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Abstract. We want to recover a signal based on noisy inhomogeneous data (the amount
of data can vary strongly on the estimation domain). We model the data using nonpara-
metric regression with random design, and we focus on the estimation of the regression at
a fixed point x0 with little, or much data. We propose a method which adapts both to the
local amount of data (the design density is unknown) and to the local smoothness of the
regression function. The procedure consists of a local polynomial estimator with a Lepski
type data-driven bandwidth selector, see for instance Lepski et al. (1997). We assess this
procedure in the minimax setup, over a class of function with local smoothness s > 0 of
Hölder type. We quantify the amount of data at x0 in terms of a local property on the
design density called regular variation, which allows situations with strong variations in
the concentration of the observations. Moreover, the optimality of the procedure is proved
within this framework.

1. Introduction

1.1. The model. We observe n pairs of random variables (Xi, Yi) ∈ R × R independent
and identically distributed satisfying

Yi = f(Xi) + ξi, (1.1)

where f : [0, 1] → R is the unknown signal to be recovered, the variables (ξi) are centered
Gaussian with variance σ2 and independent of the design X1, . . . , Xn. The variables Xi are
distributed with respect to a density µ. We want to recover f at a fixed point x0.

The classical way of considering the nonparametric regression model is to take determinis-
tics Xi = i/n. In this model with an equispaced design, the observations are homogeneously

distributed over the unit interval. If we take random Xi, we can model cases with inhomoge-

neous observations as the design distribution is ”far” from the uniform law. In particular,
in order to include situations with little or much data in the model, we allow the den-
sity µ to be degenerate (vanishing or exploding) at x0. In this problem, we are interested
in the adaptive estimation of f at x0, both adaptive to the smoothness of f and to the
inhomogeneity of the data.

1.2. Motivations. The adaptive estimation of the regression is a well-developed problem.
Several adaptive procedures can be applied for the estimation of a signal with unknown
smoothness: nonlinear wavelet estimation (thresholding), model selection, kernel estimation
with a variable bandwidth (the Lepski method), and so on. Recent results dealing with the
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adaptive estimation of the regression function when the design is not equispaced or random
include Antoniadis et al. (1997), Baraud (2002), Brown and Cai (1998), Wong and Zheng
(2002), Maxim (2003), Delouille et al. (2004), Kerkyacharian and Picard (2004), among
others.

Here, we focus on a slightly different problem: our aim is to recover the signal locally,
based on data which can be eventually very inhomogeneous. More precisely, we want to
be able to handle simultaneously situations where the observations are very concentrated
at the estimation point, or conversely, very defficient, with the aim to illustrate the conse-
quences of inhomogeneity on the accuracy of estimation within the theory. This problem is
considered in Gäıffas (2004), where several minimax rates are computed under several types
of behaviours for the design density. The estimator which is proposed therein is adaptive
to the inhomogeneity of the data, but not smoothness-adaptive. Therefore, the results pre-
sented here extend our previous work from Gäıffas (2004), since we construct a procedure
which is here both adaptive to the local smoothness, and to the distribution of the data.

1.3. Organisation of the paper. We construct the adaptive estimator in section 2, and
we assess this estimator in section 3. First, we give an upper bound in theorem 1 which is
stated conditionally on the design. Then, we propose in section 3.2 a way of quantifying the
local inhomogeneity of the data with an appropriate assumption on the local behaviour of
the design density. Under this assumption, we provide another upper bound in theorem 2.
In section 4, we discuss the optimality of the estimator, and we prove in theorem 3 that the
convergence rate from theorem 2 is optimal. We discuss some technical points in section 5
and we present numerical illustrations in section 6 for several datasets. Section 7 is devoted
to the proofs and some well-known analytic facts are briefly recalled in appendix.

2. Construction of the adaptive procedure

The procedure described here is a local polynomial estimator with an adaptive data-
driven selection of the bandwidth (the design density and the smoothness are both un-
known). We need to introduce some notations. We define the empirical sample measure

µ̄n :=
1

n

n∑

i=1

δXi
,

where δ is a Dirac mass, and for an interval I such that µ̄n(I) > 0, we introduce the
pseudo-scalar product

〈f , g〉I :=
1

µ̄n(I)

∫

I
fg dµ̄n, (2.1)

and ‖ · ‖I the corresponding pseudo-norm.

2.1. Local polynomial estimation. We fix K ∈ N and an interval I (typically I =
[x0 − h, x0 + h] where h > 0), which is a smoothing parameter that we call bandwidth. The
idea is to look for the polynomial f̄I of order K which is the closest to the data in the least
square sense, with respect to the localised design-adapted norm ‖ · ‖I :

f̄I := argmin
g∈VK

‖Y − g‖2
I , (2.2)

where VK is the set of all real polynomials of order at most K. We can rewrite (2.2) in a
variational form, in which we look for f̄I ∈ VK such that for any φ ∈ VK ,

〈f̄I , φ〉I = 〈Y , φ〉I , (2.3)
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where it suffices to consider only the power functions φp(·) = (· − x0)
p, 0 6 p 6 K. The

coefficients vector θ̄I ∈ R
K+1 of the polynomial f̄I is therefore solution, when it makes

sense, of the linear system
XIθ = YI ,

where for 0 6 p, q 6 K:

(XI)p,q := 〈φp , φq〉I and (YI)p := 〈Y , φp〉I . (2.4)

The parameter f(x0) is then estimated by f̄I(x0). This linear method of estimation, called
local polynomial estimator is well-known, see for instance Stone (1980), Fan and Gijbels
(1995, 1996) and Tsybakov (2003) among many others.

In this paper, we work with a slightly modified version of the local polynomial estimator,
which is convenient in situations with little or much data. We introduce

X̄I := XI +
1√

nµ̄n(I)
IK+11Ωc

I
,

where IK+1 is the identity matrix in R
K+1 and ΩI :=

{
λ(XI) > (nµ̄n(I))−1/2

}
, λ(M)

standing for the smallest eigenvalue of a matrix M . Then, when µ̄(I) > 0, we consider the

solution θ̂I of the linear system
X̄Iθ = YI , (2.5)

and denote by f̂I ∈ VK the polynomial with coefficients θ̂I . When µ̄n(I) = 0, we take

simply f̂I := 0.
Typically, the bandwidth I is given by a balance equation between the bias and the

variance of f̂I . Consequently, it depends on the local smoothness of f via the bias term.
Therefore, an adaptive technique is required when the smoothness is unknown, which is the
case in pratical situations.

2.2. Adaptive bandwidth selection. The adaptive procedure described here is based on
the method introduced by Lepski (1990), see also Lepski et al. (1997), Lepski and Spokoiny
(1997) and Spokoiny (1998). If a familly of linear estimators can be well sorted by their
respective variances (this is the case with kernel estimators in the white noise model, see
Lepski and Spokoiny (1997)), the Lepski procedure selects the largest bandwidth such that
the corresponding estimator does not differ significantly from estimators with a smaller
bandwidth. Following this principle, we propose a method which adapts to the unknown
smoothness, and additionally to the original Lepski method, to the distribution of the data
(the design density is unknown), in particular in cases with little of much data.

The idea of the adaptive procedure is the following: when f̂I is close to f (I is well-
chosen), we have for any J ⊂ I, φ ∈ VK

〈f̂J − f̂I , φ〉J = 〈Y − f̂I , φ〉J ≈ 〈Y − f , φ〉J = 〈ξ , φ〉J ,

which is a noise term. Then, in order to remove noise, we select the largest I such that
this noise term remains smaller than an appropriate threshold, for any J ⊂ I and φp,
0 6 p 6 K. The bandwidth is selected in a fixed set of intervals In called grid (which is a
tuning parameter of the procedure that we describe below) as follows:

În := argmax
I∈In

{
µ̄n(I) s.t. ∀J ⊂ I, I ∈ In, ∀0 6 m 6 K,

|〈f̂J − f̂I , φm〉J | 6 ‖φm‖JTn(I, J)
}
,

where
Tn(I, J) := σ

[
DI(̺nµ̄n(I))−1/2 + DpCK

(
log(nµ̄n(I))/(nµ̄n(J))

)1/2]
, (2.6)
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with CK := 1+(K +1)1/2, Dp := 4(p+1)1/2 and DI >
√

2. The estimator is then given by

f̂n(x0) := f̂bIn
(x0). (2.7)

An appropriate choice of grid (for practical purposes) is the following: first, we sort
the (Xi, Yi) into (X(i), Y(i)) such that X(i) 6 X(i+1). Then, we consider j such that x0 ∈
[X(j), X(j+1)] (if necessary, we take X(0) = 0 and X(n+1) = 1), we choose some a > 1 and
we introduce

In :=

[loga(j+1)]⋃

p=0

[loga(n−j)]⋃

q=0

[
X(j+1−[ap]), X(j+[aq ])

]
. (2.8)

This choice of grid is convenient for practical purposes, since its cardinal is O((log n)2),
which entails that the selection of the bandwidth in such a grid is fast at least for a parameter
a not too close to 1.

