
HAL Id: hal-00004597
https://hal.science/hal-00004597v1

Preprint submitted on 1 Apr 2005 (v1), last revised 10 Jul 2009 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algebraic approach of Polya processes
Nicolas Pouyanne

To cite this version:

Nicolas Pouyanne. An algebraic approach of Polya processes. 2005. �hal-00004597v1�

https://hal.science/hal-00004597v1
https://hal.archives-ouvertes.fr


An algebraic approach of Pólya processes
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Abstract

Pólya processes are natural generalization of Pólya-Eggenberger urn mod-
els. This article presents a new approach of their asymptotic behaviour via

moments, based on the spectral decomposition of a suitable finite difference
operator on polynomial functions. Especially, it provides new results for
processes whose replacement matrices have large eigenvalues in a sense to be
defined.
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1 Introduction

Take an urn (with infinite capacity) containing first finitely many balls of s different
colours named 1, . . . , s. This initial composition of the urn can be described by an
s-dimensional vector U1, the k-th coordinate of U1 being the number of balls of
colour k at time 1. Proceed then to successive draws of one ball at random in the
urn, any ball being at any time equally likely drawn. After each draw, inspect the
colour of the ball, put it back into the urn and add new balls following at any time
the same rule. This rule, summed up by the so called replacement matrix R =
(ri,j)1≤i,j≤s ∈ Ms(Z) consists in adding (algebraically), for any j ∈ {1, . . . , s}, ri,j

balls of colour j when a ball of colour i has been drawn. In particular, a negative
entry of R corresponds to substraction of balls from the urn, when it is possible.
The urn process is the sequence (Un)n≥1 of random vectors with nonnegative
integer coordinates, the k-th coordinate of Un being the number of balls of colour
k at time n, i.e. after the (n − 1)-st draw.

Such urn models appear for the first time in [7]. In 1931, in its original article
Sur quelques points de la théorie des probabilités ([17]), G. Pólya makes a complete
study of the two-colour urn process having S. Id2 as replacement matrix.

An urn process will be called Pólya-Eggenberger when it is balanced, in ref-
erence to the work of these authors; this means that all rows of R have a constant
entries’ sum, say S. Under this assumption, the number of added balls is S at any
time, so that the total number of balls at time n is non random. Furthermore,
in order to avoid extinction of the process, we will only consider replacement ma-
trices having nonnegative off-diagonal entries, with an extra classical arithmetical
assumption on the column of any negative diagonal entry (see definition 1 and
related comments).

A Pólya-Eggenberger urn process can be viewed as a Markovian random walk
in the first quadrant of Rs with finitely many possible increments (the rows of R),
the conditional transition probabilities between times n and n + 1 being linear
functions of the space at time n. This point of view leads to the following natural
generalization: we will name Pólya process such a random walk in Rs or in any
finite dimensional vector space, even if it does not come from an urn process (see
section 2 for a precise definition).

The present text deals with Pólya processes, so that all its results are valid for
Pólya-Eggenberger urn processes. Such a process being given, different natural
questions arise: what is the distribution of the vector at any time n? Can the
random vector be renormalized to get convergence? What kind (and speed) of
convergence is obtained? What is the asymptotic distribution of the process?

Since the work of Pólya and Eggenberger, many authors have considered such
models, sometimes with more general hypotheses, often with restrictive assump-
tions. Direct combinatoric attacks in some particular cases were first intended
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([17], [7], [10] for example). They have recently be considerably refined by an-
alytic considerations on generating functions in low dimensions by much more
general methods ([9], [19]). A second approach was first introduced in [1] and
developed in [14] and [15], viewing such urns as multitype branching processes. It
consists in embedding the process in continuous time, using martingale arguments
and coming back at discrete time. This method provides convergence results. The
limits laws are normal when the process is small; when the process is large, the
method does not tell anything on asymptotic distributions (see below for a defi-
nition of small and large). It requires some irreducibility-type assumptions and is
still valid if the replacement matrix has random entries. One can find in [9], [19]
and [14] good surveys and references on the subject.

In the present paper, we deal principally with asymptotics of Pólya processes;
the method also leads to results on distributions at finite time (exact expressions
for moments for example) but we do not focus on this point of view. We present
a new approach based on spectral decomposition of the vector-valued process,
asymptotics of (polynomial) joint moments and discrete martingale arguments.
The adjective algebraic used in the title refers to a fine study of coefficients of
joint moments of the process’ coordinates in a suitable basis of polynomials, which
requires some geometric considerations in the space of monomials’ exponents (sec-
tion 3 and more particularly subsection 3.4).

Take a Pólya process named (Xn)n in an s-dimensional real vector space V .
With such a process is associated a canonical endomorphism A of V , that corre-
sponds naturally to the replacement matrix in the urn version of the process (see
subsection 2.2). The choice of a Jordan basis of A gives rise to a system of “spec-
tral coordinates” (u1(Xn), . . . , us(Xn)) of the process. The results of this article
come from the computation and the asymptotic expansion of the joint moments
of these coordinates, say the expectations

E uα(Xn),

the notation uα denoting the product
∏s

k=1 uαk

k for any s-uple α = (α1, . . . , αs)
of nonnegative integers.

When f is any (measurable) function, the expectation of f(Xn) can be ex-
pressed in terms of the initial state of the process and of the image of f by a
polynomial function of the so-called transition operator (see subsection 3.1). It
turns out that this operator stabilizes finite dimensional polynomials subspaces.
An appropriate reduction of the transition operator’s restrictions to these polyno-
mial subspaces leads to existence and unicity of a basis (Qα)α∈(Z≥0)s of polynomials
in s variables, the “reduced polynomials” of the process, that has good spectral
properties with regard to the transition operator (each Qα generates a monogenic
C[t]-module for the module structure induced on the space of polynomials of de-
gree ≤ deg Qα by the transition operator). Relatively to the Qα’s scale induced
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by the degree-antialphabetical order on s-uples, the expansion of any uα in the
Qβ’s-basis takes the form

uα = Qα +
∑

β<α

qα,βQβ

(the qα,β ’s are complex numbers) where, for any s-uple β of nonnegative integers,
there exist a complex number cβ and a nonnegative integer νβ such that

EQβ(Xn) ∼ cβn〈β,λ〉 logνβ n

as n tends to infinity; in this last formula, λ = (λ1, . . . , λs) denotes the s-uple of
eigenvalues of the associated endomorphism A and 〈β, λ〉 the standard product
∑s

k=1 βkλk.
The determination of coefficients qα,β that necessarily vanish leads to the inter-

vention of a rational polyhedral cone Σ of Rs (the ”fundamental cone”, universal,
i.e. defined independently from the process) as follows: the above expansion can
be refined as

uα = Qα +
∑

β∈α−Σ

qα,βQβ (1)

if one assumes the endomorphism A to be semisimple; if one does not assume A to
be semisimple, the expansion is of the same type, but slightly more complicated.
Furthermore, geometrical characteristics of Σ contain the ”1/2-phase transition”
already discovered in the irreducible case by Athreya and Karlin (see [1]), and give
an answer to the determination of the 〈β, λ〉’s that have the largest real part in
formula (1). This leads to asymptotic expansions of any joint moment E uα(Xn).

A process will be called ”large” when 1 is a multiple eigenvalue of A, or when
its second greatest eigenvalue’s real part is > 1/2. This study leads to asymptotic
results for large processes, for which the fundamental cone plays as power-trap;
their generic asymptotic form can be stated as follows. We name here λ2 the
eigenvalue of A having the second largest eigenvalue supposed for a while to be
generic, that is to say simple, with real part in ]1/2, 1[. Note that the expectation
EXn is always equivalent to n times some projection of the initial value X1 as n
tends to infinity (see end of subsection 3.1).

Asymptotics of generic large Pólya processes: there exists some complex
random vector Λ in V such that

Xn = EXn + ℜ
(

nλ2Λ
)

+ o(nℜλ)

the small o being almost sure and in any Lp, p ≥ 1. Furthermore, any joint
moment of the vectors Λ and its complex conjugate Λ is computed in a simple way
in terms of reduced polynomials and of the initial value X1 of the process.
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For a general statement of the result, see Theorem 18 and 19 that are the main
theorems of the paper. The proof of this result is based on the asymptotics of joint
moments E uα(Xn); the second order term that contains the random limit Λ (or
Wk’s for the general form of (43) and (45)) is obtained by martingale techniques
(quadratic variation, Burkholder inequality), the small o rest being a consequence
of Borel-Cantelli lemma. Speed of convergence (refinement of the o) can also easily
be obtained from further expansion of joint moments’ asymptotics, even if it is not
much developed in this paper.

Definition of Pólya processes and principal other definitions and notations used
to state the results and their proofs are established in section 2. Section 3 is de-
voted to the algebraic kernel of the method, together with its immediate asymp-
totic consequences on the process; it is centered around the transition operator,
the reduced polynomials and the fundamental cone. Statement and proof of the
main theorems take place in section 4.

2 Pólya processes, definition and notations

2.1 Definition of a Pólya process

Let V be a real vector space of finite dimension s ≥ 1, and VC = V ⊗R C its
complexified space.

Definition 1 Let X1, w1, . . . , ws be vectors of V and (lk)1≤k≤s be a free family
of linear forms on V satisfying the following assumptions:
i- (initialization hypothesis)

X1 6= 0 and ∀k ∈ {1, . . . , s}, lk(X1) ≥ 0; (2)

ii- (balance hypothesis) for all k ∈ {1, . . . , s},

s
∑

j=1

lj(wk) = 1; (3)

iii- (sufficient conditions of tenability) for all k, k′ ∈ {1, . . . , s},










k 6= k′ =⇒ lk(wk′ ) ≥ 0, (4.a)

lk(wk) ≥ 0 or lk(X1)Z +

s
∑

j=1

lk(wj)Z = lk(wk)Z. (4.b) (4)

The (discrete and finite dimensional) Pólya process associated with these data is
the V-valued random walk (Xn)n∈Z≥1

with increments in the finite set {w1, . . . , ws},
defined by X1 and the induction: for every n ≥ 1 and k ∈ {1, . . . , s},

Prob (Xn+1 = Xn + wk|Xn) =
lk(Xn)

n + τ1 − 1
(5)
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where τ1 is the positive real number defined by

τ1 =

s
∑

k=1

lk(X1). (6)

The process is defined on the space of all trajectories of X1 +
∑

1≤k≤s Z≥0wk

endowed with the natural filtration (Fn)n≥0 where Fn is the σ-field generated by
X1, . . . , Xn. It is Markovian1 and the transition conditional probabilities between
times n and n + 1 depend linearly on the state at time n, as stated in equations
(5). Conditions (2) and (3) are necessary and sufficient for the random vector X2

to be well defined by relation (5); an elementary induction shows the deterministic
relation

∀n ≥ 1,

s
∑

k=1

lk(Xn) = n + τ1 − 1. (7)

Condition (4) is sufficient to guarantee that the process is well defined, i.e. that the
numbers lk(Xn) do not become negative so that the process does not extinguish
as can be checked by an elementary induction. The arithmetical assumption (4.b),
which has become classical (compare with [11], [14], [9] for urns) is equivalent to
the following one: lk(wk) is nonnegative, or it divides lk(X1) and all the lk(wj)
as real numbers. In fact, if conditioned on non extinction, all the results about
Pólya processes in this article remain valid when conditions (4) are removed from
the definition.

This definition is invariant after any linear change of coordinates: if P ∈ GL(V )
and if (Xn)n is the Pólya process defined by vectors X1, (wk)k and forms (lk)k,
then (PXn)n is the Pólya process defined by the vectors PX1, (Pwk)k and the
forms (lk ◦P−1)k that satisfy all the required assumptions. In the same way, if one
extends the definition of a Pólya process to complex ones (allowing X1 and the
wk to be in VC, only the numbers lk(X1) and lj(wk) having to be real numbers),
the definition of Pólya process is invariant after any complex linear change of
coordinates.

