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SIEGEL–VEECH CONSTANTS IN H(2)

SAMUEL LELIÈVRE

Abstract. Abelian differentials on Riemann surfaces can be seen
as translation surfaces, which are flat surfaces with cone-type sin-
gularities. Closed geodesics for the associated flat metrics form
cylinders, whose number under a given maximal length generically
has quadratic asymptotics in this length.

Siegel–Veech constants are coefficients of these quadratic growth
rates, and coincide for almost all surfaces in each moduli space of
translation surfaces. Square-tiled surfaces are some specific trans-
lation surfaces whose Siegel–Veech do not equal the generic ones.

It is an interesting question whether, as n tends to infinity, the
Siegel–Veech constants of square-tiled surfaces with n tiles tend to
the generic constants of the ambient moduli space. Here we prove
that it is the case in the moduli space H(2) of translation surfaces
of genus two with one singularity.
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1. Introduction

1.1. Geodesics on the torus. On the standard torus T2 = R2/Z2 ,
the number N(L) of families of simple closed geodesics of length not
exceeding L is well-known to grow quadratically in L, with

N(L) ∼
1

2ζ(2)
· πL2

which is one half of the asymptotic for the number of primitive lattice
points in a disc of radius L. The factor one half comes from counting
unoriented rather than oriented geodesics.

By convention, the corresponding Siegel–Veech constant is

c =
1

2ζ(2)

(note that it is the coefficient of πL2 and not of L2).
Marking the origin of the torus (i.e. artificially considering it as a

singularity or saddle), the number of geodesic segments joining the
saddle to itself, of length at most L, coincides with the number of
families of simple closed geodesics.

1.2. Geodesics on translation surfaces. It is a standard fact that
Abelian differentials on Riemann surfaces can be seen as translation
surfaces.

On translation surfaces of genus > 2, countings of closed or singular
geodesics, similar to those we just described for the torus, can be made.

There, the countings of saddle connections and of families of simple
closed geodesics do not coincide, but their growth rates remain qua-
dratic.

Masur proved [Ma88, Ma90] that for every translation surface, there
exist positive constants c and C such that the counting functions of
saddle connections and of maximal cylinders of closed geodesics satisfy

c · πL2
6 Ncyl(L) 6 Nsc(L) 6 C · πL2

for large enough L.
Veech [Ve] proved that on a square-tiled surface (and on any Veech

surface) there are in fact exact quadratic asymptotics and Gutkin and
Judge [GuJu] gave another proof of that. Another proof for the upper
quadratic bounds for Ncyl(L) and Nsc(L) was given by Vorobets [Vo].

Eskin and Masur [EM] gave yet another one, and proved that for
each connected component of each stratum of each moduli space of
normalised abelian (or quadratic) differentials, there are constants csc

and ccyl such that almost every surface in the component has Nsc(L) ∼
cscπL2 and Ncyl(L) ∼ ccylπL2.
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It is an interesting open problem whether all translation surfaces
have quadratic growth rates for cylinders of closed geodesics.

The particular constants for many Veech surfaces have been com-
puted explicitly by Veech [Ve], Vorobets [Vo], Gutkin–Judge [GuJu],
Schmoll [Schmo], Eskin–Masur–Schmoll [EMS]. The generic constants
for the connected components of the strata were computed by Eskin,
Masur and Zorich in [EMZ] for the case of abelian differentials.

The particular constants for Veech surfaces usually do not coincide
with the generic constants of the strata where they live.

There is also another subtle difference between Veech surfaces and
generic surfaces. Define cylinders as regular if their boundary com-
ponents both consist of a single saddle connection. In any connected
component of stratum in genus > 2, the counting functions of irregu-
lar cylinders are generically subquadratic (in fact a generic surface has
no irregular cylinders), while on Veech surfaces they have quadratic
asymptotics.

