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Abstract

For certain classes of holomorphic correspondences which are matings

between Kleinian groups and polynomials, we prove the existence of pinch-

ing deformations, analogous to Maskit’s deformations of Kleinian groups

which pinch loxodromic elements to parabolic elements. We apply our

results to establish the existence of matings between quadratic maps and

the modular group, for a large class of quadratic maps, and of matings

between the quadratic map z → z
2 and circle-packing representations of

the free product C2 ∗ C3 of cyclic groups of order 2 and 3.
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1 Introduction

It is a well-known consequence of the simultaneous uniformisation theorem of
Bers [2] that given two abstractly isomorphic Fuchsian groups G1 ⊂ PSL2(R)
and G2 ⊂ PSL2(R), acting on the upper and lower complex half-planes respec-

tively, each having limit set R̂ = R∪∞, and such that the action of G1 on R̂ is
topologically conjugate to that of G2, the actions of G1 and G2 can be mated to
obtain a quasifuchsian Kleinian group G ⊂ PSL2(C). This mating is a group
which is abstractly isomorphic to both G1 and G2, it has limit set Λ(G) a simple

closed (fractal) curve, and the actions of G on the two components of Ω = Ĉ−Λ
are conformally conjugate to those of G1 on U and G2 on L.

It is also well-known that given two polynomial maps P and Q of the same
degree n, in appropriate circumstances one can find a rational map R which
realises a mating between the actions of P and Q on their filled Julia sets, in a
precise sense as defined for example in [13]. A necessary condition for a mating
between two quadratic polynomials P : z → z2 + c and Q : z → z2 + c′ to
exist is that c and c′ should not belong to conjugate limbs of the connectivity
locus (the Mandelbrot Set) in parameter space: this was first shown also to be
a sufficient condition in the case that P and Q are postcritically finite [19, 20],
and subsequently for much more general classes of P and Q [13].

In [3] the first examples of holomorphic correspondences realising matings be-
tween Fuchsian groups and polynomials were presented. Holomorphic corre-
spondences on the Riemann sphere are multi-valued maps f : z → w defined by
polynomial equations p(z, w) = 0. Examples of holomorphic correspondences
are those defined by a union of the graphs of some finite set of Möbius transfor-
mations, or by the graph of a rational map (or its inverse). We say that such a
correspondence has bidegree (m : n) if a generic point z has n images w and a
generic point w has m inverse images z.

Definition Let qc : z → z2 + c be a quadratic map with connected filled Julia
set K(qc). A holomorphic correspondence f : z → w of bidegree (2 : 2) is called
a mating between qc and the modular group PSL2(Z) if:

(a) there exists a completely invariant open simply-connected region Ω ⊂ Ĉ

and a conformal bijection h from Ω to the upper half-plane conjugating the two
branches of f |Ω to the pair of generators z → z+1, z → z/(z+1) of PSL2(Z);
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(b) the complement of Ω is the union of two closed sets Λ− and Λ+, which
intersect in a single point and are equipped with homeomorphisms h± : Λ± →
K(qc), conformal on interiors, respectively conjugating f restricted to Λ− as
domain and codomain to qc on K(qc), and conjugating f restricted to Λ+ as
domain and codomain to q−1

c on K(qc).

In [3] the one parameter family of correspondences
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was shown to contain examples of matings between quadratic maps and the
modular group. The following conjecture is implicit in the discussion in Sections
1 and 6 of that paper.

Conjecture 1 The family (1) of (2 : 2) correspondences contains matings be-
tween PSL2(Z) and every quadratic polynomial having a connected Julia set,
that is to say every z → z2 + c with c ∈ M, the Mandelbrot set.

Supporting evidence was provided by proofs for particular examples and numer-
ical experiments suggesting the resemblance between the space of matings and
the Mandelbrot set. However difficulties in adapting the theory of polynomial-
like maps [9] to the setting of pinched polynomial-like maps prevented a proof.

A different question turned out to be easier to answer. The modular group may
be considered as a representation of the free product C2 ∗ C3 of cyclic groups,
of orders two and three, in PSL2(C). Up to conjugacy there is a one parameter
family of such representations and in the parameter space there is a set D,
homeomorphic to a once-punctured closed disc, for which the representation is
discrete and faithful. The modular group corresponds to a particular boundary
point of D. Let r be any representation of C2 ∗C3 corresponding to a parameter
value in the interior D◦ of D. The ordinary set Ω(r) of the Kleinian group
defined by such a representation r is connected and the limit set Λ(r) is a
Cantor set. In [5] the notion of a mating between such a representation r of
C2 ∗ C3 and a quadratic polynomial qc : z → z2 + c was introduced: Λ− and
Λ+ are now disjoint, and their complement Ω is canonically associated to Ω(r)
(see Section 2.2). By the application of polynomial-like mapping theory the
following analogue of Conjecture 1 was proved in [5].

Theorem 1 For every quadratic map qc : z → z2 + c with c ∈ M and ev-
ery faithful discrete representation r of C2 ∗ C3 in PSL2(C) having connected
ordinary set, there exists a polynomial relation p(z, w) = 0 defining a (2 : 2)
correspondence which is a mating between qc and r.

An outline of the proof of Theorem 1 is presented in Section 2.2, as a prelude
to applying pinching techniques to the matings it shows to exist.
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We describe an involution J on Ĉ as compatible with a mating f if (J ◦f)∪I
Ĉ

is

an equivalence relation, where I
Ĉ

denotes the identity map on Ĉ and (J ◦f)∪I
Ĉ

denotes the 3 : 3 correspondence defined by the algebraic curve

p(z, J(w))(z − w) = 0

(Here p(z, w) = 0 is the curve defining f .)

Proposition 1 Every mating with a compatible involution is conjugate to a
correspondence in the following two parameter family (also considered in [3]):
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As we shall see, the matings constructed in [5] have compatible involutions, so
they have representatives in the family (2), a fact observed in [5] but for which
Proposition 1 (proved in Section 2) provides a more conceptual setting.

The basic idea of pinching can be seen in the process by which the modular group
can be obtained from any chosen standard representation r∗ of C2 ∗C3 lying in
the interior of D, that is to say a faithful discrete representation with connected
ordinary set Ω(r∗) (and therefore limit set a Cantor set). We first recall that each
Kleinian representation of C2 ∗ C3 comes equipped with a canonical involution
χ which conjugates the generators σ ∈ C2 and ρ ∈ C3 to their inverses (see
Section 2.1); we let G denote the group < χ, σ, ρ >. For each rational number
p/q there is an arc δp/q on the orbit space Σ = Ω(r∗)/G which lifts to simple

closed geodesic δ̃p/q of winding number p/q on a certain torus Σ̃ double-covering
Σ (see Lemma 4 in Section 3.1 for details). The arc δp/q lifts to an arc αp/q on
Ω(r∗) together with its translates under G. This arc αp/q is precisely << g >>-
invariant for any loxodromic element g ∈ G which stabilises it. (Here << g >>
denotes the maximal elementary subgroup of G containing g, and saying that
an arc α is precisely << g >>-invariant means that << g >> α = α and
h(α) ∩ α = ∅ for all h ∈ G not in << g >>). In this situation Maskit’s
Theorem [15] states that the representation of G in PSL2(C) can be deformed
to one in which αp/q and its translates under G are pinched to points and g
becomes parabolic. We deduce that we may pinch δ0, and hence its lift α0, to a
point, thereby deforming the representation r∗ of C2 ∗C3 to the representation
PSL2(Z), which lies on the boundary of the deformation space D. Similarly
for p/q 6= 0 we may pinch δp/q to a point and so deform the representation r∗
to a faithful discrete representation which we denote rp/2q . This has ordinary
set a disjoint union of a countable infinity of open round discs, and limit set a
circle-packing. The representation rp/2q depends only on the value of p/2q mod
2: pinching δ(2nq+p)/q in place of δp/q amounts to approaching the same limit
representation rp/2q but by a non-isotopic path in D. We remark that by a deep
result of McMullen [17] the representations rp/2q are dense in the boundary of
D.
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Recently, Häıssinsky [12], Cui [7] and Häıssinsky and Tan [13] proved analogous
results to Maskit’s in the context of rational maps, showing that, under ap-
propriate hypotheses, given a rational map R and an R-invariant union of arcs
joining attracting to repelling cycles, one can continuously deform the map in
such a way that the arcs, and their pre-images, are pinched to points and the
cycles become parabolic.