Pólya processes are natural generalizations of Pólya-Eggenberger urns in the
following sense (see [2], [11], [9], [19] for base references on Pólya-Eggenberger
urns). Take a Pólya-Eggenberger s-colour urn process having replacement matrix
R and vector U1 as initial composition; let S be the common sum of R’s rows,
assumed to be nonzero. The data consisting in taking the rows of 1

S R as vectors
wk’s, the coordinate forms as forms lk’s and X1 = 1

S U1 as initial vector define
a Pólya process (Xn)n, the random vector Xn being 1/S times the 1 × s matrix
whose entries are the numbers of balls of different colours after n − 1 draws. We
will name this process standardized urn process. Conversely, if one considers the
forms lk of a Pólya process as being the coordinate forms of V (choice of a basis of

1The time-homogeneity of the process is more explicit when one reads condition (5) with
denominator

P

k
lk(Xn) instead of n + τ1 − 1.
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V ), the matrix whose rows are the coordinates of the wk’s satisfies all hypotheses
of a Pólya-Eggenberger urns’ replacement matrix, except that its entries are not
integers but real numbers. Note that the balanced property of the urn version is
expressed in relation (3).

2.2 Jordan basis of linear forms of the process; notations

Computation of the conditional expectation of the vector at time n+1 with regard
to the state at time n leads in a natural way to define the so-called associated
endomorphism that will be denoted by A in the whole paper.

Definition 2 If (Xn)n is a Pólya process with notations as above, its associated
endomorphism is the endomorphism A =

∑

1≤k≤s lk ⊗wk ∈ V ∗ ⊗ V ≃ End(V ),
defined as

A(v) =
∑

1≤k≤s

lk(v)wk

for every v in V .

In the urn version of a Pólya process, the matrix of A in the dual basis of (lk)k

is the transpose of the normalized urn’s replacement matrix 1
S R (notations as

above). If P ∈ GL(V ), the endomorphism associated with the process (PXn)n is
PAP−1.

With this definition, the announced conditional expectation can be written as

EFnXn+1 =

(

Id +
A

n + τ1 − 1

)

(Xn).

Let γτ1,n ∈ R[t] be the polynomial with real coefficients defined for every integer
n ≥ 1 by γτ1,1(t) = 1 and

∀n ≥ 2, γτ1,n(t) =

n−1
∏

k=1

(

1 +
t

k + τ1 − 1

)

. (8)

Note that, as soon as the terms are defined,

γτ1,n(t) =
Γ(τ1)

Γ(τ1 + t)

Γ(n + τ1 − 1 + t)

Γ(n + τ1 − 1)
. (9)

The expectation of the process is straightforwardly expressed in terms of the en-
domorphism γτ1,n(A) and the initial value of the process as

EXn = γτ1,n(A)(X1). (10)

One of the first tools used to describe the asymptotics of a Pólya process is the
reduction of the associated endomorphism A (or its transpose on the dual vector

N. Pouyanne: Pólya processes 7



space of V ). Because of condition (3), the linear form u1 =
∑s

k=1 lk satisfies
u1 ◦ A = u1, which shows that 1 is always eigenvalue of A. Because of the
whole assumptions (2),(3) and (4), one can say more on A’s spectral decomposition.
Even if these properties can be seen in the field of Perron-Frobenius’, we give a
proof’s hint of Proposition 1.

Proposition 1 Any complex eigenvalue λ of A equals 1 or satisfies ℜλ < 1.
Moreover, dim ker(A − 1) equals the multiplicity of 1 as eigenvalue of A.

Proof. Replace A by its matrix in the dual basis of (lk)k. Suppose first that all
entries of A are nonnegative. The space of all s × s matrices having nonnegative
entries and columns with entries’ sum 1 is bounded (for the norms’ topology) and
stable for multiplication. This forces the sequence (An)n≥0 to be bounded, which
implies both results. If A has at least one negative diagonal entry, apply the results
to (A + a)/(1 + a) for any positive a such that A + a has nonnegative entries.

In the whole paper, the endomorphism A being given, we will denote by σ2 the
real number ≤ 1 defined by

σ2 =







1 if 1 is multiple eigenvalue of A;

max{ℜλ, λ ∈ Sp(A), λ 6= 1} otherwise,
(11)

where Sp(A) is the set of eigenvalues of A.

Definition 3 If (Xn)n is a Pólya process of dimension s, a basis (uk)1≤k≤s of
linear forms on VC is called a Jordan basis of linear forms of the process or
shortlier a Jordan basis of the process when
1- u1 =

∑

1≤k≤s lk;

2- uk ◦ A = λkuk + εkuk−1 for all k ≥ 2, where the λk are complex numbers
(necessarily eigenvalues of A) and where the εk are numbers in {0, 1} that satisfy
λk 6= λk−1 =⇒ εk = 0.

In other words, the matrix of the transposed endomorphism tA in a Jordan basis of
linear forms has a block-diagonal form Diag (1, Jp1

(λk1
), . . . , Jpt

(λkt
)) where Jp(z)

denotes the p-dimensional square matrix

Jp(z) =













z 1

z
. . .

. . . 1
z













.

A (real or complex) linear form uk will be called eigenform of the process when
A ◦ uk = λkuk, i.e. when εk = 0. An eigenform of the process is an eigenvector of
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tA; some authors call these linear forms left eigenvectors of A, refering to matrix
operations.

Definition 4 A Jordan basis of linear forms being chosen with notations as above,
a subset J ⊆ {1, . . . , s} is called a monogenic block of indices when J has the
form J = {m, m+1, . . . , m+r} (r ≥ 0, m ≥ 1, m+r ≤ s) with εm = 0, εk = 1 for
every k ∈ {m + 1, . . . , m + r} and J is maximal for this property. Any monogenic
block of indices J is associated with a unique eigenvalue of A that will be denoted
by λ(J).

In other words, J is monogenic when Vect{uj, j ∈ J} is A-stable and when the
matrix of the endomorphism of Vect{uj, j ∈ J} induced by tA in the Jordan basis
is one of the Jordan blocks mentioned above with number λ(J) on its diagonal.
The adjective monogenic has been chosen because this means that the subspace
Vect{uj, j ∈ J} = C[tA].um+r is a monogenic sub-C[t]-module of the dual space
V ∗

C
for the usual C[t]-module structure induced by tA.

Definition 5 A monogenic block of indices J is called a principal block when
ℜλ(J) = σ2 and J has maximal size among the monogenic blocks J ′ such that
ℜλ(J ′) = σ2.

A Jordan basis (uk)1≤k≤s of linear forms of the process being chosen,

(vk)1≤k≤s (12)

will denote its dual basis, made of the vectors of VC that satisfy uk(vl) = δkl

(Kronecker notation) for any k and l, and

λ = (λ1, . . . , λs) (13)

the s-uple of eigenvalues (distinct or not) respectively associated with u1, . . . , us

(or v1, . . . , vs). In particular, λ1 = 1 for any Jordan basis of linear forms. The
eigenvalues λ1, . . . , λs of A are called roots of the process. For any k, we
also denote by πk the projection on the line Cvk relative to the decomposition
VC =

⊕

1≤l≤s Cvl; these projections satisfy the relations

Id =
∑

1≤k≤s

πk and πk = uk.vk. (14)

Note that the πk do not commute neither with A nor with each other. Nevertheless,
A commutes with

∑

j∈J πj , the sum being extended to any monogenic block of
indices J (these sums are polynomials in A). This fact will be used in the proofs
of Theorems 18 and 19.

The lines spanned by the vectors vk can be seen as principal directions of
the process the word principal being used in physicists’ sense. Random variables
uk(Xn) are then suitable coordinates for the study of the vector-valued process.
Our method is based on the computation of their polynomial joint moments.
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2.3 Semiprincipality, large and small projections

For every Jordan basis (uk)1≤k≤s of linear forms, and for every α = (αk)1≤k≤s ∈
Zs, we adopt the notations

|α| =
∑

k

αk

〈α, λ〉 =
∑

1≤k≤s

αkλk

and, when all the αk are nonnegative integers

uα =
∏

1≤k≤s

uαk

k ,

uα being a homogeneous polynomial function of degree |α|.

Given a Jordan basis (uk)1≤k≤s of linear forms of the process, we adopt the
following definitions.

Definition 6 A Pólya process is said to be semisimple when its associated en-
domorphism A is semisimple, i.e. when A admits a basis of eigenvectors in VC

(this means that all the uk are real or complex eigenforms of A). The process is
said to be principally semisimple when all principal blocks have size one (for
any choice of a Jordan basis).

The four following assertions are equivalent:
i) the process is principally semisimple;
ii) for any k ∈ {1, . . . , s},

(

ℜλk = σ2 =⇒ uk is eigenform of the process
)

;

iii) the induced endomorphism
(
∑

{k, ℜλk=σ2}
πk

)

A is semisimple;

iv) if r ≥ 1 and if {λk, k ≥ r + 1} are the roots of the process having a
real part < σ2, the matrix of tA in the Jordan basis has a block-diagonal form
Diag (1, λ2, . . . , λr, Jp1

(λk1
), . . . , Jpt

(λkt
)).

Note that Proposition 1 asserts that any uk associated with root 1 is eigenform of
A.

Definition 7 A root of the process is said to be small when its real part is ≤ 1/2;
otherwise, its is said large. The process is said to be small when σ2 ≤ 1/2, which
means that 1 is simple root and all other roots are small; when the process is not
small, it is called large.

Definition 8 Let α = (α1, . . . , αs) ∈ (Z≥0)
s.

1- α is called power of large projections when uα is a product of linear forms
associated with large roots, i.e. when for all k ∈ {1, . . . , s},

(

αk 6= 0 =⇒ ℜλk >

1/2
)

.
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2- α is called power of small projections when uα is a product of linear forms
associated with small roots, i.e. when for all k ∈ {1, . . . , s},

(

αk 6= 0 =⇒ ℜλk ≤

1/2
)

.
3- α is called semisimple power when uα is a product of eigenforms, i.e. when
for all k ∈ {1, . . . , s},

(

αk 6= 0 =⇒ uk is eigenform of the process
)

.
4- α is called monogenic power when its support in contained in a monogenic
block of indices.

In the whole text, the canonical basis of Zs (or of Rs) will be denoted by

(δk)1≤k≤s (15)

and the symbol
α ≤ β (16)

on s-uples of nonnegative integers will denote the degree-antialphabetical (to-

tal) order, defined by α = (α1, . . . , αs) < β = (β1, . . . , βs) when

(

|α| < |β|

)

or
(

|α| = |β| and ∃r ∈ {1, . . . , s} such that αr < βr and αt = βt for any t > r

)

. For

this order, δ1 < δ2 < · · · < δs.

2.4 Examples

1- Pólya-Eggenberger urns
As stated in subsection 2.1, any Pólya-Eggenberger urn is a Pólya process after
standardization, i.e. after division by S in order to get balance equal to 1. For
further developments of examples on the general two dimensional urn process, on
some generic examples in dimension 5 and on the so-called s-dimensional cyclic
urn whose (semisimple) replacement matrix is















0 1 0
0 1

0
. . . 1

1 0















,

see [18] (the cyclic urn defines a small Pólya process if and only if s ≤ 6 because
σ2 = cos(2π/s)). In the present article, see (29) for some developments on the
general triangular urn with two colours; other considerations are made on the same
subject in [19].