What we will prove however is that individual quadratic constants
either for regular cylinders or for all cylinders on square-tiled surfaces
of the stratum H(2) (translation surfaces of genus 2 with one singular-
ity) converge as the number of squares tends to infinity to the generic
constants of H(2). See Theorem 1 in § 1.4 for a precise statement.

1.3. Ratner theory for moduli spaces of abelian differentials.

Analogs of Ratner’s theorems classifying invariant measures for the
action of unipotent one-parameter groups on homogeneous spaces are
expected to hold on strata of the moduli spaces of abelian differentials;
the results we prove here could be deduced from such theorems; for the
time being, they reinforce the expectation that they do hold.

Some Ratner-like theorems for moduli spaces of abelian differentials
have recently been obtained, but do not allow to obtain Theorem 1.

The works of Calta [Ca] and McMullen [Mc] provide a classification of
invariant measures in H(2), albeit for the action of the whole SL(2,R)
and not of unipotent one-parameter subgroups of SL(2,R).

Eskin, Masur and Schmoll [EMS] have results for the action of unipo-
tent groups on subspaces of H(1, 1).

Eskin, Marklof and Morris [EMWM] have results for the action of
unipotent groups on certain moduli spaces of abelian differentials in
genus larger than 2.

1.4. In the stratum H(2). In this paper, we are concerned with the
stratum H(2) consisting of abelian differentials in genus 2 with a double
zero, or translation surfaces of genus 2 with one singularity (of angle
6π). We prove:
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Theorem 1. Consider a sequence Sn of area 1 surfaces in H(2) such

that each surface Sn is tiled by some prime number pn of square tiles,

with pn → ∞. Then the Siegel–Veech constants for cylinders of closed

geodesics on the surfaces Sn tend to 10
3
· 1

2ζ(2)
, the generic Siegel–Veech

constant of H(2) for cylinders of closed geodesics. Moreover, the Siegel–

Veech constants for regular cylinders also tend to the generic constant,

while the Siegel–Veech constants for irregular cylinders tend to 0.

Remark. We believe that the assumption that the number of squares
tiling the surfaces is prime is unnecessary, but we have not yet been
able to adapt the calculations to show the convergence of Siegel–Veech
constants in the case of nonprime numbers of tiles.

The proof of the theorem relies on fine estimates presented in § 3.1.

1.5. Acknowledgements. The author wishes to thank Anton Zorich
for guiding him into this problem, Pascal Hubert, Joël Rivat and Em-
manuel Royer for useful conversations, and Cécile Dartyge and Gérald
Tenenbaum who helped him with the estimates in § 3.1.

2. Preliminaries

2.1. The stratum H(2).

2.1.1. Orbits of square-tiled surfaces. By a theorem of McMullen [Mc2],
in H(2), for n > 3, primitive n-square-tiled surfaces form one orbit En

if n is even, and two orbits An and Bn if n is odd (see [HL1] for the
prime n case). Slightly abusing notation, we use the same notation An,
Bn, En for the discrete orbits and for the Teichmüller discs. A formula
for the cardinality of En (even n) and for the sum of the cardinalities
of An and Bn is given in [EMS], which in particular results in the
asymptotic

3

8
n3

∏

p|n

(1 −
1

p2
).

Formulas for the separate countings of An and Bn are conjectured in
[HL1], which would yield the asymptotics (proved there for prime n):

3

16
n3

∏

p|n

(1 −
1

p2
).

Some algebraic properties of the Veech groups are discussed in [HL2].
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2.1.2. Cusps. Square-tiled surfaces in the stratum H(2) decompose
into either one or two horizontal cylinders, and can be given as coordi-
nates the heights, widths and twist parameters of these cylinders, see
[HL1]. Here we are interested in regular cylinders of closed geodesics,
which exist only in two-cylinder decompositions (in one-cylinder de-
compositions, the unique cylinder has three saddle connections on each
boundary component).

The decompositions into cylinders provide a way to parametrise
square-tiled surfaces (by the heights, widths and twist parameters of
their cylinders). These parameters are very convenient to describe the
action of U = {

(
1 n
0 1

)
: n ∈ Z}; it only changes the twist parameters.

