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Abstract

Let A(n) be a sequence of i.i.d. topical (i.e. isotone and additively
homogeneous) operators. Let x(n, x0) be defined by x(0, x0) = x0

and x(n, x0) = A(n)x(n − 1, x0). This can modelize a wide range
of systems including, task graphs, train networks, Job-Shop, timed
digital circuits or parallel processing systems.

When A(n) has the memory loss property, we use the spectral gap
method to prove limit theorems for x(n, x0). Roughly speaking, we
show that x(n, x0) behaves like a sum of i.i.d. real variables. Precisely,
we show that with suitable additional conditions, it satisfies a central
limit theorem with rate, a local limit theorem, a renewal theorem
and a large deviations principle, and we give an algebraic condition
to ensure the positivity of the variance in the CLT. When A(n) are
defined by matrices in the (max,+) semi-ring, we give more effective
statements and show that the additional conditions and the positivity
of the variance in the CLT are generic.

Introduction

An operator A : Rd → Rd is called additively homogeneous if it satisfies
A(x + a1) = A(x) + a1 for all x ∈ R

d and a ∈ R, where 1 is the vector
(1, · · · , 1)′ in Rd. It is called isotone if x ≤ y implies A(x) ≤ A(y), where
the order is the product order on Rd. It is called topical if it is isotone and
homogeneous. The set of topical operators on Rd will be denoted by Topd.

We recall that the action of matrices with entries in Rmax = R ∪ {−∞}
on R

d
max is defined by (Ax)i = maxj(Aij + xj). When matrix A has no line

of −∞, the restriction of this action to Rd defines a topical operator, also
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denoted by A. Such operators are called (max,+) operators and composition
of operators corresponds to the product of matrices in the (max,+) semi-ring.

Products of random matrices in the usual sense have been intensively in-
vestigated. Let us cite H. Furstenberg [Fur63], Y. Guivarc’h and A. Raugi [GR85]
or I. Ya. Gol′dshĕıd and G. A. Margulis [GdM89]. The interested reader can
find a presentation of this theory in [BL85].We investigate analogous prob-
lems to those studied by É. Le Page [LP82], but for matrices in the (max,+)
semi-ring and more generally for iterated topical operators.

Let (A(n))n∈N
be a sequence of random topical operators on Rd. Let

x(n, x0) be defined by
{

x(0, x0) = x0

x(n, x0) = A(n)x(n− 1, x0).
(1)

We are interested in the asymptotic behavior of x(n, .). We show that with
suitable additional conditions, it satisfies a central limit theorem, a local limit
theorem, a renewal theorem and a large deviations principle. When the A(n)
are (max,+) operators we give more explicit results.

This class of system can modelize a wide range of situations. A review of
applications can be found in the last section of [BM98]. Among other exam-
ples the (max,+) case has been applied to modelize task graphs, cyclic Jack-
son networks (J. Mairesse [Mai97]) or Job-Shop (G. Cohen et al.[CDQV85]).

This article is divided in four parts. First we present the model of iterated
topical operators, including a short review of known limit theorems. Second
we state our results and comment them. Third, we recall the formalism of
abstract Markov chains and the limit theorems obtained by the spectral gap
method that are the key elements of the proofs. Finally we prove our results.

1 Iterated topical operators

1.1 Memory loss property

Dealing with homogeneous operators it is natural to introduce the quotient
space of Rd by the equivalence relation ∼ defined by x ∼ y if x − y is
proportional to 1. This space will be called projective space and denoted by
PR

d
max. Moreover x will be the equivalence class of x.

The application x 7→ (xi−xj)i<j embeds PR
d
max onto a subspace of R

d(d−1)
2

with dimension d − 1. The supremum norm of R
d(d−1)

2 therefore induces a
distance on PR

d
max which will be denoted by δ. A direct computation shows

that δ(x, y) = maxi(xi − yi) + maxi(yi − xi). By a slight abuse, we will also
write δ(x, y) for δ(x, y). The projective norm of x will be |x|P = δ(x, 0).
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Let us recall two well known facts about topical operators. First a topical
operator is non-expanding with respect to the infinity norm. Second the
operator it defines from PR

d
max to itself is non-expanding for δ.

The key property for our proofs is the following:

Definition 1.1.

1. A topical operator A is said to have rank 1, if it defines a constant
operator on PR

d
max : Ax does not depend on x ∈ Rd.

2. The sequence (A(n))n∈N
of Topd-valued random variables is said to

have the memory loss (MLP) property if there exists an N such that
A(N) · · ·A(1) has rank 1 with positive probability.

This notion has been introduced by J. Mairesse [Mai97], the A(n) be-
ing (max,+) operators. The denomination rank 1 is natural for (max,+)
operators.

We proved in [Mer04] that this property is generic for i.i.d. (max,+)
operators: it is fulfilled when the support of the law of A(1) is not included
in a finite union of hyperplanes.

Although this result could suggest the opposite, the MLP depends on the
law of A(1), and not only on its support : if (U(n))n∈N

is an i.i.d. sequence
with the support of U(1) equal to [0, 1], and A(n) are the (max,+) operators
defined by the matrices

A(n) =

(

−U(n) 0
0 −U(n)

)

,

then (A(n))n∈N
has the MLP property iff P(U(n) = 0) > 0.

The weaker condition that there is an operator with rank 1 in the closed
semigroup generated by the support of the law of A(1) has been investigated
by J. Mairesse for (max,+) operators. It ensures the weak convergence of
x(n, .) but does not seem appropriate for our construction.

1.2 Known results

Before describing our analysis, we give a brief review of published limit the-
orems about x(n,X0).

J.M. Vincent has proved a first law of large number:

Theorem 1.1 ([Vin97]). Let (A(n))n∈N
be a stationary ergodic sequence of

topical operators and X0 an R
d-valued random variable. If A(1).1 and X0
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are integrable, then there exists γ and γ in R such that

lim
n

maxi xi(n,X
0)

n
= γ a.s.

lim
n

mini xi(n,X
0)

n
= γ a.s.

F. Baccelli and J. Mairesse give a condition to ensure γ = γ, hence the

convergence of x(n,X0)
n

:

Theorem 1.2 ([BM98]). Let (A(n))n∈N
be a stationary ergodic sequence

of topical operators and X0 an R
d-valued random variable such that A(1).1

and X0 are integrable. If there exists an N , such that A(N) · · ·A(1) has a
bounded projective image with positive probability, then there exists γ in R

such that

lim
n

x(n,X0)

n
= γ1 a.s.

In this case γ is called the Lyapunov exponent of the sequence. We notice
that the MLP property implies a bounded projective image with positive
probability.

The following result has been proved by J. Mairesse when the A(n) are
(max,+) operators, but can be extended to topical operators with the same
proof. It will be the key point to ensure the spectral gap.

Theorem 1.3 ([Mai97]). Let (A(n))n∈N
be a stationary ergodic sequence

of topical operators with the MLP property. Then x(n, x0) converges in total
variation uniformly in x0.

To end this section we mention two limit theorems, which are close to
ours, but obtained by different ways. We will compare those results to ours
in section 2.3.

With a martingale method J. Resing et al. [RdVH+90] have obtained a
central limit theorem for x(n,X0), when the Markov chain x(n, .) is aperi-
odic and uniformly Φ-recurrent. The theorem has been stated for (max,+)
operators, but it should make no difference to use topical ones.

With a subadditivity method, F. Toomey [Too02] has proved a large
deviation principle for x(n, x0) when the projective image of A(N) · · ·A(1)
is bounded.

1.3 Principle of the analysis

From now on, (A(n))n∈N
is an i.i.d sequence of topical operators with the

MLP property.
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The first step of the proof is to split our Markov chain x(n, .) into another
Markov chain and a sum of cocycles over this chain, following what É. Le
Page made for products of random matrices. For any topical function φ
from Rd to R such that φ(1) = 1, φ(Ax) − φ(x) only depends on A and x.
Therefore φ(x(n, .)) − φ(x(n − 1, .)) only depends on A(n) and x(n − 1, .).
As PR

d
max can be seen as an hyperplane of Rd, x(n, .) can be replaced by

(φ(x(n, .)), x(n, .)). (cf. lemma 4.3)
According to theorem 1.3, we know that x(n, .) converges. On the other

hand, by theorem 1.2 x(n,X0) goes to infinity (if γ 6= 0) in the direction
of 1, so φ(x(n, .)) ∼ γn. We investigate the oscillations of φ(x(n, .)) − γn.
Interesting φ’s are defined by φ(x) = xi, φ(x) = maxi xi, φ(x) = mini xi.