2- m-ary search trees
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The space-requirements vector of an m-ary search tree is an m − 1-dimensional
Pólya process as can be seen in [4]. The associated endomorphism A is semisimple
and the process is large whenever m ≥ 27. One can find further developments on
it in [18]. See [5], [14] and [8] for different treatments of the subject.

3- Random 2 − 3 trees
The repartition of external nodes of a random 2−3 trees having 1 or 2 sisters is the
two-dimensional Pólya-Eggenberger urn process with initial condition X1 = t(2, 0)

and replacement matrix

(

−2 3
4 −3

)

. This process is small (σ2 = −6) and

principally semisimple. It follows from [14] that its second order term has normal
distribution. This example is the base example of [9].

If one goes one step further, one can distinguish external nodes of a random
2−3 tree with regard to the shape of the descendants-tree of their grand-mothers.
This process is a 10-dimensional principally semisimple small urn process with
σ2 = 0. Its replacement matrix R contains negative off-diagonal entries. This
does not prevent the urn to be tenable (for “physical” reasons, as first argument!),
the columns of R containing these negative entries being coupled in the following
sense: if j 6= k and rj,k < 0, then the columns of rj,k and rk,j are proportional.
It turns out that it can be reduced to a 7-dimensional Pólya process. This study
shows for instance that, if n is the number of external nodes of the tree, the average
number of their grand-mothers is ∼ 0.182n, that on average ∼ 21% (resp. ∼ 24%)
of external nodes have grand-mothers having themselves 4 (resp. 5) grand-children
etc.

Patient readers can go still a step further, looking at the fourth level of ge-
nealogical trees of external nodes. This leads to the study of a 76-dimensional urn
process.

4- Congruence in binary search trees
The following example is mentioned in [6] as a private unpublished idea of S.
Janson. Take a binary search tree and an integer s ≥ 2. Consider the random
vector of Rs whose k-th coordinate is the number of leaves whose depth is ≡
k [mod s]. This defines an s-colour urn process with (semisimple) replacement
matrix















−1 2
−1 2

−1
. . . 2

2 −1















;

the balance is one and σ2 = −1 + 2 cos(2π/s), so that the urn is small if and only
if s ≤ 8. As it is irreducible, it can be deduced from [14] that its second order
term has normal distribution when s ≤ 8. When s ≥ 9, the process is large and
its asymptotics is described by Theorem 18.
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3 Transition operator of a Pólya process

The study of the asymptotic distribution of a Pólya process, in particular the study
of the asymptotic distributions of its normalized projections leads to consider the
expectation of f(Xn) for bounded and continuous functions f . This expectation
depends on the initial value of the process X1 and of the value at f of some
iteration polynomial of the so-called transition operator of the process.

3.1 Transition operator

Let (Xn)n be a Pólya process, defined by vectors X1, w1, . . . , ws and linear forms
l1, . . . , ls as in section 2. Let Φ be the transition operator associated with the
process, defined on the space of all functions f : V → R (or more generally on the
space of all functions f : V → W where W is any real vector space) by: ∀v ∈ V ,

Φ(f)(v) =
∑

1≤k≤s

lk(v)

(

f(v + wk) − f(v)

)

. (17)

Proposition 2 expresses the expectation of any f(Xn) in terms of f , the transition
operator Φ and the initial value of the process. Polynomials γτ1,n were defined at
(8).

Proposition 2 If f : V → W is any measurable function into some real (or
complex) vector space W , then for all n ≥ 1,

Ef(Xn) = γτ1,n(Φ)(f)(X1) (18)

Proof. The conditional expectation of f(Xn+1) with respect to the state at time
n is

EFnf(Xn+1) =
∑

1≤k≤s

1

n + τ1 − 1
lk(Xn)f(Xn + wk)

= f(Xn) +
1

n + τ1 − 1

∑

1≤k≤s

lk(Xn)

(

f(Xn + wk) − f(Xn)

)

.

With the help of the transition operator, this formula can be written as

EFnf(Xn+1) =

(

Id +
1

n + τ1 − 1
Φ

)

(f)(Xn); (19)

taking the expectation leads to the result after a straightforward induction.

It follows from Proposition 2 that the asymptotic weak behaviour of the pro-
cess, or at least the asymptotic behaviour of its moments is reachable by decompo-
sitions of the operator Φ on suitable function spaces. Corollary 3 is the first step
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in this direction, stating the result for functions that belong to finite dimensional
stable subpaces. It is the starting point of the decomposition of Φ on polynomials
subspaces.

Corollary 3 Let f : V → W be a measurable function into some real (or complex)
vector space W .

1- If f is an eigenfunction of Φ associated with the (real or complex) eigenvalue
z, that is if Φ(f) = zf , then

Ef(Xn) = nz Γ(τ1)

Γ(τ1 + z)
f(X1) + O

(

nz−1
)

as n tends to infinity (Γ is Euler’s function).
2- Assume that f belongs to some Φ-stable subspace S of measurable functions

V → W and that the operator induced by Φ on S is a sum z IdS +ΦN , where ΦN

is a nonzero nilpotent operator on S and z a complex number. Let ν be the positive
integer such that Φν

N (f) 6= 0 and Φν+1
N (f) = 0. Then,

Ef(Xn) =
nz logν n

ν!

Γ(τ1)

Γ(τ1 + z)
Φν

N (f)(X1) + O
(

nz logν−1 n
)

as n tends to infinity.

Proof. 1- It follows from Proposition 2 that Ef(Xn) = γτ1,n(z) × f(X1); the
result comes from Stirling formula (see (9)).
2- Taylor expansion of γτ1,n(z Id +ΦN) leads to

Ef(Xn) =
∑

p≥0

1

p!
γ(p)

τ1,n(z)Φp
N (f)(X1)

(finite sum), where γ
(p)
τ1,n denotes the p-th derivative of γτ1,n. Besides, if p is any

positive integer,

γ(p)
τ1,n(z) = nz logp n

Γ(τ1)

Γ(τ1 + z)
+ O

(

nz logp−1 n
)

(20)

when n tends to infinity, as can be shown by Stirling formula (see (9)) and an ele-
mentary induction starting from the computation of γτ1,n’s logarithmic derivative.
These two facts imply the result.

Remark 1 As it is written, Corollary 3 is valid only if τ1 + z is not a nonpositive
integer. If one admits the convention 1/Γ(w) = 0 when w ∈ Z≤0, this corollary is
valid in all cases. Nevertheless, we will only use it when τ1 + z /∈ Z≤0.

Remark 2 If f : V → W is linear, formula (17) implies that Φ(f) = f ◦ A. In
this particular case, formula (18) gives Ef(Xn) = f ◦ γτ1,n(A)(X1).
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The notations about A’s spectral decomposition being chosen, one can state
Proposition 4, first result (already given in [1] when 1 is simple root) on the average
case study of the process.

Proposition 4 If Π1 =
∑

k, λk=1 πk denotes the projection on the eigensubspace
ker(A − 1), then, as n tends to infinity,

E(Xn) = nΠ1(X1) + o(n).

Proof. Thanks to relation (14), EXn =
∑

1≤k≤s Euk(Xn).vk. If J is any
monogenic block of indices, the subspace Vect{uk, k ∈ J} is Φ-stable (see remark 2
just above: the restriction of Φ to such a space is the one of tA). It follows from
the definition of Jordan basis (uk)k that this subspace satisfies the assumption of
Corollary 3. Thus Euk(Xn) ∈ o(n) when λk 6= 1 and Euk(Xn) = nπk(X1) + o(n)
when λk = 1 (see Proposition 1) and the proposition is proven.

3.2 Rough actions on polynomials

Because of condition (3) in the definition of a Pólya process, none of the vectors
wk is zero. For any k, if f is a function defined on V , we denote by ∂f/∂wk, when
it exists, the derivative of f along the direction carried by the vector wk. With
this notation, we associate with the finite difference operator Φ the differential
operator Φ∂ defined by

Φ∂(f)(v) =
∑

1≤k≤s

lk(v)
∂f

∂wk
(v) (21)

for every function f defined on V and derivable at each point along the directions
carried by the vectors wk’s.

Remark 3 When the wk’s constitute a basis of V , the differential operator can be
written as Φ∂(f)(v) = Dfv.Av for any differentiable function f ,where Dfv denotes
the differential of f at point v.

Remark 4 As for the operator Φ (see remark 2 at the end of subsection 3.1), if
f : V → W is linear, then Φ∂(f) = f ◦ A.

Proposition 5 (Rough action of Φ∂ on the uα’s) For any choice of a Jordan
basis (uk)1≤k≤s of linear forms of the process,

1- for every α ∈ (Z≥0)
s,

Φ∂(uα) − 〈α, λ〉uα ∈ Vect{uβ, β < α};

2- if α ∈ (Z≥0)
s is a semisimple power, then Φ∂(uα) = 〈α, λ〉uα.
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Proof. Φ∂ is a derivation which has the same behaviour with respect to compo-
sition of applications as usual derivation. In particular, for any α ∈ (Z≥0)

s, one
has the formula

Φ∂(uα) =

s
∑

k=1

αk uα−δk Φ∂(uk). (22)

Besides, as any uk is linear, Φ∂(uk) = uk ◦ A. The properties of a Jordan basis
of linear forms lead directly to the results (the degree-antialphabetical order on
s-uples is defined in (16) at the end of subsection 2.3).

Remark 5 One can formally extend the result of 2- in Proposition 5 to any
family of complex numbers α1, . . . , αs defining a semisimple power. This gives
other eigenfunctions of Φ∂ , defined on suitable open subsets of V or VC (usual
topology).

Corollary 6 (Rough action of Φ on the uα’s) For any choice of a Jordan
basis (uk)1≤k≤s of linear forms of the process and for every α ∈ (Z≥0)

s,

Φ(uα) − 〈α, λ〉uα ∈ Vect{uβ , β < α}.

Proof. If F is the subspace F = Vect{uβ , β < α}, then (Φ − Φ∂)(uα) ∈ F
because of Taylor formula (the family (uβ)|β|≤|α|−1 constitutes a basis of polyno-
mials of degree ≤ |α| − 1) and Φ∂(uα) − 〈α, λ〉uα ∈ F because of Proposition 5.

In the sequel, a more refined study of the action of Φ∂ on the uα’s will be
needed. This is the subject of the end of current subsection 3.2. In particular, the
set Aα, defined just below, will play a key role in the spectral decomposition of Φ
on polynomials spaces in the nonsemisimple case.

Definition 9 Let (uk)1≤k≤s be a Jordan basis of linear forms of the process. For
every α ∈ (Z≥0)

s, we define the set of powers Aα as

Aα = min
{

B ⊆ (Z≥0)
s, α ∈ B and Vect{uβ , β ∈ A} is Φ∂−stable

}

, (23)

the min being understood for the inclusion of subsets of (Z≥0)
s.

In other words, Aα is the set of powers β ∈ (Z≥0)
s such that uβ appears as a

u-monomial somewhere in the (stationary) sequence uα, Φ∂(uα), Φ2
∂(uα), . . . .

It is a finite set. In particular, we focus on the following assertions: for every
α ∈ (Z≥0)

s,
α ∈ Aα, (24)

Vect{uβ , β ∈ Aα} is Φ∂−stable (25)

(and Aα is minimal for these two properties among all subsets of (Z≥0)
s).
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Proposition 7 (Properties of Aα) Let (uk)1≤k≤s be a Jordan basis of linear
forms of the process and α ∈ (Z≥0)

s. Then
1- Aα is the set of powers β ∈ (Z≥0)

s such that uβ appears as a u-monomial
in the (almost zero) sequence uα, (Φ∂ − 〈α, λ〉)(uα), (Φ∂ − 〈α, λ〉)2(uα), . . . .