In this paper we adapt the techniques of [12] and [13] to apply them to the
holomorphic correspondences constructed in [5]. In Section 3, for any corre-
spondence p0(z, w) = 0 which is a mating between r∗ and qc, and for any
rational number p/q, we identify an arc γp/q such that the grand orbit of γp/q

under the correspondence is a union of infinitely many disjoint copies of γp/q

(or of copies of a quotient of γp/q by an involution), and such that pinching
each connected component of this union to a point corresponds to deforming
the representation r∗ to rp/2q. We describe the pinching process formally as
follows.

Definition A convergent pinching deformation for γp/q is a family of quasi-
conformal maps (ϕt)0≤t<1 of the Riemann sphere such that the conjugate cor-
respondences pt defined by

pt(z, w) = p0(ϕ
−1
t (z), ϕ−1

t (w))

are holomorphic and satisfy the following :

• (pt, ϕt) are uniformly convergent to a pair (p1, ϕ1) as t tends to 1 ,

• the non-trivial fibres of ϕ1 are exactly the closure of the connected compo-
nents of the orbit of γp/q.

There are two technical conditions that we require the quadratic map qc to
satisfy in order to apply the techniques of [13] to γ0:

(i) if the critical point 0 of qc is recurrent, the β-fixed point of qc is not in the
ω-limit set of 0;

(ii) qc is weakly hyperbolic, that is, there are constants r > 0 and δ < ∞ such
that, for all z ∈ Jq r {preparabolic points}, there is a subsequence of iterates
(qnk)k such that

deg(Wk(z)
qn

k

−→ D(qnk(z), r)) ≤ δ

where Wk(z) is the connected component of q−nk(D(qnk(z), r)) containing z.

In Section 4 we prove:

Theorem 2 Let p0(z, w) be a mating between the representation r∗ and qc,
where qc satisfies conditions (i) and (ii) above. Then there exists a pinching de-
formation of p0 such that (pt)0≤t<1 converges uniformly to a mating p1 between
PSL2(Z) and qc.
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Figure 1: A mating of a representation of C2 ∗ C3 with a Douady rabbit (and
zoom). The arc γ0 and its images are shown. Pinching these gives a mating of
PSL2(Z) with the rabbit, by Theorem 2.
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Corollary Conjecture 1 is true for all quadratic maps qc which satisfy conditions
(i) and (ii).

The class of weakly hyperbolic quadratic maps is quite large: for example it
contains all quadratic maps which satisfy the Collet-Eckmann condition [18],
and those which contain parabolic points.

We next investigate pinching γp/q, for p/q 6= 0. In Section 3.2, we define the
notion of a mating between the circle-packing representation rp/2q of C2 ∗ C3

and qc. This generalises our earlier definition of a mating between PSL2(Z) and
qc, replacing K(qc) by a certain identification space K(qc)/ ∼p/q and replacing
the condition that Λ+∩Λ− be a point by the condition that it consist of q points
(the p/q Sturmian orbit on the boundary of K(qc)). We show that a mating
between rp/2q and qc depends only on p/q mod 1. To avoid technical difficulties
we restrict attention to the special case that the quadratic map is q0 : z → z2.
Using the techniques of [12], we prove the following:

Theorem 3 Let p0(z, w) be a mating between the representation r∗ and q0, and
let p/q be any rational. Then there exists a pinching deformation of p0 such
that (pt)0≤t<1 converges uniformly to a mating p1 between the circle-packing
representation rp/2q of C2 ∗ C3 in PSL2(C) and q0.

The following is the natural generalisation of Conjecture 1.

Conjecture 2 For every 0 ≤ p/q < 1, the family (2) of (2 : 2) correspon-
dences contains matings between the circle-packing representation rp/2q and ev-
ery quadratic polynomial qc which has c ∈ M\M1−p/q, where M1−p/q denotes
the (1 − p/q)-limb of the Mandelbrot set M.

The condition that c does not lie in M1−p/q is necessary for elementary topolog-
ical reasons. One might hope to generalise the techniques of the present paper
to prove Conjecture 2 in the case that qc satisfies conditions (i) and (ii) of the
hypotheses of Theorem 2, but the technical details could be formidable.

Warning As will already be apparent, certain of the constructions and results
in this article depend on p/q ∈ Q, certain depend only on p/q mod 1 (the class
of p/q in Q/Z), and certain on p/q mod 2. We shall try to make the dependence
clear in each case, but briefly the situation may be summed up as follows. A
circle-packing representation rp/2q of C2 ∗ C3 depends on p/q mod 2 but the
route to it (in the moduli space D) given by pinching δp/q depends on p/q ∈ Q.
A mating between rp/2q of C2 ∗C3 and qc depends only on p/q mod 1, but again
the route to it (in mating space) given by pinching γp/q depends on p/q ∈ Q.

2 Matings between quadratic maps and repre-

sentations of C2 ∗ C3

We define what we mean by matings between quadratic maps and representa-
tions of C2 ∗ C3 in PSL2(C) which lie in Do, we recall the main ideas of the
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Figure 2: A fundamental domain DG for the group G =< σ, ρ, χ >.

proof [5] of Theorem 1, we prove Proposition 1, and we present a group-theoretic
description of the ‘ordinary set’ Ω(f) of a mating.

2.1 Faithful discrete representations with connected ordi-
nary sets

Up to conjugacy each representation r of C2 ∗C3 in PSL2(C) is determined by

a single complex parameter, the cross-ratio between the fixed points on Ĉ of
the action of the generator σ of C2 and those of the generator ρ of C3. Such
a representation comes equipped with a (unique) involution χ which exchanges
the two fixed points of σ and also those of ρ, so that χσ = σχ and χρ = ρ−1χ.
On the Poincaré 3-ball χ is simply rotation through π around the common
perpendicular to the axes of σ and ρ. Write G for the group < σ, ρ, χ >, and
note that it has ordinary set Ω(G) the same as that of < σ, ρ >.

The faithful discrete actions r : C2 ∗ C3 ⊂ PSL2(C) with connected ordinary
set Ω(G) form a single quasiconformal conjugacy class, the class of representa-
tions for which one can find simply-connected fundamental domains for σ and
ρ with interiors together covering the whole Riemann sphere (the conditions of
the simplest form of the Klein Combination Theorem are satisfied) [14]. Such
fundamental domains may be constructed as illustrated in figure 2.

Here P and P ′ are the fixed points of ρ, Q and Q′ are the fixed points of σ, R is
a fixed point of (the involution) χρ and S and S′ are the fixed points of χσ. The
lines l,m and n, joining R to S, Q to S and R to P , are chosen such that they
are smooth and remain non-intersecting in the quotient orbifold Ω(G)/G. The
region bounded by n, ρn, χn and χρn is a fundamental domain for ρ, and the
region exterior to the loop made up of m,σm,χm and χσm is a fundamental
domain for σ. The intersection of these two regions is a fundamental domain
for the (faithful) action of C2 ∗C3 on Ω(G), and the half DG of this intersection

8



bounded by n, l,m, σm, χl and ρn is a fundamental domain for the action of G.
The union of all translates of DG under elements of C2 ∗C3 is a topological disc
D which is a fundamental domain for the action of χ on Ω(G). The complement

Λ(G) of Ω(G) = D ∪ χ(D) in Ĉ is a Cantor set.

The orbifold Ω(G)/G is a sphere Σ, which has a complex structure with four
cone points, which we may also label P,Q,R, S, where P has angle 2π/3 and
Q,R, S each have angle π. For a given representation of C2 ∗ C3, a set of lines
l,m, n as in figure 2 descend to an isotopy class of non-intersecting paths joining
the corresponding cone points in Σ. By considering the choices we may make
of the various labels and lines in figure 2 we can obtain a description of D̃0, the
universal cover of the moduli space D0.

Lemma 1 There is a homeomorphism Φ between Do and the space S of spheres
Σ having a complex structure with four marked cone points P,Q,R, S where P
has angle 2π/3 and Q,R, S each have angle π. This homeomorphism Φ lifts to

a homeomorphism Φ̃ between D̃o and the space S̃ of spheres Σ ∈ S marked with
an isotopy class of non-intersecting paths PR, RS and SQ.

Proof. For r ∈ Do define Φ(r) to be the orbifold Ω(G)/G, whereG =< σ, ρ, χ >
is the subgroup of PSL2(C) corresponding to the representation r. Clearly Φ is
continuous as Do is endowed with the topology induced by its parametrisation
by the cross-ratio (Q,Q′;P, P ′). To define an inverse to Φ, observe that given
any Σ ∈ S, we may obtain a representation r by regarding Σ as a quasiconformal
deformation of the orbifold corresponding to r∗, lifting the corresponding ellipse
field to Ĉ, and applying the Measurable Riemann Mapping Theorem.