The second step is to prove the spectral gap for the operator defining
the Markov chain (A(n), x(n− 1, .))n∈N

and apply the results described in
section 3 that give limit theorems for φ(x(n, .)) − γn. The spectral gap
follows from the convergence of x(n, .), just as by É. Le Page [LP82].

We use two series of results, which are recalled in section 3. The first
series are taken from the book by H. Hennion and L. Hervé [HH01] that
sums up the classical spectral gap method developed since Nagaev [Nag57]
in a general framework. To apply it we demand integrability conditions on
supx |φ(A(1)x) − φ(x)| to have a Doeblin operator on the space of bounded
functions. The second series are taken from the article [HH04] that is a new
refinement of the method in the more precise framework of iterated Lipschitz
operators. Since our model enters this framework, we get the same results
with integrability conditions on A(1) 0 that have a Doeblin-Fortet operator
on weighted spaces. The comparison between the two series of results will
be made in section 2.3.

2 Statement of the limit theorems

2.1 General case

From now on, we state the results that we will deduce from the theorems of
section 3 in section 4.

For local limit theorem and for renewal theorem we need non arithmetic-
ity conditions. There are two kind of non arithmeticity, depending if the
theorem follows from [HH01] or [HH04]. We will denote them respectively
by non arithmeticity and algebraic non arithmeticity. When d = 1 they both
fall down to the usual non-arithmeticity condition for real i.i.d. variables.
Algebraic non arithmeticity will be defined before the statement of LLT, but
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other non arithmeticity conditions will be defined in section 3 once we have
given the general formalism. Unlike algebraic non arithmeticity, they depend
on the 2-uple

(

(A(n))n∈N
, φ

)

, which will be called ”the system”.
Let (A(n))n∈N

be an i.i.d sequence of topical operators with the MLP
property. The sequence (x(n, .))n∈N

is defined by equation (1) and γ is the
Lyapunov exponent defined by theorem 1.2.

As the topology of the uniform convergence over compact subset on Topd

has an enumerable basis of open sets, the support of measures on it is well
defined. We denote by SA the support of the law of A(1) and by TA the
semi-group in Topd generated by SA.

Theorem 2.1 (CLT). Let (A(n))n∈N
be an i.i.d sequence of topical operators

with the MLP property and X0 an R
d-valued random variable independent

from (A(n))n∈N
. Let φ be topical from Rd to R such that φ(1) = 1. Assume

one of the following conditions:

i) supx |φ(A(1)x) − φ(x)| has a moment of order 2,

ii) A(1) 0 has a moment of order 4+ ǫ and X0 has a moment of order 2+ ǫ.

Then there exists σ2 ≥ 0 such that x(n,X0)−nγ1√
n

converges weakly to N (0, σ2)1.

In the first case, or if A(1) 0 has a moment of order 6 + ǫ and X0 has a
moment of order 3 + ǫ, then

• σ2 = lim 1
n

∫

φ2 (x(n,X0)) dP

• σ = 0 iff there is a θ ∈ Topd with rank 1 (or every θ ∈ TA with rank 1)
such that for any A ∈ SA and any θ′ ∈ TA, θAθ′ = θθ′ + γ1.

Theorem 2.2 (CLT with rate). Let (A(n))n∈N
be an i.i.d sequence of

topical operators with the MLP property and X0 an Rd-valued random vari-
able independent from (A(n))n∈N

. Let φ be topical from Rd to R such that
φ(1) = 1. Assume one of the following conditions:

i) supx |φ(A(1)x) − φ(x)| has a moment of order l ≥ 3,

ii) A(1) 0 has a moment of order l > 6.

If σ2 > 0 in theorem 2.1, then there exists C ≥ 0 such that for every initial
condition X0 with a moment of order l, we have

sup
u∈R

∣

∣P[φ(x(n,X0)) − nγ − φ(X0
i ) ≤ σu

√
n] −N (0, 1)(]−∞, u])

∣

∣

≤
C

(

1 + E

[

max
(

‖X0‖l
∞ , 1

)])

√
n

, (2)
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sup
u∈Rd

∣

∣

∣
P[x(n,X0) − nγ1 ≤ σu

√
n] −N (0, 1)(]−∞,min

i
ui])

∣

∣

∣

≤
C

(

1 + E

[

max
(

‖X0‖l
∞ , 1

)]

+ E

[

‖A(1)0‖l
∞

])

n
l

2(l+1)

.

Definition 2.1. We say that the sequence (A(n))n∈N
is algebraically arith-

metic if there are a, b ∈ R and a θ ∈ Topd with rank 1 (or every θ ∈ TA with
rank 1 ) such that for any A ∈ SA and any θ′ ∈ TA with rank 1,

(θAθ′ − θθ′)(Rd) ⊂ (a+ bZ)1. (3)

Otherwise the sequence is algebraically non arithmetic.

Remark 2.1. For any θ, θ′ ∈ Topd with rank 1 and any A ∈ Topd, the function
θAθ′ − θθ′ is constant with value in R1.

Theorem 2.3 (LLT). Let (A(n))n∈N
be an i.i.d sequence of topical operators

with the MLP property and X0 an Rd-valued random variable independent
from (A(n))n∈N

. Let φ be topical from Rd to R such that φ(1) = 1. Assume
one of the following conditions:

i) supx |φ(A(1)x) − φ(x)| has a moment of order 2, σ > 0, and the system
is non arithmetic

ii) A(1) 0 has a moment of order 4+ǫ, X0 ∈ L
∞ and the sequence (A(n))n∈N

is algebraically non arithmetic.

Then σ > 0 and there exists a σ-finite measure α on Rd, so that for any
continuous function h with compact support, we have:

lim
n

sup
u∈R

∣

∣

∣

∣

σ
√

2πnEX0

[

h
(

x(n,X0) − nγ1 − u1
)]

− EX0

[

e−
(u+φ(X0))2

2nσ2

]

α(h)

∣

∣

∣

∣

= 0.

Moreover the image of α by the function x 7→ (x, φ(x)) is the product of the
invariant probability on PR

d
max by the Lebesgue measure.

Remark 2.2. As in the usual LLT, this theorem says that the probability
for x(n,X0) to fall in a box decreases as 1√

n
. To replace the continuous

functions by indicator functions of the box, we need to know more about ν.
In particular, numerical simulation show that some hyperplanes may have a
weight for ν, so those hyperplanes could not intersect the boundary of the
box.

The algebraic non arithmeticity is optimal in the following sense:
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Proposition 2.1. If the conclusion of theorem 2.3 is true, then (A(n))n∈N

is algebraically non arithmetic.

Theorem 2.4 (Renewal theorem). Let (A(n))n∈N
be an i.i.d sequence

of topical operators with the MLP property and X0 an Rd-valued random
variable independent from (A(n))n∈N

. Assume that there is a topical φ from
Rd to R with φ(1) = 1 such that supx |φ(A(1)x) − φ(x)| has a moment of
order 2. We denote by α the same measure as in theorem 2.3. If γ > 0 and
the system is weakly non arithmetic, then for any function h continuous with
compact support and any initial condition X0, we have:

lim
a→−∞

∑

n≥1

E
[

h
(

x(n,X0) + a1
)]

= 0,

lim
a→+∞

∑

n≥1

E
[

h
(

x(n,X0) + a1
)]

=
α(h)

γ
.

Remark 2.3. The vector 1 gives the average direction in which x(n,X0) is
going to infinity. As in the usual renewal theorem, this theorem says that the
average number of x(n,X0) falling in a box is asymptotically proportional
to the length of this box, when the box is going to infinity in that direction.
As in the LLT, to replace the continuous functions by indicator functions of
the box, we need to know more about ν.