2- Aα = (α−Dα)∩ (Z≥0)
s, where Dα is the set of Z≥0-linear combinations of

vectors δk − δk−1 such that αk ≥ 1 and εk = 1, where α−Dα = {α− d, d ∈ Dα}.
3- 〈α′, λ〉 = 〈α, λ〉 for every α′ ∈ Aα.

Proof. Because of Jordan basis properties (see subsection 2.2), Φ∂(u1) = u1 and
Φ∂(uk) = λkuk + εkuk−1 if k ≥ 2, where εk ∈ {0, 1}. Because of Leibnitz formula
(Φ∂ is a derivation), a more refined study of the computation in Proposition 5 and
the expansion of the lk’s in the (uk)k basis show that for every β, Φ∂(uβ)−〈β, λ〉uβ

is linear combination of polynomials uγ , where γ = β−δk +δk−1 for integers k ≥ 2
such that βk ≥ 1 and εk = 1 (hence λk = λk−1). Furthermore, 〈γ, λ〉 = 〈β, λ〉 for
such γ’s. This considerations are enough to prove 1-, 2- and 3-. Of course, the
precise meaning of statement 1- in Proposition 7 is as above the following:
Aα = min

{

B ⊆ (Z≥0)
s, α ∈ B and Vect{uβ , β ∈ B} is (Φ∂ − 〈α, λ〉)−stable

}

.

Corollary 8 (Special values of Aα)
1- If α is a semisimple power, then Aα = {α}.
2- If α is a power of large (respectively small) projections, then every element

of Aα is a power of large (resp. small) projections.

Proof. If α is a semisimple power, Proposition 5 shows directly that Aα = {α}.
If α is a power of large (respectively small) projections, the result can be deduced
from the expression of Aα in terms of generators (2- of Proposition 7) by induction
on α (degree-antialphabetical order): if αk ≥ 1 and εk = 1, then α − δk + δk−1 is
< α and a power of large (resp. small) projections.

3.3 Reduced polynomials and reduced moments of the pro-

cess

Let S be the algebra of polynomial functions on V (s variables). For every non-
negative integer d, let Sd be the subspace of polynomial functions of degree ≤ d.

If f is a polynomial of degree d ≥ 1, both Φ(f) and Φ∂(f) are also polynomials
of degree d. Furthermore, Φ∂(f) is homogeneous if f is. Consequently, the sub-
spaces (Sd)d≥0 form an increasing sequence of finite-dimensional stable subspaces
for both operators. The sequel is based on a particular reduction of Φ (and Φ∂) on
these subspaces. We will use indistinctly the notation Φ to refer to Φ itself or to
the endomorphism induced by Φ on S or on some stable subspace.

We begin with an elementary linear algebra lemma that will be used several
times in the sequel (notations are chosen in order to make this adaptation more
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comfortable). Its first application leads to existence and unicity of the reduced
polynomials of the process.

Notation: if Ψ is an endomorphism of a (finite dimensional) vector space, we
will denote by kerΨ∞ the characteristic space of Ψ associated with zero, that is

kerΨ∞ =
⋃

p≥0

kerΨp.

Lemma 9 Let E be a finite dimensional vector space (on any field) and Ψ an
endomorphism of E. Suppose F is a Ψ-stable subspace of E and u a vector of
E \ F such that Ψ(u) ∈ F . Then, there exists a unique Q ∈ E such that

i) Q − u ∈ F ∩
⊕

z 6=0 ker(Ψ − z)∞ ;
ii) Ψ(Q) ∈ F ∩ kerΨ∞.

Proof. We adopt the following notations: F ′ = F ∩ kerΨ∞ and F ′′ = F ∩
⊕

z 6=0 ker(Ψ− z)∞. These two spaces are supplementary Ψ-stable subspaces of F .
Let v′ and v′′ be the respective projections of Ψ(u) on F ′ and F ′′ with regard to
the direct sum F = F ′ ⊕ F ′′. Since the restriction of Ψ induces an automorphism
of F ′′, let w′′ be the unique vector of F ′′ such that Ψ(w′′) = v′′. Then, the vector
Q = u−w′′ is the unique solution to the problem i) and ii) of the lemma because
Ψ(u − w′′) = v′ ∈ F ′ and the restriction of Ψ to F ′′ is injective.

Theorem 10 (Existence and unicity of reduced polynomials of the pro-
cess) For every choice of a Jordan basis (uk)1≤k≤s of linear forms of the process,
there exists a unique family

(Qα)α∈(Z≥0)s

of polynomials of S such that:
1- Q0 = 1 and Qα = uα if |α| = 1;
2- for all α, Qα − uα belongs to Vect{Qβ, β < α, 〈β, λ〉 6= 〈α, λ〉};
3- for all α, Φ(Qα) − 〈α, λ〉Qα belongs to Vect{Qβ, β < α, 〈β, λ〉 = 〈α, λ〉}.

Furthermore,
4- for every α ∈ (Z≥0)

s, Vect{Qβ, β ≤ α} = Vect{uβ , β ≤ α};
5- for every z ∈ C, ker(Φ − z)∞ = Vect{Qα, 〈α, λ〉 = z}.

Proof. By induction on α for the degree-antialphabetical order, we prove points
1- to 4- together with Qα ∈ ker(Φ − 〈α, λ〉)∞. Point 5- is then a direct conse-
quence, the equality being satisfied by the restriction of Φ to any finite dimensional
subspace Sd.

If |α| = 0 or 1, there is nothing to prove. Suppose that |α| ≥ 2 and denote
E = Vect{uβ , β ≤ α} and F = Vect{uβ , β < α}. Corollary 6 implies that E and
F are Φ-stable subspaces and that (Φ−〈α, λ〉)(uα) ∈ F . The application of Lemma
9 to these spaces E and F with Ψ = Φ − 〈α, λ〉 (more exactly the endomorphism
of E induced by this Ψ) and u = uα shows the existence of a unique Qα such that
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Qα−uα ∈ F ∩
⊕

z 6=〈α,λ〉 ker(Φ−z)∞ and Φ(Qα)−〈α, λ〉Qα ∈ F ∩ker(Φ−〈α, λ〉)∞.

The induction hypotheses are enough to ensure that F ∩
⊕

z 6=〈α,λ〉 ker(Φ− z)∞ =

Vect{Qβ, β < α, 〈α, λ〉 6= 〈β, λ〉} and that F ∩ ker(Φ−〈α, λ〉)∞ = Vect{Qβ, β <
α, 〈α, λ〉 = 〈β, λ〉} and this implies points 2- and 3-. Point 4- is true thanks to
point 2- and Qα belongs to ker(Φ−〈α, λ〉)∞ because its image by Φ−〈α, λ〉 does.

Definition 10 For every α ∈ (Z≥0)
s, the polynomial Qα is the α-th reduced

polynomial of the process (Xn)n (relative to the choice of a Jordan basis of
linear forms of the process). The expectation of Qα(Xn) will also occasionally be
named α-th reduced moment of Xn.

Until the end of section 3, a Jordan basis (uk)1≤k≤s of linear forms of the
process is fixed and the reduced polynomials (Qα)α∈(Z≥0)s are relative to it.

Proposition 11 (Asymptotics of reduced moments)
For every α ∈ (Z≥0)

s, let να be the nonnegative integer defined by

να = max{p ≥ 0, (Φ − 〈α, λ〉)p(Qα) 6= 0}. (26)

1- If να = 0, i.e. if Qα is eigenfunction of Φ, then, as n tends to infinity,

EQα(Xn) = n〈α,λ〉 Γ(τ1)

Γ(τ1 + 〈α, λ〉)
Qα(X1) + O(n〈α,λ〉−1).

2- If να ≥ 1, then, as n tends to infinity,

EQα(Xn) =
n〈α,λ〉 logνα n

να!

Γ(τ1)

Γ(τ1 + 〈α, λ〉)
(Φ − 〈α, λ〉)να (Qα)(X1)

+ O(n〈α,λ〉 logνα−1 n).

Note that να is a finite number because the endomorphism induced by Φ− 〈α, λ〉
on ker(Φ− 〈α, λ〉)∞ is nilpotent, and Qα belongs to this subspace. We give a way
to reach these numbers for powers of large projections at the end of subsection 3.5
(Lemma 16).

Proof. Qα belongs to the Φ-stable subspace Sα = ker(Φ − 〈α, λ〉)∞ and the
operator induced by Φ on Sα is the sum of 〈α, λ〉 IdSα

and of the nilpotent operator
induced on Sα by Φ − 〈α, λ〉. This fact being considered, Proposition 11 is a
consequence of Corollary 3.

The reduced polynomials have been chosen after a suitable reduction of the
transition operator on polynomials spaces so that the asymptotics of reduced mo-
ments are computable (and the expansions in Proposition 11 could be made as

N. Pouyanne: Pólya processes 19



precise as one wants). The joint moments of the “Jordan” coordinates of the
process (uk(Xn))1≤k≤s we attend to reach asymptotically are the expectations of
the uα(Xn). It results directly from their definition that the reduced polynomials
of degree ≤ d form a basis of Sd for any d ≥ 1, so that it is natural to expand
the polynomials uα as linear combinations of reduced polynomials. The complex
numbers qα,β defined by the formulae

uα = Qα +
∑

β<α

qα,βQβ (27)

(see Theorem 10 point 2-) will be named reduced coordinates of joint mo-
ments polynomials. Joint moments of the process are thus related to reduced
ones by

E uα(Xn) = EQα(Xn) +
∑

β<α

qα,βEQβ(Xn). (28)

Because of Proposition 11 that asserts that any EQβ(Xn) has order of magni-
tude n〈β,λ〉 logνβ n as n tends to infinity, equalities (27) and (28) let two natural
questions arise about the asymptotics of the joint moments:

1- which qα,β are zero in relation (27) ?
2- For a given α, for which β < α among those who have a nonzero qα,β is
ℜ〈β, λ〉 maximal ?

This is the subject of the following two subsections, subsection 3.4 being the
self-contained study of a polyhedral cone Σ of Z

s that will play a central role in
determinating the nonzero qα,β in (27) and the dominating powers 〈β, λ〉 in (28).

Remark 6 Computation of Qpδ1
’s.

An immediate computation shows that the reduced polynomials corresponding to
powers of u1 is the same one for any Pólya process (and this has to be related
to the non random drift, consequence of (7): ∀n, u1(Xn) = n + τ1 − 1): for any
integer p ≥ 0, Qpδ1

= u1(u1 +1) . . . (u1 +p−1) and Φ(Qpδ1
) = pQpδ1

. The powers
of u1 are thus expanded in the reduced polynomials basis (the Qpδ1

’s are enough)
by means of Stirling numbers of the second kind (see [12] for example), which gives
the corresponding reduced coordinates:

up
1 =

p
∑

k=1

(−1)p−k

{

p
k

}

Qkδ1
.

Remark 7 Triangular urns with two types of balls.
The general (generalized to real numbers) two-dimensional balanced triangular
Pólya urn has the following R as replacement matrix:

R =

(

1 0
1 − ℓ ℓ

)

, (29)
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where ℓ is any real number ≤ 1. Remember that in the Pólya process version, this
means that l1 and l2 are the coordinate forms, w1 = t(1, 0) and w2 = t(1 − ℓ, ℓ).
If one chooses u2(x, y) = y as second form for a Jordan basis, a straightforward
computation shows that for any integer p ≥ 0, one has Qpδ2

= u2(u2 + ℓ) . . . (u2 +
(p− 1)ℓ) and Φ(Qpδ2

) = pℓQpδ2
. Reversing this last formula leads, for any integer

p ≥ 0, to

up
2 =

p
∑

k=1

(−ℓ)p−k

{

p
k

}

Qkδ2
. (30)

In particular, if ℓ > 0, since the order of magnitude of EQpδ2
(Xn) is npℓ (Propo-

sition 11), Eu2(Xn/nℓ)p tends to ℓp×Γ(x1+y1)/Γ(x1+y1+pℓ)×Γ(y1/ℓ+p)/Γ(y1/ℓ)
as n tends to infinity, where X1 = t(x1, y1) is the initial composition of the urn.
This shows the convergence in distribution of (Xn−nv1)/nℓ = u2(Xn/nℓ)v2 to the
law having the written above expression as p-th moment (the asymptotics of the
computed p-th moment as p tends to infinity by means of Stirling formula shows
that the limit law is determined by its moments, showing the convergence in law;
see for example [3] for relations between convergence of moments and convergence
in distribution). For description of this limit law in some very particular cases of
parameters X1 and ℓ in terms of stable laws or Mittag-Leffler distribution, one
can refer to [19] or [15].