To lift Φ to a homeomorphism Φ̃ we have to consider markings. Note that given
a representation of C2 ∗ C3 which lies in Do, there is only one choice for which
of the pair P, P ′ (in figure 2) to label P , namely the fixed point of ρ around
which the rotation is anticlockwise. There is also just one choice (up to isotopy)
for the arc n. The labels Q and Q′ are interchangeable (provided that we also
interchange the labels S and S′), but once a choice has been made for Q the
arc m is determined, and even if the labels Q and Q′ are exchanged the arc QS
in the orbifold Σ is unchanged up to isotopy. This just leaves us a choice of the
arc l in figure 2. We can alter l to wind an extra n times around the central
‘hole’ for any integer n, or n + 1/2 times if we switch the labels Q and Q′.
Changing the winding number of l corresponds to choosing a different isotopy
class of paths between the points labelled R and S in the orbifold Σ. �

Let tα denote the automorphism of D̃o corresponding to turning the internal
boundary of figure 2 through an angle 2πα. Note that t1/4 moves the pair of
points labelled Q,Q′ to the pair labelled S, S′ and vice versa. Let ι : Do → Do

denote the involution obtained by replacing the generating pair {σ, ρ} of C2 ∗C3

by {σ′, ρ}, where σ′ = χσ. This corresponds to composing the representation
with an outer automorphism of C2∗C3. The following result is now self-evident.

9



Lemma 2 The automorphism t1/4 : D̃o → D̃o covers ι : Do → Do, and t1/2

generates the group of covering transformations of D̃o → Do. �

2.2 Matings between qc and r ∈ Do

As in the previous subsection, G denotes the group < σ, ρ, χ >.

Definition A (2 : 2) holomorphic correspondence f : z → w is called a mating
between a faithful discrete representation r of C2 ∗ C3 in PSL2(C) having con-
nected ordinary set Ω(G) and a polynomial qc : z → z2+c having connected filled

Julia set K(qc), if the Riemann sphere Ĉ is the disjoint union of a connected
open set Ω(f) and a closed set Λ(f) made up of two components, Λ+(f) and
Λ−(f) such that each of Ω(f) and Λ(f) is completely invariant under f and:

(a) the action of f on Ω(f) is discontinuous and there is a conformal bijection
between the grand orbit space Ω(f)/f and Ω(G)/G;

(b) there is a quasiconformal homeomorphism defined from a neighbourhood of
Λ−(f) onto a neighbourhood of K(qc) in C, which realises a hybrid equivalence,
conjugating f to qc. Similarly there is a hybrid equivalence between (f−1,Λ+(f))
and (qc,K(qc)), this time conjugating f−1 to qc.

(See [9] for the definition of the term ‘hybrid equivalence’.)

The construction of a holomorphic correspondence which realises a mating be-
tween given qc and r proceeds as follows (see [5] for more details).

We first associate an annulus A to qc : z → z2 + c. There is a holomorphic
conjugacy (the Böttcher coordinate) from z → z2 to qc on a neighbourhood of
∞, fixing the point ∞ and tangent to the identity map there [8]. An equipotential
for qc is the image of a circle {Re2πit : 0 ≤ t < 1} under this conjugacy. It is a
smooth Jordan curve parameterized by external angle t. The region bounded by
such an equipotential is a simply-connected domain V , mapped 2 : 1 by qc onto
a larger domain U ⊃ V which also has boundary an equipotential parametrised
by external angle. Let A denote the annulus U − V , and denote its inner and
outer boundaries by ∂1A and ∂2A respectively. The map qc sends ∂1A two-to-
one onto ∂2A. There is an involution i : z → −z on V sending each z ∈ V
to the other point which has the same image in U under qc, and there are
many choices possible of an orientation-reversing smooth involution j on ∂2A,
a canonical choice being given by t→ 1 − t on external angles.

The next ingredient is an annulus B associated to r. Recall the fundamental
domain DG constructed above for the group G =< σ, ρ, χ > and illustrated in
figure 2. Let B denote the annulus consisting of the three copies DG ∪ ρDG ∪
ρ−1DG of DG, with the boundary identifications (induced by χ) indicated in
figure 3. The rotations ρ and ρ−1 mapping DG∪ρDG ∪ρ−1DG to itself descend
to a 2 : 2 correspondence g on B, mapping each z ∈ B to the pair {ρz, ρ−1z}
(or rather to their equivalence classes under the action of χ). The set DG

descends to a ‘fundamental domain’ for the action of g on B. The boundary
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Figure 3: The set DG ∪ ρ(DG) ∪ ρ−1(DG) and its quotient the annulus B.

of B is divided into three segments (two inner and one outer, figure 3), each
of which is mapped to the other two by g. Thus when its domain is restricted
to the inner boundary ∂1B, and its range is restricted to the outer boundary
∂2B, the correspondence g defines a two-to-one map. When restricted to a
correspondence from the inner boundary to itself, g defines a (fixed point free)
bijection. Moreover the involution σ descends to an involution (which we also
denote σ) on the outer boundary ∂2B of B, having fixed points Q and S.

Lemma 3 There exists a quasiconformal homeomorphism h from A to B which
restricts to a smooth homeomorphism from ∂A to ∂B conjugating the boundary
maps (qc : ∂1A → ∂2A, j : ∂2A → ∂2A) to the boundary maps (σ ◦ g : ∂1B →
∂2B, σ : ∂2B → ∂2B).

This lemma is proved [5] by applying standard techniques of Ahlfors and Bers.
Now to construct a mating between qc and r first glue together U and a second
copy U ′ of U , via the boundary involution j, to obtain a sphere U∪U ′, equipped
with an involution (also denoted j) exchanging U with U ′ and restricting to the
original j on the common boundary. Inside U ′ is a simply-connected subdomain
V ′ corresponding to V ⊂ U . Let q′c = j ◦ qc ◦ j : V ′ → U ′ denote the quadratic
map corresponding to qc : V → U and A′ denote the annulus U ′−V ′. To define
a 2 : 2 topological correspondence f on U ∪ U ′ we fit together:
• qc : V → U (a 2 : 1 correspondence);
• (q′c)

−1 = j ◦ q−1
c ◦ j : U ′ → V ′ (a 1 : 2 correspondence);

• j ◦ i : V → V ′ (a 1 : 1 correspondence), and
• j ◦ g : A→ A′ (a 2 : 2 correspondence),
where g : A→ A is the 2 : 2 correspondence constructed earlier. Now define an
ellipse field on A by using Lemma 3 to transport the standard complex structure
from the annulus B. Using j extend this ellipse field to A′ and pulling back via
q−1
c and q′−1

c extend it to an ellipse field on the whole of Ĉ − (K(qc) ∪K(q′c)),
which transforms equivariantly under the action of the 2 : 2 correspondence
f . Extend this ellipse field to the whole of Ĉ by using the standard complex
structure on K(qc) ∪ K(q′c). By applying the Measurable Riemann Mapping
Theorem we obtain a complex structure respected by f , completing our outline
proof of Theorem 1.
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For any mating f constructed by the method of the proof above, the 3 : 3 corre-
spondence (j ◦ f) ∪ I

Ĉ
sends each z ∈ V to the triple of points {z, i(z), jqc(z)},

each z ∈ A to the triple {z, g(z)} (recall that g is 2 : 2 so g(z) contains two
points), and each z ∈ U ′ to the triple {z, q−1

c j(z)}. It is easily checked that each
of these triples is the grand orbit under (j ◦ f)∪ I

Ĉ
of any one of its elements, in

other words the 3 : 3 correspondence is an equivalence relation. The involution
j is therefore compatible with the mating f in the sense defined in Section 1.
To show that f is conjugate to a correspondence in the family (2) it now only
remains to prove Proposition 1. But a holomorphic correspondence which is an
equivalence relation is necessarily the covering correspondence of a rational map,
and so there is a rational map Q of degree three such that (J ◦ f) ∪ I

Ĉ
= CovQ

where
CovQ : z → w ⇔ Q(w) −Q(z) = 0.

We deduce that f = J ◦ CovQ
0 , where

CovQ
0 : z → w ⇔

Q(w) −Q(z)

w − z
= 0.

Counting singular points of f now tells us that Q has one double and two single
critical points, and that therefore up to pre- and post-compositions by Möbius
transformations Q is the polynomial Q(z) = z3 − 3z. It follows that up to
conjugacy we may write f in the form

z → w ⇔ (Jw)2 + (Jw)z + z2 = 3.

It is easy to see that if we apply a further conjugacy to transform J to the
involution J(z) = −z, the equation defining the correspondence f becomes a
member of the family (2). This completes the proof of Proposition 1.