Theorem 2.5 (Large deviations). Let (A(n))n∈N
be an i.i.d sequence of

topical operators with the MLP property and X0 an Rd-valued random vari-
able independent from (A(n))n∈N

. Let φ be topical from Rd to R such that
φ(1) = 1. Assume that supx |φ(A(1)x) − φ(x)| has an exponential moment,
and that σ2 > 0 in theorem 2.1. Then, there exists a non negative strictly
convex function c, defined on a neighborhood of 0 and vanishing only at 0
such that for any bounded initial condition X0 and any ǫ > 0 small enough
we have:

lim
n

1

n
P

[

φ
(

x(n,X0)
)

− nγ > nǫ
]

= −c(ǫ),

lim
n

1

n
P

[

φ
(

x(n,X0)
)

− nγ < −nǫ
]

= −c(−ǫ).

2.2 Max-plus case

When the A(n) are (max,+) operators, it is natural to chose φ(x) = maxi xi.
In this case we get minj maxiAij ≤ φ(Ax)−φ(x) ≤ minij Aij , so integrability
condition can be checked on the last two quantities.
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Theorem 2.6 (CLT). Let (A(n))n∈N
be an i.i.d sequence of (max,+) oper-

ators with the MLP property and X0 an Rd-valued random variable indepen-
dent from (A(n))n∈N

. If maxij A(1)ij and minj maxiA(1)ij have a moment
of order 2, then there exists σ2 ≥ 0 such that for every initial condition X0,

(i) x(n,X0)−nγ1√
n

converges weakly to N (0, σ2)1,

(ii) σ2 = lim 1
n

∫

(maxi,j A(n) · · ·A(1)ij)
2 dP.

Theorems 2.2 to 2.5 are specialized in the same way.
In this case, we also get another condition to avoid degeneracy in the CLT.

To state it, we recall a few definitions and results about (max,+) matrices:

Definition 2.2. For any k, l,m ∈ N, the product of two matrices A ∈ Rk×l
max

and B ∈ Rl×m
max is the matrix A⊗ B ∈ Rk×m

max defined by :

∀1 ≤ i ≤ k, ∀1 ≤ j ≤ m, (AB)ij :=

l
⊕

p=1

Aip ⊗ Bpj.

We notice that if those matrices have no line of −∞, then the (max,+)
operator defined by AB is the composition of those defined by A and the one
defined by B.

Definition 2.3. A cycle on a graph is a closed path on the graph. Let A be
a square matrix of size k with entries in Rmax.

i) The graph of A is the directed labelled graph whose vertices are the
elements of Ik and whose edges are the (i, j) such that Aij > −∞. The
label on (i, j) is Aij . The graph will be denoted by G(A) and the set of
its minimal cycles by C(A).

ii) The average weight of a cycle c = (i1, · · · , in, in+1) ∈ C(A) (where i1 =
in+1) is aw(A, c) := 1

n

∑n
j=1Aij ij+1

.

iii) The spectral radius of A is ρ(A) := maxc∈C(A) aw(A, c).

iv) The critical graph of A is obtained from G(A) by keeping only vertices
and edges belonging to cycles with average weight ρ(A). It will be de-
noted by Gc(A).

v) The cyclicity of a graph is the greatest common divisor of the length of
its cycles if it is strongly connected (that is if any vertex can be reached
from any other in both directions). Otherwise it is the least common
multiple of the cyclicities of its strongly connected components. The
cyclicity of A is that of Gc(A).
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vi) The type of A is scsN-cycC, where N is the number of connected
components of Gc(A) and C the cyclicity of A.

Remark 2.4. Interpretation of powers with G(A).
If (i1, i2 · · · , in) is a path on G(A), its weight is

∑

1≤j≤n−1Aij ij+1
, so that

(A⊗n)ij is the maximum of the weights of length n paths from i to j.

Theorem 2.7 ([CDQV83]). Assume G(A) is strongly connected, ρ(A) = 0
and the cyclicity of A is 1. Then for n big enough A⊗n = Q, where Q is
defined by

∀(i, j) ∈ I2
k , Qij :=

⊕

l∈Gc(A)

A+
il ⊗A+

lj .

Theorem 2.8. Assume the hypothesis of theorem 2.6, with γ = 0. Then the
variance σ2 in theorem 2.6 is 0 if and only if ρmax(TA) = {0}.

Theorem 3.2 of [Mer04] gives a condition to ensure the memory loss prop-
erty. This condition also ensures that there are two matrices in SA with two
distinct spectral radius. This proves the following corollary:

Corollary 2.1. Let the law of A(1) be a probability on the set of d × d
matrices with moment of order 2 whose support is not included in a finite
union of affine hyperplanes of Rk×k. Then x(n, .) satisfies the conclusions of
theorem 2.6 with σ > 0.

We also give a sufficient condition to ensure the algebraic non arithmetic-
ity:

Theorem 2.9. Assume the hypothesis of theorem 2.3 ii) except the alge-
braic non arithmeticity and A(n) are (max,+) operators. If the system is
algebraically arithmetic, then there are a, b ∈ R such that

{ρmax(A)|A ∈ SA,G(A)strongly connected} ⊂ a+ bZ.

Together with corollary 2.1, this proves that the hypothesis are generic
in the following sense:

Corollary 2.2. If the law of A(1) is a probability on the set of d×d matrices
with moment of order 4 + ǫ whose support is not included in an enumerable
union of affine hyperplanes of Rk×k. Then x(n, .) satisfies the conclusions of
theorem 2.3.
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2.3 Comments

The following table sums up the limit theorems. In each situation we assume
the memory-loss property.

Theorems: Finite moments of Additional
A(1) 0 maxij A(1)ij and minj maxiA(1)ij condition

CLT 4 + ǫ 2
CLT with rate 6 + ǫ 3

LLT 4 + ǫ 2 NA
Renewal – 2 NA

LDP – exp X0 ∈ L∞

NA= non arithmeticity

The results of the second column are stated for (max,+) operators be-
cause the supx |φ(A(1)x) − φ(x)| is not bounded for general topical opera-
tors. For other subclasses of topical operators, one has to choose φ such that
supx |φ(A(1)x) − φ(x)| is integrable. For instance φ(x) = mini xi is natural
for (min,+) operators. Actually, it should be possible to derive renewal the-
orem and large deviation principle with the method of [HH04] but this has
not been written down.

The results of the first column require stronger integrability conditions
but they are also better for two reasons: they are true for any topical opera-
tors and the algebraic non arithmeticity does not depend on φ. It is expressed
without introducing the Markovian operator Q although the system is alge-
braically non arithmetic iff Q has an eigenvector with eigenvalue of modulus
1. Moreover for (max,+) operators the algebraic non arithmeticity can be
deduced from theorem 2.9.

An important case for (max,+) operators is when Aij ∈ R+ ∪ {−∞}
and Aii ≥ 0 because it modelizes situations where xi(n, .) is the date of the
nth event of type i and the Aij are delays. In this case the integrability of
maxij A(1)ij and minj maxiA(1)ij is equivalent to the integrability of A(1) 0.

We mentioned earlier that J. Resing et al. [RdVH+90] obtained a central
limit theorem. In a sense our result is weaker because the MLP property
implies that x(n, .) is uniformly Φ-recurrent and aperiodic. But our integra-
bility conditions are much weaker and the MLP property is easier to check.

F. Toomey’s large deviations principle only requires the uniform bound of
the projective image that is a very strong integrability condition. It suggests
that the MLP property should not be necessary. But his formulation of the

11



LDP is not equivalent to ours and in the (max,+) case it needs the fixed
structure property, that is P(Aij(1) = −∞) ∈ {0, 1}.

3 Markov chains and quasi-compact opera-

tors

3.1 Spectral gap

We recall the formalism of Markov chains and operators, following the pre-
sentation by H. Hennion and L.Hervé [HH01]. Then we state the results
obtained by use of the spectral gap method, that we want to apply to our
model.

The context is defined by:

• a measurable space (E, E),

• a transition probability Q on (E, E),

• a Markov chain Xn on (E, E) associated with Q,

• a measurable real valued function ξ on (E, E).