The estimator f̂n(x0) only depends on K and on the grid In (which are chosen by the
statistician). It does not depend on the smoothness of f nor any assumption on µ. In this
sense, this estimator is both smoothness-adaptive and design-adaptive. The procedure is
proved to be adaptive (see section 3) for any smoothness parameter (of Hölder type) smaller
than K+1. Therefore, we can understand K as a parameter of complexity of the procedure.

3. Assessment of the procedure: upper bounds

3.1. Conditionally on the design. When no assumption is made on the local behaviour
of µ, we can work conditionally on the design. The procedure is assessed in the following
way: first, we consider an ideal oracle interval given by

In,f := argmax
I⊂[0,1], x0∈I

{
µ̄n(I) s.t. osc f(I) 6 σDI

(
̺nµ̄n(I)

)−1/2
}

, (3.1)

where ̺n := n/ log n, DI >
√

2 and osc f(I) is the local oscillation of f in I, defined by

osc f(I) := inf
P∈VK

sup
y∈I

|f(y) − P (y)|, (3.2)

where we recall that VK is the set of all real polynomials with order at most K. The local
oscillation is a common way of measuring the smoothness of a function.

The interval In,f , which is not necessarily unique, makes the balance between the bias

and the log n-penalised variance of f̂I . Therefore, it can be understood as an ideal adaptive

bandwidth, see Lepski and Spokoiny (1997) and Spokoiny (1998). The log n term in (3.1)
is the payment for adaptation, see section 4.1. We use the word ”oracle” since this interval
depends on f directly. This oracle interval is used to define

Rn,f := σ
(
̺nµ̄n(In,f )

)−1/2
, (3.3)

which is a random normalisation (it depends on the local amount of data) assessing the
adaptive procedure in the next theorem. We introduce also

Īn,f := argmax
I∈In

{
µ̄n(I) s.t. osc f(I) 6 σDI

(
̺nµ̄n(I)

)−1/2
}

, (3.4)

which is an oracle interval in the grid, and we define the matrices

ΛI := diag(‖φ0‖−1
I , . . . , ‖φK‖−1

I ) and GI := ΛIX̄IΛI . (3.5)

We denote by Ln,f the smallest eigenvalue of GĪn,f
, by Xn the sigma-algebra generated by

X1, . . . , Xn and by E
n
f,µ the expectation with respect to the joint law P

n
f,µ of the observa-

tions (1.1). We recall that ΩI =
{
λ(XI) > (nµ̄n(I))−1/2

}
, see section 2.1.
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Theorem 1. When ‖f‖∞ < +∞, we have on ΩĪn,f
∩

{
nµ̄n(In,f ) > 2

}
for any p > 0,

n > K + 1:

E
n
f,µ

{(
R−1

n,f |f̂n(x0) − f(x0)|
)p|Xn

}
6 AL

−p
n,f + B(‖f‖∞ ∨ 1)p,

where A and B are constants depending respectively on p, K, a and σ, p, K, a.

Note that the upper bound in theorem 1 is non-asymptotic since it holds for any n > K+1.
Under an appropriate assumption on the design density (see the next section), we can see
that the probability of ΩĪn,f

is large and that Ln,f is positive with a large probability. For

more details, see section 5.

3.2. How to quantify the local inhomogeneity of the data? In this section, we
propose a way of modeling situations where the amount of data is large or little at the
estimation point x0. The idea is simple: we allow the design density µ to be vanishing or
exploding at x0 with a power function behaviour type, which is quantified by a coefficient β
called index of regular variation. Regular variation is a well-known notion, commonly used
for quantifying the asymptotic behaviour of probability queues. It is also intimately linked
with the theory of extreme values. On regular variation, we refer to Bingham et al. (1989).

Definition 1 (Regular variation). A function g : R
+ → R

+ is regularly varying at 0 if it is
continuous, and if there is β ∈ R such that

∀y > 0, lim
h→0+

g(yh)/g(h) = yβ. (3.6)

We denote by RV(β) the set of all such functions. A function in RV(0) is slowly varying.

The assumption on µ is the following: we assume that there is ν > 0 and β > −1 such
that for any y, |y − x0| 6 ν:

µ(x0 + y) = µ(x0 − y) and µ(x0 + · ) ∈ RV(β). (3.7)

This assumption means that µ is symmetrical within a neighbourhood of x0, and varies
regularly (on both sides). The local symmetry assumption is made in order to simplify the
presentation of the results, but not necessary, see section 5 for more details. Note that this
assumption includes the classical case with µ positive and continuous at x0, and that in
this case, β = 0.

3.3. Minimax adaptive upper bound. In this section, we assess the adaptive procedure

f̂n in the minimax adaptive framework under assumption (3.7), which is an assumption
quantifying the local amount the data. In what follows, we use the notation Ih := [x0 −
h, x0 + h]. Let us consider the following smoothness class of function.

Definition 2. If ω ∈ RV(s), 0 < s 6 K + 1 and Q, δ > 0, we introduce

Fδ(ω, Q) :=
{
f : R → R s.t. ‖f‖∞ 6 Q and ∀h 6 δ, osc f(Ih) 6 ω(h)

}
,

where we recall that osc f(I) is the local oscillation of f around x0, see (3.2).

The parameter δ, which is taken small below (eventually going to 0 with n), is the length
of the interval in which the smoothness assumption is made: this assumption is local. The
parameter Q can be arbitrary large, but fixed. We need such a parameter since the next
upper bound is stated uniformly over a collection of such classes. Note that the adaptive
estimator does not depend on Q. The parameter ω measures the local smoothess. The
assumption ω ∈ RV(s) is convenient here for the computation of the convergence rate, and
it is general since it includes for instance Hölder smoothness (take ω(h) = Lhs). Note that
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s must be smaller than K + 1, the degree of local polynomial smoothing of the adaptive
estimator, which will be actually proved to be adaptive for any smoothess smaller than
K + 1.

Throughout what follows, we use the notation µ(I) :=
∫
I µ(t)dt. We introduce hn(ω, µ)

as the smallest solution to
ω(h) = σ

(
̺nµ(Ih)

)−1/2
, (3.8)

where we recall that ̺n = n/ log n. This quantity is well defined as n is large enough,
since h 7→ ω(h)2µ(Ih) is continuous and vanishing at 0. This equation is the deterministic
counterpart (among symmetrical intervals) of the bias-variance equation (3.1). We introduce
also

rn(ω, µ) := ω(hn(ω, µ)), (3.9)

which is proved to be the minimax adaptive convergence rate over the classes Fδ(ω, Q), see
the next theorem and theorem 3 below.

Theorem 2. We consider the adaptive estimator f̂n(x0) defined by (2.7), with grid choice

given by

In :=

n⋃

i=1

{[
x0 − |Xi − x0|, x0 + |Xi − x0|

]}
(3.10)

instead of the grid (2.8) (we keep the same selection rule for the bandwidth). If µ satis-

fies (3.7), we have for any ω ∈ RV(s) for 0 < s 6 K + 1, for any p, Q > 0 and any δn such

that for some ρ > 1, δn > ρhn(ω, µ):

limsupn sup
f∈Fδn (ω,Q)

E
n
f,µ

{(
rn(ω, µ)−1|f̂n(x0) − f(x0)|

)p}
6 C, (3.11)

where C is a constant depending on p, K,Q, β. Moreover, we have

rn(ω, µ) ∼ P (log n/n)s/(1+2s+β)ℓω,µ(log n/n) as n → +∞, (3.12)

where an ∼ bn means limn→+∞ an/bn = 1, where ℓω,µ is a slowly varying function charac-

terized by ω and µ, and where P = P (s, β, σ) := σ2s/(1+2s+β).