2.3 A group-theoretic description of Ω for a mating

We shall be pinching unions of arcs in Ω(f) which are lifts of simple closed
curves in the grand orbit space Ω(f)/f , where f is one of the matings provided
by Theorem 1. With a view to describing these arcs we examine the structure
of Ω(f) and its relationship with Ω(G). Our first step will be to find a Fuchsian
uniformisation for Ω(G)/G.

Let Γ denote the abstract group < σ, ρ, τ : σ2 = ρ3 = τ2 = (σρτ)2 = 1 >.

Let F denote the moduli space of conjugacy classes of faithful discrete co-
compact representations of Γ in PSL2(R) (recall that a Fuchsian group is said
to be co-compact if the quotient of the Poincaré disc by its action is compact).
An example of a representation of Γ which lies in F is illustrated in figure 4. Let
F0 denote the path-component of F containing the representation illustrated.
Thus a faithful discrete representation of Γ lies in F0 if and only if there is
a fundamental domain DΓ for Γ isotopic to that illustrated in figure 4, with
boundary passing through the fixed points of the corresponding elements of

12



Q

S

T
DΓ

R

P

Figure 4: A Fuchsian representation of Γ. Here P,Q,R and S are the fixed
points of ρ, σ, τ and σρτ . The heavy lines indicate the boundary of DΓ1

.

Γ, in the same order but with the intervening boundary segments no longer
necessarily geodesic.

Let σ′ = ρτσ. Then σ′, ρ and τ together generate Γ =< σ, ρ, τ >, and satisfy
the same relations. Changing to the new generating set amounts to applying an
(outer) automorphism, which we denote β, to Γ. Let ψ be the automorphism of
F0 induced by composing the representation γ → PSL2(R) with β and replacing
the boundary of DΓ in figure 3 with that given by moving S up to Q (the fixed
point of σ′ρτ), and Q up to σ(S) (the fixed point of σ′), but keeping P and R
unchanged.

Recall our description in Section 2.1 of the universal cover D̃o of the space Do

of conjugacy classes of faithful discrete representations of C2 ∗ C3 in PSL2(C)
having connected ordinary set.

Proposition 2 There is a homeomorphism Ψ : D̃o → F0, which carries t1/4 to
ψ and hence induces homeomorphisms:
(i) Do → F0/ < ψ2 >;
(ii) Do/ι→ F0/ < ψ >.

Proof. By Lemma 1, Section 2.1, a point of D̃o corresponds to an element of
S̃, that is to say a sphere equipped with a complex structure having cone points
P of angle 2π/3, and Q,R and S all of angle π, together with an isotopy class
of paths PR, RS and SQ. Obviously it suffices to define a homeomorphism
between S̃ and F0.

To do this we uniformise each marked orbifold Σ ∈ S̃ as a quotient of the
Poincaré disc ∆ by isometries. The marked arcs on Σ lift to a union of arcs,
tiling ∆ by translates of a polygon isotopic to that labelled DΓ in figure 4. The
group of covering transformations of the projection from ∆ to Σ is isomorphic
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to Γ by Poincaré’s polygon theorem [1]. Conversely, given a faithful discrete
representation of Γ lying in F0, its quotient orbifold Σ is an element of S̃. Thus
we have a bijection S̃ → F0 which, by construction, is continuous and has a
continuous inverse. Since t1/4 and ψ have identical effects on Σ, our composite

homeomorphism Ψ : D̃o → F0 carries t1/4 to ψ, and the assertions (i) and (ii)
are immediate corollaries. �

Remark. The question of finding explicit formulae for bijections between mod-
uli spaces of representations of Kleinian groups and Fuchsian groups, such as the
bijection provided by Proposition 2, is in general highly non-trivial, a classical
example being to relate each Schottky group to a Fuchsian group representing
the same surface.

Now let Γ1 ⊂ Γ be the subgroup generated by ρτ (which has infinite order), the
involution ρ−1τρ, and all involutions of the form Wρ−1τρW−1, where W runs
through those words in σ and ρ which have rightmost letter σ. Then Γ1 has as
fundamental domain the region DΓ1

bounded by heavy lines in figure 4. Note
that DΓ1

/Γ1 is a topological cylinder, the top edge of the region DΓ1
in figure

4 being identified with the bottom edge, each of the arcs on the left hand edge
being folded in onto an interval, and each of the arcs on the right hand edge
also being folded in onto an interval.

Suppose f is a 2 : 2 holomorphic correspondence which is a mating, constructed
as in Theorem 1, between a faithful discrete representation of C2∗C3 in PSL2(C)
having connected ordinary set and a quadratic map z → z2+c having connected
Julia set. Let Γ ⊂ PSL2(R) be the Fuchsian representation associated to it by
Lemma 2, and let Γ1 be the subgroup of Γ defined above.

Proposition 3 There is a bi-analytic homeomorphism

DΓ1
/Γ1

∼= ∆/Γ1 → Ω(f)

carrying the action of the pair {σρ, σρ−1} on DΓ1
/Γ1 to that of the correspon-

dence f on Ω(f).

Proof. From the construction of the mating f in our outline proof of Theorem
1 (in Section 2.2), it is apparent that (∆,Γ1) uniformises Ω(f): the set DΓ1

∪
ρDΓ1

∪ ρ−1DΓ1
in figure 4, when quotiented by the boundary identifications

induced by Γ1, becomes the annulus B of figure 3, and the maps σρ and σρ−1

become the two ‘branches’ of the correspondence f on Ω(f). �

Corollary 1 A mating between qc and r ∈ Do constructed by the method of
Theorem 1 is canonically isomorphic to a mating between qc and ι(r).

Proof. The outer automorphism β defined by replacing the generator σ of
Γ by σ′ = ρτσ stabilises Γ1, and the correspondence induced by {σρ, σρ−1}
on ∆/Γ1 is the same as that induced by {σ′ρ, σ′ρ−1}, since σ′ρ = ρτσρ and
σ′ρ−1 = ρτσρ−1. �
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Remarks

1. The idea of regarding Ω(f) as a quotient of ∆ by an infinitely generated
Fuchsian group is originally due to Chris Penrose.

2. We can recover the action of the Kleinian group G =< σ, ρ, χ > on Ω(G)
from the action of the corresponding Fuchsian group Γ =< σ, ρ, τ > on ∆, as
follows. Take the polygon DΓ2

= DΓ1
∪ ρτ(DΓ1

) formed by two copies of DΓ1
,

one above the other, identify the top and bottom edges of this polygon to form
a cylinder, then fold and glue the left-hand edge together and fold and glue the
right hand edge together, to form a sphere. The quotient DΓ2

/ ∼, which can
also be described as an orbit space ∆/Γ2 for an appropriate infinitely generated
subgroup Γ2 ⊂ Γ, is conformally equivalent to Ω(G). Indeed Γ2

∼= π1(Ω(G)),
and the projection ∆ → ∆/Γ2 is the universal cover for Ω(G). Under the
bijection from DΓ2

/ ∼ to Ω(G) the ends of DΓ2
(the cusps) become the points

of the limit set Λ(G) of the action of the Kleinian group G on Ĉ.

3 The pinching deformation

3.1 The arcs to be pinched

To describe the arcs that we shall pinch later, we first fix a standard faithful
discrete representation r∗ of C2 ∗C3 having connected ordinary set, and a path l
from a fixed point R of χρ to a fixed point S of χσ (so R and S are as illustrated
in figure 2). For convenience we may choose r∗ and l so that the corresponding
group Γ has the reflection symmetry in the horizontal axis apparent in figure
4. Now consider the double cover Σ̃ of the orbifold Σ ramified at all four cone
points. This is a torus, with a single cone point P of angle 4π/3, represented by
the central hexagonDΓ∪σDΓ illustrated in figure 4, with the top edge identified
with the bottom edge, and the left-hand edge identified with the right-hand edge.
While Σ̃ is not itself a quotient of the unit disc ∆ by a subgroup of PSL2(C)
(since the cone point is not of angle 2π/n), nevertheless we may equip Σ̃ with the
metric induced by the restriction of the hyperbolic metric on ∆ to the hexagon
DΓ ∪ σDΓ. The involution σ (on ∆) induces an involution σ̃ on Σ̃ such that
Σ̃/σ̃ = Σ.

Lemma 4 For each rational number p/q there is a geodesic arc δp/q in Σ which
has end points two of the three cone points of angle π, which misses the other
cone point of angle π and the cone point of angle 2π/3, and which has lift δ̃p/q

to Σ̃ a simple closed geodesic of winding number p/q.

Proof. For each such p/q (in lowest terms), there is a simple closed curve of
winding number p/q on the torus Σ̃, passing through (i) the cone points Q and
S if q is even, (ii) the cone points Q and R if p and q are both odd, and (iii) the
cone points R and S if p is even. Examples are illustrated in figure 5 for typical
cases of each type.
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QP

Figure 5: The arcs δ̃p/q for p/q = 1/2, 1/3, 2/3 and 4/3 respectively.