It will be shown later that this convergence is almost sure and in any Lp, p ≥ 1
when ℓ > 1/2.

The case ℓ = 0 is degenerate: the process is deterministic. When ℓ < 0, as
EQpδ2

(Xn) ∈ O(npℓ) (in all cases, even if τ1 +pℓ is a nonpositive integer), one sees
from (30) that Eu2(Xn)p = O(nℓ) for any p. Borel-Cantelli lemma asserts thus
that u2(Xn) = Xn − nv1 converges almost surely to zero as n tends to infinity (as
it was to be foreseen, because balls of the second type can never be added).

One can compare this to the results of [19] and [15]. It can easily be generalized
to some classes of triangular urns of higher dimension, principally semisimple or
not (with enough zero entries, see [18] for examples).

Remark 8 Inductive computation of Qα’s.
In the general case, the numbers qα,β, defined by

uα −Qα =
∑

β<α

qα,βQβ =
∑

β<α, 〈β,λ〉6=〈α,λ〉

qα,βQβ

and the numbers pα,β defined by

(Φ − 〈α, λ〉)(Qα) =
∑

β<α

pα,βQβ =
∑

β<α, 〈β,λ〉=〈α,λ〉

pα,βQβ

can easily be inductively computed (and implemented) the following way. We
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denote by rα,β the complex numbers defined by

(Φ − 〈α, λ〉)(uα) =
∑

β<α

rα,βQβ , (31)

that can be deduced by computation of (Φ − 〈α, λ〉)(uα) and its expansion in the
(Qβ)β<α basis with the help of formula (27), the corresponding numbers qβ,γ being
known by induction. Write two expressions of (Φ−〈α, λ〉)(uα) with formulae (27)
and (31) and identify the coordinates in the (Qβ) basis. This gives the equations
with pα,β and qα,β as unknowns:







〈β, λ〉 = 〈α, λ〉 =⇒ rα,β = pα,β

〈β, λ〉 6= 〈α, λ〉 =⇒ rα,β = (〈β, λ〉 − 〈α, λ〉) qα,β +
∑

β<γ<α

qα,γpγ,β.

The expansion of any Qα in the (uα) basis can be obtained by reversing the
triangular system written in (27). All these computations can be handled by
means of symbolic computation.

3.4 Fundamental cone

In this subsection, we define a polyhedral cone of Rs named fundamental cone and
denoted by Σ. It will appear in a natural way in the determination of the reduced
coordinates of joint moments polynomials (see Theorem 15 below). Proposition
14’s interest is directly related to Theorem 15 but can be stated as soon as Σ’s
first properties are known.

Notations: if I ⊆ {1, . . . , s} and (i, j) ∈ {1, . . . , s}2, we adopt the notations

δI =
∑

1≤i≤s

δi +
∑

i∈I

δi ∈ R
s and δ∗I =

∑

1≤i≤s

dxi +
∑

i∈I

dxi ∈ R
s∗,

δ(i,j) = 2δi − δj ∈ R
s and δ∗(i,j) = 2dxi − dxj ∈ R

s∗

where dxi denotes the i-th coordinate form (x1, . . . , xs) 7→ xi in the dual space
Rs∗ (and, remember, δi the i-th vector of the canonical basis of Rs).

Definition 11 We denote by Σ and name fundamental cone the polyhedral cone
of Rs spanned by the s(s − 1) vectors δ(i,j) for all ordered pairs (i, j) of distinct
elements, i.e.

Σ =
∑

(i,j)∈{1,...s}, i6=j

R≥0δ(i,j). (32)

As usual, we define the dual cone Σ̌ of Σ as

Σ̌ = {x ∈ R
s, ∀y ∈ Σ, 〈x, y〉 ≥ 0},
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identified to the cone of all linear forms on Rs that are nonnegative on Σ, via the
bijective linear application x ∈ Rs 7→ 〈x, .〉 ∈ Rs∗ (the symbol 〈x, y〉 denotes the
standard scalar product of x and y on Rs).

Lemma 12 describes the dual cone Σ̌ as intersection of hyperplanes (faces) and
gives a system of minimal generators (edges). Corollary 13 just transcribes Lemma
12 in the Σ-side and gives the equations of the faces of Σ.

Lemma 12 (faces and edges of Σ̌)

Σ̌ =
⋂

(i,j)∈{1,...s}, i6=j

{x ∈ R
s, δ∗(i,j)(x) ≥ 0} =

∑

I⊆{1,...,s}

1≤#I≤s−1

R≥0δI .

Proof. The first equality that describes the faces of Σ̌ comes directly from (32).
For every permutation w ∈ Ss, let τw be the simplicial cone defined by

τw = {x ∈ R
s, xw(s) ≤ xw(s−1) ≤ · · · ≤ xw(1) ≤ 2xw(s)}.

The cones τw provide a subdivision of Σ̌ in s! simplicial cones -this subdivision is
the intersection of Σ̌ with the barycentric subdivision of the first quadrant of R

s.
Each τw is the image of τ1 = τId by the permutation of coordinates induced by w
(and τ1 is a fondamental domain for the group action of Ss on Σ̌ by permutations
of coordinates). Because of the elementary computation

(x1, x2, x3, x4) = (2x4 − x1)(1, 1, 1, 1)

+(x1 − x2)(2, 1, 1, 1)

+(x2 − x3)(2, 2, 1, 1)

+(x3 − x4)(2, 2, 2, 1)

that can be straightforwardly generalized in all dimensions, one sees that the edges
of τ1 are spanned by (1, . . . , 1) =

∑

1≤k≤s δk and δ{1}, δ{1,2},. . . , δ{1,...,s−1}. The
images of these last vectors under permutations of coordinates are exactly the δI ,
where I 6= ∅ and I 6= {1, . . . , s}. This completes the proof.

Corollary 13 (faces of Σ) The cone Σ has 2s − 2 faces of dimension s − 1,
described as

Σ =
⋂

I⊆{1,...,s}

1≤#I≤s−1

{x ∈ R
s, δ∗I (x) ≥ 0}. (33)

In dimensions two, Σ is spanned by (2,−1), and (−1, 2) and Σ̌ by the forms
2dx1+dx2 and dx1+2dx2. In dimension three, Σ is spanned by (2,−1, 0), (−1, 2, 0),
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(2, 0,−1), (−1, 0, 2), (0, 2,−1) and (0,−1, 2) and the coordinates of the spanning
forms of Σ̌ are (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2, 1), (2, 1, 2) and (1, 2, 2) in the canon-
ical basis (dx1, dx2, dx3). The numbers of edges of Σ and Σ̌ coincide only in di-
mensions 2 and 3. Figures 1 and 2 give pictures of Σ in dimensions 2 and 3.

Σ Σ̌

α

{α − η, |η| ≥ 2}

α

α − Σ

{α − η + δk, |η| ≥ 2, k ∈ {1, 2}}

Figure 1: fundamental cone Σ in dimension 2

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Figure 2: trace of Σ (convex hull) and of {η − δk, |η| ≥ 2, k ∈ {1, 2, 3}} (union of
three triangles) on the hyperplane {x1 + x2 + x3 = 1} of R3

For any α ∈ Rs, we denote

α − Σ = {α − σ, σ ∈ Σ}.

Theorem 15, that specifies the terms of formula (28) that do not give necessarily
a zero contribution, leads to compare the real parts of all numbers 〈β, λ〉 when β
belongs to α − Σ for a given α. This is the virtue of Proposition 14.
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Proposition 14 Let α ∈ (Z≥0)
s and β ∈ (Z≥0)

s ∩ (α − Σ).
1- If α is a power of large projections, then α = β or ℜ〈β, λ〉 < ℜ〈α, λ〉.
2- If α is a power of small projections, then ℜ〈β, λ〉 ≤ 1

2 |α|.

Proof. Without loss of generality, one can assume that 1/2 < ℜ(λk) ≤ 1 for all
k ∈ {1, . . . , r} and that ℜ(λk) ≤ 1/2 for all k ∈ {r + 1, . . . , s} where r ≥ 1. We
denote σ = α − β ∈ Σ, I = {k ≤ r, σk ≤ 0} and J = {k ≤ r, σk > 0}.
1- If α is a power of large projections, then αr+1 = · · · = αs = 0. Thus σk ≤ 0 if
k ≥ r + 1 and

ℜ〈σ, λ〉 ≥
1

2

∑

k∈J

σk +
∑

k∈I

σk +
1

2

∑

k≥r+1

σk =
1

2
δ∗I (σ). (34)

Since σ lies in Σ, this number is nonnegative. Besides, since α is a power of large
projections, σk ≤ 0 if k ≥ r + 1; hence there exists some k ≤ r such that σk > 0
because the only point of Σ with only nonpositive coordinates is 0, as can be seen
on the equations of Σ. Thus J 6= ∅ and the inequality of (34) is strict.
2- If α is a power of small projections, then α1 = · · · = αr = 0. Thus

〈β, λ〉 ≤
1

2

∑

k≥r+1

(αk − σk) −
1

2

∑

k∈J

σk −
∑

k∈I

σk =
1

2
|α| −

1

2
δ∗I (σ).

Since σ lies in Σ, this number is ≤ |α|/2.

Remark 9 One can show that α is a power of large projections if and only if
ℜ〈β, λ〉 ≤ ℜ〈α, λ〉 for every β ∈ (Z≥0)

s∩(α−Σ). This gives another interpretation
of the fundamental cone in terms of asymptotics of large moments (see relation
(28), Theorem 15 and proof of Theorem 17).

3.5 Reduced coordinates of joint moments polynomials

Definition and properties of the cone Σ being established, Theorem 15 just below,
key point for the final results, can be stated. It refines the action of Φ on polyno-
mials (subsection 3.2) and gives an (optimal) condition for the reduced coordinates
qα,β to vanish (see (27)). Note that point 2- of Theorem 15 can be viewed as an
algebraic or geometric explanation of the “1/2-phase transition” mentioned for
example in [1] or [5]; this expression is used to point out the transition between
normal behaviours for small processes to some nonnormal ones for large processes
(in the irreducible case).

When Qβ is eigenvector of Φ, its contribution to the asymptotics in (28) has
magnitude n〈β,λ〉 (Proposition 11); for instance, this happens always when the
roots λk are incommensurable, that is when they admit no linear relation with
rational coefficients. When a contrario Qβ is not eigenfunction, a power νβ of log n
appears in this contribution. Proposition 16 shows how to compute these numbers
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να working with the differential operator Φ∂ , which is much more adapted for
calculations, and gives a formula for the monogenic case.

For any B ⊆ Rs, we denote

B − Σ =
⋃

b∈B

(b − Σ) = {b − σ, b ∈ B, σ ∈ Σ}.

Definition and properties of the set Aα can be found at the end of previous sub-
section 3.2; it is characterized by relations (24) and (25).