Remark. When ω(h) = Lhs (Hölder smoothness) we have more precisely (for computations
details, see the proof of lemma 6)

rn(ω, µ) ∼ P (log n/n)s/(1+2s+β)ℓω,µ(log n/n) as n → +∞,

where P = P (s, β, σ, L) := σ2s/(1+2s+β)L(β+1)/(1+2s+β).

This theorem states an upper bound over the classes Fδn(ω, Q), which include Hölder
classes. Note that the grid choice (3.10), which differs from the choice (2.8) used in theo-
rem 1, is linked with the control of the Xn-measurable quantity Ln,f , related to the uniform
control of the solution to the linear system (2.5). Additional comments about this theorem
can be found in section 5.

3.4. Explicit examples of rates. Let β > −1, s, L > 0 and α, γ ∈ R. If
∫ h
0 µ(x0 + t)dt =

hβ+1(log(1/h))α for 0 6 h 6 ν, and if ω(h) = Lhs(log(1/h))γ , then lemma 10 below and
easy computations entail

rn(ω, µ) ∼ P
(
n(log n)α−1−γ(1+β)/s

)−s/(1+2s+β)
, (3.13)

where P = P (s, β, σ, L). This rate has to be compared with the minimax rate from Gäıffas
(2004):

P
(
n(log n)α−γ(1+β)/s

)−s/(1+2s+β)
,



POINTWISE ADAPTIVE CURVE ESTIMATION BASED ON INHOMOGENEOUS DATA 7

where the only difference with (3.13) is α instead of α − 1 in the logarithmic exponent.
This loss, often called payment for adaptation in the literature, is unavoidable in view of
theorem 3, see section 4 for more details.

In the usual case, namely when µ is positive and continuous at x0, and when f is Hölder
(that is, ω(h) = Lhs), we have α = β = γ = 0 and we find back the usual pointwise minimax
adaptive rate (see Lepski (1990), Brown and Low (1996)):

P (log n/n)s/(1+2s),

where P = P (s, 0, σ, L) = σ2s/(1+2s)L1/(1+2s). For the same design but for the smoothness
parameter ω(h) = Lhs(log(1/h))−s, we find the convergence rate

Pn−s/(1+2s),

where P = P (s, 0, σ, L) and where there is no log since we have more smoothness than in
the s-Hölder case.

4. Minimax adaptive optimality of the estimator

4.1. Payment for adaptation. When µ satisfies (3.7) and if some ω ∈ RV(s) is fixed, we
know from Gäıffas (2004) that the minimax rate over Fδ(ω, Q) is equal to

n−s/(2s+1+β)ℓω,µ(1/n), (4.1)

where ℓω,µ is a slowly varying function, characterized by ω and µ. In theorem 2, we proved

that the adaptive method f̂n(x0) converges with the rate

(log n/n)s/(2s+1+β)ℓω,µ(log n/n), (4.2)

which is slower than the minimax rate (4.1) because of the extra log n term. The aim of
this section is to prove that this extra term in unavoidable.

In a model with homogeneous information (for instance white noise or regression with
equidistant design), we know that adaptive estimation to the unknown smoothness without
loss of efficiency is not possible for pointwise risks, even when the unknown signal belongs
to one of two Hölder classes, see Lepski (1990), Brown and Low (1996) and Lepski and
Spokoiny (1997). This means that local adaptation cannot be achieved for free: we have to

pay an extra factor in the convergence rate, at least of order (log n)2s/(1+2s) when estimating
a function with Hölder smoothness s. The authors call this phenomenon payment for

adaptation. Here, we intend to generalize this result to inhomogeneous data.

4.2. A minimax adaptive lower bound. First, let us introduce H(s, L) := Fδ(ω, Q) for
ω(h) = Lhs, which is a classical local Hölder ball with smoothness s and radius L. Then,
let L′ > L > 0 and s > s′ > 0 be such that [s] = [s′]. We define A := H(s′, L′) and
B := H(s, L). We denote by an (resp. bn) the minimax rate given by (4.1) over A (resp.
B) and by αn (resp. βn) the adaptive rate given by (4.2) over A (resp. B).

Theorem 3. If an estimator f̃n satisfies for some p > 1 the two following upper bounds

(that is, it is asymptotically minimax over A and B):

limsupn sup
f∈A

E
n
f,µ

{(
a−1

n |f̃n(x0) − f(x0)|
)p}

< +∞, (4.3)

limsupn sup
f∈B

E
n
f,µ

{(
b−1
n |f̃n(x0) − f(x0)|

)p}
< +∞, (4.4)

then:
liminfn sup

f∈A
E

n
f,µ

{(
α−1

n |f̃n(x0) − f(x0)|
)p}

> 0. (4.5)
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Note that (4.5) contradicts (4.3) since limn an/αn = 0. The consequence is that there is

no pointwise minimax adaptive estimator over two such classes A and B and that the best

achievable rate is αn.

5. Discussion

About theorem 1. Note that XI = FIF
′
I where FI is the matrix of size n× (K +1) with

entries (FI)i,m = (Xi −x0)
m for 0 6 i 6 n and 0 6 m 6 K, and that kerXI = kerFI . This

entails, when n < K + 1, that XI is not invertible since its kernel is not zero, and that ΩI

is empty. Therefore, theorem 1 is stated for n > K + 1.

About assumption (3.7). Note that the local symmetry assumption is not necessary, but
made in order to simplify the notations and the proofs. When there are β−, β+ > −1 such
that µ(x0 + ·) ∈ RV(β+) and µ(x0 − ·) ∈ RV(β−) the result stated in theorem 2 is similar,
where the convergence rate is again given by (3.12) with β = min(β−, β+), which means
that the side with the largest amount of data ”dominates” (asymptotically) the other one
in the convergence rate.

About theorem 2. The reason why we need to take the grid (3.10) in theorem 2 is linked
with the uniform control of Ln,f , which is necessary in the upper bound when solving the
system (2.5). We can prove this theorem with the grid (2.8), which is more convenient in
practice, if we assume that Ln,f > λ for some λ > 0, uniformly for f in the union of Fδ(ω, Q)
for ω ∈ RV(s), 0 < s 6 K + 1. However, we have chosen to provide the upper bound only
under assumption (3.7), which is used to quantify the local amount of data only.

Other remarks. The fact that the noise level σ is known is of little importance. If it is
unknown we can plug-in some estimator σ̂2

n in place of σ2. Following Gasser et al. (1986)
or Buckley et al. (1988) we can consider for instance

σ̂2
n =

1

2(n − 1)

n−1∑

i=1

(Y(i+1) − Y(i))
2, (5.1)

where Y(i) is the observation at the point X(i) where X(1) 6 X(2) 6 . . . 6 X(n).

Literature. Bandwidth selection procedures in local polynomial estimation can be found
in Fan and Gijbels (1995), Goldenshluger and Nemirovski (1997) or Spokoiny (1998). In
this last paper the author is interested in the regression function estimation near a change
point. The main idea and difference between the work by Spokoiny (1998) and the previous
work by Goldenshluger and Nemirovski (1997) is to solve the linear problem (2.3) in a
non-symmetrical neighbourhood I of x0 not containing the change point. Our adaptive
procedure is mainly inspired by the methods from Lepski and Spokoiny (1997), Lepski
et al. (1997) and Spokoiny (1998), that we have modified in order to handle inhomogeneous
data.

6. Simulated illustrations

In the simulations, we use the example signals from Donoho and Johnstone (1994). These
functions are commonly used as benchmarks for adaptive estimators. We show in figure 1
the target functions and datasets with a uniform random design. The noise is Gaussian
with σ chosen to have (root) signal-to-noise ratio 7. The sample size is n = 2000, which is
large, but appropriate in order to exhibit the sensibility of the method to the underlying
design.
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We show the estimates in figure 2. For all estimates we consider the following tuning
parameters of the procedure: the degree of the local polynomials is K = 2 and we consider
the grid choice (2.8) with parameter a = 1.05. We recover the signal at each point x = j/300
with j = 0, . . . , 300. The procedure is implemented in C++ and is quite fast: it takes few
seconds to recover the whole function at 300 points on a modern computer.
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Figure 1. Blocks, bumps, heavysine and doppler with Gaussian noise and
uniform design.
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Figure 2. Estimates based on the datasets in figure 1.
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Note that these estimates can be slightly improved with case by case tuned parameters:
for instance, for the first dataset (blocks), the choice K = 0 gives a slightly better looking
estimate (the target function is constant by parts). In figure 3 we show datasets with the
same signal-to-noise ratio and sample size as in figure 1 but the design is non-uniform (we
plot the design density on each of them). We show the estimates based on these datasets
in figure 4. The same parameters as for figure 2 are used.
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Figure 3. Blocks, bumps, heavysine and doppler with Gaussian noise and
non-uniform design.
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Figure 4. Estimates based on the datasets in figure 3.



