrical framework of dynamical systems theory, and without re-
sorting to dimensional reduction schemes with their attendant flaws and loss of
information. Our approach [1] bridges the gap between the high-dimensional com-
plex systems world and the tried-and-true techniques which have provided so much
insight into low-dimensional, near-integrable systems. The latest developments of
time-frequency analysis of signals, of which the wavelet transform is but one exam-
ple [2], form the cornerstone of our method. The advantages of the time-frequency
representation are that it does not require near integrability or action-angle like
variables, and it works for dynamical systems regardless of their number of degrees
of freedom.

Technically speaking, our method extracts the frequencies of a chaotic system
based on wavelet decomposition. Frequencies and especially resonances between
them form the basis of our understanding of nonlinear systems (perturbation the-
orems, intramolecular dynamics [3,4], Laskar’s work in celestial mechanics [5–7]
and particle accelerators [8]). For quasi-periodic and weakly chaotic systems, the
frequency representation has been revealing because it shows how motion can be
trapped in some resonance zones associated with quasi-periodicity. These successes
suggest that snapshots of a chaotic system in terms of frequencies should be much
more revealing than other representations, a worthwhile goal which, until now, has
not been achieved. Indeed, the interpretation of a frequency in rapidly-changing
systems is an old problem full of subtleties [9,10]. The information resulting from
our work is much richer than the methods devised to distinguish between regu-
lar and chaotic orbits : Most of the standard dynamical systems diagnostics, e.g.,
Lyapunov exponents, entropy, fractal dimensions, etc., have rigorous mathematical
definitions in the infinite-time limit. Asymptotic quantities are not practical for
many important problems since they do not reflect the history and local properties
of the trajectory. Instead, our method gives a snapshot of the dynamics at a fixed
instant of time, detecting resonance trappings and transitions, and characterizes
weak and strong chaos in many-dimensional systems [11]. We will show below how
this information can be directly correlated with phase space structure.

We associate a set of time-varying frequencies with the trajectory by decompos-
ing it on a set of elementary functions, the wavelets, which are localized in time
and frequency. Wavelet decomposition has been used to analyze trajectories of
Hamiltonian systems in celestial mechanics [12] and in molecular dynamics [13,14].
In Refs. [12,14], the main frequency was extracted by computing the frequency
curve where the modulus of the wavelet transform is maximum. However, stop-
ping at this maximum frequency can give misleading or wrong information about
resonance transitions (see Ref. [1] for more details). Instead, we have found that
the relevant information of the trajectory is contained in the so-called ridges of
the landscape formed by the magnitude of the coefficients of the time-frequency
decomposition [15]. A ridge curve (which has a certain time length) corresponds to
time-frequency energy localization and is also called instantaneous frequency curve.

The extraction of instantaneous frequencies is illustrated by using the trajectories
of the standard map. This well-known map provides a benchmark for the method
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since its phase space structures are well known. We will show how our method
constitutes a powerful tool to reveal phase space structures using instantaneous
frequencies coming from single trajectory analysis, and is therefore, ideally suited
for the analysis of high-dimensional systems.

Given a real signal f(t) which can be, e.g., one coordinate of the system, two
methods are used to compute a time-frequency (denoted u - ξ) representation of f :
window Fourier transform and continuous wavelet transform.

2. Windowed Fourier transform

The windowed Fourier transform (also called Gabor transform) of f(t) is given by

Sf(u, ξ) =

∫ +∞

−∞

f(t)g(t− u)e−iξtdt, (1)

where the window g is chosen to be a Gaussian window

g(t) = e−t2/2σ2

/(σ2π)1/4. (2)

In Laskar’s work [5,6], the Hanning filter is chosen rather than a Gaussian fil-
ter. The Hanning filter has the advantage of having a finite support whereas the
Gaussian filter has an optimal time-frequency resolution. In what follows, we will
consider an energy density called a spectrogram

PSf(u, ξ) = |Sf(u, ξ)|2.

3. Continuous wavelet transform

The continuous wavelet transform of f(t) gives a time-scale representation of the
trajectory and is given by

Wf(u, s) =
1√
s

∫ +∞

−∞

f(t)ψ∗

(

t− u

s

)

dt, (3)

where the mother wavelet ψ is chosen to be a Gabor (modulated Gaussian) wavelet,
also called Morlet-Grossman wavelet:

ψ(t) = eiηte−t2/2σ2

/(σ2π)1/4. (4)

The transform depends on η which is the center frequency of the wavelet. The
time-frequency representation is obtained by the relation between the scale s and
the frequency ξ: ξ = η/s. We will consider the normalized scalogram

ξ

η
PW f(u, ξ) =

1

s
|Wf(u, s)|2, (5)

which can be interpreted as the energy density in the time-frequency plane.
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For a periodic trajectory f(t) = eiωt, the spectrogram

PSf(u, ξ) = 2σ
√
πe−σ2(ω−ξ)2 (6)

and the normalized scalogram ξη−1PW f(u, ξ) = 2σ
√
πe−σ2η2(ω/ξ−1)2 are max-

imum for ξ = ω, independently of the time u. For a quasi-periodic trajectory
f(t) =

∑

k Ake
iωkt, the spectrogram and the normalized scalogram present a sum

of localized peaks and interference terms : The wavelet transform of f is given by
the sum of the wavelet transform of Ake

iωkt since the wavelet transform is linear.
Therefore, the normalized scalogram is a sum of peaks located at ξ = ωk and of
width proportional to ωk/(ησ), with some additional interference terms of the form

AlA
∗

ke
−σ2η2(ωl/ξ−1)2/2e−σ2η2(ωk/ξ−1)2/2ei(ωl−ωk)u.