Theorem 15 (Coefficients lemma)
1- For any α ∈ (Z≥0)

s, one has

uα ∈ Vect{Qβ, β ∈ Aα − Σ}; (35)

Furthermore,
Vect{Qβ, β ∈ Aα − Σ} is Φ−stable (36)

and
Vect{uβ , β ∈ Aα − Σ} = Vect{Qβ, β ∈ Aα − Σ} (37)

2- If α is a power of large projections, then

Φ(Qα) ∈ Vect{Qβ, β ∈ Aα}.

Consequently, relations (27) and (31) can be refined in the general case with
the help of (35), (36) and Theorem 10 as

uα = Qα +
∑

β∈Aα−Σ

〈β,λ〉6=〈α,λ〉

qα,βQβ (38)

and
Φ(Qα) = 〈α, λ〉Qα +

∑

β∈Aα−Σ

〈β,λ〉=〈α,λ〉

rα,βQβ. (39)

Proof. 1- For every α ∈ (Z≥0)
s, let Eα be the subspace

Eα = Vect{uβ , β ∈ Aα − Σ}.

We first prove that Eα is Φ-stable. Let β ∈ Aα − Σ; let α′ ∈ Aα and σ ∈ Σ such
that β = α′ − σ. We show that both Φ∂(uβ) and (Φ − Φ∂)(uβ) belong to Eα.
• As in the beginning of Proposition 7’s proof, Φ∂(uβ) − 〈β, λ〉uβ is a linear
combination of polynomials uγ , where γ = β − δk + δk−1 for integers k ≥ 2 such
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that βk ≥ 1 and εk = 1 (hence λk = λk−1). If γ is such a power, we claim that
γ ∈ Aα − Σ, which shows that Φ∂(uβ) ∈ Eα. If α′

k ≥ 1, just write γ = α′′ − σ
where α′′ = α′ − δk + δk−1 ∈ Aα. If α′

k = 0, this α′′ is not in Aα because it is not
nonnegative; in this case, write γ = α′−σ′ where σ′ = σ+δk−δk−1. It only remains
to show that σ′ ∈ Σ. Let I a proper subset of {1, . . . , s}, that gives the equation
of a face of Σ (see Corollary 13). If k ∈ I or k − 1 /∈ I, then δ∗I (σ′) ≥ 0 because
δ∗I (σ) ≥ 0. If k /∈ I and k−1 ∈ I, then δ∗I (σ′) = δ∗I (σ)−1 = δ∗I∪{k}(σ)−σk −1; but

σk = −βk ≤ −1 because βk ≥ 1. Thus δ∗I (σ′) ≥ δ∗I∪{k}(σ) ≥ 0 since σ ∈ Σ (note

that this last inequality is true even if I ∪ {k} = {1, . . . , s} because (1, . . . , 1) ∈ Σ̌
as can be seen from Lemma 12).
• Taylor formula implies that (Φ − Φ∂)(uβ) is linear combination of polynomials
uγ = uβ−η+δk with 1 ≤ k ≤ s, η ≥ 0, |η| ≥ 2, β − η ≥ 0 (the η-terms correspond
to partial derivatives of order ≥ 2 of uβ , the δk-terms come from the expansion of
the linear forms lk of the process in the Jordan basis (uk)k). If γ = β − η + δk is
such a power and if δ∗I is the equation of any one of the defining hyperplanes of Σ
where I is a proper subset of {1, . . . , s} (see Corollary 13), then

δ∗I (β − γ) = δ∗I (η − δk) = |η| − 1 +
∑

k∈I

ηk − δ∗I (k) ≥ 1 − δ∗I (k) +
∑

i∈I

ηk ≥ 0.

This proves that (Φ − Φ∂)(uβ) belongs to Vect{uγ , |γ| ≤ |β| − 1, γ ∈ β − Σ}. If
γ = β − σ′ ∈ β − Σ, then γ = α′ − (σ + σ′) ∈ α′ − Σ because the cone Σ is stable
under addition. This shows that (Φ − Φ∂)(uβ) ∈ Eα (see Figures 1 and 2).

Thus, Eα ⊆ Vect{uβ , β ≤ α} is a Φ-stable subspace of polynomials. As
intersection of stable subspaces, Fα = Eα ∩ Vect{uβ , β < α} is a stable subspace
of Eα; furthermore, uα ∈ Eα and (Φ − 〈α, λ〉)(uα) ∈ Fα (see Corollary 6). The
unicity in Lemma 9 applied to this situation for the endomorphism of Eα induced
by Φ − 〈α, λ〉 and the definition of the reduced polynomials imply (35) and (36).
In particular, Eα = Vect{Qβ, β ∈ Aα − Σ} for any α.

2- Combine property (36) and Theorem 10 point 3- to obtain

(Φ − 〈α, λ〉)(Qα) ∈ Vect{Qβ, α < β, β ∈ Aα − Σ, 〈β, λ〉 6= 〈α, λ〉}.

Conclude with Corollary 8 and Proposition 14 point 1-.

Remark 10 On the fundamental cone.
The fundamental cone Σ appears in a natural way in the proof of Theorem 15,
to ensure the Φ-stability of a (minimal) subspace that contains some given uα.
Indeed, suppose for simplicity that α is a semisimple power. Then Φ(uα) is the
sum of 〈α, λ〉uα and of a linear combination of polynomials uα−η+δk where |η| ≥ 2
and 1 ≤ k ≤ s. The iterations of Φ on such polynomials forces to consider the
least (for inclusion) set of powers that contains these η − δk and that is stable
under addition (and contains zero); this least set is the fundamental cone. For an
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illustration of this fact, see Figure 1 and 2. If α is not semisimple, the situation is
complicated by powers α′ of same degree and leads to consider the set Aα.

The properties of large projections that have just been established allow one to
get more precisions on the asymptotics of reduced moments (see Proposition 11).
Numbers να, that has been defined in Proposition 11 as

να = max{p ≥ 0, (Φ − 〈α, λ〉)p(Qα) 6= 0}

intervene in the asymptotics of reduced moments. We end this subsection with a
lemma that computes να for powers of large projections. It is a consequence of
Theorem 15.

Lemma 16 (Computation of να)
1- If α is a power of large projections, then

να = max{p ≥ 0, (Φ∂ − 〈α, λ〉)p(uα) 6= 0}.

2- If α = (α1, . . . , αs) is a monogenic power of large projections whose support
is contained in the monogenic block of indices J = {m, . . . , m + r} (r ≥ 0), then

να =

r
∑

k=0

kαm+k

and να > νβ for every β ∈ Aα \ {α}.

Proof. 1- If α ∈ (Z≥0)
s is not a semisimple power, we denote by kα the index

kα = min{k ≥ 3, αk ≥ 1, εk = 1} and p(α) the power < α of Aα defined by
p(α) = α−δkα

+δkα−1 (p(α) is the predecessor of α for the degree-antialphabetical
order restricted to Aα). As shows a direct computation of Φ∂(uα) (see (22) in the
proof of Proposition 5), combined with Aα’s definition,

(Φ∂ − 〈α, λ〉)(uα) − αkα
up(α) ∈ Vect{uβ , β ∈ Aα, β < p(α)}. (40)

We claim that (Φ − 〈α, λ〉)(Qα) − αkα
Qp(α) ∈ Vect{Qβ, β < p(α)} for any non

semisimple α (proof just below). With coefficients lemma (Theorem 15), this
implies, when α is moreover power of large projections, that

(Φ − 〈α, λ〉)(Qα) − αkα
Qp(α) ∈ Vect{Qβ, β ∈ Aα, β < p(α)}. (41)

Assertions (40) and (41) are then enough to show that

max{p ≥ 0, (Φ − 〈α, λ〉)p(Qα) 6= 0} = max{p ≥ 0, (Φ∂ − 〈α, λ〉)p(uα) 6= 0}
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when α is a power of large projections, this number being respectively equal to

min{q ≥ 0, p[q](α) is a semisimple power}

(the notation p[q] denotes the composition p◦. . . p iterated q times and p[0](α) = α).
It remains to prove that (Φ−〈α, λ〉)(Qα)−αkα

Qp(α) ∈ Vect{Qβ, β < p(α)} for
any non semisimple α to obtain 1-. Note first that |p(α)| = |α|, so that β < p(α)
as soon as |β| ≤ |α| − 1. As for Landau’s o−O, the notation x = y + F will mean
that x − y ∈ F (for vectors x and y and a subspace F ). As Φ− Φ∂ let the degree
fall down (Taylor formula), one has

(Φ − 〈α, λ〉)(Qα) = (Φ∂ − 〈α, λ〉)(Qα) + Vect{uβ , |β| ≤ |α| − 1}.

Because of coefficients lemma (Theorem 15), and because the only point of Σ
having a nonpositive degree (|.|) is zero,

Qα = uα + Vect{uβ, |β| ≤ |α| − 1} + Vect{uβ, β < α, β ∈ Aα}.

Taking the image by Φ∂ − 〈α, λ〉 of this last relation leads to

(Φ − 〈α, λ〉)(Qα) = (Φ∂ − 〈α, λ〉)(uα) + Vect{uβ , β < p(α)}.

Because of assertion (40),

(Φ − 〈α, λ〉)(Qα) = αkα
up(α) + Vect{uβ, β < p(α)}.

The conclusion follows then from Theorem 10 (points 2- and 4-):

(Φ − 〈α, λ〉)(Qα) = αkα
Qp(α) + Vect{Qβ, β < p(α)}.

2- Because of 1-, the computation of να can be made with the help of the
action of Φ∂ on the uα’s. The degree |α| being fixed, we proceed by induction on
α. If α is semisimple, α = |α|δm and να = 0; there is nothing to prove. If α is not
semisimple, the computation of (Φ∂ − 〈α, λ〉)(uα) shows that

να = 1 + max{να−δk+δk−1
, m + 1 ≤ k ≤ m + r, αk ≥ 1}.

All these α−δk+δk−1 are < α and have degree |α|; the induction hypothesis implies
that they all have the same ν, and that this number is −1 +

∑

0≤k≤r kαm+k. The
formula for να is proven. It shows in particular that νp(α) = να−1 which is enough
to prove the last assertion.

4 Asymptotic results on large processes

It follows from section 3 that the random variables uk(Xn) are natural coordi-
nates of the Pólya process (Xn)n, well adapted to its asymptotic study. Their
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joint moments uα(Xn) have natural asymptotic expansions in terms of reduced
polynomials (Theorem 17), coming from a suitable reduction of the transition op-
erator Φ (subsection 4.1). Thus, martingale arguments applied to the spectral
decomposition of the process are made possible as shown in subsections 4.2 and
4.3.

4.1 Asymptotic joint moments of projections

Theorem 17 (Joint moments of small or large projections)
Let α ∈ (Z≥0)

s and (uk)1≤k≤s be a Jordan basis of linear forms of the process.
1- If α is a power of small projections, then there exists some nonnegative

integer ν such that

E uα(Xn) ∈ O
(

n|α|/2 logν n
)

as n tends to infinity.
2- If α is a power of large projections, then there exists a nonnegative integer

ν and a complex number c such that

E uα (Xn) = cn〈α,λ〉 logν n + o
(

nℜ〈α,λ〉 logν n
)

as n tends to infinity. If moreover α is a monogenic power, then

E uα (Xn) = cn〈α,λ〉 logνα n + o
(

nℜ〈α,λ〉 logνα n
)

as n tends to infinity.
3- If α is a semisimple power of large projections, then

E uα (Xn) = n〈α,λ〉 Γ(τ1)

Γ(τ1 + 〈α, λ〉)
Qα(X1) + o

(

nℜ〈α,λ〉
)

as n tends to infinity, where Qα is the α-th reduced polynomial of the process
relative to the Jordan basis (uk)1≤k≤s.