POINTWISE ADAPTIVE CURVE ESTIMATION BASED ON INHOMOGENEOUS DATA 11

In figures 5 and 6 we give a more localized illustration of the heavysine dataset. We keep
the same signal-to-noise ratio and sample size. We consider the design density

µ(x) =
β + 1

xβ+1
0 + (1 − x0)β+1

∣∣x − x0

∣∣β1[0,1](x), (6.1)

for x0 = 0.2, 0.72 and β = −0.5, 1.
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Figure 5. Heavysine datasets and estimates with design density (6.1) with
x0 = 0.2 and β = −0.5 at top, β = 1 at bottom.
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Figure 6. Heavysine datasets and estimates with design density (6.1) with
x0 = 0.72 and β = −0.5 at top, β = 1 at bottom.
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7. Proofs

7.1. Preparatory results and proof of theorem 1. The next lemma is a version of
the bias-variance decomposition of the local polynomial estimator, which is classical: see
for instance Fan and Gijbels (1995, 1996), Goldenshluger and Nemirovski (1997), Spokoiny
(1998) and Tsybakov (2003), among others. The next lemmas are used within the proof

of theorem 1, and are proven below. We recall that ΩI =
{
λ(XI) > (nµ̄n(I))−1/2

}
, see

section 2.1, that osc f stands for the local oscillation of f , see (3.2), and that the matrix GI

is defined in (3.5).

Lemma 1 (Bias variance decomposition). If I is such that µ̄n(I) > 0 and x0 ∈ I, we have

on ΩI that

|f̂I(x0) − f(x0)| 6 2(K + 1)1/2λ(GI)
−1

(
osc f(I) + σ(nµ̄n(I))−1/2|γI |

)
, (7.1)

where γI is, conditionally on XI , centered Gaussian with E
n
f,µ{γ2

I |Xn} 6 1.

We introduce m(p, σ) := (2/π)1/2
∫

R+(1+σt)p exp(−t2/2)dt. The next lemma shows that
the estimator cannot be too large in expectation.

Lemma 2. When ‖f‖∞ < +∞, we have for any p > 0 and J ⊂ [0, 1]:

E
n
f,µ

{
|f̂J(x0)|p|Xn

}
6 (K + 1)p/2m(p, σ)(‖f‖∞ ∨ 1)p

(
nµ̄n(J)

)p/2
.

The next lemmas deal with the adaptive selection of the bandwidth. In particular,
lemma 3 is of special importance, since it provides a control on the probability for a smooth-
ing parameter to be selected by the procedure. Let us introduce

TI,J,m :=
{
|〈f̂J − f̂I , φm〉J | 6 σ‖φm‖JTn(I, J)

}
,

and TI,J := ∩06m6KTI,J,m, TI := ∩J∈In(I)TI,J , where In(I) := {J ⊂ I s.t. J ∈ In}. Note
that on TI , the bandwidth I is selected if it maximises µ̄n(I).

Lemma 3. If I ∈ In is such that

osc f(I) 6 σDI
(
̺nµ̄n(I)

)−1/2
,

where we recall that DI is a tuning constant from the threshold term (2.6) and that ̺n =
n/ log n, we have on ΩI ∩

{
nµ̄n(I) > 2

}
:

P
n
f,µ{T c

I |Xn} 6 #(In(I))(K + 1)(nµ̄n(I))−D2
p/8,

where we recall that Dp = 4(p+1)1/2 (see (2.6)) and where #(E) denotes the cardinal of E.

Lemma 4. Let I ∈ In and J ∈ In(I). On the event TI,J ∩ ΩJ , we have

|f̂I(x0) − f̂J(x0)| 6 (K + 1)1/2λ(GJ)−1(DI + DpCK)σ
(
̺nµ̄n(J)

)−1/2
,

where we recall that GJ is given by (3.5).

Proof of theorem 1. Let j be such that x0 ∈ [X(j), X(j+1)], where X(i) < X(i+1) for any
1 6 i 6 n (eventually, we take X(0) := 0 and X(n+1) := 1). We consider the largest interval

I−n,f in In such that I−n,f ⊂ In,f . Since osc f(I)2µ̄n(I) increases as I increases, we have

osc f(I−n,f ) 6 σDI
(
̺nµ̄n(I−n,f )

)−1/2
,

thus µ̄n

(
I−n,f

)
6 µ̄n

(
Īn,f

)
. If p and q are such that

I−n,f = [X(j+1−[ap]), X(j+[aq ])],
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where a > 1 is the grid parameter (see (2.8)), and if u, v are such that [X(u), X(v)] ⊂ In,f

and µ̄n([X(u), X(v)]) = µ̄n(In,f ), we have

µ̄n

(
[X(j+1−[ap]), X(j+[aq ])]

)
6 µ̄n

(
[X(u), X(v)]

)

6 µ̄n

(
[X(j+1−[ap+1]), X(j+[aq+1])]

)
,

thus µ̄n

(
In,f

)
6 a2µ̄n

(
I−n,f

)
6 a2µ̄n

(
Īn,f

)
, and

µ̄n

(
In,f

)
/a2

6 µ̄n

(
Īn,f

)
6 µ̄n

(
In,f

)
. (7.2)

Note that for the grid choice given by (2.8), we have

#(In(I)) 6
(
log(nµ̄n(I))/ log a

)2
. (7.3)

We introduce Tn :=
{
µ̄n(Īn,f ) 6 µ̄n(În)

}
. By definition of În we have Tc

n ⊂ T c
Īn,f

. Using

lemmas 2, 3 and (7.2), (7.3), we obtain:

E
n
f,µ

{(
R−1

n,f |f̂n(x0) − f(x0)|
)p

1Tc
n
|Xn

}

6 (2p−1 ∨ 1)R−p
n,f

((
E

n
f,µ

{
|f̂n(x0)|2p|Xn

})1/2
+ ‖f‖p

∞

)(
P

n
f,µ{T c

Īn,f
|Xn}

)1/2

6 C(σ, a, p, K)(‖f‖∞ ∨ 1)p log
(
nµ̄n(Īn,f )

)1−p/2
(nµ̄n(Īn,f ))

)p−D2
p/16

6 C(σ, a, p, K)(‖f‖∞ ∨ 1)p,

where C(σ, a, p, K) := σ−p(2p−1 ∨ 1)(K + 1)1+p/2m(2p, σ)1/2ap/ log a and where we recall

that Dp = 4(p + 1)1/2.

By the definition of În, we have

Tn ⊂ TbIn,Īn,f
,

thus using lemma 4 and (7.2), we obtain that on Tn,

|f̂bIn
(x0) − f̂Īn,f

(x0)| 6 λ−1(GĪn,f
)(DI + DpCK)aRn,f .

In view of lemma 1 and definition (3.4) of Īn,f , we obtain using again (7.2):

|f̂Īn,f
(x0) − f(x0)| 6 λ(GĪn,f

)−1(K + 1)1/2
(
osc f(Īn,f ) + σ(nµ̄n(Īn,f ))−1/2|γĪn,f

|
)

6 λ(GĪn,f
)−1(K + 1)1/2

(
DI + (log n)−1/2|γĪn,f

|
)
aRn,f ,

where γĪn,f
is, conditionally on Xn, centered Gaussian and such that E

n
f,µ{γ2

Īn,f
|Xn} 6 1.

Then, we have on Tn

R−1
n,f |f̂n(x0) − f(x0)| 6 λ(GĪn,f

)−1(K + 1)1/2a
(
3DI + DpCK + (log n)−1/2|γĪnn,f |

)
,

and the theorem follows by integrating with respect to P
n
f,µ(·|Xn). �

7.2. Preparatory results and proof of theorem 2. Let us denote by P
n
µ the joint

probability of the variables Xi, 1 6 i 6 n and let us recall the notation µ(I) =
∫
I µ(t)dt.

The next lemmas are used within the proof of theorem 2, their proofs can be found below.