The principle is to investigate the characteristic function φSn
of

Sn :=
n

∑

l=1

ξ(Xl)

by means of the action of the Fourier kernels denoted by Qt or Q(t) on
a suitable Banach space of measurable functions on E. These kernels are
defined for any t ∈ C by

Qt(x, dy) = eitξ(y)Q(x, dy)

and we immediately have φSn
(t) =

∫

E
Qn

t 1dλ(x), where λ is the law of X0.
As Q is a transition probability, Q = Q0 admits 1 as an eigenvalue. To

control the perturbations Qt of Q and especially Qn
t/
√

n
, the key tool is the

quasi-compactness. We say thatQ has a spectral gap if it satisfy the following
definition:

Definition 3.1. A continuous endomorphism Q on a Banach space B is said
to be quasi-compact, if there exists a Q-stable decomposition B = F ⊕H
such that:
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1. dimF <∞ and all eigenvalues of Q|F have modulus r(Q),

2. r(Q|H) < r(Q).

In this case dimF will be denoted by s(Q,B).

3.2 First frame

In this subsection, we state the results of [HH01], under a few additional
assumptions that make the statements easier.

Definition 3.2. Let (Q, ξ) be as before, and (B, ‖.‖) be a Banach space of
continuous functions on E. We say that (Q,B, ξ) satisfies condition H(m) if
the following properties hold:

(H1) (i) 1 ∈ B and if f ∈ B, then f̄ ∈ B, f+ = max(f, 0),
(ii) The norm ‖.‖ on B is greater than the infinity norm,
(iii) if f, g ∈ B are bounded, then fg ∈ B.

(H2) (i) Q has an invariant probability ν,
(ii) Q is quasi-compact on B, with sup ‖Qn‖ <∞,
(iii) Ker(1 −Q) = span(1).

(H3) there exists a neighborhood I0 of 0 in R such that Q(.) ∈ Cm(I0,LB)
and for 1 ≤ k ≤ m, the operatorQ(k)(0) is defined by the kernelQ(x, dy)(iξ(y))k.

Definition 3.3. We say that the system is non arithmetic if Q(.) is contin-
uous from R to the space LB of continuous linear operators on B and, for all
t ∈ R∗, r (Q(t)) < 1.

We say that the system is weakly non arithmetic if Q(.) is continuous
from R to LB and, for all t ∈ R

∗, 1 −Q(t) is invertible.

We state the limit theorems of [HH01] when s(Q,B) = 1.

Theorem 3.1 ([HH01]). Assume that (Q,B, ξ) satisfies H(2) and s(Q,B) =
1. Then ξ2 is ν-integrable and if ν(ξ) = 0 there exists σ2 ≥ 0 such that for
any initial condition with law λ,

(i) limn
1
n
Eλ[S

2
n] = σ2,

(ii) if σ2 = 0, then there exists ξ1 ∈ B, such that ξ2
1 is ν-integrable and

ξ(X1) = ξ1(X0) − ξ1(X1) Pν − a.s.,
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(iii) for f ∈ B and g ∈ Cc(R),

lim
n

Eλ

[

f(Xn)g(
Sn√
n

)

]

= ν(f)N (0, σ2)(g),

where the convergence is uniform in the initial condition.

Theorem 3.2 ([HH01]). Assume that (Q,B, ξ) satisfies H(3). If ν(ξ) = 0
and σ > 0, then there exists C > 0 such that for any initial condition λ,

sup
u∈R

∣

∣Pλ[Sn ≤ uσ
√
n] −N (0, 1)(]−∞, u])

∣

∣ ≤ C(‖λ‖ + 1)√
n

.

Theorem 3.3 ([HH01]). Assume that (Q,B, ξ) satisfies H(2) and s(Q,B) =
1, that ν(ξ) = 0 and σ > 0. If moreover the system is non arithmetic, then
for f ∈ B and g ∈ Cc(R), we have:

lim
n

sup
u∈R

∣

∣

∣

∣

σ
√

2πnEλ [f(Xn)g(Sn − u)] − e−
u2

2nσ2 ν(f)L(g)

∣

∣

∣

∣

= 0,

where L is the Lebesgue measure and the convergence is uniform in the initial
condition λ.

Theorem 3.4 ([HH01]). Assume that (Q,B, ξ) satisfies H(2), and that
ν(ξ) > 0. If moreover the system is weakly non arithmetic, then for f ∈ B
and g ∈ Cc(R), we have:

lim
a→−∞

∑

n≥1

E [f(Xn)g(Sn − a)] = 0,

lim
a→+∞

∑

n≥1

E [f(Xn)g(Sn − a)] =
ν(f)

ν(ξ)
L(g),

where the convergence is uniform in the initial condition λ.

Theorem 3.5 ( [HH01]). Assume that (Q,B, ξ) satisfies H(2), that ν(ξ) =
0 and σ > 0. If moreover there exists θ > 0 for which Q(.) is continuous from
{z ∈ C : |ℜ(z)| < θ} to LB and holomorphic on {z ∈ C : |z| < θ}, then there
exists a non-negative strictly convex function c, defined on a neighborhood of
0 and vanishing only at 0, such that, for λ ∈ B′

p and sufficiently small ǫ > 0,
we have:

lim
n

1

n
Pλ[Sn > nǫ] = −c(ǫ).
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3.3 Second frame

In their article [HH04] H. Hennion and L. Hervé have proved limit theorems
for sequences ξ(Yn, Zn−1), where (Yn)n∈N is an i.i.d. sequence of Lipschitz
operators, and Zn is defined by Zn+1 = Yn+1Zn. As explained in section 1.3,
this is our situation. Moreover in our situation, the Yn, which are the pro-
jective function defined by A(n), are 1-Lipschitz. Following the same proof
as [HH04] with this additional condition, we get the theorems of this section.
The integrability conditions are weaker, since the Lipschitz coefficient is uni-
formly bounded. The only difference in the proof is the Hölder inequality of
the 4th part of proposition 7.3 of [HH04]: the exponents in the inequality
should be changed to 1 and ∞.

In the sequel, M is a non-compact metric space and G is the semi-group
of its 1-Lipschitz operators for distance δ. We denote by S the following
data:

(i) For an i.i.d. sequence (Yn)n∈N with values in G and law µ and a real
variable Z, with values in M and independent from (Yn)n∈N, Zn is
defined by

Z0 = Z and Zn+1 = Yn+1Zn.

(ii) For ξ : G×M → R 1-Lipschitz in the second variable, Sn is defined by

Sn =
n

∑

k=1

ξ(Yk, Zk−1).

(iii) For a fixed x0 ∈ M, every η ≥ 1 and every n ∈ N, we set Mη =
E[δη(Y1x0, x0)] and Cn = E[c(Yn · · ·Y1)], where c(.) is the Lipschitz co-
efficient.

When there is an N ∈ N such that Cn < 1, there is a λ0 ∈]0, 1[, such that
∫

G
c(g) (1 + λ0δ(gx0, x0))

2η dµ∗n(g) < 1. We chose one and set the following
notations:

(i) Bη is the set of functions f from M to C such that mη(f) < ∞, with
norm ‖f‖η = |f |η +mη(f), where

|f |η = sup
x

|f(x)|
(1 + λ0δ(x, x0))1+η

,

mη(f) = sup
x 6=y

|f(x) − f(y)|
δ(x, y) (1 + λ0δ(x, x0))

η (1 + λ0δ(y, x0))
η .
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(ii) B′
η is the set of probability measures on E defining a continuous func-

tional on Bη and for any r > 0, we set B′
η,r = {λ ∈ B′

η : ‖λ‖ < r}, where
‖λ‖ is the norm of the linear form on Bη defined by λ.

(iii) We say that the system is η-non arithmetic if there is no t ∈ R\{0}, no
ρ ∈ C, and no w ∈ Bη with non-zero constant modulus on the support
Sν of ν such that |ρ| = 1 and for all n ∈ N, we have

eitSnw(Zn) = ρnw(Z0)Pν0 − a.s. . (4)

Remark 3.1 (non arithmeticity). In the first frame the non arithmeticity
condition is about the spectral radius ofQt. Here we work with the associated
Pt that acts on M instead of (G,M) (cf. [HH04]). If Pt is quasi-compact,
then r(Pt) = 1 iff Pt has an eigenvalue ρ with modulus 1. It is shown
in proposition 9.1’ of [HH04] that if r(Pt) = 1, then Pt is quasi-compact
as an operator on Bη and that an eigenvector w with eigenvalue ρ satisfies
equation(4).