The effect of these terms is visible if (a) at least two amplitudes Ak and Al are
large enough, and (b) if the difference of their frequencies ωl − ωk is smaller than
ωl/(ησ). In order to distinguish two frequency components ωl and ωk of amplitude
Ak and Al of the same order, the parameters of the wavelet have to be chosen
according to the condition

ησ ≥ (ωl + ωk)/|ωl − ωk|.

The various main frequencies of the trajectory can be obtained by looking at
the ridges of the spectrogram or normalized scalogram, also called instantaneous

frequencies. These ridges are local maxima with respect to the frequency ξ, of the
energy density in the time-frequency plane. For instance, a periodic trajectory has
only one constant ridge ξ = ω and a quasi-periodic trajectory has approximately
a set of constant ridges (if the interferences are negligible) at ξ = ωk. Ridges of
sufficiently high amplitude are detected by the method.

Both these methods have time-frequency resolution limitations for the determi-
nation of the instantaneous frequencies. The windowed Fourier transform relies on
an a priori choice of length of the window σ. Any event (trapping, transition, etc.)
happening on short time scales (less than σ) or with small frequencies (less than
σ−1) is missed by this method. On the contrary, the main advantage of wavelets is
that it follows the rapid variations of the instantaneous frequencies since it adapts
the length of the window according to the frequency [2]. This is due to the fact that
the compact support of the wavelet is proportional to ησ/ω. Therefore the time
span is larger for small frequencies than for large ones. For this reason we choose
the wavelet basis for the extraction of there instantaneous frequencies.

4. Application to the standard map

In order to illustrate the notion of instantaneous frequencies, we consider a well-
known two-dimensional symplectic map, namely the standard map (x, y) 7→ (x′, y′) :
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x′ = x− a sin y (7)

y′ = x′ + y mod 2π. (8)

The phase space structures of this two-dimensional map are well-known. We use
this simple model to show that these structures are revealed by the wavelet anal-
ysis of a single trajectory, i.e., by the computation of the associated instantaneous
frequencies.

In what follows, we use the routines (fast algorithms) of WaveLab [16]. In the
numerical implementation, we use η = 5 and σ = 4. We analyze a single real
signal which is the y-coordinate. Analogous results can be obtained by analyzing
the x-coordinate or another function of these two coordinates. This point is one
of the main motivations for the analysis of many dimensional systems, provided
they are highly nonlinear and strongly coupled (which are precisely the cases where
there is no method for analysis): The analysis of the phase space structures can be
obtained from a single signal.

Quasi-periodic trajectory– We consider a trajectory of the standard map for
K = 0.7 starting at x0 = 4.1 and y0 = 0 over a time span of T = 12868. This tra-
jectory, plotted in the first panel of Fig. 1, corresponds to a smooth invariant torus.
The main frequency is (approximately) equal to ω0 = (3 −

√
5)/2. Figure 1 shows

the different ridges of the normalized scalogram. These ridges are approximately
constant in time, as one would expect. The upper curve represents the main fre-
quency ω0, i.e. the ridge curve that has the strongest coefficient in the normalized
scalogram. The other two main frequency curves (whose amplitude is at least one
tenth of the maximum) are located at ω1 = 1 − 2ω0 and ω2 = 3ω0 − 1.

We can also see the interferences (oscillations around the expected frequency)
between these frequencies. In order to reduce these oscillations, we can increase
the parameter ησ.

A similar picture is obtained for the ridges of the spectrogram. The accuracy
in determining these frequencies is limited (of order ∆ω/ω ∼ 10−2 − 10−3 mainly
because we use the fast-algorithm wavelet transform), and Laskar’s frequency anal-
ysis [17] (which computes the maximum frequency of the filtered Fourier transform
on the whole time interval [0, T ] and a Gram-Schmidt orthogonalization procedure
to compute secondary frequencies) is more suited for this purpose and much more
accurate (with a Hanning filter, proportional to T−4 [6]).