Lemma 5. For any I ⊂ [0, 1], ε > 0, we have:

P
n
µ

{
|µ̄n(I)/µ(I) − 1| > ε

}
6 2 exp

(
− ε2

1 + ε/3
nµ(I)

)
.
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Lemma 6. If µ satisfies (3.7), ω ∈ RV(s) and rn = rn(ω, µ) is given by (3.8) and (3.9),
we have

rn ∼ P (s, β, σ, 1)(log n/n)s/(1+2s+β)ℓω,µ(log n/n) as n → +∞, (7.4)

where ℓω,µ ∈ RV(0) is characterised by ω and µ and where we recall that P (s, β, σ, L) =

σ2s/(1+2s+β)L(β+1)/(1+2s+β). When ω(h) = Lhs, L > 0 (Hölder smoothness), we have more

precisely :

rn ∼ P (σ, β, σ, L)(log n/n)s/(1+2s+β)ℓω,µ(log n/n) as n → +∞. (7.5)

We need to introduce some notations. If α ∈ N, h > 0 and if ε > 0, we define the event

Dn,α(ε, h) :=

{∣∣∣
1

µ(Ih)

∫

Ih

( · − x0

h

)α
dµ̄n − gα,β

∣∣∣ 6 ε

}
,

where ga,b := (1+(−1)a)(b+1)/(2(a+ b+1)). The next lemmas are specifically linked with
the uniform control of the smallest eigenvalue of the matrix ΛIX̄IΛI , defined by (3.5).

Lemma 7. If µ satisfies (3.7), we have for any positive sequence (γn) going to 0 and any

α ∈ N, ε > 0:

P
n
µ

{
Dn,α(ε, γn)c

}
6 2 exp

(
− ε2

8(1 + ε/3)
nµ(Iγn)

)
, (7.6)

when n is large enough.

We recall that hn = hn(ω, µ) is defined by (3.8). In what follows, we omit the dependence
upon ω and µ to avoid overloaded notations. We introduce

Hn := argmin
h∈[0,1]

{
ω(h) > σ(̺nµ̄n(Ih))−1/2

}
, (7.7)

which is an approximation of hn when µ is unknown. The next lemma controls the way
how Hn and hn are close. If 0 < ε < 1, we introduce the event

Cn(ε) := {(1 − ε)hn < Hn 6 (1 + ε)hn}.
Lemma 8. If ω ∈ RV(s), s > 0 then for any 0 < ε2 6 1/2 there exists 0 < ε3 6 ε2 such

that for n large enough

Dn,0(ε3, (1 − ε2)hn) ∩ Dn,0(ε3, (1 + ε2)hn) ⊂ Cn(ε2).

Let us denote Gn := GIHn
and introduce the symmetrical matrix G with entries, for

0 6 p, q 6 K:

(G)p,q :=
(1 + (−1)p+q)(2p + β + 1)1/2(2q + β + 1)1/2

2(p + q + β + 1)
.

This matrix is the limit (in probability) of Gn as n → +∞. It is easy to see that λ(G) > 0:

note that G = ΛXΛ where Λ = diag
[
(1 + β)1/2, (2 + β)1/2, . . . , (2K + 1 + β)1/2

]
, which is

clearly invertible, and X has entries (X)p,q = (1+(−1)p+q)/(2(p+q+β+1)) for 0 6 p, q 6 K.

Let us define the vector p(t) = (1, t, . . . , tk). Then, we have λ(X) > 0: otherwise,

0 = λ(X) = 〈x , Xx〉 =

∫ 1

−1
(x′p(t))2|t|βdt,

where x ∈ R
K+1 is non-zero vector, which leads to a contradiction, since t 7→ x′p(t) is a

polynomial (x′ stands for the transposition of x). Let us introduce the events An(ε) :={
|λ(Gn) − λ(G)| 6 ε

}
for ε > 0 and for α ∈ N

Bn,α(ε) :=

{∣∣∣
1

µ(Ihn)

∫

IHn

( · − x0

hn

)α
dµ̄n − gα,β

∣∣∣ 6 ε

}
,
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which differs from Dn,α(ε, hn) since the integral is taken over IHn instead of Ihn .

Lemma 9. If ω ∈ RV(s), s > 0 and µ satisfies (3.7), we can find for any 0 < ε 6 1/2 an

event An(ε) ∈ Xn such that

An(ε) ⊂ An(ε) ∩ Bn,0(ε) ∩ Cn(ε) (7.8)

for n large enough, and

P
n
µ

{
An(ε)c

}
6 4(K + 2) exp

(
− DA r−2

n

)
, (7.9)

where rn := rn(ω, µ) is given by (3.9) and DA > 0.

Proof of theorem 2. The proof of this theorem is based on the proof of theorem 1 and
the previous lemmas. In the same fashion as in the proof of theorem 1, where we replace
only equation (7.3) by

#(In(I)) 6
(
nµ̄n(I)

)2

since the grid choice is (3.10) instead of (2.8), we obtain that on ΩIHn
∩

{
nµ̄n(IHn) > 2

}
:

E
n
f,µ

{(
R−1

n,f |f̂n(x0) − f(x0)|
)p|Xn

}
6 Aλ(GIHn

)−p + B(‖f‖∞ ∨ 1)p,

where we recall that Hn is defined by (7.7). Let us define ε := min(ρ− 1, λ/2) and consider
the event An(ε) from lemma 9. On this event, since An(ε) ⊂ Cn(ε), we have δn > (1+ε)hn >

Hn, thus f ∈ Fδ(ω, Q) entails that we have either

osc f(IHn) 6 ω(Hn) = σ
(
̺nµ̄n(IHn)

)−1/2
,

or
osc f(IHn) 6 ω(Hn) 6 σ

(
(nµ̄n(IHn) − 1)/ log n

)−1/2
,

which entails that in both cases osc f(IHn) 6 σDI
(
̺nµ̄n(IHn)

)−1/2
since DI >

√
2, and

that
µ̄n(IHn) 6 µ̄n(In,f ). (7.10)

Note that Bn,0(ε) =
{
|µ̄n(IHn)/µ(Ihn)− 1| 6 ε

}
. Thus, on An(ε), we have in view of (3.8),

(3.9), (7.8) and (7.10) that rn(ω, µ)−1 6 (1 − ε)−1R−1
n,f , and nµ̄n(In,f ) > (1 − ε)nµ(Ihn) →

+∞ as n → +∞, thus An(ε) ⊂ ΩIHn
∩

{
nµ̄n(IHn) > 2

}
. Then, since An(ε) ⊂ An(ε), we

have uniformly for f ∈ Fδ(ω, Q):

E
n
f,µ

{(
rn(ω, µ)−1|f̂n(x0) − f(x0)|

)p
1An(ε)

}
6 (1 − ε)−p/2(A(λ − ε)−p + B(Q ∨ 1)p).

Now we work on the complementary An(ε)c. Using lemma 2 and (7.9), we obtain that
uniformly for f ∈ Fδ(ω, Q):

E
n
f,µ

{(
r−1
n |f̂n(x0) − f(x0)|

)p
1An(ε)c

}

6 (2p−1 ∨ 1)r−p
n

[(
E

n
f,µ

{
|f̂n(x0)|2p

})1/2
+ Qp

](
P

n
µ{An(ε)c}

)1/2

6 (2p−1 ∨ 1)(Q ∨ 1)p(1 + (K + 1)p/2m(σ, 2p)1/2)r−p
n np/2

(
P

n
µ{An(ε)c}

)1/2
= on(1),

which entails (3.11). Moreover, (3.12) follows from lemma 6, which concludes the proof. �

The next lemma is a technical tool for computing the explicits examples given in sec-
tion 3.4. The proof can be found in Gäıffas (2004).

Lemma 10. Let a ∈ R and b > 0. If G(h) = hb(log(1/h))a, then we have

G←(h) ∼ ba/bh1/b(log(1/h))−a/b as h → 0+.
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7.3. Proofs of the lemmas. In the following, we denote by PI the projection in the space
VK for the scalar product 〈· , ·〉I which is given by (2.1). Note that on ΩI , we have (see
section (2.1))

f̂I = f̄I = PIY, (7.11)

where PI is the projection in VK with respect to 〈· , ·〉I . We denote respectively by 〈· , ·〉
and by ‖ · ‖ the Euclidean scalar product and the Euclidean norm in R

K+1. We denote by
‖ · ‖∞ the sup norm in R

K+1. We define e1 := (1, 0, . . . , 0) ∈ R
K+1.