The cusps of an SL(2,R)-orbit of square-tiled surfaces, can be iden-
tified with the U-orbits of square-tiled surfaces in it, and each cusp has
a standard representative (see [HL1, Lemma 3.1]).

In particular, two-cylinder cusps are parametrised by the heights hi,
the widths wi, and twists parameters ti of their cylinders (i ∈ {1, 2}).
A two-cylinder cusp has cusp width cw(C) = w1

h1∧w1
∨ w2

h2∧w2
, where h∧w

denotes the greatest common divisor of h and w, and a∨ b denotes the
least common multiple of a and b.

Remark. When the number of tiles is prime, this simplifies to cw(C) =
w1w2.

2.2. Siegel–Veech constants of cusps. In the case of the torus,
counting families of simple closed geodesics amounts to counting prim-
itive points of Z2. In this sense, when counting simple closed geodesics
of a square-tiled surface of higher genus, we are counting certain mul-
tiples of those of the torus.

On a square-tiled surface, as on the torus, the directions which define
a decomposition in cylinders of closed geodesics correspond to primitive
integer vectors. Better than that, given a primitive square-tiled surface
S, each primitive integer vector (a, b) ∈ Z2 corresponds to a cusp of
the SL(2,R)-orbit of S. Recall that these cusps correspond to U-orbits
of square-tiled surfaces in the SL(2,R)-orbit of S.

Here is how to recover the cusp from the primitive integer vector.
Since a and b are coprime, by Bezout’s theorem, there exist integers
c and d such that ad − bc = 1. Geometrically, this means (a, b) and
(c, d) form an oriented basis of the lattice Z2. The surface S is tiled by
the unit area parallelograms defined by (a, b) and (c, d). Transforming
these parallelograms into squares gives a new square-tiled surface. This
is done by a linear transformation sending (a, b) to (1, 0) and (c, d) to

(0, 1), in other words by applying the matrix
(

a c
b d

)−1
∈ SL(2,Z).
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Of course c and d are not unique, but the various choices of (c, d) give

square-tiled surfaces
(

a c
b d

)−1
·S which belong to the same cusp. Quick

check: different choices of (c, d) differ by integer multiples of (a, b);

accordingly
(

a c
b d

)−1
=

(
d −c
−b a

)
and

(
1 k
0 1

)(
d −c
−b a

)
=

(
d−kb −c+ka
−b a

)
.

If we count the primitive integer vectors in a ball of radius L which
correspond to directions in which S decomposes in cylinders of closed
geodesics, we get the same counting function as for the torus.

One thing we could do is to count the primitive integer vectors in
a ball of radius L corresponding to a given cusp. The proportion of
directions going to different cusp is proportional to their width; see
[EMZ, §§ 3.3–3.4 and § 7]. Thus, the asymptotics for each cusp is given
by:

width of the cusp

sum of the cusp widths of the orbit
×

1

ζ(2)
· πL2.

This is not exactly what we want to count, since we do not want to
count the primitive vectors a multiple of which is the holonomy of a
cylinder of closed geodesics, but the multiples themselves.

If the corresponding cusp is two-cylinder, with widths w1, w2, we
want to count the direction not when ‖(a, b)‖ < L but when w1 ·
‖(a, b)‖ < L.

So the counting for this cusp will have asymptotics

width of the cusp

sum of the cusp widths of the orbit
·

1

w2
1

×
1

ζ(2)
· πL2.

As a consequence, denoting by D the SL(2,Z)-orbit of S, the count-
ing function for regular cylinders of simple closed geodesics on S has
the same asymptotics as

∑

2-cyl cusps C

cw(C)

#D

1

w2
1

1

2ζ(2)
πL2.

If S is a primitive n-square-tiled surface, when we normalise S to
area 1, we introduce a factor n in the above asymptotics.