Proof. Taking the expectation of the value at Xn in the expansion (27) leads
to E uα(Xn) = EQα(Xn) +

∑

β<α qα,βEQβ(Xn). Besides, Proposition 11 asserts

that for all β ≤ α, there exists ν ≥ 0 such that EQβ(Xn) ∈ O
(

nℜ〈β,λ〉 logν n
)

.
1- If α is a power of small projections, then uα =

∑

β∈Aα−Σ qα,βQβ (see Theorem
15) and any α′ ∈ Aα is a power of small projections that satisfies |α′| = |α|
(Corollary 8). Hence n〈β,λ〉 ∈ O

(

n|α|/2
)

if β ∈ α′ − Σ, as can be deduced from
Proposition 14.
2- If α is a power of large projections, then uα =

∑

β∈Aα−Σ qα,βQβ and any
α′ ∈ Aα is power of large projections that satisfies 〈α′, λ〉 = 〈α, λ〉. Hence
for every β ∈ α′ − Σ, α′ = β or ℜ〈β, λ〉 < ℜ〈α, λ〉 (Proposition 14). Thus
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E uα(Xn) =
∑

α′∈Aα
qα,α′EQα′(Xn) + o

(

nℜ〈α,λ〉
)

has the required asymptotics
as can be deduced from Proposition 11. The assertion on the monogenic case
comes from Lemma 16 point 2-.
3- If α is a semisimple power of large projections, then uα =

∑

β∈α−Σ qα,βQβ (see
Theorem 15) and ℜ〈β, λ〉 < ℜ〈α, λ〉 for every β ∈ (α − Σ) \ {α} (see Proposition
14). Thus E uα(Xn) = EQα(Xn) + o

(

nℜ〈α,λ〉
)

. But να = 0 as can be seen with
Lemma 16. Proposition 11 thus gives the required asymptotics.

Remark 11 More precision on the small o of point 3- in Theorem 17 can be
deduced from its proof: one can replace it by O (na) where

a = max {{ℜ〈β, λ〉, β 6= α, β ∈ α − Σ} ∪ {ℜ〈α, λ〉 − 1}} .

Remark 12 The constant c of point 2- in Theorem 17 is a polynomial function
of degree |α| of X1. The integer ν is roughly bounded by the dimension of the
vector space S|α| and tends possibly to infinity when |α| does. These facts can be
deduced from the proof of the theorem, and easy to refine.

Remark 13 Definition of numbers να were given in (26) and a way to compute
them for powers of large projections can be found in Lemma 16. The numbers ν
that appear in Theorem 17 can be refined in terms of νβ’s for suitable powers β,
as can be checked from part 1- and 2- of the above proof.

Remark 14 When the process is small, only the powers of u1 correspond to
powers of large projections. Refinement of part 1- Theorem 17 requires more de-
tailed knowledge on the process (on A). This comes from expansion E uα(Xn) =
EQα(Xn) +

∑

β<α qα,βEQβ(Xn): if α is a power of small projection, the term in
the sum having the highest order of magnitude as n tends to infinity is not nec-
essarily EQα(Xn) any more, but EQα(Xn) can nevertheless be the winner. We
just give the case of two-colour urns as example (see [18] for more details). Take
the general two-dimensional Pólya process, and choose coordinates such that the
forms lk are the coordinates forms in R2; the endomorphism A is then represented

by some matrix

(

1 − a b
a 1 − b

)

where a and b are nonnegative reals (with re-

strictive conditions (4) if one of them is > 1). The process is small whenever
a + b ≥ 1/2 because σ2 = 1− a− b. We assume for the example that a + b > 1/2.
Computation of the first reduced polynomials shows that

u2
2 = Q(0,2) − (a − b)(1 − a − b)Q(0,1) +

ab(1 − a − b)2

2(a + b) − 1
Q(1,0) (42)

for the choice u2 = ax − by. The term of Eu2
2(Xn) having the highest order of

magnitude is EQ(1,0)(Xn) = nQ(1,0)(X1), but its coefficient is zero if a or b vanish.
Such considerations justify the fact that the study of small triangular urns has to
be done separately in terms of asymptotics and limit laws (see [14], [15], [19]).
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Theorem 17 on joint moments being established, one can derive results on the
asymptotics of large Pólya processes. Although it is not formally necessary, we
split our description in two different cases, presented in the following subsections.

4.2 Large and principally semisimple processes

Theorem 18 (Asymptotics of large and principally semisimple Pólya
processes) Suppose that the Pólya process (Xn)n is large and principally semisim-
ple. Fix a Jordan basis (uk)1≤k≤s of linear forms of the process such that u2, . . . , ur

(2 ≤ r ≤ s) are all the eigenforms of the basis that are associated with roots
λ2, . . . , λr having σ2 as real part.

Then, with notations (12) and (13) of section 2, there exist unique (complex)
random variables W2, . . . , Wr such that

Xn = nv1 +
∑

2≤k≤r

nλkWkvk + o (nσ2) , (43)

the small o being almost sure and in Lp for every p ≥ 1. Furthermore, if one de-
notes by (Qα)α∈(Z≥0)s the reduced polynomials of the process relative to the Jordan
basis (uk)1≤k≤s, all joint moments of the random variables W2, . . . , Wr exist and
are given by: for all α2, . . . , αr ∈ Z≥0,

E





∏

2≤k≤r

Wαk

k



 =
Γ(τ1)

Γ(τ1 + 〈α, λ〉)
Qα(X1)

where α =
∑

2≤k≤r αkδk = (0, α2, . . . , αr, 0, . . . ).

Remark 15 As can be seen in the proof, for any k ∈ {2, . . . , r}, the random
variable Wk is defined as the limit of the process uk(Xn)/nλk as n tends to infinity.
This convergence is almost sure and in any Lp, p ≥ 1 and obtained by martingale
techniques.

Remark 16 To know whether Wk is zero or not, it is enough to check the nullity
of EW 2

k = Γ(τ1)Q2δk
(X1)/Γ(τ1 + 2λk) when Wk is real-valued (that is when λk is

real), or of E|Wk|
2 = Γ(τ1)Qδk+δk′ (X1)/Γ(τ1 + 2ℜλk) when Wk is not real valued

(i.e. when λk ∈ C \ R), where k′ is such that uk = uk′ .

Remark 17 In the asymptotic almost sure expansion (43), σ2 and the complex
numbers λk depend only on the conjugacy class of A. On the contrary, the distri-
butions of the random variables Wk depend on the increment vectors wk and on
the linear forms lk (and on initial condition X1): two processes having conjugate
associated endomorphisms have the same asymptotic form (43), but in general
different limit laws Wk. For example, the two standardized large urns having
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A =

(

1 9/20
0 11/20

)

and A′ =

(

3/4 1/5
1/4 4/5

)

as (conjugate) replacement matrices

have respective second reduced polynomials Q(0,2) = u2(u2+11/20) (see (30)) and

Q′
(0,2) = u′

2
2 − 11

400u′
2 + 121

800u′
1 (see (42), evident notations). The algebraic relations

satisfied by the moments of W and W ′ are not of the same kind.
A natural question arises: are the limit laws of two processes having conjugate

associated endomorphisms connected by some functional relation?

Proof. We adopt the notations of section 2. Let’s denote π =
∑

2≤k≤r πk and
π′ =

∑

k≥r+1 πk; the random vector Xn splits into the sum

Xn = π1Xn + Yn + Zn, (44)

where Yn = πXn and Zn = π′Xn.
• First term π1Xn

Because of relation (7), π1Xn = nv1 + O(1) as n tends to infinity, the big O
being non random.
• Second term Yn

As follows from (14), Yn =
∑r

k=2 uk(Xn)vk. Take any k ∈ {2, . . . , r}. The
computation of the conditional expectation of uk(Xn+1) with regard to the state at
time n gives EFnuk(Xn+1) = (1+λk/(n+τ1−1))uk(Xn) for any positive integer n
(see (19), uk is eigenform of the process); this implies that (γτ1,n(λk)−1uk(Xn))n is
a martingale (one can divide by γτ1,n(λk) because λk is not a negative integer). Let
p be any integer ≥ 1 and let l ∈ {2, . . . , r} such that ul = uk (complex conjugacy).
Then, thanks to Theorem 17, as p × (δk + δl) is a semisimple power (the process
is principally semisimple),

E|u2p
k (Xn)| = Eup

k(Xn)up
l (Xn) = n2pσ2

Γ(τ1)

Γ(τ1 + 2pσ2)
Qp(δk+δl)(X1) + o(n2pσ2 ).

Note that this is valid even if λk is real. The martingales γτ1,n(λk)−1uk(Xn) are
consequently all convergent in every Lp space, p ≥ 1.

For every k ∈ {2, . . . , r}, let Wk be the (complex) random variable defined by

Wk = lim
n→+∞

uk(Xn)

γτ1,n(λk)

Γ(τ1)

Γ(τ1 + λk)
= lim

n→+∞
uk

(

Xn/nλk
)

the second equality coming from Stirling’s asymptotics as n tends to infinity:

γτ1,n(λ)Γ(τ1 + λ) = Γ(τ1)n
λ(1 + o(1)),

for every λ /∈ −τ1 + Z≤0. This shows that Yn =
∑

2≤k≤r nλkWkvk + o(nσ2), the
small o being almost sure and in every Lp space for any p ≥ 1.
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Computation of the limits of joint moments: if α = (0, α2, . . . , αr, 0, . . . ) ∈
(Z≥0)

s, α is a semisimple power of large projections and if one denotes Wα =
∏

k Wαk

k , Theorem 17 implies that

EWα = lim
n→+∞

1

n〈α,λ〉
E uα(Xn) =

Γ(τ1)

Γ(τ1 + 〈α, λ〉)
Qα(X1).

• Third term Zn

Zn =
∑

k≥r+1 uk(Xn)vk. We show that n−σ2uk(Xn) converges to zero almost
surely and in every Lp space (p ≥ 1), for every k ≥ r + 1. Take any k ≥ r + 1,
and l ≥ r + 1 such that uk = ul (complex conjugacy; note that ℜλk < 1).
Because of Theorem 17, for a suitable nonnegative integer ν, one has E|u2p

k (Xn)| =

Eup
k(Xn)up

l (Xn) ∈ O(n2pℜλk logν n) if ℜλk > 1/2 and E|u2p
k (Xn)| ∈ O(np logν n)

if ℜλk ≤ 1/2. In each case E|u2p
k (Xn)| ∈ o(n2pσ2 ), which gives the Lp convergences.

Furthermore, let p be any positive integer such that 1/p ≤ 2(σ2−ℜλk) if ℜλk > 1/2
or such that 1/p ≤ 2σ2 − 1 if not; for such a p, the series

∑

n

E

∣

∣

∣

∣

1

nσ2

uk(Xn)

∣

∣

∣

∣

2p

converges. The almost sure convergence to zero of n−σ2uk(Xn) follows thus from
Borel-Cantelli lemma, and the proof of Theorem 18 is complete.