We are now ready to state the limit theorems by H. Hennion and L.
Hervé.

Theorem 3.6 ([HH04]). Assuming S, if there exists η ≥ 0 such that
Mη+1 < ∞ and n0 such that Cn0 < 1, then Sn converges in law to an
invariant distribution ν, such that

∫

M δη+1(x, x0)dν(x) <∞.

Theorem 3.7 ([HH04]). Assuming S, if there exists η > 1 and n0 ∈ N

such that Cn0 < 1 and M2η <∞, then, for f ∈ ∪η′<η−1Bη′ and g ∈ Cc(R),
we have:

(i) limn Eλ

[

f(Zn)g(
Sn√

n
)
]

= ν(f)N (0, σ2)(g), where the convergence is uni-

form in λ ∈ B′
η,r.

(ii) If η > 3, then for λ ∈ B′
η, limn

1
n
Eλ[S

2
n] = σ2.

(iii) If η > 3 and σ2 = 0, then there exists ξ1 ∈ Bη−1, such that ξ2
1 is

ν-integrable and ξ(X1) = ξ1(X0) − ξ1(X1) Pν − a.s..

Theorem 3.8 ([HH04]). Assuming S, if there exists η > 3 and n0 ∈ N

such that Cn0 < 1 and M2η <∞, if moreover ν(ξ) = 0 and σ > 0, then there
exists C > 0 such that for λ ∈ B′

η,

sup
u∈R

∣

∣Pλ[Sn ≤ uσ
√
n] −N (0, 1)(] −∞, u])

∣

∣ ≤ C‖λ‖η√
n

.
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Theorem 3.9 ([HH04]). Assuming S, if there exists η > 2 and n0 ∈ N such
that Cn0 < 1 and M2η <∞, if moreover ν(ξ) = 0 and there is 1 < η′ < η−1
such that the system is η′-non arithmetic, then for f ∈ Bη′ and g ∈ Cc(R),

lim
n

sup
u∈R

∣

∣

∣

∣

σ
√

2πnEλ [f(Zn)g(Sn − u)] − e−
u2

2nσ2 ν(f)L(g)

∣

∣

∣

∣

= 0,

where L is the Lebesgue measure and the convergence is uniform in λ ∈ B′
η,r.

4 Proofs of the limit theorems

4.1 From iterated topical functions to Markov chains

In this section, we show that the hypothesis of the theorems on our model
stated in section 2 imply the hypothesis of the general theorems stated in
section 3. To apply the results of [HH01],

• the space E will be Topd × PR
d
max with the Borel σ-algebra,

• the transition probability Q will be defined by

Q ((A, x̄), D) = P
(

(A(1), Ax) ∈ D
)

,

• the Markov chain Xn will be (A(n), x̄(n− 1, .)),

• the function ξ will be defined by ξ(A, x̄) = φ(Ax) − φ(x), where φ is a
topical function from Rd to R such that φ(1) = 1.

• σ(A) = supx |ξ(A, x)| = supx |φ(Ax) − φ(x)| <∞ a.s. .

We first need to define the space B.

Definition 4.1. Let L∞ be the space of complex valued bounded continuous
functions on PR

d
max with the infinity norm.

Let j be the function from Topd×PR
d
max to PR

d
max such that j(A, x̄) = Ax

and I the function from RPR
d
max to R(Topd×PR

d
max) defined by

I(φ) = φ ◦ j.

We call B∞ the image of L∞ by I.

As (L∞, ‖.‖∞) is a Banach space, I is an injection, and ‖φ◦ I‖∞ = ‖φ‖∞,
(B∞, ‖.‖∞) is also a Banach space.
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Proposition 4.1. If σ (A(1)) has a moment of order m and if A(n) has
the MLP property, then (Q, ξ,B∞) satisfies condition H(m). Moreover, the
interval I0 in condition (H3) is the whole R and s(Q,B∞) = 1.

To prove (H2), we will use theorem 6.15 of [Mai97] that we restate in our
case:

Theorem 4.1 (Mairesse [Mai97]). If the sequence (A(n))n∈N
of i.i.d. ran-

dom variables with values in Topd has memory loss property, then there exists
a random variable Y with values in PR

d
max such that Yn := A(n) · · ·A(1)Y is

stationnary and
lim

n→∞
P (∃x0, Yn 6= x̄(n, x0)) = 0.

In the sequel, ν0 will be the law of Y that is the limit law of theorem 1.3.

Proof of proposition 4.1. Condition (H1) is trivial, because of the choice of
B∞.

To check condition (H2), we take ν := µ ⊗ ν0. It is Q-invariant by
definition of ν0. This proves (i). To prove (ii) and (iii), we investigate the
iterates of Q. For any φ ∈ L∞, and x ∈ Rd we have:

|Qn(φ ◦ j)(A, x̄) − ν(φ ◦ j)| =
∣

∣Qn(φ)(Ax) − ν0(φ)
∣

∣

=

∣

∣

∣

∣

∫

φ(x̄(n,Ax)dP −
∫

φ(Yn)dP

∣

∣

∣

∣

≤ ‖φ‖∞2P (∃x0, Yn 6= x̄(n, x0)) ,

If we denote ψ 7→ ν(ψ) by N , we obtain:

‖Qn −N‖ ≤ 2P (∃x, Yn 6= x̄(n, x)) → 0. (5)

This proves that r(Q|KerN) < 1 and that supn ‖Qn‖ <∞, so (ii) is checked.
It also proves Ker(1 −Q) ⊂ ImN , which implies (iii).

To prove (H3) we set Q
(k)
t := eitξ(y)(iξ(y))kQ(x, dy) and

∆
(k)
h := Q

(k)
t+h −Q

(k)
t − hQ

(k+1)
t . (6)

To prove our proposition, it remains to bound ‖ 1
h
∆

(k)
h ‖ by a quantity that

tends to zero with h.
To this aim, we introduce the following function:

{

f : R → C

t 7→ eit − 1 − it.
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The calculus will be based on the following estimations on f : |f(t)| ≤ 2t,
and |f(t)| ≤ t2.

Now all follows from

∆
(k)
h (φ ◦ j)(A, x̄) =

∫

φ
(

BAx
)

eitξ(B,Ax)
(

iξ(B,Ax)
)k
f

(

hξ(B,Ax)
)

dµ(B).

(7)
First it implies that

∥

∥

∥
∆

(k)
h (φ ◦ j)

∥

∥

∥

∞
≤ ‖φ‖∞

∫

σk(B) ‖f (hξ(B, .))‖∞ dµ(B). (8)

Since |f(t)| ≤ t2,

1

|h|σ(B)k ‖f (hξ(B, .))‖∞ ≤ hσk+2(B) → 0.

Since |f(t)| ≤ 2t,

1

|h|σ
k(B) ‖f (hξ(B, .))‖∞ ≤ 2σk+1(B).

When k < m, σk+1 is integrable so the dominate convergence theorem and
the two last equations show that

∫

σ(B)k ‖f (hξ(B, .))‖∞ dµ(B) = o(h). (9)

Finally for any k < m, ‖ 1
h
∆

(k)
h ‖ tends to zero, so Q

(k+1)
t is the derivative

of Q(k)
. in t.

To prove that Q(m)
. is continuous, we notice that

(

Q
(m)
t+h −Q

(m)
t

)

(φ◦j)(A, x) =

∫

φ
(

BAx
)

eitξ(B,Ax)
(

iξ(B,Ax)
)m

g
(

hξ(B,Ax)
)

dµ(B).

(10)
where g(t) = eit−1. Then we apply the same method as before, replacing the
estimates on f(hξ(B, .) by ‖g(hξ(B, .)‖∞ ≤ hσ(B) to prove the convergence,
and by ‖g(hξ(B, .)‖∞ ≤ 2 to prove the domination.

This proves (H3) and the additional assumption of proposition 4.1.