So the asymptotics for the counting function of regular cylinders of
simple closed geodesics on a unit area primitive square-tiled surface in
an SL(2,Z)-orbit D is given by

c(D)πL2

and we can write c(D) = c̃(D) · 1
2ζ(2)

with

c̃(D) =
n

#D

∑

2-cyl cusps C of D

1

w2
1

cw(C).
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3. Asymptotics for a large prime number of squares

Consider some prime n, and an orbit Dn = An or Bn. Each cusp is
parametrised by some parameters w1, w2, h1, h2, and twist parameters.
By the remark at the end of § 2.1.2, the cusp width is just w1w2.

Renaming w1, w2, h1, h2 as a, b, h, y respectively, the sum over the
cusps becomes:

c̃(Dn) =
n

#Dn

∑

a,b,h,y

ab

a2

where the sum is over positive integers a, b, h, y satisfying: a < b,
ah + by = n, parity conditions for Dn.

3.1. A simpler sum. Since #Dn is, for prime n, asymptotically 3
16

n3,

we first replace n
#Dn

by 1
n2 .

Second, we momentarily drop the parity conditions; we will reintro-
duce them in the following subsections.

Last, we drop the condition a < b; we will explain later why this
does not change the asymptotic.

So we first consider the following simplified sum:

S(n) =
∑

a>1

1

a2

∑

b>1

∑

h>1, y>1
ah+by=n

ab

n2
.

Denote the sum over b by S(n, a). Introducing the variable m = by,

S(n, a) =
∑

16m6n−a
m≡n [a]

∑

b|m

ab

n2
=

a

n2
· F (n − a, n, a)

where

F (x, k, q) =
∑

16m6x
m≡k [q]

∑

b|m

b.

The following asymptotics hold for F (x, k, q), S(n, a) and S(n).

Lemma 1. For k ∧ q = 1, and x → ∞,

F (x, k, q) =
x2

q
·
π2

12

∏

p|q

(1 −
1

p2
) + Oq(x log x).

Lemma 2.

S(n, a) −−−−→
n→∞

n prime

π2

12

∏

p|a

(1 −
1

p2
).
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Lemma 3. S(n) −−−−→
n→∞

n prime

5

4
.

Proof of Lemma 1. If m is prime to k, denote by m the integer in
{0, . . . , q − 1} such that mm ≡ 1 [q], and by u = u(m, k, q) the integer
in {0, . . . , q − 1} such that u ≡ mk [q]; error terms depend on q.

F (x, k, q) =
∑

16md6x
md≡k [q]

d

=
∑

16m6x
m∧q=1

∑

16d6x/m
d≡mk [q]

d

=
∑

16m6x
m∧q=1

∑

16d6x/m
d≡u [q]

d

=
∑

16m6x
m∧q=1

∑

16u+λq6x/m

(u + λq)

=
∑

16m6x
m∧q=1

(( ∑

16λ61

q
( x

m
−u)

λq
)

+ O(
x

m
)

)

=
∑

16m6x
m∧q=1

(1

2
q(

x

qm
)2 + O(

x

m
) + O(1)

)

=
x2

2q

∑

16m6x
m∧q=1

1

m2
+ O(x log x)

To sum only over the integers m with m ∧ q = 1, we can sum over all
m with a factor µ(m ∧ q), so that all terms cancel out except the ones
we want.

F (x, k, q) =
x2

2q

∑

d|q

(
µ(d)

d2

∑

m6x/d

1

m2
) + O(x log x)

=
x2

2q

∑

d|q

µ(d)

d2
(
π2

6
+ O(1/x)) + O(x log x)

=
x2

q
·
π2

12

∏

p|q

(1 −
1

p2
) + O(x log x).

�
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Proof of Lemma 2. Lemma 2 follows immediately from Lemma 1 by
a dominated convergence argument (similar arguments were used in
[HL1, § 7]. �

Proof of Lemma 3. Lemma 3 is a consequence of Lemma 2 by the fol-
lowing observation.