Note that when we add an even integer to p/q the new δp/q is an arc between
the same two cone points on Σ. But when we add an odd integer the roles of Q
and S are interchanged.

In every case the simple closed curve on Σ̃ can be chosen to be invariant under
σ̃. Since it passes through the lifts of two cone points, it descends to an arc on Σ
joining these two points. We define δp/q to be a representative of shortest length
in the isotopy class of this arc, relative to its end points and the other two cone
points on Σ. Note that there must exist such a minimal length example, as arcs
which pass through one or both of the other cone points have lengths which are
local maxima (since all the cone points have cone angle less that 2π). �

Let Ap/q denote the lift of δp/q to the cylinder (DΓ ∪ σDΓ)/Γ1 constructed by
identifying the top and bottom of the hexagon. Thus Ap/q consists of q arcs
each running from one boundary circle of this cylinder to the other. Consider
the union ΓAp/q of all lifts of δp/q. Recall that DΓ1

/Γ1 is a cylinder, with ends
corresponding to ∂Λ− and ∂Λ+ (by Proposition 3), that the correspondence f
acts on ∂Λ− as a quotient of the doubling map, and that f−1 acts on ∂Λ+ as a
quotient of the doubling map. For simplicity of description assume that ∂Λ− is
a topological circle and the action of f on it is that of the doubling map (this is
the case when the quadratic map in the mating corresponds to a value of c in
the interior of the main cardioid of the Mandelbrot set): obvious adaptations
are possible for the cases where ∂Λ− is a proper quotient of the circle.

If we label the ends of ∂DΓ1
by binary sequences as indicated in figure 6 then the

folding identifications induced by Γ1 impose the usual quotient from the space
of binary sequences to the unit circle, carrying the shift to the doubling map.
Thus, under our assumption that ∂Λ− is the circle, points of ∂Λ− are labelled
(figure 6) in such a way that f−1 : ∂Λ− → ∂Λ− (a 1 : 2 correspondence) is
defined by “right shift and insert 0 or 1” according as the branch of f−1 is
ρσ or ρ−1σ respectively, and points of ∂Λ+ are labelled in such a way that
f : ∂Λ+ → ∂Λ+ (also a 1 : 2 correspondence) is defined by “right shift and
insert 0 or 1” according as the branch of f is σρ or σρ−1 respectively. We adopt
the usual notational convention that a bar over a symbol (or group of symbols)
indicates the infinite repetition of that symbol (or group of symbols).

16



1001

Λ− Λ+

01

10

100010

010

0 001

100

Figure 6: The three arcs linking Λ− to Λ+ in the case p/q = 1/3 (the other
images of these arcs under Γ are not shown).

Definition An infinite sequence of 0’s and 1’s is known as Sturmian if the
binary number it represents on the circle has orbit under the doubling map a
sequence of points arranged in the same order around the circle as for a rigid
rotation.

One may assign a rotation number to each Sturmian sequence s, namely the
limit as n tends to infinity of the proportion of the first n digits of s which are 1’s,
or equivalently the rotation number of the rigid rotation having orbit points in
the same order as those of s. Note that such a rotation number is only defined
mod 1. For each rational p/q (mod 1) there is a unique periodic Sturmian
orbit of rotation number p/q (this was observed by Morse and Hedlund, who
introduced the notion of Sturmian sequences). We remark that the points of
each periodic Sturmian orbit O must be contained in an interval of length less
than 1/2 on the circle R/Z, as the doubling map must preserve the cyclic order
of O (see [4] for more about this and other properties of Sturmian sequences).

Examples

The infinite sequences 01, 001 and 00101 are Sturmian, of rotation numbers
1/2, 1/3 and 2/5 respectively.

Proposition 4 (ΓAp/q ∩DΓ1
)/Γ1 contains exactly q arcs which join Λ− to Λ+.

These land on ∂Λ− at points of the unique Sturmian orbit of rotation number
p/q (mod 1) of the 2 : 1 map f : ∂Λ− → ∂Λ− and at the other end they land
on ∂Λ+ at points of the unique Sturmian orbit of f−1 of rotation number p/q
(mod 1).

Proof. The fact that there are exactly q arcs joining Λ− to Λ+ follows at once
from the fact that exactly q arcs in (ΓAp/q ∩ DΓ1

)/Γ1 cross the equator circle
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of the central cylinder (DΓ ∪ σDΓ)/Γ1 (the vertical line in the central hexagon
in DΓ1

). The action of the correspondence f−1 = {ρ−1σ, ρσ} on these arcs is
to map the jth arc to the (j + p)th arc for each j, where the arcs are counted
modulo q, from the bottom of the central hexagon upwards. Thus the action of
f−1 on the landing point of the jth arc on Λ+ is to send it to the landing point
of the (j + p)th arc, for each j. Similarly f sends the jth landing point on Λ−

to the (j + p)th. �

Definition of the arc γp/q. For each p/q we pick as γp/q one of the q compo-
nents of (ΓAp/q ∩DΓ1

)/Γ1 which cross the equator circle of the central cylinder
and therefore join Λ− to Λ+. For definiteness, when q is odd we take γp/q to
be the component which passes through R (the fixed point of τ) and when q is
even we take it to be the component which passes through S (the fixed point of
σρτ). We remark that in the case p/q = 0 there is just one component crossing
the vertical symmetry line of the central hexagon, and it passes through both of
these points.

In figure 6 we illustrate γ1/3, which joins 010 ∈ Λ− to 100 ∈ Λ+, and its two
images which also join Λ− to Λ+. These join 100 ∈ Λ− to 010 ∈ Λ+, and
001 ∈ Λ− to 001 ∈ Λ+ respectively. Arcs γ(3n+1)/3 for values of n other than
0, and their images, join the same pairs of points in Λ− and Λ+, but wind a
different number of times around the cylinder DΓ1

/Γ1.

For general rational p/q we have the following:

Algorithm Each point in Λ− represented by a Sturmian p/q word u1 . . . uq

is joined (by γp/q or one of its images) to the point in Λ+ represented by the
Sturmian p/q word uq−1uq−2 . . . u1uq.

Proof. Both σρ and σρ−1 map the fixed point P of ρ to σP . It follows
that f maps the pair of geodesics landing on Λ− either side of 1̄ to the pair
of geodesics landing on Λ+ either side of 1̄ (figure 6). The pair of landing
points either side of 1̄ are represented by the maximum and minimum Sturmian
p/q words, Mp/q and mp/q respectively, so the arcs landing at these points of
Λ− have their opposite ends at the points of Λ+ represented by s(mp/q) and
s(Mp/q) respectively, where s denotes left shift (i.e. ‘forget the first digit’).
Since it is easily proved from the staircase algorithm for Sturmian words [4]
that the minimum word mp/q = vq . . . v1 is the reverse of the maximum word
Mp/q = v1 . . . vq, the result follows. Indeed we may regard the q arcs joining
Λ− to Λ+ as indexed by a marked digit in a bi-infinite Sturmian word, and the
action of f and f−1 on these arcs as moving the marker left and right. �

Remarks.

1. Which two of the three cone points on Σ of cone angle π are the end points of
the arc δp/q is determined by the reflection symmetries of the bi-infinite periodic
Sturmian word of rotation number p/q mod 1. Each such word has reflection
symmetries of exactly two of four possible types: reflection at a 0, or at a 1, or
between two adjacent 0’s or 1’s. Which two types occur depends on whether
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(after reduction of p/q mod 1) p is even, q is even, or p and q are both odd.
For example the bi-infinite word generated by 00101, a case where p is even,
has reflection points between the first two 0’s and at the third 0. The stabiliser
of any lift of δp/q to ∆ is an infinite dihedral group, generated by a pair of
involutions fixing adjacent lifts of cone points on the arc, and indeed isomorphic
to the group of symmetries of the bi-infinite periodic Sturmian word.

2. The same construction of geodesic arcs crossing the central hexagon can
be followed through for irrational slope ν in place of p/q. One then obtains a
lamination on DΓ1

/Γ1, with singular leaves passing through the fixed point of
ρ and its translates. In this case the leaves crossing the hexagon join a Cantor
set in ∂Λ−, the unique closed invariant Sturmian set of rotation number ν mod
1, to the analogous Cantor set in ∂Λ+. The algorithm above also applies in this
case to tell us which points are joined to which; we omit details here.

It remains to describe the grand orbit of γp/q under the correspondence f .