To prove theorems 2.1 and 2.3, we will also apply theorems of section 3.3.
We take M = PR

d
max, Yn = A(n) and again ξ(A, x) = φ(Ax) − φ(x). In this

case Zn = x(n,X0) and Sn = φ (x(n, x0)) − φ(X0) and we get the following
proposition:
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Proposition 4.2.

1. If A(1) 0 has a moment of order η ∈ R+, then Mη <∞. If the sequence
has the MLP property, then there is n0 ∈ N such that Cn0 < 1. If X0

has a moment of order η ∈ R+, then f 7→ E[f(X0)] ∈ B′
η.

2. Algebraic non arithmeticity implies η-non arithmeticity for any η > 0.

The first part of the proposition is obvious. The second part relies on the
next two lemma that will be proved after the proposition:

Lemma 4.1. The support of the invariant measure ν0 is

Sν0 := {θ1|θ ∈ TA, θ with rank 1}.

Lemma 4.2. If equation (3) is fulfilled for one θ with rank 1 and any A ∈ SA

and θ′ ∈ TA with rank 1, it is fullfilled for any θ ∈ TA with rank 1.

Proof of proposition 4.2. Let us assume that the system is η-arithmetic. Then
there are w ∈ Bη and t, a ∈ R such that for µ-almost every A and ν0 almost
every x, we have:

eit(φ(Ax)−φ(x)w(Ax) = eitaw(x). (11)

As all function in this equation are continuous, it is true for x ∈ Sν0 and
A ∈ TA. As Sν0 is TA invariant, we iterate equation (11) and get

eit(φ(Tx)−φ(x)w(Tx) = eitanTw(x), (12)

where T ∈ TA and nT is the number of operators of SA one has to compose
to obtain T .

Because of the MLP property, there is a θ ∈ TA with rank 1. We apply
equation (12) for T = θA and T = θ and divide the first equation by the
second one. As nθA = nθ + 1 and θAx = θx , we get

eit(φ(θAx)−φ(θx)) = eita.

Setting b = 2π
t
, it means that φ(θAx)−φ(θx) ∈ a+bZ. As θ has rank one,

(θAx − θx) ∈ R1, so θAx− θx ∈ (a+ bZ)1, and the algebraic arithmeticity
follows by lemma 4.1.

Proof of lemma 4.1. By theorem 4.1, there is sequence of random variables
Yn with law ν0, such that Yn = A(n) · · ·A(1)Y . Let K be a compact subset
of Rmax such that Y ∈ K with positive probability.
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For any θ ∈ TA and any ǫ > 0, the set V of topical functions A such that
δ(Ax, θx) ≤ ǫ for all x ∈ K is a neighborhood of θ. Therefore the probability
for A(nθ) · · ·A(1) to be in V is positive and by independence of Y , we have:

P [Y ∈ K,A(nθ) · · ·A(1) ∈ V ] > 0.

As θ1 = θx, this means that with positive probability,

δ
(

Ynθ
, θ1

)

= δ
(

A(nθ) · · ·A(1)Y, θY
)

≤ ǫ,

so θ1 ∈ Sν0 .

This proves that {θ1|θ ∈ TA, θ with rank 1} ⊂ Sν0.

In [Mai97], ν0 is obtained as the law of Z = limnA(1) · · ·A(n)1. In-
deed, the MLP property and the Poincaré recurrence theorem ensure that
there are almost surely M and N such that A(N) · · ·A(N + M) has rank
1. Therefore A(1) · · ·A(n)1 = A(1) · · ·A(N +M)1 for n ≥ N + M and
Z = A(1) · · ·A(N +M)1. But A(1) · · ·A(N+M) ∈ TA almost surely, so Z ∈
{θ1|θ ∈ TA, θ with rank 1} almost surely and Sν0 ⊂ {θ1|θ ∈ TA, θ with rank 1}.

Proof of lemma 4.2. We assume that equation (3) is fullfilled for θ = θ1 and
any A ∈ SA and θ′ ∈ TA with rank 1.

Let A1, · · · , An ∈ SA, such that θ2 = A1 · · ·An has rank 1. For any i ≤ n,
Ai · · ·Anθ

′ has rank 1, so (θ1Ai · · ·Anθ
′ − θ1Ai+1 · · ·Anθ

′)(Rd) ⊂ (a+ bZ)1.
Summing these inclusions for i = 1 to i = n, we get (θ1θ2θ

′ − θ1θ
′)(Rd) ⊂

(na + bZ)1 and

((θ1θ2Aθ
′ − θ1Aθ

′) − (θ1θ2θ
′ − θ1θ

′)) (Rd) ⊂ bZ1. (13)

Now we write θ2θ
′ as

θ2θ
′ = θ1θ

′ + (θ1θ2θ
′ − θ1θ

′) − (θ1θ2θ
′ − θ2θ

′).

The last part does not depend on θ′, so replacing θ′ by Aθ′ and subtracting
the first version, we get:

θ2Aθ
′ − θ2θ

′ = θ1θ
′ − θ1Aθ

′ + ((θ1θ2Aθ
′ − θ1Aθ

′) − (θ1θ2θ
′ − θ1θ

′)) .

With equation (13), this proves equation (3) for θ = θ2.
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4.2 From Markov chains to iterated topical functions

Propositions 4.1 and 4.2 prove that under the hypothesis of section 2 the
conclusions of the theorems of section 3 are true. This gives results about
the convergence of (φ(x(n,X0) − φ(X0) − nν(ξ), x(n,X0)).

When X0 has law ν0, the sequence (A(n), x(n,X0))n∈N
is stationary, so

it follows from Birkhoff theorem that γ =
∫

ξ(A, x)dν0(x)dµ(A) = ν(ξ).
The following lemma will be useful to go back to x(n, .).

Lemma 4.3. If φ is a topical function from Rd to R, the function ψ : x 7→
(φ(x), x) is a Lipschitz homeomorphism with Lipschitz inverse from Rd onto
R × PR

d
max.

Proof. Let (t, x) be an element of R×PR
d
max. Then ψ(y) = (t, x) if and only

if there is an a ∈ R such that y = x+ a1 and φ(x) + a = t. So the equation
has exactly one solution y = x+ (t− φ(x))1 and ψ is invertible.

It is well known that topical function are Lipschitz, and the projection is
linear, so it is Lipschitz and so is ψ.

For any x, y ∈ Rd, we have x ≤ y + maxi(xi − yi)1, so φ(x) − φ(y) ≤
maxi(xi−yi). Therefore, for any 1 ≤ i ≤ d, we have φ(x)−φ(y)− (xi−yi) ≤
maxi(xi − yi) − mini(xi − yi) = δ(x, y). Permuting x an y, we see that:

|φ(x) − φ(y) − (xi − yi)| ≤ δ(x, y). (14)

Therefore |xi − yi| ≤ |φ(x) − φ(y)|+ δ(x, y) and ψ−1 is Lipschitz.

Proof of theorem 2.1. Without lost of generality, we assume that γ = 0. The-
orem 3.1 and proposition 4.1 or theorem 3.7 and proposition 4.2 prove that
φ(x(n,X0))−φ(X0)√

n
converges to N (0, σ2), which means that φ(x(n,X0))−φ(X0)√

n
1

converges to N (0, σ2) 1. We just estimate the difference between the con-
verging sequence and the one we want to converge:

∆n :=

∥

∥

∥

∥

x(n,X0)√
n

− φ (x(n,X0)) − φ(X0)√
n

1

∥

∥

∥

∥

∞
≤ |φ(X0)|√

n
+

|x(n,X0)|P√
n

.

(15)
Each term of the last sum is a weakly converging sequence divided by

√
n

so it converges to zero in probability. This proves that ∆n converges to zero
in probability, which ensures the convergence to the Gaussian law.

The expression of σ2 is the direct consequence of theorems 3.1 and 3.7.

If σ = 0, then again by theorem 3.1 or 3.7, there is a continuous function
ξ on PR

d
max such that

φ(Ax) − φ(x) = ξ(x) − ξ(Ax) (16)
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for µ-almost every A and ν0-almost every x. Since all functions are contin-
uous, (16) is true for every A ∈ SA and x ∈ Sν0 . By induction we get it for
A ∈ TA and if θ ∈ TA has rank 1 and x ∈ Sν0 , θAx = θx, so φ(θAx) = φ(θx).