Remark 18 Processes having 1 as multiple root.
If a Pólya process (Xn)n has 1 as multiple root, the way to use Theorem 18 to
determinate the almost sure limit law of Xn/n suggests to abandon our convention
u1 =

∑s
k=1 lk; this does not change the validity of the whole result. Using the

so-called graph of the lk’s and wk’s (or the graph of the replacement matrix in
the urn version), one finds a basis (u1, . . . , ur) (r ≥ 2 is the multiplicity of 1 as
eigenvalue of A) of eigenforms of the process with root 1 and a partition I1, . . . Ir

of {1, . . . s} such that for any k ∈ {1, . . . r}, uk(wj) = 1 if j ∈ Ik and uk(wj) = 0
if j /∈ Ik (see [11]). For such a basis,

∑s
k=1 lk =

∑r
k=1 uk. This property of uk’s

implies in particular that for any α = (α1, . . . , αr, 0, . . . ),

Qα =

r
∏

k=1

uk(uk + 1) . . . (uk + αk − 1)

and Qα is eigenfunction for Φ, associated with the eigenvalue |α| =
∑r

k=1 αk. It
follows then from Theorem 18 that Xn/n converges almost surely and in any Lp,
p ≥ 1 to a random vector

∑r
k=1 Wkvk, where the joint moments of the real random

variables W1, . . . , Wr are given by

EWα =
Γ(τ1)

Γ(τ1 + |α|)

r
∏

k=1

Γ(uk(X1) + αk)

Γ(uk(X1))
.
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One recognizes here the moments of a Dirichlet distribution with parameters
u1(X1), . . . , ur(X1) whose density on the simplex {x1 ≥ 0, . . . , xr ≥ 0,

∑r
k=1 xk =

1} of Rr is given by

(x1, . . . , xr) 7→ Γ

(

r
∑

k=1

uk(X1)

)

r
∏

k=1

x
uk(X1)
k

Γ(uk(X1))
.

(see [11]). In reference to the original paper of Pólya, the name essentially Pólya
for processes under this assumption could be given.

Remark 19 Drift when 1 is simple root.
It can be deduced from Theorem 17, decomposition (44) and Borel-Cantelli lemma
that Xn/n converges almost surely and in L≥1 to the non random vector v1

when 1 is simple root, even for small processes. This result is valid without any
irreducibility-type condition on the process (compare with [14]).

4.3 Large and principally nonsemisimple processes

Theorem 19 (Asymptotics of large and principally nonsemisimple Pólya
processes) Suppose that the Pólya process (Xn)n is large and principally non-
semisimple. Fix a Jordan basis (uk)1≤k≤s of linear forms of the process; let
J2, . . . , Jr be the principal blocks of indices2 and ν + 1 the common size of the
Jk’s (ν ≥ 1).

Then, with notations (12) and (13) of section 2, there exist unique (complex)
random variables W2, . . . , Wr such that

Xn = nv1 +
1

ν!
logν n

∑

2≤k≤r

nλ(Jk)Wkvmax Jk
+ o (nσ2 logν n) , (45)

the small o being almost sure and in Lp for every p ≥ 1. Furthermore, if one de-
notes by (Qα)α∈(Z≥0)s the reduced polynomials of the process relative to the Jordan
basis (uk)1≤k≤s, all joint moments of the random variables W2, . . . , Wr exist and
are given by: for all α2, . . . , αr ∈ Z≥0,

E





∏

2≤k≤r

Wαk

k



 =
Γ(τ1)

Γ(τ1 + 〈α, λ〉)
Qα(X1)

where α =
∑

2≤k≤r αkδminJk
.

2In other words, if J is any Jordan block of A in the uk’s basis, J is 1 or one of the Jk’s, or
the size of J is ≤ ν, or the root of J has a real part < σ2. See definition 5 (of a principal block).
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Remark 20 As can be seen in the proof, for any k ∈ {2, . . . , r}, the random
variable Wk is defined as the limit of uminJk

(Xn)/nλ(Jk) as n tends to infinity.
This convergence is almost sure and in any Lp, p ≥ 1 and obtained by martingale
techniques (quadratic variation, discrete Burkholder inequality).

Remark 21 As in remark 17, σ2 and the numbers λ(Jk) and ν depend only on
the conjugacy class of A.

Proof. We adopt the notations of section 2. For any monogenic block of indices
J , we denote by πJ the projection πJ =

∑

k∈J πk.
• Claim If J is a monogenic block of indices associated with a root λ having a real
part σ > 1/2, then γτ1,n(πJA) is invertible and γτ1,n(πJA)−1πJXn is a martingale
that converges in Lp for every p ≥ 1 (thus almost surely). If MJ denotes the limit
of this martingale and if r = #J − 1, then

πJXn =
nλ logr n

r!

Γ(τ1)

Γ(τ1 + λ)
uminJ(MJ)vmax J + o (nσ logr n) (46)

as n tends to infinity, the small o being almost sure and in Lp for every p ≥ 1.
Furthermore, almost surely and in Lp for every p ≥ 1,

uminJ (MJ) =
Γ(τ1 + λ)

Γ(τ1)
lim

n→∞

uminJ(Xn)

nλ
. (47)

γτ1,n(πJA) is invertible because every Id +πJA/(k+τ1−1) is (its unique eigen-
value has a real part > 1). Since J is a monogenic block of indices, A and πJ

commute. Thus Mn = γτ1,n(πJA)−1πJXn is a martingale (see (19) with f = πJ

and remark 2 in subsection 3.1). We show that for any k ∈ J , the quadratic varia-
tion of the martingale uk(Mn) is almost surely bounded, which is enough, thanks
to Burkholder’s inequality for discrete time martingales (see [13] for example), to
ensure that the projection uk(Mn) is bounded in Lp for every p ≥ 1, hence the
validity of the convergence part of the claim.

Without loss of generality, we can assume for simplicity that J = {2, . . . , r+2}.
If one denotes N = πJ (A − λ), then N commutes with A and satisfies N r 6= 0
and N r+1 = 0; furthermore, elementary considerations on A, the uk’s and the vk’s
show that for any nonnegative integer q and for any k ∈ {2, . . . , r + 2}, one has
N qπk = ukvk+q if k + q ≤ r + 2 and N qπk = 0 is k + q ≥ r + 3. In particular,
for any q, one can write N q = N q(

∑

k∈J πk) =
∑

q+2≤k≤r+2 uk−qvk (with the

convention N0 = πJ ). Hence, if βn = 1/γτ1,n (as formal series or rational fraction;
we omit the parameter τ1 for simplicity of notation), Taylor formula leads to

Mn =

r
∑

q=0

1

q!
β(q)

n (λ)N qXn =

r+2
∑

k=2

(

k−2
∑

q=0

1

q!
β(q)

n (λ)uk−q(Xn)

)

vk. (48)
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Thus, for any k ∈ {2, . . . , r + 2}, one has uk(Mn) =
∑k−2

q=0
1
q!β

(q)
n (λ)uk−q(Xn) and

uk(Mn+1) − uk(Mn) =

k−2
∑

q=0

1

q!
β

(q)
n+1(λ)

[

uk−q(Xn+1) −
β

(q)
n (λ)

β
(q)
n+1(λ)

uk−q(Xn)

]

. (49)

One can write

uk−q(Xn+1) −
β

(q)
n (λ)

β
(q)
n+1(λ)

uk−q(Xn) = uk−q(Xn+1 − Xn)

+

[

1 −
β

(q)
n (λ)

β
(q)
n+1(λ)

]

uk−q(Xn).

The relation βn(λ) = (1 + λ/(n + τ1 − 1))βn+1(λ) implies, with Leibnitz formula,
that

1 −
β

(q)
n (λ)

β
(q)
n+1(λ)

∈ O(
1

n
).

Besides, the definition of the process (Xn)n itself (definition 1) implies that Xn+1−
Xn ∈ {w1, . . . , ws} is almost surely O(1) and that Xn is almost surely O(n) as n
tends to infinity (elementary induction). Hence

uk−q(Xn+1) −
β

(q)
n (λ)

β
(q)
n+1(λ)

uk−q(Xn) ∈ O(1) (50)

almost surely, as n tends to infinity. With the same tools as for the derivatives of
γτ1,n (see (20)), for every nonnegative integer q,

β(q)
n (λ) =

logq n

nλ

Γ(τ1 + λ)

Γ(τ1)
+ o

(

logq n

nℜλ

)

(51)

as n tends to infinity. Thus (49), (50) and (51) allows one to conclude that

uk(Mn+1) − uk(Mn) ∈ O

(

logk−2 n

nℜλ

)

almost surely as n tends to infinity. In particular, |uk(Mn+1)−uk(Mn)|2 is almost
surely the general term of a convergent series: the quadratic variation of the
martingale uk(Mn) is almost surely bounded and the convergence part of the
claim is proved.

Almost surely and in Lp for every p ≥ 1,

πJXn = γτ1,n(πJA)
[

γτ1,n(πJA)−1πJXn

]

= γτ1,n(πJA)(MJ + o(1))
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as n tends to infinity. As for equation (48), one has

γτ1,n(πJA) =

r+2
∑

k=2

(

k−2
∑

q=0

1

q!
γ(q)

τ1,n(λ)uk−q

)

vk

and the asymptotics of derivatives of γτ1,n (see (20)) implies

πJXn =
nλ logr n

r!

Γ(τ1)

Γ(τ1 + λ)
u2(MJ)vr+2 + o (nσ logr n)

which is the expected result (46) on πJXn. Equation (48) shows that u2(Mn) =
βn(λ)u2(Xn) and allows one to conclude with the help of (51).

• As in the proof of the large and principally semisimple case (Theorem 18),
π1Xn = (n + τ1 − 1)v1, and the process splits into the sum

Xn = nv1 +
r
∑

k=2

πJk
Xn + Yn + Zn

where Yn =
∑

J πJXn the sum being extended to all monogenic blocks of indices
different of any Jk that correspond to roots having real parts > 1/2 and Zn =
∑

{k, ℜλk≤1/2} πkXn. We study the behaviour of the terms of this sum separately.
• Because of Theorem 17 part 1- and Borel-Cantelli lemma, as in the proof of the
large and principally semisimple case, Zn ∈ o(nσ2 logν n) almost surely and in Lp

for every p ≥ 1 (remember that πkXn = uk(Xn)vk).
• Every J in the definition of Yn satisfies the assumption of the claim with a root’s
real part < σ2 or a cardinality ≤ ν. Thus almost surely and in Lp for every p ≥ 1,

Yn = o(nσ2 logν n)

as n tends to infinity.
• For every k ∈ {2, . . . , r}, Jk satisfies the assumption of the claim and if one
denotes

Wk = lim
n→∞

uminJk
(Xn)

nλ(Jk)
,

one obtains almost surely and in Lp for every p ≥ 1

πJk
Xn =

1

ν!
nλ(Jk) logν nWkvmax Jk

+ o (nσ2 logν n)

almost surely and in Lp for every p ≥ 1, which completes the proof of (45). Note
that uminJk

is an eigenform of A and that γτ1,n(λ(Jk))−1uminJk
(Xn) is an L≥1-

convergent complex martingale.
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• Take any α2, . . . , αr ∈ Z≥0. Then α =
∑

2≤k≤r αkδmin Jk
is a semisimple power

of large projections, and

E





∏

2≤k≤r

Wαk

k



 = lim
n→∞

1

n〈α,λ〉
E uα(Xn) =

Γ(τ1)

Γ(τ1 + 〈α, λ〉)
Qα(X1)

as can be deduced from Theorem 17 point 3-. This completes the proof of the
theorem.
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[7] F. Eggenberger, G. Pólya Ueber die Statistik verketter Vorgänge. Zeitschrift

für reine und angewandte Mathematik und Mechanik 1 (1923), 279–289.

[8] J.A. Fill, N. Kapur The space requirements of m-ary search trees: distributional
asymptotics for m ≥ 27. Submitted, 10 pages.

Available from http://www.mts.jhu.edu/˜ fill/
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alized Pólya urns. Stochastic Process. Appl. 110 (2004), 177–245.

[15] S. Janson Limit theorems for triangular urn schemes. Probability Theory and

Related Fields, to appear (2005).

[16] H.M. Mahmoud Evolution of random search trees. Wiley, New-York, 1992.

[17] G. Pólya Sur quelques points de la théorie des probabilités. Ann. Inst. Poincaré
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