Proof of lemma 1. On ΩI , we have X̄I = XI and λ(XI) > (nµ̄n(I))−1/2 > 0, thus XI is
invertible. Since ΛI is clearly invertible on this event, GI is also invertible. By definition of
osc f(I), we can find a polynomial P ε

I ∈ VK such that

sup
x∈I

|f(x) − P ε
I (x)| 6 osc f(I) + ε/

√
n,

for any fixed ε > 0. If we denote by θI the coefficients vector of P ε
I then

|f̂I(x0) − f(x0)| 6 |〈Λ−1
I (θ̂I − θI) , e1〉| + osc f(I) + ε/

√
n

= |〈G−1
I ΛIXI(θ̂I − θI) , e1〉| + osc f(I) + ε/

√
n.

In view of (2.3), we have on ΩI for m = 0, . . . ,K:

(XI(θ̂I − θI))m = 〈f̂I − P ε
I , φm〉I = 〈Y − P ε

I , φm〉I
= 〈f − P ε

I , φm〉I + 〈ξ , φm〉I =: BI,m + VI,m,

thus the decomposition into bias and variance terms XI(θ̂I − θI) = BI + VI , and

|f̂I(x0) − f(x0)| 6 |〈G−1
I ΛIBI , e1〉| + |〈G−1

I ΛIVI , e1〉| + osc f(I) + ε/
√

n.

We have

|〈G−1
I ΛIBI , e1〉| 6 ‖G−1

I ΛIBI‖ 6 ‖G−1
I ‖‖ΛIBI‖ 6 ‖G−1

I ‖(K + 1)1/2‖ΛIBI‖∞,

and for 0 6 m 6 K,

|(ΛIBI)m| = ‖φm‖−1|〈f − P ε
I , φm〉I | 6 ‖f − P ε

I ‖I 6 osc f(I) + ε/
√

n.

Since λ(M)−1 = ‖M−1‖ for any symmetrical and positive matrix M , and since ‖Λ−1
I ‖ 6 1,

we have on ΩI :

‖G−1
I ‖ = ‖Λ−1

I X−1
I Λ−1

I ‖ 6 ‖X−1
I ‖ = λ(XI)

−1
6 (nµ̄n(I))1/2

6 n1/2,

thus

|〈G−1
I ΛIBI , e1〉| 6 (K + 1)1/2

(
‖G−1

I ‖ osc f(I) + ε
)
.

Conditionally on Xn, the random vector VI is centered Gaussian with covariance matrix
σ2(nµ̄n(I))−1XI . Thus G−1

I ΛIVI is again centered Gaussian, with covariance matrix

σ2(nµ̄n(I))−1G−1
I ΛIXIΛIG−1

I = σ2(nµ̄n(I))−1G−1
I ,

and 〈G−1
I ΛIVI , e1〉 is then centered Gaussian with variance

σ2(nµ̄n(I))−1〈e1 , G−1
I e1〉 6 σ2(nµ̄n(I))−1‖G−1

I ‖.
Since GI is positive symmetrical and its entries are smaller than one in absolute value,
‖G−1

I ‖ = λ(GI)
−1 and λ(GI) = inf‖x‖=1〈x , GIx〉 6 ‖GIe1‖ 6 (K + 1)1/2. Thus ‖G−1

I ‖ 6

(K + 1)1/2‖G−1
I ‖2, and the lemma follows. �
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Proof of lemma 2. If µ̄n(J) = 0, we have f̂J = 0 by definition and the result is obvious,

thus we assume µ̄n(J) > 0. Since λ(X̄J) > (nµ̄n(J))−1/2 > 0, X̄J and ΛJ are invertible
and GJ also is. Thus,

f̂J(x0) = 〈Λ−1
J θ̂J , e1〉 = 〈G−1

J ΛJX̄J θ̂J , e1〉 = 〈G−1
J ΛJYJ , e1〉.

For any 0 6 m 6 K, we have

|(ΛJYJ)m| 6 ‖φm‖−1
J

(
|〈f , φm〉J | + |〈ξ , φm〉J |

)

6 ‖f‖J + ‖φm‖−1
J |〈ξ , φm〉J |

6 ‖f‖∞ + ‖φm‖−1
J |〈ξ , φm〉J | =: ‖f‖∞ + |VJ,m|.

Conditionally on Xn, the vector VJ with entries (VJ,m; 0 6 m 6 K) is centered Gaussian

with variance σ2
(
nµ̄n(J)

)−1
ΛJXJΛJ , thus G−1

J VJ is also centered Gaussian, with variance

σ2
(
nµ̄n(J)

)−1G−1
J ΛJXJΛJG−1

J = σ2
(
nµ̄n(J)

)−1
Λ−1

J X̄−1
J XJX̄

−1
J Λ−1

J .

The variable 〈G−1
J VJ , e1〉 is then, conditionally on Xn, centered Gaussian with variance

σ2
(
nµ̄n(J)

)−1〈e1 , Λ−1
J X̄−1

J XJX̄
−1
J Λ−1

J e1〉 6 σ2
(
nµ̄n(J)

)−1‖Λ−1
J ‖2‖X̄−1

J ‖2‖XJ‖,

and since clearly ‖XJ‖ 6 K + 1, ‖Λ−1
J ‖ 6 1 and ‖X̄−1

J ‖ = λ(X̄J)−1 6
(
nµ̄n(J)

)1/2
,

the variance of 〈G−1
J VJ , e1〉 is, conditionally on Xn, smaller than σ2(K + 1). Moreover,

‖G−1
J ‖ 6 ‖Λ−1

J ‖‖X̄−1
J ‖‖Λ−1

J ‖ 6
(
nµ̄n(J)

)1/2
, thus

|f̂J(x0)| 6 (K + 1)1/2(‖f‖∞ ∨ 1)
(
nµ̄n(J)

)1/2(
1 + σ|γJ |

)
,

where γJ is, conditionally on Xn, centered Gaussian with variance smaller than 1. The
lemma follows by integrating with respect to P

n
f,µ(·|Xn). �

Proof of lemma 3. Let 0 6 m 6 K and J ∈ In(I). In view of (2.3) and (7.11), we have
on ΩI :

〈f̂J − f̂I , φm〉J = 〈Y − f̂I , φm〉J
= 〈f − f̂I , φm〉J + 〈ξ , φm〉J
= 〈f − PIf , φm〉J + 〈PIf − f̂I , φm〉J + 〈ξ , φm〉J
= 〈f − PIf , φm〉J + 〈PI(f − Y ) , φm〉J + 〈ξ , φm〉J
= 〈f − PIf , φm〉J − 〈PIξ , φm〉J + 〈ξ , φm〉J
:= A + B + C.

The term A is a bias term. By the definition of osc f(I) we can find a polynomial P ε
I ∈ VK

such that

sup
x∈I

|f(x) − P ε
I (x)| 6 osc f(I) + εn,

where εn := σDpCK log 2/(4n). Thus, since J ⊂ I, P ε
I ∈ VK and PI is an orthogonal

projection with respect to 〈· , ·〉I ,
|A| 6 ‖f − PIf‖J‖φm‖J 6 ‖f − P ε

I − PI(f − P ε
I )‖I‖φm‖J

6 ‖f − P ε
I ‖I‖φm‖J 6 (osc f(I) + εn)‖φm‖J ,

and by assumption,

|A| 6 ‖φm‖J

(
σDI(̺nµ̄n(I))−1/2 + εn

)
. (7.12)
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Conditionally on Xn, B and C are centered Gaussian. Clearly, C is centered Gaussian with
variance

σ2‖φm‖2
J/(nµ̄n(I)).

Since PIξ has covariance matrix σ2PIP
′
I = σ2PI (PI is an orthogonal projection), the

variance of B is equal to

E
n
f,µ

{
〈PIξ , φm〉2J |Xn

}
6 ‖φm‖2

JE
n
f,µ{‖PIξ‖2

J |Xn}
= ‖φm‖2

J Tr
(
Var(PIξ|Xn)

)
/(nµ̄n(J))

= σ2‖φm‖2
J Tr(PI)/(nµ̄n(J)),

where Tr(M) stands for the trace of a matrix M . Since PI is the projection on VK , it
follows that Tr(PI) 6 K + 1, and that the variance of B is smaller than

σ2‖φm‖2
J(K + 1)/(nµ̄n(J)).