We start with the special case p/q = 0. The arc γ0 is the lower boundary
component of the region DΓ1

in figure 4. Under f this component maps to itself
and to the boundary component of DΓ1

which passes through the point σ(T ).
The grand orbit of γ0 under f is the union of all the boundary components of
DΓ1

, and quotienting by f , or equivalently by Γ1, folds all these components
(except the original one) into “spikes”.

We now turn to general p/q. From the explicit construction of matings in Section
2.2 it follows that the branch of f mapping Λ− to Λ+ is defined as follows: given
a word W in 0’s and 1’s representing a point in ∂Λ− the f -image in ∂Λ+ of
that point is represented by the word φ(W ) obtained by changing the parity of
the first digit of W . It is now a straightforward computation that when q is
even the set of q arcs joining Λ− to Λ+ is mapped two to one by this branch to
a set of q/2 “concentric” arcs connecting pairwise the q points of Λ+ obtained
by applying the operation φ to the Sturmian p/q orbit (i.e. the points of the
circle opposite to points of the Sturmian orbit). When q is odd, the set of q arcs
joining Λ− to Λ+ is mapped by this branch of f to a set of (q− 1)/2 concentric
arcs together with an innermost spike (figure 7) which lands on Λ+ at a single
point, the point opposite to the middle point of the Sturmian p/q orbit. This
spike arises from the fact that for q odd the geodesic γp/q passes through the
fixed point of the involution τ . Hence its image under the branch of f we are
considering passes through the fixed point of an involution in the group Γ1. This
fixed point is on the boundary of DΓ1

(indeed in figure 4 it is the point σ(T )),
and becomes the end point of a spike in the quotient DΓ1

/Γ1
∼= Ω(f).

Applying f again arbitrarily may times to our “concentric” set of q/2 arcs (or
(q − 1)/2 arcs plus a spike, if q is odd), we obtain smaller and smaller copies
around ∂Λ+, and applying σ to these copies we obtain similar copies around
∂Λ−, together making up the grand orbit under f of our original set of q arcs.
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Figure 7: The Sturmian orbits of rotation number 2/5 on Λ− and Λ+, the five
arcs joining them, and the first images of these under the correspondence and
its inverse (subsequent images are not shown).

3.2 Matings between q0 and circle-packing representations
of C2 ∗ C3

We can now define precisely what we mean by the mating between q0 and rp/2q

referred to in the statement of Theorem 3. After the arcs which make up the
grand orbit of γp/q have been pinched, the intersection Λ+ ∩ Λ− is no longer
empty, but consists of the p/q Sturmian orbit of the correspondence on ∂Λ+,
identified with the same orbit (in the opposite direction) on ∂Λ−. The set Ω for
the pinched correspondence has q components whose boundaries meet this orbit.
These form what we call the principal cycle of components of Ω. Together with
Λ−∩Λ+ itself, they separate the Riemann sphere into two parts, one containing
Λ− \ (Λ+ ∩Λ−) and the other containing Λ+ \ (Λ+ ∩Λ−). The stabilizer (under
the iterated pinched correspondence) of each of the components of the principal
cycle is a group, since these components do not contain “fold” points. Moreover
it is not hard to see that this group is isomorphic to C2 ∗ C3.

Definition. A holomorphic correspondence is said to be a mating between rp/2q

and q0 if it is topologically conjugate to a correspondence obtained by pinching
to a point each component of the grand orbit of γp/q for a mating between r∗
and q0, and if moreover the action of the stabiliser of each component of the
principal cycle of the correspondence is conformally conjugate to the action of
PSL2(Z) on the upper half-plane.

In a mating between q0 and rp/2q , the sets Λ+ and Λ− are no longer copies of
K(q0) (the unit disc) but are now each homeomorphic to a quotient K(q0)p/q

of K(q0) by an equivalence relation ∼p/q on ∂K(q0) (the unit circle) which may
be described as follows. Let ω′

p/q denote the points of the circle opposite to
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points of the Sturmian p/q orbit ωp/q, so ωp/q and ω′
p/q are contained in disjoint

intervals. To define the relation ∼p/q we identify the ‘outermost’ pair of points
of ω′

p/q, and similarly we identify the next pair of points from the outside, and

so on, folding the points of ω′
p/q together in pairs. Similarly we identify in pairs

the corresponding inverse images of points of ω′
p/q under the doubling map, and

repeat so that the relation ∼p/q becomes invariant under this inverse.

Remarks.

1. The justification for describing the construction in the definition as “a mating
between q0 and rp/2q” is two-fold. Firstly, both the construction and rp/2q are
obtained by pinching the same simple closed curve δp/q on the same orbifold
Σ, and secondly the definition agrees with our earlier definition for a mating
between q0 and the modular group. However when p/q /∈ Z the most direct re-
lationship we know of between Ω(rp/2q) and Ω(f) for the correspondence pinched
along γp/q is that given by pinching δp/q in the Fuchsian picture of Ω(r∗), de-
scribed in Remark 2 following Corollary 1 (in Section 2.4).

2. Corollary 1 implies that a mating between q0 and rp/2q is isomorphic to a
mating between q0 and r(p+q)/2q . For example a mating between q0 and r1/2 is
isomorphic to one between q0 and the modular group. This example is easily
understood directly, since r1/2 is the faithful discrete representation of C2 ∗ C3

for which the limit set is a single round circle, like PSL2(Z), but for which the
generator σ of C2 acts by interchanging the two components of the complement.
We remark that rp/2q and r(p+q)/2q always have the same limit set, since the
second representation is obtained from the first by composing with an (outer)
automorphism of C2 ∗ C3.

3.3 Invariant collar neighbourhoods of arcs

For the proofs of Theorem 2 and Theorem 3 we shall need well-behaved neigh-
bourhoods of our arcs on which to support the pinching deformations. We define
an invariant collar neighbourhood of an arc A joining Λ− to Λ+ to be a closed
set N (A) containing A, bounded by a pair of arcs joining the end points of A,
such that under the action of f the set N (A) has stabiliser isomorphic to the
infinite dihedral group, and N (A) is precisely invariant under the action of this
stabiliser. (Strictly speaking, N (A) is not a topological neighbourhood of A,
since the end points of A are on the boundary of N (A).)

Lemma 5 The arc γp/q has an invariant collar neighbourhood.

Proof. A collar neighbourhood of each of the q arcs which join Λ− to Λ+ is
obtained by lifting any collar neighbourhood of the p/q geodesic δp/q on the
orbifold Σ. It is immediate from the action of σρ and σρ−1 on the lift of such
a neighbourhood that its stabiliser under the action of f is an infinite dihedral
group, generated by the appropriate branch of f q and by σ (which is a branch
of f−1ff−1) composed with a branch of whichever f r maps the σ image of the
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arc back to the arc. This lifted collar neighbourhood is precisely invariant under
the action of the stabiliser. �

The small copies of the q arcs have collar neighbourhoods that are the images
of the original collar neighbourhoods under appropriate branches of forward
or backward iterates of f . These images are each either a bijective copy, or
(in the case of a “spike”) a quotient by an involution, of one of the original
collar neighbourhoods. In the case of the arc γ0, joining the fixed points of the
doubling map on ∂Λ− and ∂Λ+, all the images are such quotients.

3.4 A pinching deformation

Let us consider a correspondence p which represents the mating of a quadratic
polynomial q with a faithful and discrete representation ofC2∗C3 with connected
ordinary set, and let f : Λ− → Λ− be the 2 : 1-branch of p. We fix the curve of
rotation number p/q and consider its lifts R (for red) to C. Thus γ = γp/q is
one of the connected components of R which joins Λ− to Λ+. Let us denote its
collar neighbourhood defined above by N (γ). Then Stab p(N (A)) is isomorphic
to the infinite dihedral group. Let B− and B+ be both components of N (A)\γ.

We will first define an appropriate quasiconformal deformation on a model strip
and then implement it on the dynamical plane [13].

Our model space will be a closed horizontal strip on the upper half-plane.
Choose a collection of numbers 0 < Ly < Lr (the indices y, r are colours yellow
and red respectively), and then an increasing C1-function τ : [0, 1[→ [Lr,+∞[.
Let M ⊂ R

2 be the closed subset bounded by

([0, 1] × {0}) ∪ ({0} × [0, Lr]) ∪ ({1} × [0,+∞[) ∪ ({(t, τ(t)), t ∈ [0, 1[}) .

Choose vt(y) so that vt(y) = y for 0 ≤ y ≤ Ly and that (t, y) 7→ (t, vt(y)) is a
C1-diffeomorphism from [0, 1] × [0, Lr] r {(1, Lr)} → M .