∑

a>1

1

a2

∏

p|a

(1 −
1

p2
) =

∏

p

(1 +
∑

ν>1

p−2ν(1 − p−2ν)) =
∏

p

(1 + p2)

=
∏

p

1 − p−4

1 − p−2
=

ζ(2)

ζ(4)
=

π2/6

π4/90
=

15

π2

�

3.2. Sums with specified parities. We introduce sub-sums of S(n)
for specified parities of the parameters.

The observation we just made will need to be completed by the
following one.

∑

a>1
a even

1

a2

∏

p|a

(1 −
1

p2
) =

∑

a>1
a odd

1

4a2

3

4

∏

p|a

(1 −
1

p2
) +

∑

a>1
a even

1

4a2

∏

p|a

(1 −
1

p2
)

so that
∑

a>1
a odd

1

a2

∏

p|a

(1 −
1

p2
) =

12

π2
and

∑

a>1
a even

1

a2

∏

p|a

(1 −
1

p2
) =

3

π2
.

3.2.1. Odd widths. We now consider the sum over odd a and b:

Sow(n) =
∑

a>1
a odd

1

a2

∑

b>1
b odd

∑

h>1,y>1
ah+by=n

ab

n2
.

We proceed as for the sum S(n): putting

F ow(x, k, q) =
∑

16m6x
m≡k [q]

∑

b|m
b odd

b and Sow(n, a) =
a

n2
· F ow(n − a, n, a),

Sow(n) =
∑

a>1
a odd

1

a2
Sow(n, a).

The following asymptotics hold for F ow(x, k, q), Sow(n, a) and Sow(n).

Lemma 4. For odd q, odd k, and x → ∞,

F ow(x, k, q) =
x2

q

π2

24

∏

p|q

(1 −
1

p2
) + O(x logx).
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For odd a,

Sow(n, a) −−−−→
n→∞

n prime

π2

24

∏

p|a

(1 −
1

p2
).

Finally,

Sow(n) −−−−→
n→∞

n prime

1

2
.

Proof.

F ow(x, k, q) =
∑

t>0

∑

16m6x/2t

2tm≡k [q]
m≡1 [2]

∑

b|m

b

=
∑

t>0

(
(x/2t)2

2q

π2

12

∏

p|2q

(1 −
1

p2
) + O((x/2t) log(x/2t))

)

=
x2

q

1

1 − 1
4

π2

24
(1 −

1

22
)
∏

p|q

(1 −
1

p2
) + O(x log x)

=
x2

q

π2

24

∏

p|q

(1 −
1

p2
) + O(x log x)

�

3.2.2. Odd heights. We now consider the sum over odd h and y:

Soh(n) =
∑

a>1

1

a2

∑

b>1

∑

h>1,y>1
h, y odd
ah+by=n

ab

n2
.

Proceeding as previously, we are led to introduce

F oh(x, k, q) =
∑

16m6x
m≡k+q [2q]

∑

b|m
m/b odd

b and Soh(n, a) =
a

n2
· F oh(n − a, n, a),

and to write Soh(n) =
∑

a>1

1

a2
Soh(n, a).

The following asymptotics hold for F oh(x, k, q), Soh(n, a) and Soh(n).

Lemma 5. For even q, odd k, and x → ∞,

F oh(x, k, q) =
x2

q

π2

24

∏

p|q

(1 −
1

p2
) + O(x log x).



SIEGEL–VEECH CONSTANTS IN H(2) 11

For odd q, odd k, and x → ∞,

F oh(x, k, q) =
x2

q

π2

32

∏

p|q

(1 −
1

p2
) + O(x log x).

For even a,

Soh(n, a) −−−−→
n→∞

n prime

π2

24

∏

p|a

(1 −
1

p2
).

For odd a,

Soh(n, a) −−−−→
n→∞

n prime

π2

32

∏

p|a

(1 −
1

p2
).

Finally,

Soh(n) −−−−→
n→∞

n prime

1

2
.