Then,
E

n
f,µ{(B + C)2|Xn} 6 σ2‖φm‖2

JC2
K/(nµ̄n(J)), (7.13)

where we recall that CK = 1+(K +1)1/2. Since nµ̄n(I) > 2 by assumption, and µ̄n(J) 6 1,
we have

εn 6 σDpCK

[
log

(
nµ̄n(I)

)
/
(
4nµ̄n(J)

)]1/2
. (7.14)

Then, equations (7.12), (7.14) and the definition of the threshold (2.6) together entail
{
‖φm‖−1

J |〈f̂I − f̂J , φm〉J | > Tn(I, J)
}

⊂
{ ‖φm‖−1

J |B + C|
σ(nµ̄n(J))−1/2CK

> Dp

(
log(nµ̄n(I))

)1/2
/2

}
.

Then, since

T c
I,J =

K⋃

m=0

{
‖φm‖−1

J |〈f̂I − f̂J , φm〉J | > Tn(I, J)
}
,

we obtain using (7.13) and the fact that P{|N(0, 1)| > x} 6 exp(−x2/2):

P
n
f,µ{T c

I |Xn} 6
∑

J∈In(I)

K∑

m=0

exp(−D2
p log(nµ̄n(I))/8)

6 #(In(I))(K + 1)(nµ̄n(I))−D2
p/8,

which concludes the lemma. �

Proof of lemma 4. Let us define HJ := ΛJXJ . On ΩJ , we have:

|f̂I(x0) − f̂J(x0)| = |(θ̂I − θ̂J)0| 6 ‖Λ−1
J (θ̂I − θ̂J)‖∞

6 ‖G−1
J HJ(θ̂I − θ̂J)‖∞

6 (K + 1)1/2λ(GJ)−1‖HJ(θ̂I − θ̂J)‖∞.

Since on ΩJ , 〈f̂I − f̂J , φm〉J/‖φm‖J = (HJ(θ̂I − θ̂J))m, and since J ⊂ I, we obtain that on
TI,J :

|f̂I(x0) − f̂J(x0)| 6 (K + 1)1/2λ(GJ)−1Tn(I, J)

6 (K + 1)1/2λ(GJ)−1σ(DI + DpCK)
(
̺nµ̄n(J))

)−1/2
,

thus the lemma. �
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Proof of lemma 5. It suffices to use the Bernstein inequality to the sum of independent
random variables Zi = 1Xi∈I − µ(I) for 1 6 i 6 n. �

Proof of lemma 6. Let us define G(h) := ω2(h)µ(Ih). In view of (3.7), we have µ(Ih) =

2
∫ h
0 µ(x0 + t)dt for h 6 ν, and µ(Ih) ∈ RV(β + 1) since β > −1 (see appendix), thus G ∈

RV(1+2s+β). The function G is continuous and going to 0 as h → 0+ since 1+2s+β > 0,
see (A.2). Thus, we have for n large enough hn = G←(σ2̺−1

n ) where G←(h) := inf{y >

0|G(y) > h} is the generalized inverse of G. Since G← ∈ RV(1/(1+2s+β)) (see appendix)

we have ω ◦ G← ∈ RV(s/(1 + 2s + β)) and we can write ω ◦ G←(h) = hs/(1+2s+β)ℓω,µ(h)
where ℓω,µ is slowly varying. In particular, we have ℓω,µ(σ2̺−1

n ) ∼ ℓω,µ(̺−1
n ), thus

rn = ω ◦ G←(σ2̺−1
n ) ∼ P (s, β, σ, 1)(log n/n)s/(1+2s+β)ℓω,µ(log n/n) as n → +∞.

When ω(h) = Lhs we can write more precisely hn = G←
(
(σ/L)2̺−1

n

)
where G(h) =

h2sµ(Ih), and we obtain (7.5) in the same fashion as (7.4). �

Proof of lemma 7. Let us define Qi :=
(

Xi−x0

γn

)α
1Xi∈Iγn

and Zi := Qi −E
n
µ{Qi}. In view

of (3.7), we can find N such that γn 6 ν for any n > N and:

1

µ(Iγn)
E

n
µ{Qi} =

1 + (−1)α

2

γβ+1
n ℓµ(γn)∫ γn

0 tβℓµ(t)dt

∫ γn

0 tα+βℓµ(t)dt

γα+β+1
n ℓµ(γn)

,

where for h 6 ν, ℓµ(h) = h−βµ(x0 + h) = h−βµ(x0 − h) is slowly varying (see appendix).
Then, we have in view of (A.3):

lim
n→+∞

1

µ(Iγn)
E

n
µ{Qi} = gα,β ,

which entails that for n large enough:

Dn,α(ε, γn)c ⊂
{

1

nµ(Iγn)

∣∣∣
n∑

i=1

Zi

∣∣∣ > ε/2

}
. (7.15)

Not that E
n
µ{Zi} = 0, |Zi| 6 2,

∑n
i=1 E

n
µ{Z2

i } 6 nE
n
µ{Q2

i } 6 nµ(Iγn) and that the Zi,
1 6 i 6 n are independent. Thus, we apply Bernstein inequality to the sum of the Zi and
the lemma follows. �

Proof of lemma 8. In view of (7.7), we have
{
Hn 6 (1 + ε2)hn

}
=

{
̺nµ̄n(I(1+ε2)hn

) > σ2ω((1 + ε2)hn)−2
}
.

We introduce ε3 := min
[
ε2, 1− (1−ε2

2)
−2(1+ε2)

−2s
]
, which is positive for ε2 small enough,

and ℓω(h) := h−sω(h) which is slowly varying, since ω ∈ RV(s). Since (A.1) holds uniformly
over each compact set in (0,+∞), we have for any y ∈ [1/2, 3/2]

(1 − ε2
2)ℓω(hn) 6 ℓω(yhn) 6 (1 + ε2

2)ℓω(hn) (7.16)

for n large enough, so (7.16) with y = 1 + ε (ε 6 1/2) entails in view of (3.8) and since
h 7→ µ(Ih) is increasing:

(1 − ε3)̺nµ(I(1+ε2)hn
) > (1 − ε2

2)
−2(1 + ε2)

−2sσ2ω(hn)−2

= σ2
(
(1 + ε2)hn

)−2s
(1 − ε2

2)
−2ℓω(hn)−2

> σ2ω((1 + ε2)hn)−2.

Thus {
µ̄n(I(1+ε2)hn

) > (1 − ε3)µ((1 + ε2)hn)
}
⊂

{
Hn 6 (1 + ε2)hn

}
,
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and similarly on the other side, we have for n large enough:
{
µ̄n(I(1−ε2)hn

) 6 (1 + ε3)µ((1 − ε2)hn)
}
⊂ {(1 − ε2)hn < Hn},

thus the lemma. �

Proof of lemma 9. Since Gn and G are symmetrical, we get
⋂

06p,q6K

{∣∣(Gn − G)p,q

∣∣ 6 ε/(K + 1)2
}
⊂ An(ε),

where we used the fact that λ(M) = inf‖x‖=1〈x , Mx〉 for any symmetrical matrix M . Then,

an easy computation shows that if ε1 := min
[
ε, ε(β + 1)/((K + 1)2(2K + β + 1))

]
, we have

for any 0 6 p, q 6 K:

Bn,p+q(ε1) ∩ Bn,2p(ε1) ∩ Bn,2q(ε1) ⊂
{∣∣(Gn − G)p,q

∣∣ 6 ε/(K + 1)2
}
,

and then
2K⋂

α=0

Bn,α(ε1) ⊂ An(ε).

Let us define ε2 := ε1/(2(1 + ε1)
2K+1) and let ε3 be such that (1 + ε3)

β+3/(1− ε3) 6 1 + ε2

and 0 < ε3 6 ε2. Since h 7→ µ̄n(Ih) is increasing, we have

Cn(ε3) ⊂
{
µ̄n(I(1−ε3)hn

) 6 µ̄n(IHn) 6 µ̄n(I(1+ε3)hn
)
}
,

and using lemma 8, we can find 0 < ε4 6 ε3 such that

Dn,0(ε4, (1 − ε3)hn) ∩ Dn,0(ε4, (1 + ε3)hn) ⊂ Cn(ε3).