As θAx − θx ∈ R1, this means that θAx = θx. By lemma 4.1, it proves
that θAθ′ = θθ′ for any θ, θ′ ∈ TA with rank 1 and A ∈ SA.

On the other side let us assume there is θ with rank one such that for
any θ′ ∈ TA with rank 1 and A ∈ SA, we have:

θAθ′ = θθ′. (17)

By lemma 4.2 applied with a = b = 0, it is true for any θ ∈ TA with rank 1
and by induction, equation (17) is still true for A ∈ TA.

Therefore, for any m ∈ N and n ≥ m+ 1 and any θ′ ∈ TA with rank 1, if
A(n) · · ·A(n−m+ 1) has rank 1 ,then x(n, θ′1) = A(n) · · ·A(n−m+ 1)θ′1
and for any N ∈ N

P (‖x(n, θ′1)‖∞ ≤ N)

≥ P (A(n) · · ·A(n−m+ 1)has rank 1, ‖A(n) · · ·A(n−m+ 1)θ′1‖∞ ≤ N)

≥ P (A(m) · · ·A(1)has rank 1, ‖A(m) · · ·A(1)θ′1‖∞ ≤ N) . (18)

We fix a θ′ ∈ TA with rank one. The MLP property says there is an m
such that P(A(m) · · ·A(1)has rank 1) > 0. Therefore, there is an N ∈ N

such that the right member of 18 is a positive number we denote by β.
Equation 18 now implies that for any ǫ > 0, if n ≥ max(m,N2ǫ−2), then

P(‖ 1√
n
x(n, θ′1)‖∞ ≤ ǫ) ≥ β, so N (0, σ2)[−ǫ, ǫ] ≥ β. When ǫ tends to zero,

we get that N (0, σ2)({0}) ≥ β > 0, which is true only if σ = 0.

Proof of theorem 2.2. Without loss of generality, we assume that γ = 0.
Equation (2) follows from theorem 3.2 and proposition 4.1 or from theo-
rem 3.8 and proposition 4.2

The only fact to check is that for any f ∈ Bη, we have:

λ(f) ≤ C
(

1 + E(max(‖X0‖∞, 1)l
)

‖f‖η.

It easily follows from the fact that |f(x)| ≤ ‖f‖η(1+ |x|P)1+η and 1+η ≤ m.
Taking y = 0 in 14, we get |φ(x) − xi| ≤ |x|P . Together with (15) it

proves that for any u ∈ Rd and any ǫ > 0

P[x(n,X0) ≤ σu
√
n]

≤ P

[

min
i
xi(n,X

0) ≤ σmin
i
ui

√
n
]
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≤ P

[

φ(x(n,X0)) ≤ (σmin
i
ui + 2ǫ)

√
n
]

+ P

[ |φ(X0)|√
n

≥ ǫ

]

+ P

[ |x(n,X0)|P√
n

≥ ǫ

]

≤ N (0, 1)(] −∞,min
i
ui +

2ǫ

σ
]) +

C√
n

+
E

(

|φ(X0)|l
)

(ǫ
√
n)l

+
E

(

|x(n,X0)|lP
)

(ǫ
√
n)l

≤ N (0, 1)(] −∞,min
i
ui]) +

C√
n

+
2ǫ

σ
+

E

(

|φ(X0)|l
)

(ǫ
√
n)l

+
E

(

|x(n,X0)|lP
)

(ǫ
√
n)l

. (19)

On the other side

P[x(n,X0) ≤ σu
√
n]

≥ P

[

φ(x(n,X0)) ≤ σmin
i
ui

√
n
]

≥ P

[

φ(x(n,X0)) ≤ (σmin
i
ui − 2ǫ)

√
n
]

− P

[ |φ(X0)|√
n

≥ ǫ

]

− P

[ |x(n,X0)|P√
n

≥ ǫ

]

≥ N (0, 1)(] −∞,min
i
ui −

2ǫ

σ
]) − C√

n
−

E

(

|φ(X0)|l
)

(ǫ
√
n)l

− E
(

|x(n,X0)|lP
)

(ǫ
√
n)l

≥ N (0, 1)(] −∞,min
i
ui]) −

C√
n
− 2ǫ

σ
−

E

(

|φ(X0)|l
)

(ǫ
√
n)l

− E
(

|x(n,X0)|lP
)

(ǫ
√
n)l

. (20)

Taking ǫ = n− l
2(l+1) in (19) and (20) will conclude the proof of theo-

rem 2.2 if we can show that E
(

|x(n,X0)|lP
)

is bounded uniformly in n and
X0. Without loss of generality, we assume X0.

For n0 ∈ N, we take a ≥ (P [A(n0) · · ·A(1) has not rank 1 ])1/n0 . But if
A(n) · · ·A(m) has not rank 1, then for any integer less than n−m

n0
, the operator

A(1+ in0) · · ·A(1+(i+1)n0) has not rank 1 eather. From the Independence
of the A(n), we deduce

P (A(n) · · ·A(m) has not rank 1 ) ≤ an−m−n0.

We estimate δ (A(n) · · ·A(m)0, A(n) · · ·A(n0 + 1 +m)0): it is 0 when
A(n) · · ·A(n0+1+m) has rank 1, and it is always less than δ (A(n0) · · ·A(1)0, 0),
that is less than |A(n0) · · ·A(1)0|P . Therefore, we have for any n ≥ m+ n0

E
[

δl (A(n) · · ·A(m)0, A(n) · · ·A(n0 + 1 +m)0)
]

≤ E

[

1
A(n)···A(n0+1) has not rank 1 |A(n0) · · ·A(1)0|lP

]

= an−m−2n0E

[

|A(n0) · · ·A(1)0|lP
]

. (21)
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Let n = qn0 + r be the euclidean division of n by n0. Then we have

|x(n, 0)|P = δ (A(n) · · ·A(1)0, 0)

≤
q

∑

i=1

δ (A(n) · · ·A(in0 + 1)0, A(n) · · ·A((i− 1)n0 + 1)0)

+δ (A(n) · · ·A(n− r + 1)0, 0) .

Therefore we have:

(

E

[

|x(n, 0)|lP
])1/l

≤
q

∑

i=1

(

an−in0−n0E

[

|A(n0) · · ·A(1)0|lP
])1/l

+
(

E [|A(r) · · ·A(1)0, 0)|lP
)1/l

. (22)

We apply this decomposition again (with n0 = 1 and a = 1), to check that

(

E

[

|A(n) · · ·A(1)0|lP
])1/l

≤ n
(

E

[

|A(1)0|lP
])1/l

.

It follows from the MLP property, that there is n0 ∈ N such that a < 1.
Introducing the last equation in equation (22), we see that

(

E

[

|x(n, 0)|lP
])1/l

≤
(

1 +
a−n0l

1 − an0l

)

n0

(

E

[

|A(1)0|lP
])1/l

.

To go from the abstract LLT and renewal theorem to ours, we will use
the following approximation lemma.

Lemma 4.4. Let h be a continuous function with compact support from
Ra × Rb. Then there are two continuous functions f0 and g0 with compact
support in R

a and R
b respectively, so that for any ǫ > 0, there are fi and gi

continuous functions with compact support satisfying:

∀x ∈ R
a, y ∈ R

b, |h(x, y)−
∑

i

fi(x)gi(y)| ≤ ǫf0(x)g0(y).

In the sequel, we denote by L the Lebesgue measure.

Proof theorem 2.3. By theorem 2.1, the algebraic non arithmeticity ensures
that σ > 0.
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We apply proposition 4.1 and theorem 3.3 or proposition 4.2 and the-
orem 3.9. This proves that, if g ∈ Cc(R) and if f is a bounded Lipschitz
function on PR

d
max, then for any x0 ∈ R

d,

lim
n

sup
u∈R

∣

∣

∣

∣

σ
√

2πnE
(

f
(

x̄(n, x0)
)

g
(

φ
(

x(n, x0)
)

− φ
(

x0
)

− u
))

− e−
u2

2nσ2 ν(f)L(g)

∣

∣

∣

∣

= 0.