Proof. For even q and odd k:

F oh(x, k, q) =
∑

16m6x
m≡k+q [2q]

∑

b|m

b

=
x2

2q

π2

12

∏

p|2q

(1 −
1

p2
) + O(x logx)

=
x2

q

π2

24

∏

p|q

(1 −
1

p2
) + O(x log x).

For odd q and odd k:

F oh(x, k, q) =
∑

t>1

∑

16m6x/2t

2tm≡k+q [2q]
m odd

∑

b|m

2tb

=
∑

t>1

2t
∑

16m6x/2t

2t−1m≡ k+q

2
[q]

m odd

∑

b|m

b

=
∑

t>1

2t (x/2t)2

2q

π2

12

∏

p|2q

(1 −
1

p2
) + O(x log x)

=
∑

t>1

1

2t

x2

q

π2

24
(1 −

1

22
)
∏

p|q

(1 −
1

p2
) + O(x log x)

=
x2

q

π2

32

∏

p|q

(1 −
1

p2
) + O(x log x).
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�
3.2.3. Mixed parities. Dealing with the even-odd sums as above would
be most cumbersome; this is fortunately not necessary. Indeed, since
S(n) = Sow(n) + Soh(n) + Seo(n), and we know the limits of S(n),
Sow(n) and Soh(n) when n tends to infinity staying prime, we have:

Seo(n) −−−−→
n→∞

n prime

1

4
.

3.3. Asymptotics for orbits A and B. We end by showing that the
limit we obtained is unchanged by adding a condition a < b.

Indeed, since #{(h, y) : h > 1, y > 1, ah + by = n} 6 n, the sum
a∑

b=1

∑

h>1, y>1
ah+by=n

ab

n2
is O(1/n), where the constant of the O depends on a.

This also shows that the constants for irregular cylinders tend to 0.

Putting things together, c̃(An) and c̃(Bn) have the same asymptotics
as SA(n) = 16

3
(Soh(n) + 1

2
Seo(n)) and SB(n) = 16

3
(Sow(n) + 1

2
Seo(n)),

so they both tend to 10
3
.

4. Concluding remarks

Numerical evidence suggests that the convergence to the generic con-
stants of the stratum occurs not only for prime n but for general n;
however a proof, relying on the validity of the conjecture on separate
countings by orbits in the case of odd numbers of squares, would in-
volve some complications in the calculations which would make the
exposition tedious.

A similar study for the quadratic constants that appear in the count-
ing of saddle connections could also be made. There one has to take
into consideration both one-cylinder and two-cylinder cusps, and some
interesting phenomena can be observed: numerical calculations sug-
gest that the sum of the contributions of one-cylinder and two-cylinder
cusps has a limit, but separate countings for one-cylinder cusps do not
have a limit for general n; their asymptotics have fluctuations involving
the prime factors of n.

References

[Ca] K. Calta. Veech surfaces and complete periodicity in genus two. J. Amer.

Math. Soc. 17 (2004), 871-908.
[EMWM] A. Eskin, J. Marlkof, D. Witte Morris. Unipotent flows on the space of

branched covers of Veech surfaces. Preprint (2004).
[EM] A. Eskin, H. Masur. Asymptotic formulas on flat surfaces. Ergodic Theory

Dynam. Systems 21:2 (2001), 443–478.



SIEGEL–VEECH CONSTANTS IN H(2) 13

[EMS] A. Eskin, H. Masur, M. Schmoll. Billiards in rectangles with barriers. Duke

Math. J. 118:3 (2003), 427–463.
[EMZ] A. Eskin, H. Masur, A. Zorich. Moduli spaces of abelian differentials: the

principal boundary, counting problems, and the Siegel–Veech constants. Publ.

IHES 97:1 (2003), 61–179.
[GuJu] E. Gutkin, C. Judge. Affine mappings of translation surfaces: geometry and

arithmetic. Duke Math. J. 103:2 (2000), 191–213.
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