Weakly chaotic motion– We consider a trajectory obtained for the standard
map with K = 1.1 and initial conditions x0 = 4.25 and y0 = 0. We analyze this
weakly chaotic trajectory over the time interval of total length T = 12868. Figure 2
depicts the main ridge (the secondary ridges are less than one half of the maximum
in amplitude) and shows clearly different trappings as time evolves: for instance,
the long trapping which occurs in the 1:3 resonance for for 4500 ≤ t ≤ 8000, or in
1:4 for 9300 ≤ t ≤ 9800. These trappings result from the trajectory passing nearby
islands surrounding elliptic periodic orbits (the other ridges contain the secondary
frequencies of the nearby quasi-periodic motion). The transitions between these
resonances occur quite smoothly, passing by other type of resonance trappings. The
transitions between different resonances occur when the chaotic trajectory passes
nearby a hyperbolic point where great variations of the frequencies are expected.
The trajectory is weakly chaotic since the main information can be obtained from
a single connected instantaneous frequency curve. In this regime, looking at the
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frequency where the spectrogram or scalogram is maximum is meaningful. Figure 3
represents the same trajectory as in Fig. 2 on a smaller time-span and with a smaller
ridge detection threshold. It represents a transition between a trapping near a
borken invariant rotational torus (cantorus) characterized by the same frequencies
as in Fig. 1 to a resonance trapping in the 1:3 resonance. This transition occurs by
the merger of the two main frequencies of the quasiperiodic motion. The Poincaré
section of this segment of trajectory represented on the upper panel is consistent
with this transition.

Resonance transitions– Apart from this type of transition, the time-frequency
resolution of wavelets allows us to analyze the mechanism of resonance transition.
Figure 4 shows a ridge plot obtained for K = 2, x0 = 1 and y0 = 0 on a time length
of T = 3000. The maximum frequency (characterized by the frequency where the
wavelet coefficients are maximum) jumps discontinuously from one ridge to an-
other. However, by looking at secondary ridges, the mechanism appears different:
A second ridge increases in amplitude while the first ridge decreases in amplitude.
On some time interval, two main ridges are constant in time and of the same or-
der in amplitude. Then the first ridge disappears and the second ridge becomes
the dominant one. This situation is typical from other ridge plots of trajectories
showing transitions from ridges and hence resonance transitions. Thus we have
a new characterization of resonance transition that applies in more general situa-
tions. Resonance transitions are a manifestation of the fulfillment of the Chirikov
resonance overlap criterion [18]. In this sense, our method extends this well-known
criterion for transition to chaos to high-dimensional dynamical systems that are far
from integrable.

When K increases, the trajectories are more and more chaotic (filling a bigger
part of phase space). More and more important instantaneous frequency curves
appear, and in those cases, looking at the maximum frequency leads to erroneous
results as shown above since several ridges have the same amplitude and the infor-
mation cannot be reduced to (or deduced from) a single instantaneous frequency.

Strongly chaotic motion– We consider a strongly chaotic trajectory of the stan-
dard map obtained with K = 5 and initial conditions x0 = 1 and y0 = 0. Figure 5
shows the ridge plot obtained from the normalized scalogram. It shows that no
trappings occur in this time interval and that the transitions between ridges occur
as explained above. The presence of a lot (but a finite number) of ridges reflects
the broad-band spectrum of a chaotic trajectory. These pictures lead to a charac-
terization of weak and strong chaos by looking at the number of important ridges
in the system: Weak chaos is characterized by one main connected instantaneous
frequency curve whereas strong chaos is characterized by multiple short ridges (the
number of them increases as K increases).

5. Conclusions

In summary, we showed how instantaneous frequencies reveal the phase space struc-
tures (resonance transitions, trappings, etc.) of a well-known chaotic system. Our
method based on a single trajectory analysis is therefore very well suited for ex-
ploring phase space structures of systems with high number of degrees of freedom.
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It uses the geometrical framework of dynamical systems theory for the purpose
of understanding the various possibilities for the evolution of trajectories in high-
dimensional, complex dynamical systems. Consequently, it should become a useful
tool not only for the analysis of trajectories generated by computers, but also for
trajectories generated in experiments.
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Figure 1. Phase portrait (first panel) and ridge plot (second panel) of a
quasi-periodic trajectory of the standard map obtained for K = 0.7 and initial
conditions x0 = 4.1 and y0 = 0.
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Figure 2. Phase portrait (first panel) and ridge plot (second panel) of a
weakly chaotic trajectory of the standard map obtained for K = 1.1 and
initial conditions x0 = 4.25 and y0 = 0.

0 1 2 3 4 5 6
3

4

5

6

y

x

0 500 1000 1500 2000 2500 3000
0.2

0.3

0.4

0.5

Time

ω

Figure 3. Phase portrait (first panel) and ridge plot (second panel) of a
weakly chaotic trajectory of the standard map obtained for K = 1.1 and
initial conditions x0 = 4.25 and y0 = 0.
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Figure 4. Resonance transition: Ridge plot of a trajectory of the standard
map with K = 2 and initial conditions x0 = 1 and y0 = 0.
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Figure 5. Ridge plot of a strongly chaotic trajectory of the standard map
with K = 5 and initial conditions x0 = 1 and y0 = 0.
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