In view of (A.1) and since ℓµ(h) := h−(β+1)µ(Ih) is slowly varying, we have for any 0 <
ε3 6 1/2:

ℓµ((1 + ε3)hn) 6 (1 + ε3)ℓµ(hn) and ℓµ((1 − ε3)hn) > (1 − ε3)ℓµ(hn) (7.17)

as n is large enough, thus simple algebra and the previous embeddings entail

Dn,0(ε4, (1 − ε3)hn) ∩ Dn,0(ε4, (1 + ε3)hn) ∩ Dn,0(ε3, hn) ⊂
{∣∣∣

µ̄n(IHn)

µ̄n(Ihn)
− 1

∣∣∣ 6 ε2

}
.

Thus, in view of the previous embeddings, we have on Dn,0(ε4, (1 − ε3)hn) ∩ Dn,0(ε4, (1 +
ε3)hn) ∩ Dn,0(ε3, hn):

1

µ(Ihn)

∣∣∣
∫

IHn

( · − x0

hn

)α
dµ̄n −

∫

Ihn

( · − x0

hn

)α
dµ̄n

∣∣∣

6

(Hn ∨ hn

hn

)α µ̄n(Ihn)

µ(Ihn)

∣∣∣
µ̄n(IHn)

µ̄n(Ihn)
− 1

∣∣∣

6 (1 + ε3)
α(1 + ε3)ε2 6 (1 + ε1)

2K+1ε2 = ε1/2.

Putting all the previous embeddings together, we obtain

Dn,0(ε4, (1 − ε3)hn) ∩ Dn,0(ε4, (1 + ε3)hn)

∩ Dn,0(ε4, hn) ∩ Dn,α(ε1/2, hn) ⊂ Bn,α(ε1),

and finally, equation (7.8) follows if we take

An(ε) := Dn,0(ε4, (1 − ε3)hn) ∩ Dn,0(ε4, (1 + ε3)hn) ∩ Dn,0(ε4, hn)

∩
⋂

06α62K

Dn,α(ε4, hn).
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In view of (3.8), (3.9), (7.17), and since 0 < ε3 6 1/2, we obtain using lemma 7:

P
n
µ

{
An(ε)c

}
6 4(K + 2) exp

(
− DA r−2

n

)

for n large enough, where DA := 2−(β+2)(σε4)
2/(4(1 + ε4/3)), which concludes the proof of

the lemma. �

7.4. Preparatory results and proof of theorem 3. The proof of theorem 3 is similar
to the proof of theorem 3 in Brown and Low (1996). It is based on the next theorem which
can be found in Cai et al. (2004). This result is a general constrained risk inequality which
is useful for several statistical problems, for instance superefficiency, adaptation and so on.

Let p > 1 and q be such that 1/p + 1/q = 1 and X be a real random variable having
distribution Pθ with density fθ. The parameter θ can take two values θ1 or θ2. We want to
estimate θ based on X. The risk of an estimator δ based on X is given by

Rp(δ, θ) := Eθ{|δ(X) − θ|p}.
We define s(x) := fθ2

(x)/fθ1
(x) and ∆ := |θ2 − θ1|. Let

Iq = Iq(θ1, θ2) :=
(
Eθ1

{sq(X)}
)1/q

.

Theorem 4 (Cai, Low and Zhao (2004)). If δ is such that Rp(δ, θ1) 6 εp and if ∆ > εIq,

we have:

Rp(δ, θ2) > (∆ − εIq)
p

> ∆p
(
1 − pεIq

∆

)
.

The next proposition is a generalization of a result by Brown and Low (1996) for the
random design model, when the data is inhomogeneous. Of course, in the classical case
with µ continuous at x0 and such that µ(x0) > 0, the result is barely the same as in Brown
and Low (1996) with the same rates. This proposition is a lower bound for a superefficient
estimator which implies directly the adaptive lower bound stated in theorem 3. Let us recall
that an is the minimax rate and αn is the minimax adaptive rate over A, see section 4.2.

Proposition 1. If an estimator f̃n based on (1.1) is asymptotically minimax over A, that

is:

limsupn sup
f∈A

E
n
f,µ

{(
a−1

n |f̃n(x0) − f(x0)|
)p}

< +∞,

and if this estimator is superefficient at a function f0 ∈ A, in the sense that for some γ > 0:

limsupn E
n
f0,µ

{(
a−1

n nγ |f̃n(x0) − f0(x0)|
)p}

< +∞, (7.18)

then we can find another function f1 ∈ A such that

liminfn inf
efn

E
n
f1,µ

{(
α−1

n |f̃n(x0) − f1(x0)|
)p}

> 0.

Proof of proposition 1. Since limsupn Ef0,µ

{(
a−1

n nγ |f̃n(x0) − f0(x0)|
)p}

= C < +∞,
there is N such that for any n > N :

Ef0,µ

{(
|f̃n(x0) − f0(x0)|

)p}
6 2Cap

nn−γp.

Let k′ = ⌊s′⌋ be the largest integer smaller than s′. Let g be k′ times differentiable with

support included in [−1, 1], g(0) > 0 and such that for any |x| 6 δ, |g(k′)(x) − g(k′)(0)| 6

k′!|x|s′−k′

. Such a function clearly exists. We define

f1(x) := f0(x) + L′ρs′

n g
(x − x0

ρn

)
,
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where ρn is the smallest solution to

L′hs′ = σ
(
̺nµ(Ih)/b

)−1/2
,

where b = 2g−2
∞ (p − 1)γ, g∞ := supx |g(x)| and where we recall that ̺n = n/ log n. We

clearly have f1 ∈ A. Let P
n
0 , Pn

1 be the joint laws of the observations (1.1) when respectively
f = f0, f = f1. A sufficient statistic for {Pn

0 , Pn
1} is given by Tn := log

(
dP

n
0/dP

n
1

)
, and

Tn ∼





N
(
− vn

2
, vn

)
under P

n
0 ,

N
(vn

2
, vn

)
under P

n
1 ,

where, by definition of ρn:

vn =
n

σ2
‖f0 − f1‖2

L2(µ) =
n

σ2

∫
(f0(x) − f1(x))2µ(x)dx

6 nL′2ρ2s′

n µ(Iρn)g2
∞/σ2 = 2(p − 1)γ log n.

An easy computation gives Iq = exp
(
vn(q−1)/2

)
6 nγ , thus taking δ = f̂n(x0), θ2 = f1(x0),

θ1 = f0(x0) and ε = an entails using theorem 4:

Rp(δ, θ2) >
(
L′ρs′

n g(0) − 2Cann−γnγ
)p

>
(
L′ρs′

n g(0)(1 − on(1))
)p

,

since limn an/ρs′
n → 0, and the theorem follows. �

Proof of theorem 3. Theorem 3 is an immediate consequence of proposition 1. Clearly,

B ⊂ A thus equations (4.3) and (4.4) entail that f̃n is superefficient at any function f0 ∈ B.

More precisely, f̃n satisfies (7.18) with

γ =
(s − s′)(β + 1)

2(1 + 2s′ + β)(1 + 2s + β)
> 0

since n−γℓ(1/n) → 0 for any ℓ ∈ RV(0). The conclusion follows from proposition 1. �

Appendix A. Some facts on regular variation

We recall here briefly some results about regularly varying functions. The results stated
in this section can be found in Bingham et al. (1989). In all the following, let ℓ be a slowly
varying function. An important fact is that the property

lim
h→0+

ℓ(yh)/ℓ(h) = 1 (A.1)

actually holds uniformly for y in any compact set of (0, +∞). If R1 ∈ RV(α1) and R2 ∈
RV(α2), we have

R1 × R2 ∈ RV(α1 + α2) and R1 ◦ R2 ∈ RV(α1 × α2).

If R ∈ RV(γ) with γ ∈ R − {0}, we have

R(h) →
{

0 if γ > 0,

+∞ if γ < 0,
(A.2)

as h → 0+. If γ > −1, we have:
∫ h

0
tγℓ(t)dt ∼ (1 + γ)−1h1+γℓ(h) as h → 0+, (A.3)
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and h 7→
∫ h
0 tγℓ(t)dt is regularly varying with index 1 + γ. This result is known as the

Karamata theorem. Let us define (R is continuous)

R←(y) = inf{h > 0 such that R(h) > y},
which is the generalized inverse of R. If R ∈ RV(γ) for some γ > 0, there exists R− ∈
RV(1/γ) such that

R(R−(h)) ∼ R−(R(h)) ∼ h as h → 0+, (A.4)

and R− is unique up to an asymptotic equivalence. Moreover, one version of R− is R←.
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