(23)
Moreover these convergences are uniform in x0, because δx0 is bounded

independently of x0 as a linear form on B∞ and is in B′
η,‖X0‖∞ if |x0|P ≤

‖X0‖∞. The uniformity allows us to take any random initial condition X0

and get

lim
n

sup
u∈R

∣

∣

∣

∣

σ
√

2πnE
[

f
(

x̄(n,X0)
)

g
(

φ
(

x(n,X0)
)

− u
)]

− E

[

e−
(u+φ(X0))2

2nσ2

]

ν(f)L(g)

∣

∣

∣

∣

= 0.

(24)
But the density of bounded Lipschitz functions in (Cc(PR

d
max), ‖.‖∞) al-

lows us to take f and g continuous functions with compact support in equa-
tion (24). Now, it follows from lemma 4.4, that for any h continuous with
compact support

lim
n

sup
u∈R

∣

∣

∣

∣

σ
√

2πnE
[

h
(

x̄(n,X0), φ
(

x(n,X0)
)

− u
)]

− E

[

e−
(u+φ(X0))2

2nσ2

]

ν ⊗ L(h)

∣

∣

∣

∣

= 0.

(25)
According to lemma 4.3 the function Φ : x 7→ (φ, x̄) is Lipschitz with a
Lipschitz inverse, h has compact support iff h ◦ Φ does. Since x+ u1 = x,
this concludes the proof.

Proof of proposition 2.1. Assume the sequence of random variables is alge-
braically arithmetic and the conclusion of theorem 2.3 holds.

There are a, b ∈ R and θ with rank 1, such that every A ∈ SA and
θ′ ∈ TA with rank 1 satisfy equation (3). We set t = 2π

b
if b 6= 0 and t = 1

otherwise, and for any x ∈ Rd, w(x) = eit(φ(θx)−φ(x), where φ(x) = maxi(xi).
Equation (3) implies that, for any A ∈ SA, y ∈ Rd, and any θ′ ∈ TA with
rank 1:

eit(φ(Aθ′y)−φ(θ′y)w(Aθ′y) = eitaw(θ′y).

We chose y such that φ(θ′y) = 0. By induction, we get

eit(φ(x(n,θ′y))w(x(n, θ′y)) = eitnaw(θ′y). (26)

For any f : R 7→ R and g : PR
d
max 7→ R continuous with compact support,

the conclusion of theorem 2.3 for h defined by h(x) = f(φ(x))(gw)(x) is that:

σ
√

2πnE [f(φ(x(n, θ′y)))g(x(n, θ′y)w(x(n, θ′y))] → L(f)ν0(gw).
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Together with equation (26), it means

eitnaw(θ′y)σ
√

2πnE
[

eit.f((φ(x(n, θ′y)))g(x(n, θ′y))
]

→ L(f)ν0(gw) (27)

But conclusion of theorem 2.3 for h defined by h(x) = (feit.)(φ(x))g(x)
is that:

σ
√

2πnE
[

eit.f((φ(x(n, θ′y)))g((θ′y))
]

→ L(feit.)ν0(g) (28)

Equations (27) and (28) togeether imply that a = 0 and that

w(θ′y)L(feit.)ν0(g) = L(f)ν0(gw).

The right side of the equation does not depend on θ′ so by lemma 4.1 w
is constant on Sν0 , this proves ν0(gw) = w(θ′y), so L(feit.) = L(f) that is
eit. = 1 or t = 0. This is a contradiction, which concludes the proof.

Proof of theorem 2.4. Applying proposition 4.1 and theorem 3.4 again, we
have that, if g ∈ Cc(R) and if f is a bounded Lipschitz function on PR

d
max,

then for any x0 ∈ Rd,

lim
a→−∞

∑

n≥1

E
[

f
(

φ
(

x(n, x0)
)

− φ
(

x0
)

+ a
)

g
(

x̄(n, x0)
)]

= 0,

lim
a→+∞

∑

n≥1

E
[

f
(

φ
(

x(n, x0)
)

− φ
(

x0
)

+ a
)

g
(

x̄(n, x0)
)]

=
ν(f)L(g)

γ
.

Moreover these convergences are uniform in x0, because δx0 is bounded as a
linear form on B∞. The uniformity allows us to remove the φ (x0) in the last
equations and take any random initial condition. The result follows by the
same successive approximations as in the proof of the LLT.

Proof of theorem 2.5. Without lost of generality, we can assume that γ = 0.
The exponential moment of σ(A) means that there is a θ > 0 such that

∫

eθσ(A)dµ(A) <∞. An easy bound of the norm of ξk(y)Q(., dy) inspired by
the proof of proposition 4.1 ensures that z 7→ Qz is analytic on the open ball
with center 0 and radius θ. To prove that it is continuous on the domain
{|Rz| < θ/2}, we apply the same method.

Now theorem 3.5 gives

lim
n

1

n
ln P

[

φ
(

x(n,X0)
)

− φ(X0) > nǫ
]

= −c(ǫ).

Let 0 < η < ǫ. For any n ≥ φ(X0)/η, we have

P
[

φ
(

x(n,X0)
)

− φ(X0) > nǫ
]

≥ P
[

φ
(

x(n,X0)
)

> n(ǫ+ η)
]

,
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which implies that

lim inf
n

1

n
ln P

[

φ
(

x(n,X0)
)

− nγ > nǫ
]

≥ −c(ǫ+ η).

The same method gives

lim sup
n

1

n
ln P

[

φ
(

x(n,X0)
)

− nγ > nǫ
]

≤ −c(ǫ− η).

By continuity of c, the first equality is proved. The second one follows from
the same method applied to −φ instead of φ.

4.3 Max-plus case

Proof of theorem 2.8. Suppose that σ = 0. By proposition 4.1 we may apply
theorem 3.1. The third point of the theorem says that there exists a bounded
Lipschitz function f such that for ν-almost every (A, x̄):

max
i

(Ax)i − max
i
xi = f(x) − f(Ax) (29)

Since all functions in that equation are continuous, every A ∈ SA and
x ∈ Supp(ν0) satisfy equation (29). If A ∈ SA and x ∈ Supp(ν0), then
Ax ∈ Supp(ν0), so by induction equation (29) is satisfied by A in TA. As
for A ∈ TA, An ∈ TA, maxiA

nxi is bounded. But there exists a k such
that c(A)ρmax(A) = Ac(A)kk, so maxi

(

Anc(A)x
)

i
≥ nc(A)ρmax(A) + xk and

ρmax(A) ≤ 0.

As every path on Gc(A) can be split into a path with length at most d
and closed paths whose average length are at most ρmax(A), we have:

Anx ≤ (n− d)ρmax(A) + d max
Aij>−∞

|Aij| + max
i
xi,

therefore ρmax(A) ≥ 0.

If ρmax(A) = 0 for A ∈ TA, then

φ(x(n, 0)) − φ(0) = max
i
xi(n, 0)

= max
ij

(A(n) · · ·A(1))ij

≥ ρmax (A(n) · · ·A(1)) = 0 a.s. .

Therefore N (0, σ2)(R+) ≥ 1, and σ = 0.
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Proof of theorem 2.9. We assume the system is algebraically arithmetic. Then
there are a, b ∈ R and θ ∈ TA such that for any A ∈ SA and θ′ ∈ TA with
rank 1, we have: (θAθ′ − θθ′)(Rd) ⊂ (a+ bZ)1. Replacing θ′ by Anθ′, we get
(θAn+1θ′ − θAnθ′)(Rd) ⊂ (a+ bZ)1 and by induction

(θAn+kθ′ − θAnθ′)(Rd) ⊂ (ka + bZ)1 (30)

By theorem 2.7, if G(A) is strongly connected, for n big enough, Anc(A) −
nc(A)ρmax(A)1 = (A− ρmax(A)1)nc(A) is constant, because (A− ρmax(A))c(A)

has spectral radius 0 and cyclicity 1. ThereforeA(n+1)c(A) = Anc(A)+c(A)ρmax(A)1,
and θAn+c(A)θ′ − θAnθ′ = θθ′ + c(A)ρmax(A)1. Together with equation (30),
this concludes the proof.
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