We also make the following technical assumption: for any L′ < Lr, there is
t(L′) ∈]0, 1[ with t(L′) → 1 as L′ → Lr, such that for any (s, y) ∈ ]t(L′), 1] ×
[0, L′], we have vs(y) = vt(L′)(y). Now on the straight strip {0 ≤ x ≤ Lr}, and
for every t ∈ [0, 1] , set

P̃t(x+ iy) = x+ i · vt(y) .

This map satisfies the following properties :

1. It commutes with the translation by 1 (and by any other real number).

2. It is the identity on the sub-strip {0 ≤ y ≤ Ly}.

3. The coefficient of the Beltrami form

∂P̃t/∂z̄

∂P̃t/∂z

∣∣∣∣∣
x+iy

=
1 − ∂

∂y vt(y)

1 + ∂
∂y vt(y)
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Figure 8: The diffeomorphism (t, y) 7→ (t, vt(y)).
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is continuous on (t, x+ iy) ∈ [0, 1] × {0 ≤ y ≤ Lr}, whose norm is locally
uniformly bounded from 1 if (t, y) 6= (1, Lr) and tends to 1 as (t, y) →
(1, Lr).

Define conformal maps ψ± : B± → R × (0, Lr) which map γ to R × {Lr}. For

t ∈ [0, 1[, set σ′
t = (P̃t ◦ ψ±)∗(σ0) to be the pull-back of the standard complex

structure on B±. Since the action is properly discontinuous on Ω(f), we may
spread σ′

t to the whole orbit of N (γ) under the correspondence p. We let σt

be the extension of this almost complex structure to the whole Riemann sphere
by setting σt = σ0 on the complement. It is a p-invariant complex structure.
We let Y (for yellow) be the set of points z such that σt(z) is not the standard
conformal structure for some t.

The family of p-invariant complex structures (σt)t∈[0,1) defines a pinching de-
formation supported on R. We let ht be the quasiconformal map given by the
Measurable Riemann Mapping Theorem applied to σt normalised so that ht

fixes both critical points of f |Λ−
and f−1|Λ+

and the point at infinity as well.

The correspondence pt defined by pt(z, w) = p(h−1
t (z), h−1

t (w)) is holomorphic
by construction, and the family of pairs (pt, ht)t∈[0,1) defines a marked pinching
deformation.

4 Convergence of the pinching deformation

The proofs of both Theorem 2 and Theorem 3 follow essentially the same lines.
We must prove that the pinching deformation defined in the previous section
converges uniformly in each case, and we must prove that in each case the limit
correspondence has as stabiliser of each of the components of the principal cycle
of Ω a group conformally equivalent to PSL2(Z). The strategy for proving
uniform convergence is inspired by [12, 13] where analogous statements are
proved for rational maps and where detailed proofs can be found.

We proceed to prove both theorems simultaneously as far as possible. We refer to
[12] and [13] when we can, instead of repeating the detailed arguments presented
in these papers. The parts of the proofs which differ for the two theorems are
postponed to 4.1 and 4.2. In particular we delay the proof of the key Lemma 7
(stated below). The first step in the proof of the theorems is to prove that the
path of quasiconformal homeomorphisms (ht) is equicontinuous. We will apply
the following criterion the proof of which is elementary (cf. Lemma 2.5 in [13]).

Lemma 6 (Equicontinuity criterion at a point) Let H = {h : D → C}
be a family of continuous injective maps such that ∪h∈Hh(D) avoids at least 2
points in C. Let (Un)n≥0 be a nested sequence of disc-like neighbourhoods of the
origin in the unit disc D such that An = D r Un is an annulus. If there exists
a sequence ηn ր +∞ such that

∀h ∈ H, ∀n ≥ 0, modh(An) ≥ ηn,

then H is equicontinuous at the origin.
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This means that we need to get infinitely many annuli with controlled moduli.
The assumption on the fixed point β will give us information on the support
of the deformation : this will enable us to prove the following lemma in the
respective cases.

Lemma 7 (One good annulus around each Julia point) Fix r > 0.

(i) For any x ∈ ∂Λ−∪∂Λ+rR, there are two open neighbourhoods N ′(x) and
N(x) of x in D(x, r

4 ) and m > 0 such that modht(N(x)rN ′(x)) ≥ m for
all t.

(ii) For any x = βγ ∈ R ∩ (∂Λ− ∪ ∂Λ+), with γ an R-component, there is
a sequence (tn) in [0, 1) tending to 1, a nested sequence of annuli (An)n

surrounding γ, and a constant m > 0 such that modht(An) ≥ m/n for
t ≥ tn.

Then the weak hyperbolicity condition is used to spread these annuli at every
point and at every scale and therefore to imply the equicontinuity of (ht) (cf. the
proof of the Proposition 2.3 in [13] or §3 in [12]). The estimates of the conformal
moduli also enable us to analyse the structure of the fibres of any limit map and
to conclude that its fibres are exactly the closures of the connected components
of R.

Any limit h1 satisfies the conclusion of the theorem and we may also extract
a convergent sequence (ptn

) of the correspondences to a correspondence p1 (cf.
Appendix A in [13]).

Since the fibre structure is well understood, it follows that if there are other
limits (ĥ, p̂), then ĥ ◦ h−1

1 defines a conjugacy which is conformal off h1(∂Λ− ∪
∂Λ+) (cf. Lemma A.2 in [13]).

Now it can be shown as in [13] that all the limit correspondences satisfy the
“weak hyperbolicity” condition on the image of ∂Λ− ∪ ∂Λ+. Since ∂Λ− ∪ ∂Λ+

has no interior, a standard argument of Sullivan implies that the Lebesgue
measure of h1(∂Λ− ∪ ∂Λ+) is zero (cf. Theorem 4.1 [11]). Furthermore, the
weak hyperbolicity condition on p1 implies that the following rigidity statement
holds.

Proposition 5 Let p0 and p1 be two correspondences which are matings of
weakly hyperbolic polynomials with discrete representations of C2 ∗ C3. If p0

and p1 are conjugate by a topological homeomorphism which is conformal off
the limit sets, then the conjugacy is a Möbius transformation.

The proof of this proposition follows the same lines as Proposition 6.3 and
Theorem 0.2 in [11]. �

Thus ĥ ◦ h−1
1 is a Möbius transformation, whence the uniqueness of the limits

(pt, ht) as t tends to 1.

To complete the proofs of Theorem 2 and Theorem 3 it now remains only to
prove Lemma 7 in both cases, and to prove that in each case the limit of the
family of pinching deformations corresponds to the mating we are looking for.
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4.1 The simple case (winding number zero)

We shall make use of the statements proved in [13] for simple pinchings of
rational maps, so we have to show how to get to that setting.

Using McMullen’s gluing lemma (Proposition 5.5 in [16]), we may construct a
rational map R of degree 2 which induces a partition of the sphere C = K ⊔ F
where K is the filled-in Julia set of a quadratic-like map induced by a restriction
of R hybrid-equivalent to q, and F is the basin of attraction of a fixed point at
infinity of multiplier 1/2. For the domains of the quadratic-like map, we first
choose a linearising disc D for the point at infinity which contains the critical
value, and set V = C \D. If V ′ = R−1(V ), then R : V ′ → V is quadratic-like.
Furthermore, we may find a forward-invariant Jordan arc κ in F joining the
point at infinity with the corresponding β-fixed point which only cuts ∂V once,
and then transversally. Let R̂ be the grand orbit of κ for R. It follows that
(R̂ \ κ) ∩ ∂V = ∅.

Proposition 6 There is a quasiconformal Φ : C → C such that

• Φ(Λ−) = K and Φ(R) = R̂,

• Φ ◦ f = R ◦ Φ in a neighbourhood of Λ−,

• ∂Φ = 0 a.e. on Λ−.

Proof. We already know that there is a quasiconformal map φ : C → C

which fulfills the conclusions of the Proposition except for the condition on the
curves. We let U ′ ⊂⊂ U be simply connected domains such that the extension
f : U ′ → U of the branch of the correspondence f : Λ− → Λ− is a quadratic-like
map hybrid-equivalent to q. It follows from the construction of f that we may
assume that U is a fundamental domain for the involution J . Furthermore, we
may also assume that φ(U) = V .

We let φ0 : U → V be a quasiconformal homeomorphism isotopic to φ rel. Λ−

through an isotopy which maps ∂U to ∂V throughout, and such that

φ0(γ0 ∩ (U \ U ′)) = κ ∩ (V \ V ′) and R ◦ φ0|∂U ′ = φ0 ◦ f |∂U ′ .

This is possible since both sets U \ Λ− and V \ K are annuli and since the
action of the maps f and R are 2:1 coverings. Define (φn) inductively so that
φn+1 ◦ f = R ◦ φn so that φn|Λ−

= φ|Λ−
and φn|U\U ′ = φ0|U\U ′ . This sequence

is a normal family quasiconformal mappings which admits at least one limit
Φ : U → V . This map satisfies the conclusion of the proposition. �

We now provide a proof of Lemma 7 under the assumptions of Theorem 2.

Proof of Lemma 7. We first assume that q is not conjugate to z 7→ z2 + 1/4.

Then by Lemma 2.7 in [13] we have the result we seek but for R̂ and the rational
map R in place of R and the correspondence. By Proposition 6 this is all we
need, except for the case of the only R-component, γ0, which is not contained in
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the neighbourhood U of Λ−. But γ0 is a double cover of any other component
γ of R by a branch of the correspondence, and γ0 has a neighbourhood which
is a double cover of a disc neighbourhood of γ, by the same branch.

We now deal with q(z) = z2 + 1/4. Let us denote by p the mating of q with
C2 ∗ C3 and let us define q0(z) = z2, p0 and R0 the corresponding mating and

rational map. We let (pt, ĥt) be the simple pinching of p0 considered above,
and Φ0 : Λ−(p0) → D be given by Proposition 6. It follows from Corollary 3.10
in [13] that there is a µ-homeomorphism , in the sense of David, φ : C → C,
conjugating p0|Ω(p0) conformally to p|Ω(p). Furthermore, a constant K0 ≥ 1

exists such that the set of points z ∈ C for which the dilatation ratio Kφ(z) is
at least K0 is contained in the disjoint union of the orbit of an invariant sector
S ⊂ int(Λ(p0)) with vertex β (see Lemma 2.1 [10] for details).

We claim that the image under φ of the controlled annuli for p0 have also
controlled moduli. For points outside the red set, this is because the set where
Kφ is large is contained in the union of sectors so that the Key lemma in [13],
which implies the bounds on the moduli, also holds for these domains.

For points in the red set, we must be more precise and use intermediate results
which are established for the proof of Lemma 2.7 in [13]. We refer to §2.5 in [13]
for the details. We let Y be the connected component of Y(p0) which contains
γ0. In the proof of the equicontinuity at those points, it is shown that there
is a sequence ψn : An → (−C − (n + 1), C + (n + 1))2 \ [−C − n,C + n]2 of
homeomorphisms, where C is a fixed positive real number, such that, for t ≥ tn,
ψn ◦ ĥ−1

t is uniformly quasiconformal off Y \ Y . Moreover, ψn maps Φ0(S)∩An

onto a rectangle Qn = [−C − (n+ 1),−C − n]× [C1, C2] for fixed constants C1

and C2.

The bound on the moduli for the cauliflower map z 7→ z2 + 1/4 comes from a
length-area argument provided by metrics (ρt

n) defined as follows. Let t ≥ tn;

on ĥt(Y(p0) \ Y ), we let ρt
n = 0 and on its complement we define

ρt
n =

1

|∂z ĥt ◦ ψ
−1
n | − |∂z̄ĥt ◦ ψ

−1
n |

◦ (ψn ◦ ĥ−1
t ) .

This kind of metric is used to prove the quasi-invariance of moduli of annuli
for quasiconformal maps. This metric yields the bound mod ĥt(An) ≥ m/n
where m > 0 is independent of n.

Similarly, we let ρ̂t
n = 0 for points in ht ◦ φ(Y(p0) \ Y ) and on the complement,

we let

ρ̂t
n =

ρt
n

|∂zφt| − |∂z̄φt|
◦ φ−1

t ,

where φt = ht ◦ φ ◦ χ−1
t . It follows from the construction of φ that Kφ ≍ n

on Qn (see Lemma 2.1 in [10]), so that the area of ht(φ(Qn)) is at most a
multiple of n, as the area of ht(φ(An \Qn)), for the metric ρ̂t

n. Thus, we get
mod ht(φ0(An)) ≥ c/n. Whence we obtain the estimates of the moduli for these
points also. �
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The following proposition now completes the proof of Theorem 2.

Proposition 7 Under the assumptions of Theorem 2, the limit p1 of (pt) is a
mating of q with PSL2(Z).

Proof. The limiting correspondence p1 inherits a compatible involution J from
p0, so by Proposition 1 (Section 1) this correspondence is conjugate to some

member of the family (2), or equivalently to J ◦CovQ
0 for Q(z) = z3 − 3z and J

some (Möbius) involution. The proof of the Proposition now follows the same
steps as the proof of Theorem 7.1 in [6], which states an analogous result for the
degree 4 Chebyshev polynomial in place of Q. We summarise the steps but refer
the reader to [6] for technical details. The topological dynamics of p1 ensure
that there exist a transversal DQ for Q and a fundamental domain DJ for J
such that the complement of the union of the interiors of DQ and DJ consists
precisely of the fixed point Λ+ ∩ Λ−. This fixed point is parabolic for f and it
follows from local anaysis that in a neighbourhood the boundaries of DQ and
DJ may be chosen to be smooth curves, tangent to one another at the fixed
point. The set DQ ∩ DJ is a fundamental domain for the action of f |Ω, and
since f |Ω and f−1|Ω have no critical points (only double points) we know that
f |Ω is conformally conjugate to {σρ, σρ−1} for some Fuchsian representation
of C2 ∗ C3 acting on the open upper half of the complex plane. To show that
this action is indeed that of PSL(2,Z) it suffices to show that in the upper
half-plane the images of ∂DQ and ∂DJ converge to the same point on the real
axis. This can be shown to follow from the fact that ∂DQ and ∂DJ are smooth
curves which meet tangentially (see [6]). �

4.2 Pinching arcs of non-zero rational winding number

Let p be a correspondence which is a mating between z 7→ z2 and a faithful
discrete representation of C2 ∗ C3 in PSL2(C) with connected ordinary set. In
this section we prove Lemma 7 for curves in Ω(p) with non-zero rational rotation
number. The fact that the Julia set is a quasicircle will be crucial in the proof,
which closely follows the argument in §3 of [12].

The first step is to straighten the limit set and the support of the pinching.
Figure 9 illustrates an example.

Lemma 8 There is a quasiconformal map χ : C → C such that χ(∂Λ−) = S
1,

which satisfies the following properties :

• χ is conformal on the interior of Λ− ;

• χ conjugates f to z 7→ z2 in a neighbourhood of the interior of Λ− ;

• components of Y which are attached at two points x and y to Λ− are
mapped into rectangles in (log)-polar coordinates with base [χ(x), χ(y)];

• components Y of Y which are attached at a single point x to Λ− are mapped
into sectors based at χ(x);
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Figure 9: Image under χ of the collars of the first two generations of the orbit
of γp/q, in the case p/q = 2/5 (cf. fig. 7).

Proof. The restriction of χ to Λ− is given by the Böttcher coordinates of f . The
extension of χ to the outside makes use of a pull-back argument (see pp. 14-15
in [12]). �

The next step of the proof is to control the moduli of many annuli. We place
ourselves in the coordinates given by χ. As in [12], we may define annuli bounded
by rectangles in the log-polar coordinates which avoid the image of Y under χ.

As in the case of simple pinchings, there is no problem with the curves which
link both components of Λ, because they cover other components which do not.
This enables us to prove Lemma 7 (cf. Proposition 3.3 and 3.4 in [12]).

Finally, the following proposition completes the proof of Theorem 3.

Proposition 8 Under the assumptions of Theorem 3, the limit p1 of (pt) is a
mating of z 7→ z2 with the circle-packing representation rp/2q of C2 ∗ C3.

Proof. As in the proof of Proposition 7 the limiting correspondence p1 is
necessarily conjugate to some member of the family (2), or equivalently to J ◦

CovQ
0 for Q(z) = z3 − 3z and J some (Möbius) involution. Once again we can

now follow the same steps as in the proof of Theorem 7.1 in [6]. Transversals
DQ and DJ can be chosen this time such that the complement of the union of
their interiors consists precisely of the period q parabolic orbit Λ+ ∩ Λ−, and
such that in a neighbourhood of any point of this orbit the boundaries of these
transversals are smooth curves, tangent to one another at the orbit point. From
the fact that Ω is now a countable union of topological discs and our knowledge
of the topological dynamics of f (using convergence of the pinching deformation)
we know that f |Ω and f−1|Ω have no critical points (only double points) and
that for any component of Ω which meets the period q orbit Λ+∩Λ− the iterated
branches of f which stabilise the component are conformally conjugate to the
elements of the group generated by {σρ, σρ−1} for some Fuchsian representation
of C2 ∗C3 acting on the open upper half of the complex plane. As in the proof
of Proposition 7 the properties of the boundaries of DQ and DJ again ensure
that this representation is indeed conformally conjugate to PSL2(Z). �
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